1
|
Dey A, Naranjo E, Saha R, Zhang S, Nair MN, Li TD, Chen X, Ulijn RV. Water-Vapor Responsive Metallo-Peptide Nanofibers. Angew Chem Int Ed Engl 2024; 63:e202409391. [PMID: 39137360 DOI: 10.1002/anie.202409391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/09/2024] [Accepted: 08/12/2024] [Indexed: 08/15/2024]
Abstract
Short peptides are versatile molecules for the construction of supramolecular materials. Most reported peptide materials are hydrophobic, stiff, and show limited response to environmental conditions in the solid-state. Herein, we describe a design strategy for minimalistic supramolecular metallo-peptide nanofibers that, depending on their sequence, change stiffness, or reversibly assemble in the solid-state, in response to changes in relative humidity (RH). We tested a series of histidine (H) containing dipeptides with varying hydrophobicity, XH, where X is G, A, L, Y (glycine, alanine, leucine, and tyrosine). The one-dimensional fiber formation is supported by metal coordination and dynamic H-bonds. Solvent conditions were identified where GH/Zn and AH/Zn formed gels that upon air-drying gave rise to nanofibers. Upon exposure of the nanofiber networks to increasing RH, a reduction in stiffness was observed with GH/Zn fibers reversibly (dis-)assembled at 60-70 % RH driven by a rebalancing of hydrogen bonding interactions between peptides and water. When these metallo-peptide nanofibers were deposited on the surface of polyimide films and exposed to varying RH, peptide/water-vapor interactions in the solid-state mechanically transferred to the polymer film, leading to the rapid and reversible folding-unfolding of the films, thus demonstrating RH-responsive actuation.
Collapse
Affiliation(s)
- Avishek Dey
- Nanoscience Initiative at Advanced Science Research Center of the Graduate Center of the City University of New York, New York, New York, 10031, USA
| | - Elma Naranjo
- Nanoscience Initiative at Advanced Science Research Center of the Graduate Center of the City University of New York, New York, New York, 10031, USA
- Department of Chemical Engineering, The City College of New York, 275 Convent Ave, New York, NY 10031, USA
| | - Ranajit Saha
- Department of Chemistry, Cooch Behar Panchanan Barma University, Cooch Behar, West Bengal, 736101, India
| | - Sheng Zhang
- Nanoscience Initiative at Advanced Science Research Center of the Graduate Center of the City University of New York, New York, New York, 10031, USA
| | - Maya Narayanan Nair
- Nanoscience Initiative at Advanced Science Research Center of the Graduate Center of the City University of New York, New York, New York, 10031, USA
| | - Tai-De Li
- Nanoscience Initiative at Advanced Science Research Center of the Graduate Center of the City University of New York, New York, New York, 10031, USA
- Department of Physics, City College of New York of City, University of New York, New York, NY 10031, USA
| | - Xi Chen
- Nanoscience Initiative at Advanced Science Research Center of the Graduate Center of the City University of New York, New York, New York, 10031, USA
- Department of Chemical Engineering, The City College of New York, 275 Convent Ave, New York, NY 10031, USA
- Ph.D. Program in Physics, The Graduate Center of the City University of New York, 365 5th Ave, New York, NY 10016, USA
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, 365 5th Ave, New York, NY 10016, USA
| | - Rein V Ulijn
- Nanoscience Initiative at Advanced Science Research Center of the Graduate Center of the City University of New York, New York, New York, 10031, USA
- Department of Chemistry Hunter College, City University of New York, New York, New York, 10065, USA
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, 365 5th Ave, New York, NY 10016, USA
- Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York, 365 5th Ave, New York, NY 10016, USA
| |
Collapse
|
2
|
Zhang W, Ai J, Ouyang T, Yu L, Liu A, Han L, Duan Y, Tian C, Chu C, Ma Y, Che S, Fang Y. Chiral Nanostructured Ag Films for Multicarbon Products from CO 2 Electroreduction. J Am Chem Soc 2024. [PMID: 39356497 DOI: 10.1021/jacs.4c08445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
The formation of multicarbon products from CO2 electroreduction is challenging on materials other than Cu-based catalysts. Ag has been known to be a typical metal catalyst, producing CO in CO2 electroreduction. The formation of C2+ products by Ag has never been reported because the carbon-carbon (C-C) coupling is an unfavorable process due to the high reaction barrier energy of *OCCO. Here, we propose that the chirality-induced spin polarization of chiral nanostructured Ag films (CNAFs) can promote the formation of triplet OCCO by regulating its parallel electron spin alignment, and the helical lattice distortion of nanostructures can decrease the reaction energy of *OCCO, which triggers C-C coupling and promotes subsequent *OCCO hydrogenation to facilitate the generation of C2+ products. The CNAFs with helically lattice-distorted nanoflakes were fabricated via electrodeposition using phenylalanine as the symmetry-breaking agent. C2+ products (C2H4, C2H6, C3H8, C2H5OH, and CH3COOH) with a Faradaic efficiency of ∼4.7% and a current density of ∼22 mA/cm2 were generated in KHCO3 electrolytes under 12.5 atm of CO2 (g). Our findings propose that the chiral nanostructured materials can regulate the multifunctionality of catalytic performance in the catalytic reactions with triplet intermediates and products.
Collapse
Affiliation(s)
- Wanning Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Jing Ai
- Sinopec Shanghai Research Institute of Petrochemical Technology, 1658 Pudong Beilu, Shanghai 201208, China
| | - Tianwei Ouyang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Lu Yu
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, 350 Shushanhu Road, Hefei, Anhui 230031, China
- Division of Life Sciences and Medicine, Anhui Engineering Laboratory of Peptide Drug, Anhui Laboratory of Advanced Photonic Science and Technology, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Aokun Liu
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, 350 Shushanhu Road, Hefei, Anhui 230031, China
- Division of Life Sciences and Medicine, Anhui Engineering Laboratory of Peptide Drug, Anhui Laboratory of Advanced Photonic Science and Technology, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Lu Han
- School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Yingying Duan
- School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Changlin Tian
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, 350 Shushanhu Road, Hefei, Anhui 230031, China
- Division of Life Sciences and Medicine, Anhui Engineering Laboratory of Peptide Drug, Anhui Laboratory of Advanced Photonic Science and Technology, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Chaoyang Chu
- Centre for High Resolution Electron Microscopy & Shanghai Key Lab of High-Resolution Microscopy, ShanghaiTech University, Shanghai 201210, China
| | - Yanhang Ma
- Centre for High Resolution Electron Microscopy & Shanghai Key Lab of High-Resolution Microscopy, ShanghaiTech University, Shanghai 201210, China
| | - Shunai Che
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yuxi Fang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| |
Collapse
|
3
|
Hagedoorn D, Michel-Souzy S, Gostyński B, Gojzewski H, Paneth P, Cornelissen JJLM, Wurm FR. Helical polyamines. Chem Sci 2024; 15:d4sc05129g. [PMID: 39309083 PMCID: PMC11409658 DOI: 10.1039/d4sc05129g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 09/01/2024] [Indexed: 09/25/2024] Open
Abstract
Polymer microstructures rely on tacticity, yet exploration in polyamines has focused predominantly on atactic polymers. We introduce a method to synthesize a diverse library of ortho and para-cyanobenzenesulfonyl-activated-methyl aziridines using R, S, and racemic alaninol. Living anionic ring-opening polymerization of racemic sulfonyl aziridines yields soluble polymers, while enantiomerically-pure sulfonyl aziridines follow a dispersion polymerization with complete monomer conversion giving access to stereoblock copolymers. Removal of activation groups is achieved using dodecanethiol and tert-butylimino-tri(pyrrolidino)phosphorane to obtain isotactic or atactic linear polypropylene imines (LPPIs). High-purity L-PPIs are obtained in salt and neutral forms with high yields. Stereoblock copolymers of poly-R-block-S-polysulfonamides and respective polypropylene imine stereoblocks are synthesized, revealing helical structures in water influenced by the monomer type and sequence in CD spectroscopy. Molecular dynamics simulations confirm the helical nature of isotactic LPPIs in water. Bulk characterization demonstrates the first crystalline isotactic polyamines via spherulite growth in polarized light, atomic force microscopy and XRD analyses. In cell-transfection studies, the synthesized isotactic LPPIs exhibit lower toxicity and transfection efficiency than commercial hyperbranched polyethylene imine, with longer chains showing increased transfection efficiency. These isotactic polymers open avenues for complex macromolecular architectures with optically active polyamines akin to poly(amino acid)s but lacking hydrolytically cleavable amide links.
Collapse
Affiliation(s)
- Daniël Hagedoorn
- Department of Molecules and Materials, Sustainable Polymer Chemistry (SPC), MESA+ Institute for Nanotechnology, Faculty of Science and Technology, University of Twente P. O. Box 217 7500 AE Enschede The Netherlands
| | - Sandra Michel-Souzy
- Department of Molecules and Materials, Biomolecular Nanotechnology (BNT), MESA+ Institute for Nanotechnology, Faculty of Science and Technology, University of Twente P. O. Box 217 7500 AE Enschede The Netherlands
| | - Bartłomiej Gostyński
- International Center of Research on Innovative Biobased Materials (ICRI-BioM)-International Research Agenda, Lodz University of Technology Zeromskiego 116 90-924 Lodz Poland
| | - Hubert Gojzewski
- Department of Molecules and Materials, Sustainable Polymer Chemistry (SPC), MESA+ Institute for Nanotechnology, Faculty of Science and Technology, University of Twente P. O. Box 217 7500 AE Enschede The Netherlands
| | - Piotr Paneth
- International Center of Research on Innovative Biobased Materials (ICRI-BioM)-International Research Agenda, Lodz University of Technology Zeromskiego 116 90-924 Lodz Poland
| | - Jeroen J L M Cornelissen
- Department of Molecules and Materials, Biomolecular Nanotechnology (BNT), MESA+ Institute for Nanotechnology, Faculty of Science and Technology, University of Twente P. O. Box 217 7500 AE Enschede The Netherlands
| | - Frederik R Wurm
- Department of Molecules and Materials, Sustainable Polymer Chemistry (SPC), MESA+ Institute for Nanotechnology, Faculty of Science and Technology, University of Twente P. O. Box 217 7500 AE Enschede The Netherlands
| |
Collapse
|
4
|
Castelletto V, Seitsonen J, Pollitt A, Hamley IW. Minimal Peptide Sequences That Undergo Liquid-Liquid Phase Separation via Self-Coacervation or Complex Coacervation with ATP. Biomacromolecules 2024; 25:5321-5331. [PMID: 39066731 PMCID: PMC11323023 DOI: 10.1021/acs.biomac.4c00738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/23/2024] [Accepted: 07/23/2024] [Indexed: 07/30/2024]
Abstract
The simple (self-)coacervation of the minimal tryptophan/arginine peptide sequences W2R2 and W3R3 was observed in salt-free aqueous solution. The phase diagrams were mapped using turbidimetry and optical microscopy, and the coacervate droplets were imaged using confocal microscopy complemented by cryo-TEM to image smaller droplets. The droplet size distribution and stability were probed using dynamic light scattering, and the droplet surface potential was obtained from zeta potential measurements. SAXS was used to elucidate the structure within the coacervate droplets, and circular dichroism spectroscopy was used to probe the conformation of the peptides, a characteristic signature for cation-π interactions being present under conditions of coacervation. These observations were rationalized using a simple model for the Rayleigh stability of charged coacervate droplets, along with atomistic molecular dynamics simulations which provide insight into stabilizing π-π stacking interactions of tryptophan as well as arginine-tryptophan cation-π interactions (which modulate the charge of the tryptophan π-electron system). Remarkably, the dipeptide WR did not show simple coacervation under the conditions examined, but complex coacervation was observed in mixtures with ATP (adenosine triphosphate). The electrostatically stabilized coacervation in this case provides a minimal model for peptide/nucleotide membraneless organelle formation. These are among the simplest model peptide systems observed to date able to undergo either simple or complex coacervation and are of future interest as protocell systems.
