1
|
Samant V, Prabhu A. Exercise, exerkines and exercise mimetic drugs: Molecular mechanisms and therapeutics. Life Sci 2024; 359:123225. [PMID: 39522716 DOI: 10.1016/j.lfs.2024.123225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 08/09/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
Chronic diseases linked with sedentary lifestyles and poor dietary habits are increasingly common in modern society. Exercise is widely acknowledged to have a plethora of health benefits, including its role in primary prevention of various chronic conditions like type 2 diabetes mellitus, obesity, cardiovascular disease, and several musculoskeletal as well as degenerative disorders. Regular physical activity induces numerous physiological adaptations that contribute to these positive effects, primarily observed in skeletal muscle but also impacting other tissues. There is a growing interest among researchers in developing pharmaceutical interventions that mimic the beneficial effects of exercise for therapeutic applications. Exercise mimetic medications have the potential to be helpful aids in enhancing functional outcomes for patients with metabolic dysfunction, neuromuscular and musculoskeletal disorders. Some of the potential targets for exercise mimetics include pathways involved in metabolism, mitochondrial function, inflammation, and tissue regeneration. The present review aims to provide an exhaustive overview of the current understanding of exercise physiology, the role of exerkines and biomolecular pathways, and the potential applications of exercise mimetic drugs for the treatment of several diseases.
Collapse
Affiliation(s)
- Vedant Samant
- SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India
| | - Arati Prabhu
- SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India.
| |
Collapse
|
2
|
Mitchell AK, Bliss RR, Church FC. Exercise, Neuroprotective Exerkines, and Parkinson's Disease: A Narrative Review. Biomolecules 2024; 14:1241. [PMID: 39456173 PMCID: PMC11506540 DOI: 10.3390/biom14101241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/23/2024] [Accepted: 09/27/2024] [Indexed: 10/28/2024] Open
Abstract
Parkinson's disease (PD) is a prevalent neurodegenerative disease in which treatment often includes an exercise regimen. Exercise is neuroprotective in animal models of PD, and, more recently, human clinical studies have verified exercise's disease-modifying effect. Aerobic exercise and resistance training improve many of PD's motor and non-motor symptoms, while neuromotor therapy and stretching/flexibility exercises positively contribute to the quality of life in people with PD. Therefore, understanding the role of exercise in managing this complex disorder is crucial. Exerkines are bioactive substances that are synthesized and released during exercise and have been implicated in several positive health outcomes, including neuroprotection. Exerkines protect neuronal cells in vitro and rodent PD models in vivo. Aerobic exercise and resistance training both increase exerkine levels in the blood, suggesting a role for exerkines in the neuroprotective theory. Many exerkines demonstrate the potential for protecting the brain against pathological missteps caused by PD. Every person (people) with Parkinson's (PwP) needs a comprehensive exercise plan tailored to their unique needs and abilities. Here, we provide an exercise template to help PwP understand the importance of exercise for treating PD, describe barriers confronting many PwP in their attempt to exercise, provide suggestions for overcoming these barriers, and explore the role of exerkines in managing PD. In conclusion, exercise and exerkines together create a powerful neuroprotective system that should contribute to slowing the chronic progression of PD.
Collapse
Affiliation(s)
- Alexandra K. Mitchell
- Department of Health Sciences, Division of Physical Therapy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
| | | | - Frank C. Church
- Department of Pathology and Laboratory Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
3
|
Gasser B, Frey WO, Valdivieso P, Scherr J, Kopf J, Spörri J, Flück M. Are the Positions in the Word Ranking of Competitive Alpine Skiers Explainable by Prominent Polymorphisms in Regulatory Genes of Mechanical and Metabolic Muscle Functioning? RESEARCH QUARTERLY FOR EXERCISE AND SPORT 2024:1-9. [PMID: 39173035 DOI: 10.1080/02701367.2024.2387040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/25/2024] [Indexed: 08/24/2024]
Abstract
Background: The success of competitive alpine skiers with respective to their world ranking (WR) positions might be associated with prominent gene polymorphisms. Methods: Twenty-six competitive alpine skiers were followed from 2015 to 2019 for their WR positions (FIS-ranking). Using PCR, the genotypes of ACE-I/D, TNC, ACTN3, and PTK2 were identified. The correlations between the discipline-specific WR position (slalom-SL, giant slalom-GS, super G-SG, downhill-DH, and alpine combined-AC) and gene polymorphisms were analyzed concerning an influence with multivariate regression models. Results: The WR position and the ACE gene as well as the copy number of the ACE I-allele exhibited reciprocal relationships for speed specialists (SG and DH) but not for technical specialists (SL and GS). Similarly, the gene polymorphisms ACTN3 and (partly) PTK2 were associated with the WR position in disciplines characterized by a high number of turns (technical specialists-SL and GS) and speed (speed-specialists-SG and DH), respectively. Conclusions: Our findings emphasize the contributions of aerobic and cardiovascular metabolism in fueling muscle work and recovering from muscle fatigue for competitive success in slalom-driven skiing disciplines and highlight the contributions of sequence variants in the genes ACE, TNC, and ACTN3.