Collapse
Affiliation(s)
- Valeria Castelletto
- School
of Chemistry, Food Biosciences and Pharmacy, University of Reading, Whiteknights, Reading RG6 6AD, U.K.
| | - Jani Seitsonen
- Nanomicroscopy
Center, Aalto University, Puumiehenkuja 2, Espoo 02150, Finland
| | - Alice Pollitt
- Institute
for Cardiovascular and Metabolic Research, School of Biological Sciences, University of Reading, Reading RG6 6AS, U.K.
| | - Ian W. Hamley
- School
of Chemistry, Food Biosciences and Pharmacy, University of Reading, Whiteknights, Reading RG6 6AD, U.K.
| |
Collapse
|
5
|
Hamley IW, Adak A, Castelletto V. Influence of chirality and sequence in lysine-rich lipopeptide biosurfactants and micellar model colloid systems. Nat Commun 2024; 15:6785. [PMID: 39117639 PMCID: PMC11310517 DOI: 10.1038/s41467-024-51234-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 08/01/2024] [Indexed: 08/10/2024] Open
Abstract
Lipopeptides can self-assemble into diverse nanostructures which can be programmed to incorporate peptide sequences to achieve a remarkable range of bioactivities. Here, the influence of peptide sequence and chirality on micelle structure and interactions is investigated in a series of lipopeptides bearing two lysine or D-lysine residues and tyrosine or tryptophan residues, attached to a hexadecyl lipid chain. All molecules self-assemble into micelles above a critical micelle concentration (CMC). Small-angle x-ray scattering (SAXS) is used to probe micelle shape and structure from the form factor and to probe inter-micellar interactions via analysis of structure factor. The CMC is obtained consistently from surface tension and electrical conductivity measurements. We introduce a method to obtain the zeta potential from the SAXS structure factor which is in good agreement with directly measured values. Atomistic molecular dynamics simulations provide insights into molecular packing and conformation within the lipopeptide micelles which constitute model self-assembling colloidal systems and biomaterials.
Collapse
Affiliation(s)
- Ian W Hamley
- School of Chemistry, Food Biosciences and Pharmacy, University of Reading, Whiteknights, Reading, RG6 6AD, UK.
| | - Anindyasundar Adak
- School of Chemistry, Food Biosciences and Pharmacy, University of Reading, Whiteknights, Reading, RG6 6AD, UK
| | - Valeria Castelletto
- School of Chemistry, Food Biosciences and Pharmacy, University of Reading, Whiteknights, Reading, RG6 6AD, UK
| |
Collapse
|
6
|
Obenauer ML, Dresel JA, Schweitzer M, Besenius P, Schmid F. Atomistic Molecular Dynamics Simulations of ABA-Type Polymer Peptide Conjugates: Insights into Supramolecular Structures and their Circular Dichroism Spectra. Macromol Rapid Commun 2024; 45:e2400149. [PMID: 38973657 DOI: 10.1002/marc.202400149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/16/2024] [Indexed: 07/09/2024]
Abstract
A combination of atomistic molecular dynamics (aMD) simulations and circular dichroism (CD) analysis is used to explore supramolecular structures of amphiphilic ABA-type triblock polymer peptide conjugates (PPC). Using the example of a recently introduced PPC with pH- and temperature responsive self-assembling behavior [Otter et al., Macromolecular Rapid Communications 2018, 39, 1800459], this study shows how molecular dynamics simulations of simplified fragment molecules can add crucial information to CD data, which helps to correctly identify the self-assembled structures and monitor the folding/unfolding pathways of the molecules. The findings offer insights into the nature of structural transitions induced by external stimuli, thus contributing to the understanding of the connection of microscopic structures with macroscopic properties.
Collapse
Affiliation(s)
| | | | - Maren Schweitzer
- Department of Chemistry, Duesbergweg 10-14, D-55128, Mainz, Germany
| | - Pol Besenius
- Department of Chemistry, Duesbergweg 10-14, D-55128, Mainz, Germany
| | | |
Collapse
|
7
|
Bhowmik S, Baral B, Rit T, Jha HC, Das AK. Design and synthesis of a nucleobase functionalized peptide hydrogel: in vitro assessment of anti-inflammatory and wound healing effects. NANOSCALE 2024; 16:13613-13626. [PMID: 38958597 DOI: 10.1039/d4nr01149j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Over the past several years, a significant increase in the expanding field of biomaterial sciences has been observed due to the development of biocompatible materials based on peptide derivatives that have intrinsic therapeutic potential. In this report, we synthesized nucleobase functionalized peptide derivatives (NPs). Hydrogelation in the synthesized NPs was induced by increasing their hydrophobicity with an aromatic moiety. The aggregation behavior of the NPs was analyzed by performing molecular dynamics simulations and DOSY NMR experiments. We performed circular dichroism (CD), thioflavin-T binding and PXRD to characterize the supramolecular aggregation in the NP1 hydrogel. The mechanical strength of the NP1 hydrogel was tested by performing rheological experiments. TEM and SEM experiments were performed to investigate the morphology of the NP1 hydrogel. The biocompatibility of the newly synthesized NP1 hydrogel was investigated using McCoy and A549 cell lines. The hemolytic activity of the NP1 hydrogel was examined in human blood cells. The stability of the newly formed NP1 hydrogel was examined using proteinase K and α-chymotrypsin. The NP1 hydrogel was used for in vitro wound healing. Western blotting, qRT-PCR and DCFDA assay were performed to determine the anti-inflammatory activity of the NP1 hydrogel. The synthesized NP1 hydrogel also exhibits antibacterial efficacy.
Collapse
Affiliation(s)
- Sourav Bhowmik
- Department of Chemistry, Indian Institute of Technology Indore, Indore 453552, India.
| | - Budhadev Baral
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Khandwa Road, Indore 453552, India
| | - Tanmay Rit
- Department of Chemistry, Indian Institute of Technology Indore, Indore 453552, India.
| | - Hem Chandra Jha
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Khandwa Road, Indore 453552, India
| | - Apurba K Das
- Department of Chemistry, Indian Institute of Technology Indore, Indore 453552, India.
| |
Collapse
|
8
|
Matsuo T, Yamamoto S, Matsuo K. Phospholipid-induced secondary structural changes of lysozyme polymorphic amyloid fibrils studied using vacuum-ultraviolet circular dichroism. Phys Chem Chem Phys 2024; 26:18943-18952. [PMID: 38952218 DOI: 10.1039/d4cp00965g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
The hallmark of amyloidosis, such as Alzheimer's disease and Parkinson's disease, is the deposition of amyloid fibrils in various internal organs. The onset of the disease is related to the strength of cytotoxicity caused by toxic amyloid species. Furthermore, amyloid fibrils show polymorphism, where some types of fibrils are cytotoxic while others are not. It is thus essential to understand the molecular mechanism of cytotoxicity, part of which is caused by the interaction between amyloid polymorphic fibrils and cell membranes. Here, using amyloid polymorphs of hen egg white lysozyme, which is associated with hereditary systemic amyloidosis, showing different levels of cytotoxicity and liposomes of DMPC and DMPG, changes in the secondary structure of the polymorphs and the structural state of phospholipid membranes caused by the interaction were investigated using vacuum-ultraviolet circular dichroism (VUVCD) and Laurdan fluorescence measurements, respectively. Analysis has shown that the more cytotoxic polymorph increases the antiparallel β-sheet content and causes more disorder in the membrane structure while the other less cytotoxic polymorph shows the opposite structural changes and causes less structural disorder in the membrane. These results suggest a close correlation between the structural properties of amyloid fibrils and the degree of structural disorder of phospholipid membranes, both of which are involved in the fundamental process leading to amyloid cytotoxicity.
Collapse
Affiliation(s)
- Tatsuhito Matsuo
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Chiba, 263-8555, Japan.
| | - Seigi Yamamoto
- Laboratory of Evolutionary Oncology, Chiba Cancer Center Research Institute, Chiba, Japan
| | - Koichi Matsuo
- Hiroshima Synchrotron Radiation Center, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
9
|
Jia Y, Wu W, Chen R, Wang H, Zhang C, Chen L, Yao J. Magneto-electrochemical method for chiral recognition of amino acid enantiomers. Analyst 2024; 149:3732-3738. [PMID: 38842499 DOI: 10.1039/d4an00547c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Chiral recognition of enantiomers with identical mirror-symmetric molecular structures is important for the analysis of biomolecules, and it conventionally relies on stereoselective interactions in chiral chemical environments. Here, we develop a magneto-electrochemical method for the enhanced detection of chiral amino acids (AAs), that combines the advantages of the high sensitivity of electrochemiluminescent (ECL) biosensors and chirality-induced effects under a magnetic field. The ECL difference between L- and D-enantiomers can be amplified over 35-fold under a field of 3.5 kG, and the chiral discrimination can be achieved in dilute AA solutions down to the nM level. The field-dependent ECL and chronocoulometry measurements suggest that chiral AAs can lock the spins on their radicals and thus enlarge the ECL change under applied magnetic fields (magneto-ECL, MECL), which explains the field-enhanced chiral discrimination of AA enantiomers. Finally, a detailed protocol is demonstrated for the identification of unknown AA solutions, in which the species, chirality and concentration of AAs can be determined simultaneously from the 2D plots of the ECL and MECL results. This work benefits the development of field-assisted detection methods and represents a promising and universal strategy for the comprehensive analysis of chiral biomolecules.
Collapse
Affiliation(s)
- Yueqian Jia
- Key Laboratory of Photochemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wubin Wu
- Key Laboratory of Photochemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Rui Chen
- Key Laboratory of Photochemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Hong Wang
- Key Laboratory of Photochemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chuang Zhang
- Key Laboratory of Photochemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Lili Chen
- Key Laboratory of Photochemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Jiannian Yao
- Key Laboratory of Photochemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- Institute of Molecular Engineering Plus, Fuzhou University, Fuzhou 350108, China
| |
Collapse
|
10
|
Scarel E, De Corti M, Polentarutti M, Pierri G, Tedesco C, Marchesan S. Self-assembly of heterochiral, aliphatic dipeptides with Leu. J Pept Sci 2024; 30:e3559. [PMID: 38111175 DOI: 10.1002/psc.3559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/10/2023] [Accepted: 11/14/2023] [Indexed: 12/20/2023]
Abstract
This work describes the self-assembly behavior of heterochiral, aliphatic dipeptides, l-Leu-d-Xaa (Xaa = Ala, Val, Ile, Leu), in green solvents such as acetonitrile (MeCN) and buffered water at neutral pH. Interestingly, water plays a structuring role because at 1% v/v, it enables dipeptide self-assembly in MeCN to yield organogels, which then undergo transition towards crystals. Other organic solvents and oils were tested for gelation, and metastable gels were formed in tetrahydrofuran, although at high peptide concentration (80 mM). Single-crystal X-ray diffraction revealed the dipeptides' supramolecular packing modes in amphipathic layers, as opposed to water channels reported for the homochiral Leu-Leu, or hydrophobic columns reported for homochiral Leu-Val and Leu-Ile.
Collapse
Affiliation(s)
- Erica Scarel
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, Italy
| | - Marco De Corti
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, Italy
| | | | - Giovanni Pierri
- Department of Chemistry and Biology "A. Zambelli", University of Salerno, Fisciano, Italy
| | - Consiglia Tedesco
- Department of Chemistry and Biology "A. Zambelli", University of Salerno, Fisciano, Italy
| | - Silvia Marchesan
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, Italy
| |
Collapse
|
11
|
Liu JZ, Chai XY, Huang J, Li RS, Li CM, Ling J, Cao QE, Huang CZ. Chiral Assembly of Perovskite Nanocrystals: Sensitive Discrimination of Amino Acid Enantiomers. Anal Chem 2024; 96:4282-4289. [PMID: 38469640 DOI: 10.1021/acs.analchem.3c05941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Chirality is a widespread phenomenon in nature and in living organisms and plays an important role in living systems. The sensitive discrimination of chiral molecular enantiomers remains a challenge in the fields of chemistry and biology. Establishing a simple, fast, and efficient strategy to discriminate the spatial configuration of chiral molecular enantiomers is of great significance. Chiral perovskite nanocrystals (PNCs) have attracted much attention because of their excellent optical activity. However, it is a challenge to prepare perovskites with both chiral and fluorescence properties for chiral sensing. In this work, we synthesized two chiral fluorescent perovskite nanocrystal assembly (PNA) enantiomers by using l- or d-phenylalanine (Phe) as chiral ligands. PNA exhibited good fluorescence recognition for l- and d-proline (Pro). Homochiral interaction led to fluorescence enhancement, while heterochiral interaction led to fluorescence quenching, and there is a good linear relationship between the fluorescence changing rate and l- or d-Pro concentration. Mechanism studies show that homochiral interaction-induced fluorescence enhancement is attributed to the disassembly of chiral PNA, while no disassembly of chiral PNA was found in heterochiral interaction-induced fluorescence quenching, which is attributed to the substitution of Phe on the surface of chiral PNA by heterochiral Pro. This work suggests that chiral perovskite can be used for chiral fluorescence sensing; it will inspire the development of chiral nanomaterials and chiral optical sensors.
Collapse
Affiliation(s)
- Jin-Zhou Liu
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Xin-Yi Chai
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Jingtao Huang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Rong Sheng Li
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Chun Mei Li
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Jian Ling
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Qiu-E Cao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Cheng Zhi Huang
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| |
Collapse
|
12
|
Singh S, Nwagwu E, Young L, Kumar P, Shinde PB, Edrada-Ebel R. Targeted Isolation of Antibiofilm Compounds from Halophytic Endophyte Bacillus velezensis 7NPB-3B Using LC-HR-MS-Based Metabolomics. Microorganisms 2024; 12:413. [PMID: 38399817 PMCID: PMC10891937 DOI: 10.3390/microorganisms12020413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/12/2024] [Accepted: 02/16/2024] [Indexed: 02/25/2024] Open
Abstract
The discovery of new natural products has become more challenging because of the re-isolation of compounds and the lack of new sources. Microbes dwelling in extreme conditions of high salinity and temperature are huge prospects for interesting natural metabolites. In this study, the endophytic bacteria Bacillus velezensis 7NPB-3B isolated from the halophyte Salicornia brachiata was screened for its biofilm inhibition against methicillin-resistant Staphylococcus aureus (MRSA). The fractionation of the crude extract was guided by bioassay and LC-HRMS-based metabolomics using multivariate analysis. The 37 fractions obtained by high-throughput chromatography were dereplicated using an in-house MS-Excel macro coupled with the Dictionary of Natural Products database. Successive bioactivity-guided separation yielded one novel compound (1), a diketopiperazine (m/z 469.258 [M - H]-) with an attached saturated decanoic acid chain, and four known compounds (2-5). The compounds were identified based on 1D- and 2D-NMR and mass spectrometry. Compounds 1 and 5 exhibited excellent biofilm inhibition properties of >90% against the MRSA pathogen at minimum inhibition concentrations of 25 and 35 µg/mL, respectively. The investigation resulted in the isolation of a novel diketopiperazine from a bacterial endophyte of an untapped plant using an omics approach.
Collapse
Affiliation(s)
- Sanju Singh
- Natural Products & Green Chemistry Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council of Scientific and Industrial Research (CSIR), Bhavnagar 364002, India; (S.S.); (P.K.)
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, The John Arbuthnott Building, 161 Cathedral Street, Glasgow G4 0RE, UK; (E.N.); (L.Y.)
| | - Elizabeth Nwagwu
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, The John Arbuthnott Building, 161 Cathedral Street, Glasgow G4 0RE, UK; (E.N.); (L.Y.)
| | - Louise Young
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, The John Arbuthnott Building, 161 Cathedral Street, Glasgow G4 0RE, UK; (E.N.); (L.Y.)
| | - Pankaj Kumar
- Natural Products & Green Chemistry Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council of Scientific and Industrial Research (CSIR), Bhavnagar 364002, India; (S.S.); (P.K.)
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Pramod B. Shinde
- Natural Products & Green Chemistry Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council of Scientific and Industrial Research (CSIR), Bhavnagar 364002, India; (S.S.); (P.K.)
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - RuAngelie Edrada-Ebel
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, The John Arbuthnott Building, 161 Cathedral Street, Glasgow G4 0RE, UK; (E.N.); (L.Y.)
| |
Collapse
|
13
|
Wang Y, Rencus-Lazar S, Zhou H, Yin Y, Jiang X, Cai K, Gazit E, Ji W. Bioinspired Amino Acid Based Materials in Bionanotechnology: From Minimalistic Building Blocks and Assembly Mechanism to Applications. ACS NANO 2024; 18:1257-1288. [PMID: 38157317 DOI: 10.1021/acsnano.3c08183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Inspired by natural hierarchical self-assembly of proteins and peptides, amino acids, as the basic building units, have been shown to self-assemble to form highly ordered structures through supramolecular interactions. The fabrication of functional biomaterials comprised of extremely simple biomolecules has gained increasing interest due to the advantages of biocompatibility, easy functionalization, and structural modularity. In particular, amino acid based assemblies have shown attractive physical characteristics for various bionanotechnology applications. Herein, we propose a review paper to summarize the design strategies as well as research advances of amino acid based supramolecular assemblies as smart functional materials. We first briefly introduce bioinspired reductionist design strategies and assembly mechanism for amino acid based molecular assembly materials through noncovalent interactions in condensed states, including self-assembly, metal ion mediated coordination assembly, and coassembly. In the following part, we provide an overview of the properties and functions of amino acid based materials toward applications in nanotechnology and biomedicine. Finally, we give an overview of the remaining challenges and future perspectives on the fabrication of amino acid based supramolecular biomaterials with desired properties. We believe that this review will promote the prosperous development of innovative bioinspired functional materials formed by minimalistic building blocks.
Collapse
Affiliation(s)
- Yuehui Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, People's Republic of China
| | - Sigal Rencus-Lazar
- School of Molecular Cell Biology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Haoran Zhou
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, People's Republic of China
| | - Yuanyuan Yin
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing 401147, People's Republic of China
| | - Xuemei Jiang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, People's Republic of China
| | - Kaiyong Cai
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, People's Republic of China
| | - Ehud Gazit
- School of Molecular Cell Biology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Wei Ji
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, People's Republic of China
| |
Collapse
|
14
|
Gao R, Hao C, Xu L, Xu X, Zhao J, Sun M, Wang Q, Kuang H, Xu C. Near-Infrared Chiroptical Activity Titanium Dioxide Supraparticles with Circularly Polarized Light Induced Antibacterial Activity. ACS NANO 2024; 18:641-651. [PMID: 38112427 DOI: 10.1021/acsnano.3c08791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Titanium dioxide (TiO2) has attracted significant attention in the fields of antibacterial activity and pollutant degradation due to its well-known photocatalytic properties. However, the application of TiO2 is significantly limited by its large band gap width, which only allows excitation by ultraviolet light below 400 nm. Here, we propose the use of surface chiral functionalization of TiO2 to tune its band gap width, thus enabling it to be excited by near-infrared-region light (NIR), resulting in the effective separation of electron-hole pairs. By controlling the solvent polarity and forming numerous weak interactions (such as hydrogen bonding) between chiral ligands and TiO2, we successfully prepared chiral TiO2 superparticles (SPs) that exhibited a broad circular dichroism (CD) absorption at 792 nm. Under circularly polarized light (CPL) at 808 nm, the chiral SPs induced the separation of electron-hole pairs in TiO2, thus generating hydroxyl and singlet oxygen radicals. Antibacterial tests under CPL in NIR showed that the chiral TiO2 SPs exhibited excellent antibacterial performance, with inhibition rates of 99.4% and 100% against Gram-positive and Gram-negative bacteria, respectively. Recycling-reuse experiments and biocompatibility evaluation of the material demonstrated that the chiral TiO2 SPs are stable and safe antibacterial materials, thus indicating the potential application of chiral TiO2 SPs in antibacterial aspects of medical implants.
Collapse
Affiliation(s)
- Rui Gao
- International Joint Research Laboratory for Biointerface and Biodetection, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Changlong Hao
- International Joint Research Laboratory for Biointerface and Biodetection, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Liguang Xu
- International Joint Research Laboratory for Biointerface and Biodetection, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Xinxin Xu
- International Joint Research Laboratory for Biointerface and Biodetection, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Jing Zhao
- Department of Radiology, Affiliated Hospital, Jiangnan University, No. 1000, Hefeng Road, Wuxi, Jiangsu, 214122, People's Republic of China
| | - Maozhong Sun
- International Joint Research Laboratory for Biointerface and Biodetection, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Qing Wang
- Department of Neurosurgery, Wuxi Neurosurgical Institute, Jiangnan University, Wuxi, Jiangsu 214002, People's Republic of China
- Department of Neurosurgery, Jiangnan University Medical Center, Wuxi, Jiangsu 214122, People's Republic of China
| | - Hua Kuang
- International Joint Research Laboratory for Biointerface and Biodetection, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Chuanlai Xu
- International Joint Research Laboratory for Biointerface and Biodetection, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| |
Collapse
|
15
|
Sementa D, Dave D, Fisher RS, Wang T, Elbaum-Garfinkle S, Ulijn RV. Sequence-Tunable Phase Behavior and Intrinsic Fluorescence in Dynamically Interacting Peptides. Angew Chem Int Ed Engl 2023; 62:e202311479. [PMID: 37934145 DOI: 10.1002/anie.202311479] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/31/2023] [Accepted: 11/06/2023] [Indexed: 11/08/2023]
Abstract
A conceptual framework towards understanding biological condensed phases is emerging, derived from biological, biomimetic, and synthetic sequences. However, de novo peptide condensate design remains a challenge due to an incomplete understanding of the structural and interactive complexity. We designed peptide modules based on a simple repeat motif composed of tripeptide spacers (GSG, SGS, GLG) interspersed with adhesive amino acids (R/H and Y). We show, using sequence editing and a combination of computation and experiment, that n→π* interactions in GLG backbones are a dominant factor in providing sufficient backbone structure, which in turn regulates the water interface, collectively promoting liquid droplet formation. Moreover, these R(GLG)Y and H(GLG)Y condensates unexpectedly display sequence-dependent emission that is a consequence of their non-covalent network interactions, and readily observable by confocal microscopy.
Collapse
Affiliation(s)
- Deborah Sementa
- Advanced Science Research Center (ASRC) at the Graduate Center, City University of New York (CUNY), 85 St Nicholas Terrace, New York, NY 10031, USA
| | - Dhwanit Dave
- Advanced Science Research Center (ASRC) at the Graduate Center, City University of New York (CUNY), 85 St Nicholas Terrace, New York, NY 10031, USA
- Ph.D. Programs in Biochemistry and Chemistry, The Graduate Center of the City University of New York, 365 Fifth Avenue, New York, NY 10016, USA
- Department of Chemistry, Hunter College, City University of New York (CUNY), 695 Park Avenue, New York, NY 10065, USA
| | - Rachel S Fisher
- Advanced Science Research Center (ASRC) at the Graduate Center, City University of New York (CUNY), 85 St Nicholas Terrace, New York, NY 10031, USA
| | - Tong Wang
- Advanced Science Research Center (ASRC) at the Graduate Center, City University of New York (CUNY), 85 St Nicholas Terrace, New York, NY 10031, USA
| | - Shana Elbaum-Garfinkle
- Advanced Science Research Center (ASRC) at the Graduate Center, City University of New York (CUNY), 85 St Nicholas Terrace, New York, NY 10031, USA
| | - Rein V Ulijn
- Advanced Science Research Center (ASRC) at the Graduate Center, City University of New York (CUNY), 85 St Nicholas Terrace, New York, NY 10031, USA
- Ph.D. Programs in Biochemistry and Chemistry, The Graduate Center of the City University of New York, 365 Fifth Avenue, New York, NY 10016, USA
- Department of Chemistry, Hunter College, City University of New York (CUNY), 695 Park Avenue, New York, NY 10065, USA
| |
Collapse
|
16
|
Xu Q, Yu C, Jiang L, Wang Y, Liu F, Jiang W, Zhou Y. Coacervate-Assisted Polymerization-Induced Self-Assembly of Chiral Alternating Copolymers into Hierarchical Bishell Capsules with Sub-5 nm Ultrathin Lamellae. SMALL METHODS 2023; 7:e2300136. [PMID: 37116085 DOI: 10.1002/smtd.202300136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/04/2023] [Indexed: 06/19/2023]
Abstract
Hierarchical self-assembly of synthetic polymers in solution represents one of the sophisticated strategies to replicate the natural superstructures which lay the basis for their superb functions. However, it is still quite challenging to increase the degree of complexity of the as-prepared assemblies, especially in a large scale. Liquid-liquid phase separation (LLPS) widely exists in cells and is assumed to be responsible for the formation of many cellular organelles without membranes. Herein, through integrating LLPS with the polymerization-induced self-assembly (PISA), a coacervate-assisted PISA (CAPISA) methodology to realize the one-pot and scalable preparation of hierarchical bishell capsules (BCs) from nanosheets with ultrathin lamellae phase (sub-5 nm), microflakes, unishell capsules to final BCs in a bottom-up sequence is presented. Both the self-assembled structure and the dynamic formation process of BCs have been disclosed. Since CAPISA has combined the advantages of coacervates, click chemistry, interfacial reaction and PISA, it is believed that it will become a promising option to fabricate biomimetic polymer materials with higher structural complexity and more sophisticated functions.
Collapse
Affiliation(s)
- Qingsong Xu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Chunyang Yu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Lingsheng Jiang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Yuling Wang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Feng Liu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Wenfeng Jiang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Yongfeng Zhou
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| |
Collapse
|
17
|
Branzi L, Lavet O, Gun'ko YK. Ligand induced chirality in In 2S 3 nanoparticles. NANOSCALE 2023; 15:18753-18761. [PMID: 37953729 DOI: 10.1039/d3nr04320g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
Chiral inorganic nanostructures have attracted a lot of attention over the last few years. Here we report the first observation of chirality in indium sulfide nanoparticles, which have been produced by a co-precipitation reaction in the presence of cysteine as a chiral agent. The process resulted in the production of spherical nanoparticles with an average diameter of around 3.6 nm. Circular dichroism spectroscopy of the nanoparticles showed an intense chiroptical signal corresponding to the indium sulfide excitonic transition, confirming the successful transfer of chirality to the In2S3 inorganic matrix. Nuclear magnetic resonance analysis of a colloidal solution of the nanoparticles demonstrated critical evidence of chemisorption of the chiral ligand on the surface of the nanoparticles and revealed a characteristic fast chemical exchange between the ligand chemisorbed on the surface of the nanoparticles and the free ligand in solution. Finally, the effect of the chiral ligand's structure on the transfer of chirality was investigated, with consideration of other amino acid ligands, and the critical role of the thiolate group in the optimisation of the chiral transfer was observed. This research is expected to stimulate further development and applications of new chiral semiconductor nanomaterials.