Collapse
Affiliation(s)
| | | | | | | | - Juana Kopf
- Balgrist University Hospital, University of Zurich
| | - Jörg Spörri
- Balgrist University Hospital, University of Zurich
| | - Martin Flück
- University of Zurich
- University of Fribourg
- Swiss Federal Institute of Sport - BASPO
| |
Collapse
|
4
|
Li L, Zhou Z, Fang J, Liu D, Deng C, Chen Y, Ahasan Z, Zhu W, Cai K. The characterization of metabolic changes in adipose tissues and muscles due to different exercise intensities by Dixon in healthy young men. Eur J Radiol 2024; 177:111559. [PMID: 38865759 PMCID: PMC11440905 DOI: 10.1016/j.ejrad.2024.111559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/07/2024] [Indexed: 06/14/2024]
Abstract
PURPOSE To delineate the alterations in adipose and muscle tissue composition and functionality among healthy young men across varying exercise intensities, which help to elucidate the impact of exercise intensity on weight management and inform fitness planning. METHOD 3D Dixon MRI scans were performed on the neck and supraclavicular area in 10 high-intensity exercises (HIE) athletes, 20 moderate intensity exercises (MIE) athletes and 19 low-intensity exercises non-athlete male controls (NCM). Twelve imaging parameters, including the total volume of muscle, white adipose tissue (WAT), brown adipose tissue (BAT), and the mean fat-water fraction (FWF) within these tissues. Additionally, ratios of BAT or WAT to total fat (BATr or WATr) and the proportions of muscle, BAT, or WAT to total tissue volume (Musp, BATp, and WATp) were calculated. Parameters were compared across groups and correlated with Body Mass Index (BMI), waistline, and hipline. RESULTS The HIE group exhibited the highest total muscle (totalMUS) and brown adipose tissue (totalBAT) volumes among the three groups. Conversely, the NCM group had significantly higher fwfFAT and fwfBAT values. The MUSp was higher in the HIE and MIE groups compared to NCM, while the BATp and WATp were lower. Furthermore, the BATr in HIE and MIE groups were higher than NCM group while the WATr were lower. Significant linear relationships were observed between totalBAT, totalWAT, MUSp, BATr, fwfFAT, and BMI, waistline (P < 0.05) across all groups. CONCLUSIONS MIE is sufficient for the purpose of weight control, While HIE helps to further increase the muscle mass. All three physical indexes were significantly associated with the image parameters, with waistline emerging as the most effective indicator for detecting metabolic changes across all groups.
Collapse
Affiliation(s)
- Li Li
- Radiology Department, Tongji Hospital, Tongji Medical College, HUST, Wuhan, China
| | - Zhiguo Zhou
- Orthopedics Department, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, HUST, Wuhan, China.
| | - Jicheng Fang
- Radiology Department, Tongji Hospital, Tongji Medical College, HUST, Wuhan, China
| | - Dong Liu
- Radiology Department, Tongji Hospital, Tongji Medical College, HUST, Wuhan, China
| | - Chenghu Deng
- Department of Physical Education, Wuhan University of Technology, Wuhan, China
| | - Yong Chen
- Endocrinology Department, Tongji Hospital, Tongji Medical College, HUST, Wuhan, China
| | - Zoheb Ahasan
- Radiology Department, Bioengineering Department, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States; Bioengineering Department, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Wenzhen Zhu
- Radiology Department, Tongji Hospital, Tongji Medical College, HUST, Wuhan, China
| | - Kejia Cai
- Radiology Department, Bioengineering Department, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States; Bioengineering Department, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
5
|
Sato R, Vatic M, Peixoto da Fonseca GW, Anker SD, von Haehling S. Biological basis and treatment of frailty and sarcopenia. Cardiovasc Res 2024:cvae073. [PMID: 38828887 DOI: 10.1093/cvr/cvae073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 11/23/2022] [Accepted: 12/20/2022] [Indexed: 06/05/2024] Open
Abstract
In an ageing society, the importance of maintaining healthy life expectancy has been emphasized. As a result of age-related decline in functional reserve, frailty is a state of increased vulnerability and susceptibility to adverse health outcomes with a serious impact on healthy life expectancy. The decline in skeletal muscle mass and function, also known as sarcopenia, is key in the development of physical frailty. Both frailty and sarcopenia are highly prevalent in patients not only with advanced age but also in patients with illnesses that exacerbate their progression like heart failure (HF), cancer, or dementia, with the prevalence of frailty and sarcopenia in HF patients reaching up to 50-75% and 19.5-47.3%, respectively, resulting in 1.5-3 times higher 1-year mortality. The biological mechanisms of frailty and sarcopenia are multifactorial, complex, and not yet fully elucidated, ranging from DNA damage, proteostasis impairment, and epigenetic changes to mitochondrial dysfunction, cellular senescence, and environmental factors, many of which are further linked to cardiac disease. Currently, there is no gold standard for the treatment of frailty and sarcopenia, however, growing evidence supports that a combination of exercise training and nutritional supplement improves skeletal muscle function and frailty, with a variety of other therapies being devised based on the underlying pathophysiology. In this review, we address the involvement of frailty and sarcopenia in cardiac disease and describe the latest insights into their biological mechanisms as well as the potential for intervention through exercise, diet, and specific therapies.
Collapse
Affiliation(s)
- Ryosuke Sato
- Department of Cardiology and Pneumology, University of Göttingen Medical Center, Robert-Koch-Str. 40, 37075 Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), partner site Göttingen, Göttingen, Germany
| | - Mirela Vatic
- Department of Cardiology and Pneumology, University of Göttingen Medical Center, Robert-Koch-Str. 40, 37075 Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), partner site Göttingen, Göttingen, Germany
| | - Guilherme Wesley Peixoto da Fonseca
- Heart Institute (InCor), University of São Paulo Medical School, São Paulo, SP, Brazil
- School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
| | - Stefan D Anker
- Department of Cardiology (CVK) of German Heart Center Charité; German Centre for Cardiovascular Research (DZHK) partner site Berlin, Charité Universitätsmedizin, Berlin, Germany
- Institute of Heart Diseases, Wroclaw Medical University, Wroclaw, Poland
| | - Stephan von Haehling
- Department of Cardiology and Pneumology, University of Göttingen Medical Center, Robert-Koch-Str. 40, 37075 Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), partner site Göttingen, Göttingen, Germany
| |
Collapse
|
6
|
Ashcroft SP, Stocks B, Egan B, Zierath JR. Exercise induces tissue-specific adaptations to enhance cardiometabolic health. Cell Metab 2024; 36:278-300. [PMID: 38183980 DOI: 10.1016/j.cmet.2023.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/06/2023] [Accepted: 12/05/2023] [Indexed: 01/08/2024]
Abstract
The risk associated with multiple cancers, cardiovascular disease, diabetes, and all-cause mortality is decreased in individuals who meet the current recommendations for physical activity. Therefore, regular exercise remains a cornerstone in the prevention and treatment of non-communicable diseases. An acute bout of exercise results in the coordinated interaction between multiple tissues to meet the increased energy demand of exercise. Over time, the associated metabolic stress of each individual exercise bout provides the basis for long-term adaptations across tissues, including the cardiovascular system, skeletal muscle, adipose tissue, liver, pancreas, gut, and brain. Therefore, regular exercise is associated with a plethora of benefits throughout the whole body, including improved cardiorespiratory fitness, physical function, and glycemic control. Overall, we summarize the exercise-induced adaptations that occur within multiple tissues and how they converge to ultimately improve cardiometabolic health.