Collapse
Affiliation(s)
- Lorenzo Branzi
- School of Chemistry, CRANN and AMBER Research Centres, Trinity College Dublin, College Green, Dublin 2, Ireland.
| | - Oriane Lavet
- Chemistry Department, University of Clermont Auvergne, Antenne du Puy en Velay, 43009 Le Puy en Velay Cedex, France
| | - Yurii K Gun'ko
- School of Chemistry, CRANN and AMBER Research Centres, Trinity College Dublin, College Green, Dublin 2, Ireland.
| |
Collapse
|
18
|
Deng X, Li J, Jin L, Wang Y, Liang K, Yu L. Plexcitonic optical chirality in the chiral plasmonic structure-microcavity-exciton strong coupling system. OPTICS EXPRESS 2023; 31:32082-32092. [PMID: 37859018 DOI: 10.1364/oe.496182] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/26/2023] [Indexed: 10/21/2023]
Abstract
Chiral plexcitonic systems exhibit a novel chiroptical phenomenon, which can provide a new route to design chiroptical devices. Reported works focused on the two-mode strong coupling between chiral molecules and nanoparticles, while multiple-mode coupling can provide richer modulation. In this paper, we proposed a three-mode coupling system consisting of a chiral Au helices array, a Fabry-Pérot cavity, and monolayer WSe2, which can provide an extra chiral channel, a more widely tunable region, and more tunable methods compared to two-mode coupled systems. The optical response of this hybrid system was investigated based on the finite element method. Mode splitting observed in the circular dichroism (CD) spectrum demonstrated that the chiroptical response successfully shifted from the resonant position of the chiral structure to three plexcitons through strong coupling, which provided a new route for chiral transfer. Furthermore, we used the coupled oscillator model to obtain the energy and Hopfield coefficients of the plexciton branches to explain the chiroptical phenomenon of the hybrid system. Moreover, the tunability of the hybrid system can be achieved by tuning the temperature and period of the helices array. Our work provides a feasible strategy for chiral sensing and modulation devices.
Collapse
|
19
|
Mosseri A, Sancho-Albero M, Mercurio FA, Leone M, De Cola L, Romanelli A. Tryptophan-PNA gc Conjugates Self-Assemble to Form Fibers. Bioconjug Chem 2023; 34:1429-1438. [PMID: 37486977 PMCID: PMC10436247 DOI: 10.1021/acs.bioconjchem.3c00200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/07/2023] [Indexed: 07/26/2023]
Abstract
Peptide nucleic acids and their conjugates to peptides can self-assemble and generate complex architectures. In this work, we explored the self-assembly of PNA dimers conjugated to the dipeptide WW. Our studies suggest that the indole ring of tryptophan promotes aggregation of the conjugates. The onset of fluorescence is observed upon self-assembly. The structure of self-assembled WWgc is concentration-dependent, being spherical at low concentrations and fibrous at high concentrations. As suggested by molecular modeling studies, fibers are stabilized by stacking interactions between tryptophans and Watson-Crick hydrogen bonds between nucleobases.
Collapse
Affiliation(s)
- Andrea Mosseri
- Dipartimento
di Scienze Farmaceutiche, Università
Degli Studi di Milano, via Venezian 21, 20133 Milano, Italy
| | - María Sancho-Albero
- Department
of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milano, Italy
| | - Flavia Anna Mercurio
- Istituto
di Biostrutture e Bioimmagini—CNR, via Pietro Castellino 111, 80131 Naples, Italy
| | - Marilisa Leone
- Istituto
di Biostrutture e Bioimmagini—CNR, via Pietro Castellino 111, 80131 Naples, Italy
| | - Luisa De Cola
- Dipartimento
di Scienze Farmaceutiche, Università
Degli Studi di Milano, via Venezian 21, 20133 Milano, Italy
- Department
of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milano, Italy
| | - Alessandra Romanelli
- Dipartimento
di Scienze Farmaceutiche, Università
Degli Studi di Milano, via Venezian 21, 20133 Milano, Italy
| |
Collapse
|
20
|
Lu Y, Joy M, Bloom BP, Waldeck DH. Beyond Stereoisomeric Effects: Exploring the Importance of Intermolecular Electron Spin Interactions in Biorecognition. J Phys Chem Lett 2023; 14:7032-7037. [PMID: 37524051 PMCID: PMC10424231 DOI: 10.1021/acs.jpclett.3c01595] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 07/26/2023] [Indexed: 08/02/2023]
Abstract
This work shows that electron spin polarization and stereoisomeric effects make comparable contributions to the enantioselective binding of amino acids. Magneto-electrochemical quartz crystal microbalance methods are used to study the adsorption of chiral amino acids onto a monolayer film of chiral molecules that are spin polarized by an underlying ferromagnetic substrate. The direction of the electron spin polarization affects both the kinetics and thermodynamics of the enantiospecific adsorption of the amino acids. Comparison of these data with the circular dichroism (CD) spectra of the amino acid adsorbates shows that the CD spectrum of the interacting group provides a good figure-of-merit for predicting the contributions of electron spin to the intermolecular interaction. These findings demonstrate the importance of electron spin in enantioselective intermolecular interactions between chiral amino acids and represent a paradigm shift for how selectivity should be viewed in biorecognition.
Collapse
Affiliation(s)
- Yiyang Lu
- Chemistry
Department, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Meera Joy
- Chemistry
Department, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Brian P. Bloom
- Chemistry
Department, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - David H. Waldeck
- Chemistry
Department, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
21
|
Naskar S, Gour N. Realization of Amyloid-like Aggregation as a Common Cause for Pathogenesis in Diseases. Life (Basel) 2023; 13:1523. [PMID: 37511898 PMCID: PMC10381831 DOI: 10.3390/life13071523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/27/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023] Open
Abstract
Amyloids were conventionally referred to as extracellular and intracellular accumulation of Aβ42 peptide, which causes the formation of plaques and neurofibrillary tangles inside the brain leading to the pathogenesis in Alzheimer's disease. Subsequently, amyloid-like deposition was found in the etiology of prion diseases, Parkinson's disease, type II diabetes, and cancer, which was attributed to the aggregation of prion protein, α-Synuclein, islet amyloid polypeptide protein, and p53 protein, respectively. Hence, traditionally amyloids were considered aggregates formed exclusively by proteins or peptides. However, since the last decade, it has been discovered that other metabolites, like single amino acids, nucleobases, lipids, glucose derivatives, etc., have a propensity to form amyloid-like toxic assemblies. Several studies suggest direct implications of these metabolite assemblies in the patho-physiology of various inborn errors of metabolisms like phenylketonuria, tyrosinemia, cystinuria, and Gaucher's disease, to name a few. In this review, we present a comprehensive literature overview that suggests amyloid-like structure formation as a common phenomenon for disease progression and pathogenesis in multiple syndromes. The review is devoted to providing readers with a broad knowledge of the structure, mode of formation, propagation, and transmission of different extracellular amyloids and their implications in the pathogenesis of diseases. We strongly believe a review on this topic is urgently required to create awareness about the understanding of the fundamental molecular mechanism behind the origin of diseases from an amyloid perspective and possibly look for a common therapeutic strategy for the treatment of these maladies by designing generic amyloid inhibitors.
Collapse
Affiliation(s)
- Soumick Naskar
- Department of Chemistry, Indrashil University, Kadi, Mehsana 382740, Gujarat, India
| | - Nidhi Gour
- Department of Chemistry, Indrashil University, Kadi, Mehsana 382740, Gujarat, India
| |
Collapse
|
22
|
Branzi L, Kavanagh A, Back M, Speghini A, Gun'ko YK, Benedetti A. Chirality in luminescent Cs 3Cu 2Br 5 microcrystals produced via ligand-assisted reprecipitation. Chem Commun (Camb) 2023; 59:6024-6027. [PMID: 37186125 DOI: 10.1039/d3cc00719g] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Herein we report new chiral luminescent Cs3Cu2Br5 needle-like microcrystals and the analysis of their optical properties and the effect of the ligand structure on the transfer of chirality.
Collapse
Affiliation(s)
- Lorenzo Branzi
- Department of Molecular Science and Nanosystems, Ca' Foscari University of Venice, Via Torino 155 Venezia Mestre, Venezia, VE, Italy
- School of Chemistry, CDT ACM, CRANN and AMBER Research Centres, Trinity College Dublin, College Green, Dublin 2, Ireland.
| | - Aoife Kavanagh
- School of Chemistry, CDT ACM, CRANN and AMBER Research Centres, Trinity College Dublin, College Green, Dublin 2, Ireland.
| | - Michele Back
- Department of Molecular Science and Nanosystems, Ca' Foscari University of Venice, Via Torino 155 Venezia Mestre, Venezia, VE, Italy
| | - Adolfo Speghini
- Nanomaterials Research Group, Department of Biotechnology and INSTM, RU of Verona, University of Verona, Strada le Grazie 15, Verona, Italy
| | - Yurii K Gun'ko
- School of Chemistry, CDT ACM, CRANN and AMBER Research Centres, Trinity College Dublin, College Green, Dublin 2, Ireland.
| | - Alvise Benedetti
- Department of Molecular Science and Nanosystems, Ca' Foscari University of Venice, Via Torino 155 Venezia Mestre, Venezia, VE, Italy
| |
Collapse
|
23
|
Tan D, Wang T, Hu J, Deng D, Li T, Li R. Chiral covalent organic frameworks synthesized via a Suzuki–Miyaura-coupling reaction: enantioselective recognition of d/ l-amino acids. NEW J CHEM 2023. [DOI: 10.1039/d2nj05811a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
Abstract
A novel chiral COF was constructed via a Suzuki–Miyaura-coupling strategy for the chiral recognition and separation of amino acids.
Collapse
Affiliation(s)
- Dongdong Tan
- Department of Analytical Chemistry, China Pharmaceutical University, No. 24 TongJiaXiang, Nanjing, 210009, China
| | - Tianmiao Wang
- Department of Analytical Chemistry, China Pharmaceutical University, No. 24 TongJiaXiang, Nanjing, 210009, China
| | - Jing Hu
- Department of Analytical Chemistry, China Pharmaceutical University, No. 24 TongJiaXiang, Nanjing, 210009, China
| | - Donglian Deng
- Department of Analytical Chemistry, China Pharmaceutical University, No. 24 TongJiaXiang, Nanjing, 210009, China
| | - Tingting Li
- Department of Analytical Chemistry, China Pharmaceutical University, No. 24 TongJiaXiang, Nanjing, 210009, China
| | - Ruijun Li
- Department of Analytical Chemistry, China Pharmaceutical University, No. 24 TongJiaXiang, Nanjing, 210009, China
| |
Collapse
|
24
|
Han Z, Wang F, Sun J, Wang X, Tang Z. Recent Advances in Ultrathin Chiral Metasurfaces by Twisted Stacking. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2206141. [PMID: 36284479 DOI: 10.1002/adma.202206141] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/22/2022] [Indexed: 06/16/2023]
Abstract
Artificial chiral nanostructures have been subjected to extensive research for their unique chiroptical activities. Planarized chiral films of ultrathin thicknesses are in particular demand for easy on-chip integration and improved energy efficiency as polarization-sensitive metadevices. Recently, controlled twisted stacking of two or more layers of nanomaterials, such as 2D van der Waals materials, ultrathin films, or traditional metasurfaces, at an angle has emerged as a general strategy to introduce optical chirality into achiral solid-state systems. This method endows new degrees of freedom, e.g., the interlayer twist angle, to flexibly engineer and tune the chiroptical responses without having to change the material or the design, thus greatly facilitating the development of multifunctional metamaterials. In this review, recent exciting progress in planar chiral metasurfaces are summarized and discussed from the viewpoints of building blocks, fabrication methods, as well as circular dichroism and modulation thereof in twisted stacked nanostructures. The review further highlights the ever-growing portfolio of applications of these chiral metasurfaces, including polarization conversion, information encryption, chiral sensing, and as an engineering platform for hybrid metadevices. Finally, forward-looking prospects are provided.
Collapse
Affiliation(s)
- Zexiang Han
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Fei Wang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Juehan Sun
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Xiaoli Wang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhiyong Tang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
25
|
Self-Assembly and Gelation Study of Dipeptide Isomers with Norvaline and Phenylalanine. CHEMISTRY 2022. [DOI: 10.3390/chemistry4040093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Dipeptides have emerged as attractive building blocks for supramolecular materials thanks to their low-cost, inherent biocompatibility, ease of preparation, and environmental friendliness as they do not persist in the environment. In particular, hydrophobic amino acids are ideal candidates for self-assembly in polar and green solvents, as a certain level of hydrophobicity is required to favor their aggregation and reduce the peptide solubility. In this work, we analyzed the ability to self-assemble and the gel of dipeptides based on the amino acids norvaline (Nva) and phenylalanine (Phe), studying all their combinations and not yielding to enantiomers, which display the same physicochemical properties, and hence the same self-assembly behavior in achiral environments as those studied herein. A single-crystal X-ray diffraction of all the compounds revealed fine details over their molecular packing and non-covalent interactions.
Collapse
|
26
|
Korpela B, Pitkänen L, Heinonen M. Enzymatic modification of oat globulin enables covalent interaction with procyanidin B2. Food Chem 2022; 395:133568. [DOI: 10.1016/j.foodchem.2022.133568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 05/17/2022] [Accepted: 06/21/2022] [Indexed: 11/30/2022]
|
27
|
Clever C, Wierzbinski E, Bloom BP, Lu Y, Grimm HM, Rao SR, Horne WS, Waldeck DH. Benchmarking Chiral Induced Spin Selectivity Measurements ‐ Towards Meaningful Comparisons of Chiral Biomolecule Spin Polarizations. Isr J Chem 2022. [DOI: 10.1002/ijch.202200045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Caleb Clever
- Department of Chemistry University of Pittsburgh Pittsburgh PA 15260 USA
| | - Emil Wierzbinski
- Department of Chemistry University of Pittsburgh Pittsburgh PA 15260 USA
| | - Brian P. Bloom
- Department of Chemistry University of Pittsburgh Pittsburgh PA 15260 USA
| | - Yiyang Lu
- Department of Chemistry University of Pittsburgh Pittsburgh PA 15260 USA
| | - Haley M. Grimm
- Department of Chemistry University of Pittsburgh Pittsburgh PA 15260 USA
| | - Silpa R. Rao
- Department of Chemistry University of Pittsburgh Pittsburgh PA 15260 USA
| | - W. Seth Horne
- Department of Chemistry University of Pittsburgh Pittsburgh PA 15260 USA
| | - David H. Waldeck
- Department of Chemistry University of Pittsburgh Pittsburgh PA 15260 USA
| |
Collapse
|
28
|
Gerbelli BB, Filho PLO, Cortez B, Sodré PT, Coutinho-Neto MD, Hamley IW, Seitsonen J, Alves WA. Interaction between glyphosate pesticide and amphiphilic peptides for colorimetric analysis. NANOSCALE ADVANCES 2022; 4:3592-3599. [PMID: 36134354 PMCID: PMC9400510 DOI: 10.1039/d2na00345g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/27/2022] [Indexed: 06/16/2023]
Abstract
The large-scale use of glyphosate pesticides in food production has attracted attention due to environmental damage and toxicity risks. Several regulatory authorities have established safe limits or concentrations of these pesticides in water and various food products consumed daily. The irreversible inhibition of acetylcholinesterase (AChE) activity is one of the strategies used for pesticide detection. Herein, we found that lipopeptide sequences can act as biomimetic microenvironments of AChE, showing higher catalytic activities than natural enzymes in an aqueous solution, based on IC50 values. These biomolecules contain in the hydrophilic part the amino acids l-proline (P), l-arginine (R), l-tryptophan (W), and l-glycine (G), covalently linked to a hydrophobic part formed by one or two long aliphatic chains. The obtained materials are referred to as compounds 1 and 2, respectively. According to fluorescence assays, 2 is more hydrophobic than 1. The circular dichroism (CD) data present a significant difference in the molar ellipticity values, likely related to distinct conformations assumed by the proline residue in the lipopeptide supramolecular structure in solution. The morphological aspect was further characterized using small-angle X-ray scattering (SAXS) and cryogenic transmission electron microscopy (cryo-TEM), which showed that compounds 1 and 2 self-assembly into cylindrical and planar core-shell structures, respectively. The mimetic AchE behaviour of lipopeptides was confirmed by Ellman's hydrolysis reaction, where the proline residue in the peptides act as a nucleophilic scavenger of organophosphate pesticides. Moreover, the isothermal titration calorimetry (ITC) experiments revealed that host-guest interactions in both systems were dominated by enthalpically-driven thermodynamics. UV-vis kinetic experiments were performed to assess the inhibition of the lipopeptide catalytic activity and the IC50 values were obtained, and we found that the detection limit correlated with the increase in hydrophobicity of the lipopeptides, implying the micellization process is more favorable.
Collapse
Affiliation(s)
- Barbara B Gerbelli
- University of Reading, Department of Chemistry Reading UK
- Universidade Federal do ABC, Centro de Ciências Naturais e Humanas São Paulo SP Brazil
| | - Pedro L O Filho
- University of Copenhagen, Niels Bohr Institute Copenhagen Denmark
- Universidade de São Paulo, Instituto de Física São Paulo SP Brazil
| | - Bruna Cortez
- Universidade Federal do ABC, Centro de Ciências Naturais e Humanas São Paulo SP Brazil
| | - Pedro T Sodré
- Universidade Federal do ABC, Centro de Ciências Naturais e Humanas São Paulo SP Brazil
| | | | - Ian W Hamley
- University of Reading, Department of Chemistry Reading UK
| | - Jani Seitsonen
- Nanomicroscopy Center, Aalto University Puumiehenkuja 2 FIN-02150 Espoo Finland
| | - Wendel A Alves
- Universidade Federal do ABC, Centro de Ciências Naturais e Humanas São Paulo SP Brazil
| |
Collapse
|
29
|
New Fmoc-Amino Acids/Peptides-Based Supramolecular Gels Obtained through Co-Assembly Process: Preparation and Characterization. Polymers (Basel) 2022; 14:polym14163354. [PMID: 36015611 PMCID: PMC9415181 DOI: 10.3390/polym14163354] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/11/2022] [Accepted: 08/12/2022] [Indexed: 11/18/2022] Open
Abstract
One of the methods of obtaining supramolecular gels consists of the possibility of self-assembly of low molecular weight gelators (LMWGs). However, LMWG-based gels are often difficult to handle, easy to destroy and have poor rheological performance. In order to improve the gels’ properties, the LMWGs molecules are co-assembled, which induces more cross-links with more stable structures. Starting from these aspects, the present study refers to the preparation of a bionic hydrogel stabilized with a physiologically occurring, bifunctional biomolecule, L-lysine, co-assembled with other amino acids or peptides (such as a modified amino acid (Fmoc-serine or Fmoc-glutamic acid) or a tripeptide (Fmoc-Gly-Gly-Gly)) with the potential to support the repair of injuries or the age-related impaired structures or functions of living tissues. The introduction of a copartner aims to improve hydrogel characteristics from a morphological, rheological and structural point of view. On the other hand, the process will allow the understanding of the phenomenon of specific self-association and molecular recognition. Various characterization techniques were used to assess the ability to co-assemble: DLS, FT-IR, SEM and fluorescence microscopy, rheology and thermal analysis. Studies have confirmed that the supramolecular structure occurs through the formation of inter- and intramolecular physical bonds that ensure the formation of fibrils organized into 3D networks. The rheological data, namely the G′ > G″ and tan δ approximately 0.1−0.2 gel-like behavior observed for all studied samples, demonstrate and sustain the appearance of the co-assembly processes and the ability of the samples to act as LMWG. From the studied systems, the Fmoc−Lys−Fmoc_ Fmoc−Glu sample presented the best rheological characteristics that are consistent with the observations that resulted from the dichroism, fluorescence and SEM investigations.
Collapse
|
30
|
Pérez-Madrigal MM, Gil AM, Casanovas J, Jiménez AI, Macor LP, Alemán C. Self-assembly pathways in a triphenylalanine peptide capped with aromatic groups. Colloids Surf B Biointerfaces 2022; 216:112522. [PMID: 35561635 DOI: 10.1016/j.colsurfb.2022.112522] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/22/2022] [Accepted: 04/23/2022] [Indexed: 11/25/2022]
Abstract
Peptide derivatives and, most specifically, their self-assembled supramolecular structures are being considered in the design of novel biofunctional materials. Although the self-assembly of triphenylalanine homopeptides has been found to be more versatile than that of homopeptides containing an even number of residues (i.e. diphenylalanine and tetraphenylalanine), only uncapped triphenylalanine (FFF) and a highly aromatic analog blocked at both the N- and C-termini with fluorenyl-containing groups (Fmoc-FFF-OFm), have been deeply studied before. In this work, we have examined the self-assembly of a triphenylalanine derivative bearing 9-fluorenylmethyloxycarbonyl and benzyl ester end-capping groups at the N- and C-termini, respectively (Fmoc-FFF-OBzl). The antiparallel arrangement clearly dominates in β-sheets formed by Fmoc-FFF-OBzl, whereas the parallel and antiparallel dispositions are almost isoenergetic in Fmoc-FFF-OFm β-sheets and the parallel one is slightly favored for FFF. The effects of both the peptide concentration and the medium on the self-assembly process have been examined considering Fmoc-FFF-OBzl solutions in a wide variety of solvent:co-solvent mixtures. In addition, Fmoc-FFF-OBzl supramolecular structures have been compared to those obtained for FFF and Fmoc-FFF-OFm under identical experimental conditions. The strength of π-π stacking interactions involving the end-capping groups plays a crucial role in the nucleation and growth of supramolecular structures, which determines the resulting morphology. Finally, the influence of a non-invasive external stimulus, ultrasounds, on the nucleation and growth of supramolecular structures has been examined. Overall, FFF-based peptides provide a wide range of supramolecular structures that can be of interest in the biotechnological field.
Collapse
Affiliation(s)
- Maria M Pérez-Madrigal
- Departament d'Enginyeria Química (DEQ) and Barcelona Research Center for Multiscale Science and Engineering, Universitat Politècnica de Catalunya (UPC), EEBE, C/ Eduard Maristany 10-14, 08019 Barcelona, Spain.
| | - Ana M Gil
- Departamento de Quimica Organica, Instituto de Sintesis Quimica y Catalisis Homogenea (ISQCH), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Jordi Casanovas
- Departament de Química, Universitat de Lleida, Escola Politècnica Superior, C/ Jaume II no. 69, 25001 Lleida, Spain
| | - Ana I Jiménez
- Departamento de Quimica Organica, Instituto de Sintesis Quimica y Catalisis Homogenea (ISQCH), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Lorena P Macor
- Departament d'Enginyeria Química (DEQ) and Barcelona Research Center for Multiscale Science and Engineering, Universitat Politècnica de Catalunya (UPC), EEBE, C/ Eduard Maristany 10-14, 08019 Barcelona, Spain; IITEMA-CONICET, Departamento de Química, Facultad de Ciencias Exactas Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Agencia Postal Nro. 3, X5804BYA Río Cuarto, Córdoba, Argentina
| | - Carlos Alemán
- Departament d'Enginyeria Química (DEQ) and Barcelona Research Center for Multiscale Science and Engineering, Universitat Politècnica de Catalunya (UPC), EEBE, C/ Eduard Maristany 10-14, 08019 Barcelona, Spain; Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, 08028 Barcelona, Spain.
| |
Collapse
|
31
|
Biswakarma D, Dey N, Bhattacharya S. Molecular design of amphiphiles for Microenvironment-Sensitive kinetically controlled gelation and their utility in probing alcohol contents. J Colloid Interface Sci 2022; 615:335-345. [DOI: 10.1016/j.jcis.2021.12.060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 12/04/2021] [Accepted: 12/09/2021] [Indexed: 11/26/2022]
|
32
|
Bellotto O, Pierri G, Rozhin P, Polentarutti M, Kralj S, D'Andrea P, Tedesco C, Marchesan S. Dipeptide self-assembly into water-channels and gel biomaterial. Org Biomol Chem 2022; 20:6211-6218. [PMID: 35575102 DOI: 10.1039/d2ob00622g] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Dipeptides are convenient building blocks for supramolecular gel biomaterials that can be produced on a large scale at low cost and do not persist in the environment. In the case of unprotected sequences, hydrophobicity is a key requirement to enable gelation, with Phe-Phe standing out for its self-assembling ability. Conversely, more hydrophilic sequences such as homochiral dipeptides Phe-Val and Val-Phe neither fibrillate nor gel aqueous buffers and their crystal structures reveal amphipathic layers. In this work, we test emerging rules for the design of self-assembling dipeptides using heterochiral Phe-Val and Val-Phe. Each dipeptide is characterized by 1H- and 13C-NMR, LC-MS, circular dichroism, infrared and Raman spectroscopies, rheology, electron microscopy, and single-crystal X-ray diffraction. In particular, D-Phe-L-Val is the first heterochiral dipeptide to self-assemble into supramolecular water-channels whose cavity is defined by four peptide molecules arranged head-to-tail. This minimalistic sequence is devoid of amyloid character as probed by thioflavin T fluorescence and it displays excellent biocompatibility in vitro. The dataset provided, through comparison with the literature, significantly advances the definition of molecular design rules for minimalistic unprotected dipeptides that self-assemble into water-channels and biocompatible gels, to assist with the future development of supramolecular biomaterials with fine control over nanomorphological features for a variety of applications.