Collapse
Affiliation(s)
- Stephen P Ashcroft
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ben Stocks
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Brendan Egan
- School of Health and Human Performance, Dublin City University, Dublin, Ireland
| | - Juleen R Zierath
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Integrative Physiology, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden; Integrative Physiology, Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
7
|
McColl TJ, Clarke DC. Kinetic modeling of leucine-mediated signaling and protein metabolism in human skeletal muscle. iScience 2024; 27:108634. [PMID: 38188514 PMCID: PMC10767222 DOI: 10.1016/j.isci.2023.108634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 11/15/2023] [Accepted: 12/01/2023] [Indexed: 01/09/2024] Open
Abstract
Skeletal muscle protein levels are governed by the relative rates of muscle protein synthesis (MPS) and breakdown (MPB). The mechanisms controlling these rates are complex, and their integrated behaviors are challenging to study through experiments alone. The purpose of this study was to develop and analyze a kinetic model of leucine-mediated mTOR signaling and protein metabolism in the skeletal muscle of young adults. Our model amalgamates published cellular-level models of the IRS1-PI3K-Akt-mTORC1 signaling system and of skeletal-muscle leucine kinetics with physiological-level models of leucine digestion and transport and insulin dynamics. The model satisfactorily predicts experimental data from diverse leucine feeding protocols. Model analysis revealed that total levels of p70S6K are a primary determinant of MPS, insulin signaling substantially affects muscle net protein balance via its effects on MPB, and p70S6K-mediated feedback of mTORC1 signaling reduces MPS in a dose-dependent manner.
Collapse
Affiliation(s)
- Taylor J. McColl
- Department of Biomedical Physiology and KinesiologySimon Fraser University, Burnaby, BC V5A 1S6, Canada
- Centre for Cell Biology, Development and Disease, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - David C. Clarke
- Department of Biomedical Physiology and KinesiologySimon Fraser University, Burnaby, BC V5A 1S6, Canada
- Centre for Cell Biology, Development and Disease, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| |
Collapse
|
8
|
Wu TT, Chen QL, Lin XX, Xu ML, Chen XX, Luo CJ, Zhuang YN, Wei YQ, Wu JB, Xiong J, Chen LL, Li H. Effects of a multilevel intervention of resistance training with or without beta-hydroxy-beta-methylbutyrate in medical ICU patients during entire hospitalisation: a four-arm multicentre randomised controlled trial. Crit Care 2023; 27:493. [PMID: 38102705 PMCID: PMC10724983 DOI: 10.1186/s13054-023-04698-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 10/20/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND Intensive care unit-acquired weakness (ICU-AW) is a prevalent and severe issue among ICU patients. Resistance training and beta-hydroxy-beta-methylbutyrate (HMB) intervention have demonstrated the potential to enhance muscle function in patients with sarcopenia and in older adults. The purpose of this study was to determine whether resistance training and/or HMB administration would improve physical function, muscle strength, and quality of life in medical ICU patients. METHODS In this multicentre, four-arm, single-blind randomised control trial, a total of 112 adult patients with internal medical diagnoses admitted to the ICU were enrolled. These participants were then randomly assigned to one of four treatment groups: the resistance training group received protocol-based multilevel resistance exercise, the HMB group received 3 g/day of HMBCa, combination group and control groups received standard care, from the ICU to the general ward until discharge. The primary outcomes assessed at discharge included six-minute walking distance (6MWD) and short physical performance battery (SPPB). Secondary outcomes measured included muscle mass, MRC score, grip strength, and health reports quality of life at different time points. Data analysis was performed using a generalised linear mixed model, adhering to the principles of intention-to-treat analysis. RESULTS Resistance training and combination treatment groups exhibited significant increases in SPPB scores (3.848 and 2.832 points, respectively) compared to the control group and substantial improvements in 6WMD (99.768 and 88.577 m, respectively) (all with P < 0.01). However, no significant changes were observed in the HMB group. Muscle strength, as indicated by MRC and grip strength tests conducted at both ICU and hospital discharge, showed statistically significant improvements in the resistance training and combination groups (P < 0.05). Nevertheless, no significant differences were found between the treatment groups and usual care in terms of 60-day mortality, prevalence of ICU-AW, muscle mass, quality of life, or other functional aspects. CONCLUSIONS Resistance training with or without beta-hydroxy-beta-methylbutyrate during the entire hospitalisation intervention improves physical function and muscle strength in medical ICU patients, but muscle mass, quality of life, and 60-day mortality were unaffected. TRIAL REGISTRATION ChiCTR2200057685 was registered on March 15th, 2022.
Collapse
Affiliation(s)
- Ting-Ting Wu
- Shengli Clinical College of Fujian Medical University, Fuzhou, China
- School of Nursing, Fujian Medical University, No.1 Xuefu North Road, Minhou County, Fuzhou, 35001, China
- Department of Nursing, Fujian Provincial Hospital, Fuzhou, China
| | - Qiao-Ling Chen
- School of Nursing, Fujian Medical University, No.1 Xuefu North Road, Minhou County, Fuzhou, 35001, China
- Surgical Intensive Care Unit, Fujian Provincial Hospital, Fuzhou, China
| | - Xiu-Xia Lin
- Cardiac Intensive Care Unit, Fujian Provincial Hospital, Fuzhou, China
| | - Mei-Lian Xu
- Intensive Care Unit, Longyan City First Hospital, Longyan, China
| | - Xue-Xian Chen
- Intensive Care Unit, Ningde Normal University Affiliated Ningde City Hospital, Ningde, China
| | - Chen-Juan Luo
- Intensive Care Unit, Nanning City First Hospital, Nanping, China
| | - Yao-Ning Zhuang
- Respiratory and Intensive Care Unit, Putan College Affiliated Hospital, Putian, China
| | - Yue-Qing Wei
- Respiratory and Intensive Care Unit, Fujian Provincial Hospital, Fuzhou, China
| | - Jing-Bing Wu
- Internal Medicine Intensive Care Unit, Fujian Provincial Hospital, Fuzhou, China
| | - Jing Xiong
- Department of Nursing, Second Affiliated Hospital of Fujian Medical University, Fujian, China
| | - Li-Li Chen
- Shengli Clinical College of Fujian Medical University, Fuzhou, China.
- School of Nursing, Fujian Medical University, No.1 Xuefu North Road, Minhou County, Fuzhou, 35001, China.
- Department of Nursing, Fujian Provincial Hospital, Fuzhou, China.
| | - Hong Li
- School of Nursing, Fujian Medical University, No.1 Xuefu North Road, Minhou County, Fuzhou, 35001, China.
| |
Collapse
|
9
|
Pomp L, Jeneson JAL, van der Pol WL, Bartels B. Electrophysiological and Imaging Biomarkers to Evaluate Exercise Training in Patients with Neuromuscular Disease: A Systematic Review. J Clin Med 2023; 12:6834. [PMID: 37959299 PMCID: PMC10647337 DOI: 10.3390/jcm12216834] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/13/2023] [Accepted: 10/18/2023] [Indexed: 11/15/2023] Open
Abstract
Exercise therapy as part of the clinical management of patients with neuromuscular diseases (NMDs) is complicated by the limited insights into its efficacy. There is an urgent need for sensitive and non-invasive quantitative muscle biomarkers to monitor the effects of exercise training. Therefore, the objective of this systematic review was to critically appraise and summarize the current evidence for the sensitivity of quantitative, non-invasive biomarkers, based on imaging and electrophysiological techniques, for measuring the effects of physical exercise training. We identified a wide variety of biomarkers, including imaging techniques, i.e., magnetic resonance imaging (MRI) and ultrasound, surface electromyography (sEMG), magnetic resonance spectroscopy (MRS), and near-infrared spectroscopy (NIRS). Imaging biomarkers, such as muscle maximum area and muscle thickness, and EMG biomarkers, such as compound muscle action potential (CMAP) amplitude, detected significant changes in muscle morphology and neural adaptations following resistance training. MRS and NIRS biomarkers, such as initial phosphocreatine recovery rate (V), mitochondrial capacity (Qmax), adenosine phosphate recovery half-time (ADP t1/2), and micromolar changes in deoxygenated hemoglobin and myoglobin concentrations (Δ[deoxy(Hb + Mb)]), detected significant adaptations in oxidative metabolism after endurance training. We also identified biomarkers whose clinical relevance has not yet been assessed due to lack of sufficient study.