Collapse
Affiliation(s)
- Ottavia Bellotto
- University of Trieste, Chem. Pharm. Sc. Dept., Via Giorgieri 1, 34127 Trieste, Italy.
| | - Giovanni Pierri
- University of Salerno, Dept. of Chemistry & Biologi "A. Zambelli", Via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy.
| | - Petr Rozhin
- University of Trieste, Chem. Pharm. Sc. Dept., Via Giorgieri 1, 34127 Trieste, Italy.
| | | | - Slavko Kralj
- Jožef Stefan Institute, Materials Synthesis Dept., Jamova 39, 1000 Ljubljana, Slovenia.,University of Ljubljana, Pharmaceutical Technology Dept., Faculty of Pharmacy, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | - Paola D'Andrea
- University of Trieste, Life Sciences Dept., Via L. Giorgieri 5, 34127 Trieste, Italy
| | - Consiglia Tedesco
- University of Salerno, Dept. of Chemistry & Biologi "A. Zambelli", Via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy.
| | - Silvia Marchesan
- University of Trieste, Chem. Pharm. Sc. Dept., Via Giorgieri 1, 34127 Trieste, Italy.
| |
Collapse
|
33
|
Mouli MSSV, Agrawal HG, Kumar M, Mishra AK. Luminescent and morphological behavior of the aromatic dipeptide pair having singular structural variability. LUMINESCENCE 2022. [PMID: 35560861 DOI: 10.1002/bio.4275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/15/2022] [Accepted: 05/07/2022] [Indexed: 11/07/2022]
Abstract
In the present manuscript, the luminescence and the self-assembly behavior of the two aromatic dipeptides having singular structure variable are investigated. The terminally protected dipeptides tryptophan-tyrosine (WYp ) and tryptophan-phenylalanine (WFp ) were synthesized using standard solution phase procedure. Significant solvatochromic effect was observed for both the dipeptidyl entities; while the influence was more pronounced in case of the WYp entity when compared to WFp . Interesting morphological variation was observed for WFp and WYp , wherein discrete and interconnected nanospheres were observed for the respective dipeptides. The results obtained signifies the influence of the singular structural variation on modulating the overall functional behavior of the short peptides motifs.
Collapse
Affiliation(s)
- M S S Vinod Mouli
- Department of chemistry, Indian Institute of Technology Hyderabad, Sangareddy, Telangana, India
| | - Harsha Gopal Agrawal
- Department of chemistry, Indian Institute of Technology Hyderabad, Sangareddy, Telangana, India
| | - Mohit Kumar
- Department of chemistry, Indian Institute of Technology Hyderabad, Sangareddy, Telangana, India
| | - Ashutosh Kumar Mishra
- Department of chemistry, Indian Institute of Technology Hyderabad, Sangareddy, Telangana, India
| |
Collapse
|
34
|
Kulshrestha A, Kumar G, Kumar A. Cu(II)‐Amino Acid Ionic Liquid Surfactants: Metallovesicles as Nano‐Catalytic Reactors for Cross Dehydrogenative Coupling Reaction in Water. ChemistrySelect 2022. [DOI: 10.1002/slct.202200159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Akshay Kulshrestha
- CSIR-Central Salt and Marine Chemicals Research Institute Council of Scientific and Industrial Research, G. B. Marg Bhavnagar 364002 Gujarat India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Gaurav Kumar
- CSIR-Central Salt and Marine Chemicals Research Institute Council of Scientific and Industrial Research, G. B. Marg Bhavnagar 364002 Gujarat India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Arvind Kumar
- CSIR-Central Salt and Marine Chemicals Research Institute Council of Scientific and Industrial Research, G. B. Marg Bhavnagar 364002 Gujarat India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| |
Collapse
|
35
|
Cai J, Zhang W, Xu L, Hao C, Ma W, Sun M, Wu X, Qin X, Colombari FM, de Moura AF, Xu J, Silva MC, Carneiro-Neto EB, Gomes WR, Vallée RAL, Pereira EC, Liu X, Xu C, Klajn R, Kotov NA, Kuang H. Polarization-sensitive optoionic membranes from chiral plasmonic nanoparticles. NATURE NANOTECHNOLOGY 2022; 17:408-416. [PMID: 35288671 DOI: 10.1038/s41565-022-01079-3] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 01/13/2022] [Indexed: 05/21/2023]
Abstract
Optoelectronic effects differentiating absorption of right and left circularly polarized photons in thin films of chiral materials are typically prohibitively small for their direct photocurrent observation. Chiral metasurfaces increase the electronic sensitivity to circular polarization, but their out-of-plane architecture entails manufacturing and performance trade-offs. Here, we show that nanoporous thin films of chiral nanoparticles enable high sensitivity to circular polarization due to light-induced polarization-dependent ion accumulation at nanoparticle interfaces. Self-assembled multilayers of gold nanoparticles modified with L-phenylalanine generate a photocurrent under right-handed circularly polarized light as high as 2.41 times higher than under left-handed circularly polarized light. The strong plasmonic coupling between the multiple nanoparticles producing planar chiroplasmonic modes facilitates the ejection of electrons, whose entrapment at the membrane-electrolyte interface is promoted by a thick layer of enantiopure phenylalanine. Demonstrated detection of light ellipticity with equal sensitivity at all incident angles mimics phenomenological aspects of polarization vision in marine animals. The simplicity of self-assembly and sensitivity of polarization detection found in optoionic membranes opens the door to a family of miniaturized fluidic devices for chiral photonics.
Collapse
Affiliation(s)
- Jiarong Cai
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Wei Zhang
- Institute of Applied Physics and Computational Mathematics, Beijing, China
- Beijing Computational Science Research Centre, Beijing, China
| | - Liguang Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology, Jiangnan University, Wuxi, China
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, China
| | - Changlong Hao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Wei Ma
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Maozhong Sun
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Xiaoling Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Xian Qin
- Department of Chemistry, National University of Singapore, Singapore, Singapore
| | - Felippe Mariano Colombari
- Brazilian Biorenewables National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, Brazil
| | | | - Jiahui Xu
- Department of Chemistry, National University of Singapore, Singapore, Singapore
| | | | | | | | | | | | - Xiaogang Liu
- Department of Chemistry, National University of Singapore, Singapore, Singapore
| | - Chuanlai Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.
- International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology, Jiangnan University, Wuxi, China.
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, China.
| | - Rafal Klajn
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot, Israel.
| | - Nicholas A Kotov
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA.
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA.
- Michigan Institute for Translational Nanotechnology, Ypsilanti, MI, USA.
| | - Hua Kuang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.
- International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology, Jiangnan University, Wuxi, China.
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, China.
- Science Center for Future Foods, Jiangnan University, Wuxi, China.
| |
Collapse
|
36
|
Koshti B, Kshtriya V, Naskar S, Narode H, Gour N. Controlled aggregation properties of single amino acids modified with protecting groups. NEW J CHEM 2022. [DOI: 10.1039/d1nj05172e] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The self-assembling properties of single amino acids modified with protecting groups under controlled conditions of temperature and concentration are illustrated.
Collapse
Affiliation(s)
- Bharti Koshti
- Department of Chemistry, Indrashil University, Kadi, Mehsana, Gujarat, India
| | - Vivekshinh Kshtriya
- Department of Chemistry, Indrashil University, Kadi, Mehsana, Gujarat, India
| | - Soumick Naskar
- Department of Chemistry, Indrashil University, Kadi, Mehsana, Gujarat, India
| | - Hanuman Narode
- Department of Chemistry, Indrashil University, Kadi, Mehsana, Gujarat, India
| | - Nidhi Gour
- Department of Chemistry, Indrashil University, Kadi, Mehsana, Gujarat, India
| |
Collapse
|
37
|
Bocková J, Jones NC, Leyva V, Gaysinski M, Hoffmann SV, Meinert C. Concentration and pH effect on the electronic circular dichroism and anisotropy spectra of aqueous solutions of glyceric acid calcium salt. Chirality 2021; 34:245-252. [PMID: 34939233 DOI: 10.1002/chir.23407] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 12/10/2021] [Accepted: 12/10/2021] [Indexed: 11/08/2022]
Abstract
Electronic circular dichroism (ECD) and anisotropy spectra carry information on differential absorption of left- and right-circularly polarized light (LCPL and RCPL) by optically active compounds. This makes them powerful tools for the rapid determination of enantiomeric excesses (ee) in asymmetric synthetic and pharmaceutical chemistry, as well as for predicting the ee inducible by ultraviolet (UV) CPL. The ECD response of a chiral molecule is, however, critically dependent on the properties of the surrounding medium. Here, we report on the first ECD/anisotropy spectra of aqueous solutions of the calcium salt dihydrate of glyceric acid. A systematic study of the effect of the salt concentration and pH on the chiroptical response revealed significant changes and the appearance of a new ECD band of opposite sign. Based on the literature, this can be rationalized by the increase in the relative proportion of free glyceric acid/glycerate to Ca2+ complexes with glycerate with decreasing salt concentration or pH. Glyceric acid can be readily produced under astrophysical conditions. The anisotropy spectra of the solution containing prevalently the free form of this dihydroxy carboxylic acid resemble the ones of previously investigated aliphatic chain hydroxycarboxylic acids and proteinogenic amino acids. This indicates possible common handedness of stellar CPL-induced asymmetry in the potential comonomers of primitive proto-peptides.
Collapse
Affiliation(s)
- Jana Bocková
- Institut de Chimie de Nice, CNRS UMR 7272, Université Côte d'Azur, Nice, France
| | - Nykola C Jones
- ISA, Department of Physics and Astronomy, Aarhus University, Aarhus, Denmark
| | - Vanessa Leyva
- Institut de Chimie de Nice, CNRS UMR 7272, Université Côte d'Azur, Nice, France
| | - Marc Gaysinski
- Institut de Chimie de Nice, CNRS UMR 7272, Université Côte d'Azur, Nice, France
| | - Søren V Hoffmann
- ISA, Department of Physics and Astronomy, Aarhus University, Aarhus, Denmark
| | - Cornelia Meinert
- Institut de Chimie de Nice, CNRS UMR 7272, Université Côte d'Azur, Nice, France
| |
Collapse
|
38
|
Bellotto O, Kralj S, Melchionna M, Pengo P, Kisovec M, Podobnik M, De Zorzi R, Marchesan S. Self-Assembly of Unprotected Dipeptides into Hydrogels: Water-Channels Make the Difference. Chembiochem 2021; 23:e202100518. [PMID: 34784433 PMCID: PMC9299199 DOI: 10.1002/cbic.202100518] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/15/2021] [Indexed: 12/24/2022]
Abstract
Unprotected dipeptides are attractive building blocks for environmentally friendly hydrogel biomaterials by virtue of their low‐cost and ease of preparation. This work investigates the self‐assembling behaviour of the distinct stereoisomers of Ile‐Phe and Phe‐Ile in phosphate buffered saline (PBS) to form hydrogels, using transmission electron microscopy (TEM), attenuated total reflectance infrared spectroscopy (ATR‐IR), circular dichroism (CD), and oscillatory rheometry. Each peptide purity and identity was also confirmed by 1H‐ and 13C‐NMR spectroscopy and HPLC‐MS. Finally, single‐crystal XRD data allowed the key interactions responsible for the supramolecular packing into amphipathic layers or water‐channels to be revealed. The presence of the latter in the crystal structure is a distinctive feature of the only gelator of this work that self‐organizes into stable hydrogels, with fast kinetics and the highest elastic modulus amongst its structural isomers and stereoisomers.
Collapse
Affiliation(s)
- Ottavia Bellotto
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via L. Giorgieri 1, 34127, Trieste, Italy
| | - Slavko Kralj
- Materials Synthesis Department, Jožef Stefan Institute, Jamova 39, 1000, Ljubljana, Slovenia.,Department of Pharmaceutical Technology, University of Ljubljana, Aškerčeva 7, 1000, Ljubljana, Slovenia
| | - Michele Melchionna
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via L. Giorgieri 1, 34127, Trieste, Italy.,Unit of Trieste, INSTM, Via L. Giorgieri 1, 34127, Trieste, Italy
| | - Paolo Pengo
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via L. Giorgieri 1, 34127, Trieste, Italy
| | - Matic Kisovec
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova 19, 1001, Ljubljana, Slovenia
| | - Marjetka Podobnik
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova 19, 1001, Ljubljana, Slovenia
| | - Rita De Zorzi
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via L. Giorgieri 1, 34127, Trieste, Italy
| | - Silvia Marchesan
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via L. Giorgieri 1, 34127, Trieste, Italy.,Unit of Trieste, INSTM, Via L. Giorgieri 1, 34127, Trieste, Italy
| |
Collapse
|
39
|
Rosales SA, Albella P, González F, Gutiérrez Y, Moreno F. CDDA: extension and analysis of the discrete dipole approximation for chiral systems. OPTICS EXPRESS 2021; 29:30020-30034. [PMID: 34614734 DOI: 10.1364/oe.434061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 08/02/2021] [Indexed: 06/13/2023]
Abstract
Discrete dipole approximation (DDA) is a computational method broadly used to solve light scattering problems. In this work, we propose an extension of DDA that we call Chiral-DDA (CDDA), to study light-chiral matter interactions with the capability of describing the underlying physics behind. Here, CDDA is used to solve and analyze the interaction of a nanoantenna (either metallic or dielectric) with a chiral molecule located in its near field at different positions. Our method allowed to relate near field interactions with far field spectral response of the system, elucidating the role that the nanoantenna electric and magnetic polarizabilities play in the coupling with a chiral molecule. In general, this is not straightforward with other methods. We believe that CDDA has the potential to help researchers revealing some of the still unclear mechanisms responsible for the chiral signal enhancements induced by nanoantennas.
Collapse
|
40
|
Gour N, Gazit E. Metabolite assemblies: A surprising extension to the amyloid hypothesis. Curr Opin Chem Biol 2021; 64:154-164. [PMID: 34482124 DOI: 10.1016/j.cbpa.2021.07.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 06/10/2021] [Accepted: 07/25/2021] [Indexed: 12/15/2022]
Abstract
The realization of the ability of metabolites to form self-assembled amyloid-like nanostructures was a surprising phenomenon. This discovery paved the way towards understanding the pathophysiology of the inborn error of metabolism disorders from a new perspective, relating them to amyloid-associated diseases that are characterized by the aggregation of proteins and polypeptides. Hence, a 'generic amyloid hypothesis' can be proposed. This theory implies that the formation of amyloid-like structures is a general phenomenon not limited to proteins and reflects a common etiology for both age-related amyloid-associated diseases and inborn error of metabolism disorders. Here, we present a comprehensive survey of the recent research related to metabolite amyloids including their structure formation through self-association, propagation, interactions, transmission, and their role in metabolic disorders and neurodegenerative diseases and their applications for the fabrication of novel materials which implicate metabolite assemblies as a surprising extension to the amyloid scheme.
Collapse
Affiliation(s)
- Nidhi Gour
- School of Science, Department of Chemistry, Indrashil University, Mehsana, Gujarat, 382740 India
| | - Ehud Gazit
- The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Tel Aviv, 6997801, Israel; BLAVATNIK CENTER for Drug Discovery, Tel Aviv University, Tel Aviv, 6997801, Israel.
| |
Collapse
|
41
|
Koshti B, Kshtriya V, Singh R, Walia S, Bhatia D, Joshi KB, Gour N. Unusual Aggregates Formed by the Self-Assembly of Proline, Hydroxyproline, and Lysine. ACS Chem Neurosci 2021; 12:3237-3249. [PMID: 34406754 DOI: 10.1021/acschemneuro.1c00427] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
There is a plethora of significant research that illustrates toxic self-assemblies formed by the aggregation of single amino acids, such as phenylalanine, tyrosine, tryptophan, cysteine, and methionine, and their implication on the etiology of inborn errors of metabolisms (IEMs), such as phenylketonuria, tyrosinemia, hypertryptophanemia, cystinuria, and hypermethioninemia, respectively. Hence, studying the aggregation behavior of single amino acids is very crucial from the chemical neuroscience perspective to understanding the common etiology between single amino acid metabolite disorders and amyloid diseases like Alzheimer's and Parkinson's. Herein we report the aggregation properties of nonaromatic single amino acids l-proline (Pro), l-hydroxyproline (Hyp), and l-lysine hydrochloride (Lys). The morphologies of the self-assembled structures formed by Pro, Hyp, and Lys were extensively studied by various microscopic techniques, and controlled morphological transitions were observed under varied concentrations and aging times. The mechanism of structure formation was deciphered by concentration-dependent 1H NMR analysis, which revealed the crucial role of hydrogen bonding and hydrophobic interactions in the structure formation of Pro, Hyp, and Lys. MTT assays on neural (SHSY5Y) cell lines revealed that aggregates formed by Pro, Hyp, and Lys reduced cell viability in a dose-dependent manner. These results may have important implications in the understanding of the patho-physiology of disorders such as hyperprolinemia, hyperhydroxyprolinemia, and hyperlysinemia since all these IEMs are associated with severe neurodegenerative symptoms, including intellectual disability, seizures, and psychiatric problems. Our future studies will endeavor to study these biomolecular assemblies in greater detail by immuno-histochemical analysis and advanced biophysical assays.
Collapse
Affiliation(s)
- Bharti Koshti
- Department of Chemistry, School of Science, Indrashil University, Kadi, Mehsana, Gujarat 382740, India
| | - Vivekshinh Kshtriya
- Department of Chemistry, School of Science, Indrashil University, Kadi, Mehsana, Gujarat 382740, India
| | - Ramesh Singh
- Department of Chemistry, Dr. Harisingh Gour Central University, Sagar, Madhya Pradesh 470003, India
| | - Shanka Walia
- Biological Engineering Discipline, Indian Institute of Technology, Palaj, Gujarat 382355, India
| | - Dhiraj Bhatia
- Biological Engineering Discipline, Indian Institute of Technology, Palaj, Gujarat 382355, India
| | - Khashti Ballabh Joshi
- Department of Chemistry, Dr. Harisingh Gour Central University, Sagar, Madhya Pradesh 470003, India
| | - Nidhi Gour
- Department of Chemistry, School of Science, Indrashil University, Kadi, Mehsana, Gujarat 382740, India
| |
Collapse
|
42
|
Warren JL, Dykeman-Bermingham PA, Knight AS. Controlling Amphiphilic Polymer Folding beyond the Primary Structure with Protein-Mimetic Di(Phenylalanine). J Am Chem Soc 2021; 143:13228-13234. [PMID: 34375094 PMCID: PMC9362848 DOI: 10.1021/jacs.1c05659] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
While methods for polymer synthesis have proliferated, their functionality pales in comparison to natural biopolymers-strategies are limited for building the intricate network of noncovalent interactions necessary to elicit complex, protein-like functions. Using a bioinspired di(phenylalanine) acrylamide (FF) monomer, we explored the impact of various noncovalent interactions in generating ordered assembled structures. Amphiphilic copolymers were synthesized that exhibit β-sheet-like local structure upon collapsing into single-chain assemblies in aqueous environments. Systematic analysis of a series of amphiphilic copolymers illustrated that the global collapse is primarily driven by hydrophobic forces. Hydrogen-bonding and aromatic interactions stabilize local structure, as β-sheet-like interactions were identified via circular dichroism and thioflavin T fluorescence. Similar analysis of phenylalanine (F) and alanine-phenylalanine acrylamide (AF) copolymers found that distancing the aromatic residue from the polymer backbone is sufficient to induce β-sheet-like local structure akin to the FF copolymers; however, the interactions between AF subunits are less stable than those formed by FF. Further, hydrogen-bond donating hydrophilic monomers disrupt internal structure formed by FF within collapsed assemblies. Collectively, these results illuminate design principles for the facile incorporation of multiple facets of protein-mimetic, higher-order structure within folded synthetic polymers.
Collapse
Affiliation(s)
- Jacqueline L Warren
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Peter A Dykeman-Bermingham
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Abigail S Knight
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
43
|
Koshti B, Kshtriya V, Nardin C, Gour N. Chemical Perspective of the Mechanism of Action of Antiamyloidogenic Compounds Using a Minimalistic Peptide as a Reductionist Model. ACS Chem Neurosci 2021; 12:2851-2864. [PMID: 34264635 DOI: 10.1021/acschemneuro.1c00221] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The diphenylalanine (FF) residue which is present at the 19 and 20 positions of the amyloid beta (1-42) (Aβ42) peptide sequence is considered as a reductionist model for studying Aβ42 aggregation. FF self-assembles into well-ordered tubular structures via aromatic π-π stacking. Herein the manuscript, we have presented a chemical perspective on the mechanism of action of antiamyloid compounds by assessing their interaction with FF. Therefore, we first coincubated FF fibers with single amino acids, since they are constituted of different R side chains yet have a common structural unit. This study revealed a crucial role of aromatic rings and functional groups like thiol (-SH) in causing destabilization of FF assembly via their interaction with π-electrons participating in π-π stacking present in FF. We further studied the interaction of different nonsteroidal anti-inflammatory drugs (NSAIDs), other known antiamyloidogenic compounds, and host-guest inclusion compounds like cyclodextrin (CD) to assess their mechanism of action and to decipher the functional moiety present in these compounds which could cause destabilization of π-π stacking. From the coincubation experiments, we could surmise a crucial role of aromatic rings present in these compounds for causing interference in aromatic stacking. We further consolidated our observations through microscopy analysis by various spectroscopic methods such as aggregation-induced emission enhancement (AIEE), fluorescence spectroscopy, solution-state 1H NMR, FTIR, and circular dichroism. The studies presented in the manuscript thus provide significant insights into the role of functional groups in imparting antiamyloid action and open new avenues for an efficient design of antiamyloid drugs in the future.
Collapse
Affiliation(s)
- Bharti Koshti
- Department of Chemistry, School of Science, Indrashil University, Kadi, Mehsana, Gujarat 382740, India
| | - Vivekshinh Kshtriya
- Department of Chemistry, School of Science, Indrashil University, Kadi, Mehsana, Gujarat 382740, India
| | - Corinne Nardin
- Universite de Pau et des Pays de l’Adour, E2S UPPA, CNRS, IPREM, Pau 64053, France
| | - Nidhi Gour
- Department of Chemistry, School of Science, Indrashil University, Kadi, Mehsana, Gujarat 382740, India
- Department of Medicinal Chemistry, Indian Institute of Advanced Research, Gandhinagar, Gujarat 382426, India
| |
Collapse
|
44
|
Castelletto V, Seitsonen J, Ruokolainen J, Barnett SA, Sandu C, Hamley IW. Self-Assembly of Angiotensin-Converting Enzyme Inhibitors Captopril and Lisinopril and Their Crystal Structures. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:9170-9178. [PMID: 34292730 PMCID: PMC8397397 DOI: 10.1021/acs.langmuir.1c01340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The peptide angiotensin-converting enzyme inhibitors captopril and lisinopril are unexpectedly shown to exhibit critical aggregation concentration (CAC) behavior through measurements of surface tension, electrical conductivity, and dye probe fluorescence. These three measurements provide similar values for the CAC, and there is also evidence from circular dichroism spectroscopy for a possible conformational change in the peptides at the same concentration. Cryogenic transmission electron microscopy indicates the formation of micelle-like aggregates above the CAC, which can thus be considered a critical micelle concentration, and the formation of aggregates with a hydrodynamic radius of ∼6-7 nm is also evidenced by dynamic light scattering. We also used synchrotron radiation X-ray diffraction to determine the single-crystal structure of captopril and lisinopril. Our results improve the accuracy of previous data reported in the literature, obtained using conventional X-ray sources. We also studied the structure of aqueous solutions containing captopril or lisinopril at high concentrations. The aggregation may be driven by intermolecular interactions between the proline moiety of captopril molecules or between the phenylalanine moiety of lisinopril molecules.
Collapse
Affiliation(s)
| | - Jani Seitsonen
- Nanomicroscopy
Center, Aalto University, Puumiehenkuja 2, Espoo FIN-02150, Finland
| | - Janne Ruokolainen
- Nanomicroscopy
Center, Aalto University, Puumiehenkuja 2, Espoo FIN-02150, Finland
| | - Sarah A. Barnett
- Diamond
Light Source, Harwell Science and Innovation
Campus, Fermi Avenue, Didcot OX11 0DE, U.K.
| | - Callum Sandu
- Department
of Chemistry, University of Reading, Reading RG6 6AD, U.K.
| | - Ian W. Hamley
- Department
of Chemistry, University of Reading, Reading RG6 6AD, U.K.
| |
Collapse
|
45
|
Mayorga-Burrezo P, Muñoz J, Zaoralová D, Otyepka M, Pumera M. Multiresponsive 2D Ti 3C 2T x MXene via Implanting Molecular Properties. ACS NANO 2021; 15:10067-10075. [PMID: 34125533 DOI: 10.1021/acsnano.1c01742] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The design and fabrication of active nanomaterials exhibiting multifunctional properties is a must in the so-called global "Fourth Industrial Revolution". In this sense, molecular engineering is a powerful tool to implant original capabilities on a macroscopic scale. Herein, different bioinspired 2D-MXenes have been developed via a versatile and straightforward synthetic approach. As a proof of concept, Ti3C2Tx MXene has been exploited as a highly sensitive transducing platform for the covalent assembly of active biomolecular architectures (i.e., amino acids). All pivotal properties originated from the anchored targets were proved to be successfully transferred to the resulting bioinspired 2D-MXenes. Appealing applications have been devised for these 2D-MXene prototypes showing (i) chiroptical activity, (ii) fluorescence capabilities, (iii) supramolecular π-π interactions, and (iv) stimuli-responsive molecular switchability. Overall, this work demonstrates the fabrication of programmable 2D-MXenes, taking advantage of the inherent characteristics of the implanted (bio)molecular components. Thus, the current bottleneck in the field of 2D-MXenes can be overcome after the significant findings reported here.
Collapse
Affiliation(s)
- Paula Mayorga-Burrezo
- Future Energy and Innovation Laboratory, Central European Institute of Technology, Brno University of Technology (CEITEC-BUT), Purkyňova 123, 61200 Brno, Czech Republic
| | - Jose Muñoz
- Future Energy and Innovation Laboratory, Central European Institute of Technology, Brno University of Technology (CEITEC-BUT), Purkyňova 123, 61200 Brno, Czech Republic
| | - Dagmar Zaoralová
- Czech Advanced Technology and Research Institute (CATRIN), Regional Centre of Advanced Technologies and Materials (RCPTM), Palacký University Olomouc, Šlechtitelů 27, 779 00 Olomouc, Czech Republic
| | - Michal Otyepka
- Czech Advanced Technology and Research Institute (CATRIN), Regional Centre of Advanced Technologies and Materials (RCPTM), Palacký University Olomouc, Šlechtitelů 27, 779 00 Olomouc, Czech Republic
- IT4Innovations, VSB - Technical University of Ostrava, 17. listopadu 2172/15, 708 00 Ostrava-Poruba, Czech Republic
| | - Martin Pumera
- Future Energy and Innovation Laboratory, Central European Institute of Technology, Brno University of Technology (CEITEC-BUT), Purkyňova 123, 61200 Brno, Czech Republic
- Center for Nanorobotics and Machine Intelligence, Department of Food Technology, Mendel University in Brno, Zemedelska 1/1665, 613 00 Brno, Czech Republic
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-Gu, Seoul 03722, South Korea
- Department of Medical Research, China Medical University Hospital, China Medical University, No. 91 Hsueh-Shih Road, Taichung 40402, Taiwan
| |
Collapse
|
46
|
Branzi L, Lucchini G, Cattaruzza E, Pinna N, Benedetti A, Speghini A. The formation mechanism and chirality evolution of chiral carbon dots prepared via radical assisted synthesis at room temperature. NANOSCALE 2021; 13:10478-10489. [PMID: 34079961 DOI: 10.1039/d1nr01927a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We report on a Cu(ii) catalyzed process for the production of cysteine based chiral carbon dots; the process does not require any thermal treatment and the carbon dot formation is driven by the production of reactive radical species that are generated in the reaction media by the catalytic role played by the multivalent transition metal. The nanomaterial presents a well-defined chirality and the enantioselectivity of the synthesis is proved by the isolation of both the carbon dot enantiomers. We focused our attention on the processes that take place during the carbon dot formation and the relationship with the structure of the organic starting material. Thanks to the comparison of reactions conducted with different organic substrates whose thiyl radical chemistry is known, we recognized a non-trivial role of the radical hydrogen abstraction reactions in the carbon dot formation process. The reported process allows access to a large variety of analyses to monitor the reaction mixtures during the reaction course. Finally, we report a detailed analysis on the evolution of optical chirality during the synthesis and related this feature with the formation mechanism of the nanomaterial revealing significant evidence on the chirality origin and structure of chiral carbon dots.
Collapse
Affiliation(s)
- Lorenzo Branzi
- Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, Via Torino 155, Venezia Mestre, Italy.
| | - Giacomo Lucchini
- Nanomaterials Research Group, Department of Biotechnology and INSTM, RU of Verona, University of Verona, Strada le Grazie 15, Verona, Italy.
| | - Elti Cattaruzza
- Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, Via Torino 155, Venezia Mestre, Italy.
| | - Nicola Pinna
- Institut für Chemie and IRIS Adlershof, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489 Berlin, Germany
| | - Alvise Benedetti
- Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, Via Torino 155, Venezia Mestre, Italy.
| | - Adolfo Speghini
- Nanomaterials Research Group, Department of Biotechnology and INSTM, RU of Verona, University of Verona, Strada le Grazie 15, Verona, Italy.
| |
Collapse
|
47
|
Lima B, Ricci M, Garro A, Juhász T, Szigyártó IC, Papp ZI, Feresin G, Garcia de la Torre J, Lopez Cascales J, Fülöp L, Beke-Somfai T, Enriz RD. New short cationic antibacterial peptides. Synthesis, biological activity and mechanism of action. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2021; 1863:183665. [PMID: 34097861 DOI: 10.1016/j.bbamem.2021.183665] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 05/07/2021] [Accepted: 06/01/2021] [Indexed: 11/28/2022]
Abstract
We report a theoretical and experimental study on a new series of small-sized antibacterial peptides. Synthesis and bioassays for these peptides are reported here. In addition, we evaluated different physicochemical parameters that modulate antimicrobial activity (charge, secondary structure, amphipathicity, hydrophobicity and polarity). We also performed molecular dynamic simulations to assess the interaction between these peptides and their molecular target (the membrane). Biophysical characterization of the peptides was carried out with different techniques, such as circular dichroism (CD), linear dichroism (LD), infrared spectroscopy (IR), dynamic light scattering (DLS), fluorescence spectroscopy and TEM studies using model systems (liposomes) for mammalian and bacterial membranes. The results of this study allow us to draw important conclusions on three different aspects. Theoretical and experimental results indicate that small-sized peptides have a particular mechanism of action that is different to that of large peptides. These results provide additional support for a previously proposed four-step mechanism of action. The possible pharmacophoric requirement for these small-sized peptides is discussed. Furthermore, our results indicate that a net +4 charge is the adequate for 9 amino acid long peptides to produce antibacterial activity. The information reported here is very important for designing new antibacterial peptides with these structural characteristics.
Collapse
Affiliation(s)
- Beatriz Lima
- Instituto de Biotecnología, Universidad Nacional de San Juan, Av. Libertador General San Martín 1109 (O), CP 5400 San Juan, Argentina
| | - Maria Ricci
- Research Centre for Natural Sciences, Institute of Materials and Environmental Chemistry, H-1117 Budapest, Hungary
| | - Adriana Garro
- Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Instituto Multidisciplinario de Investigaciones Biológicas (IMIBIO-SL), Chacabuco 915, 5700 San Luis, Argentina
| | - Tünde Juhász
- Research Centre for Natural Sciences, Institute of Materials and Environmental Chemistry, H-1117 Budapest, Hungary
| | - Imola Csilla Szigyártó
- Research Centre for Natural Sciences, Institute of Materials and Environmental Chemistry, H-1117 Budapest, Hungary
| | - Zita I Papp
- Department of Medical Chemistry, University of Szeged, H-6720 Szeged, Dóm tér 8, Hungary
| | - Gabriela Feresin
- Instituto de Biotecnología, Universidad Nacional de San Juan, Av. Libertador General San Martín 1109 (O), CP 5400 San Juan, Argentina
| | - Jose Garcia de la Torre
- Facultad de Química, Departamento de Química Física, Universidad de Murcia, Campus de Espinardo, 30100 Espinardo, Murcia, Spain
| | - Javier Lopez Cascales
- Grupo de Bioinformática y Macromoléculas (BioMac), Área de Química Física, Universidad Politécnica de Cartagena, Aulario II, ́ Campus de Alfonso XIII, 30203 Cartagena, Murcia, Spain
| | - Lívia Fülöp
- Department of Medical Chemistry, University of Szeged, H-6720 Szeged, Dóm tér 8, Hungary.
| | - Tamás Beke-Somfai
- Research Centre for Natural Sciences, Institute of Materials and Environmental Chemistry, H-1117 Budapest, Hungary.
| | - Ricardo D Enriz
- Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Instituto Multidisciplinario de Investigaciones Biológicas (IMIBIO-SL), Chacabuco 915, 5700 San Luis, Argentina.
| |
Collapse
|
48
|
Liu W, Wang J, Yuan S, Chen X, Wang Q. Chiral Superatomic Nanoclusters Ag
47
Induced by the Ligation of Amino Acids. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202100972] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Wen‐Di Liu
- Department of Chemistry, Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education Tsinghua University Beijing 100084 P. R. China
| | - Jia‐Qi Wang
- Department of Chemistry, Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education Tsinghua University Beijing 100084 P. R. China
| | - Shang‐Fu Yuan
- Department of Chemistry, Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education Tsinghua University Beijing 100084 P. R. China
| | - Xi Chen
- Department of Applied Physics Aalto University Otakaari 1 02150 Espoo Finland
| | - Quan‐Ming Wang
- Department of Chemistry, Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education Tsinghua University Beijing 100084 P. R. China
| |
Collapse
|
49
|
Azoulay Z, Aibinder P, Gancz A, Moran-Gilad J, Navon-Venezia S, Rapaport H. Assembly of cationic and amphiphilic β-sheet FKF tripeptide confers antibacterial activity. Acta Biomater 2021; 125:231-241. [PMID: 33607306 DOI: 10.1016/j.actbio.2021.02.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 01/20/2021] [Accepted: 02/09/2021] [Indexed: 12/30/2022]
Abstract
The race drawn against bacteria facing the evolution of antimicrobial resistance fuels research for new drugs and therapeutic strategies. FKF, a tripeptide that is cationic and amphiphilic was examined in light of its potential antimicrobial activity. Acid titration of purified peptide solution, 6% w/v (136 mM), yielded a hydrogel at pH~ 4. Cryo-TEM images of FKF revealed distinct phases formed upon increase in pH, ranging from elongated needles, uniform width fibers, sheets and tubular structures. 1H NMR attested FKF charged states as function of pH, and CD and FTIR measurements indicated that FKF β-sheet assemblies are held by both π-π stacking and H-bonds. FKF hydrogel displayed bactericidal activity against E. coli and P. aeruginosa with a 3-log reduction in bacterial counts. The hydrogel was also found effective in reducing P. aeruginosa contamination in a skin lesion model in rats. FKF forms a unique antimicrobial peptide-hydrogel, showing neglectable effect in dissolved state, yet only when fibrillary assembled it gains functionality. STATEMENT OF SIGNIFICANCE: Ultra-short peptides are at the frontier of peptide self-assembly research. The tripeptide FKF assumes distinct assembly forms that are a function of pH, for which we have pinpointed the accompanying changes in charge. Made of natural amino acids, FKF forms a pure peptide hydrogel phase, which is intrinsically antimicrobial. We demonstrate that antimicrobial effect is only assumed by the peptide assemblies, posing self-assembly as a pre-requisite for FKF's bactericidal effect. This system provides evidence for the link between specific microscopic peptide assembled structures, macroscopic gel formation and antimicrobial effect, utilized to alleviate bacterial contamination in vivo.
Collapse
|
50
|
Chakraborty S, Mukherjee S. Role of Small Moiety of a Large Ligand: Tyrosine Templated Copper Nanoclusters. J Phys Chem Lett 2021; 12:3266-3273. [PMID: 33764772 DOI: 10.1021/acs.jpclett.1c00245] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
To explore the underlying formation mechanism of luminescent metal nanoclusters (NCs) using a small moiety such as amino acids (outside the milieu of a protein environment) as templates, herein we report blue-emitting copper nanoclusters (CuNCs) using l-tyrosine (l-Tyr) as a capping agent as well as a reducing agent. We also demonstrate the effect of an in situ fibrillation of Tyr on the luminescence and structural properties of NCs. Fluorescence studies along with microscopic imaging revealed the rapid formation of a dityrosine (di-Tyr) moiety in an alkaline medium followed by an aggregated "Tamarix dioica leaf"-like fibrillar pattern along with CuNCs. Our present investigation delineates the role played by π-π interactions in the formation of the fibrillar structures. We substantiated the fundamentals of using a small molecule of a large ligand that can serve as a template and also show how these NCs once formed destroy the fibrils of di-Tyr as a function of time.
Collapse
Affiliation(s)
- Subhajit Chakraborty
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhopal 462 066, Madhya Pradesh, India
| | - Saptarshi Mukherjee
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhopal 462 066, Madhya Pradesh, India
| |
Collapse
|