Collapse
Affiliation(s)
- Lisa Pomp
- Child Development and Exercise Center, Wilhelmina Children’s Hospital, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Jeroen Antonius Lodewijk Jeneson
- Child Development and Exercise Center, Wilhelmina Children’s Hospital, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - W. Ludo van der Pol
- Department of Neurology, Brain Center Rudolf Magnus, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Bart Bartels
- Child Development and Exercise Center, Wilhelmina Children’s Hospital, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| |
Collapse
|
10
|
Shi H, Li F, Zhang F, Wei X, Liu C, Duan R. An electrical stimulation intervention protocol to prevent disuse atrophy and muscle strength decline: an experimental study in rat. J Neuroeng Rehabil 2023; 20:84. [PMID: 37386493 PMCID: PMC10311794 DOI: 10.1186/s12984-023-01208-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 06/19/2023] [Indexed: 07/01/2023] Open
Abstract
BACKGROUND Skeletal muscle is negatively impacted by conditions such as spaceflight or prolonged bed rest, resulting in a dramatic decline in muscle mass, maximum contractile force, and muscular endurance. Electrical stimulation (ES) is an essential tool in neurophysiotherapy and an effective means of preventing skeletal muscle atrophy and dysfunction. Historically, ES treatment protocols have used either low or high frequency electrical stimulation (LFES/HFES). However, our study tests the use of a combination of different frequencies in a single electrical stimulation intervention in order to determine a more effective protocol for improving both skeletal muscle strength and endurance. METHODS An adult male SD rat model of muscle atrophy was established through 4 weeks of tail suspension (TS). To investigate the effects of different frequency combinations, the experimental animals were treated with low (20 Hz) or high (100 Hz) frequency before TS for 6 weeks, and during TS for 4weeks. The maximum contraction force and fatigue resistance of skeletal muscle were then assessed before the animals were sacrificed. The muscle mass, fiber cross-sectional area (CSA), fiber type and related protein expression were examined and analyzed to gain insights into the mechanisms by which the ES intervention protocol used in this study regulates muscle strength and endurance. RESULTS After 4 weeks of unloading, the soleus muscle mass and fiber CSA decreased by 39% and 58% respectively, while the number of glycolytic muscle fibers increased by 21%. The gastrocnemius muscle fibers showed a 51% decrease in CSA, with a 44% decrease in single contractility and a 39% decrease in fatigue resistance. The number of glycolytic muscle fibers in the gastrocnemius also increased by 29%. However, the application of HFES either prior to or during unloading showed an improvement in muscle mass, fiber CSA, and oxidative muscle fibers. In the pre-unloading group, the soleus muscle mass increased by 62%, while the number of oxidative muscle fibers increased by 18%. In the during unloading group, the soleus muscle mass increased by 29% and the number of oxidative muscle fibers increased by 15%. In the gastrocnemius, the pre-unloading group showed a 38% increase in single contractile force and a 19% increase in fatigue resistance, while in the during unloading group, a 21% increase in single contractile force and a 29% increase in fatigue resistance was observed, along with a 37% and 26% increase in the number of oxidative muscle fibers, respectively. The combination of HFES before unloading and LFES during unloading resulted in a significant elevation of the soleus mass by 49% and CSA by 90%, with a 40% increase in the number of oxidative muscle fibers in the gastrocnemius. This combination also resulted in a 66% increase in single contractility and a 38% increase in fatigue resistance. CONCLUSION Our results indicated that using HFES before unloading can reduce the harmful effects of muscle unloading on the soleus and gastrocnemius muscles. Furthermore, we found that combining HFES before unloading with LFES during unloading was more effective in preventing muscle atrophy in the soleus and preserving the contractile function of the gastrocnemius muscle.
Collapse
Affiliation(s)
- Haiwang Shi
- Lab of Regenerative Medicine in Sports Science, School of Physical Education and Sports Science, South China Normal University, Guangzhou, China
| | - Fan Li
- Lab of Regenerative Medicine in Sports Science, School of Physical Education and Sports Science, South China Normal University, Guangzhou, China
| | - Fulong Zhang
- Lab of Regenerative Medicine in Sports Science, School of Physical Education and Sports Science, South China Normal University, Guangzhou, China
| | - Xiaobei Wei
- Lab of Regenerative Medicine in Sports Science, School of Physical Education and Sports Science, South China Normal University, Guangzhou, China
| | - Chengyi Liu
- Lab of Regenerative Medicine in Sports Science, School of Physical Education and Sports Science, South China Normal University, Guangzhou, China
| | - Rui Duan
- Lab of Regenerative Medicine in Sports Science, School of Physical Education and Sports Science, South China Normal University, Guangzhou, China.
| |
Collapse
|
11
|
Orozco-Aguilar J, Tacchi F, Aguirre F, Valero-Breton M, Castro-Sepulveda M, Simon F, Cabello-Verrugio C. Ursodeoxycholic acid induces sarcopenia associated with decreased protein synthesis and autophagic flux. Biol Res 2023; 56:28. [PMID: 37237400 DOI: 10.1186/s40659-023-00431-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 04/13/2023] [Indexed: 05/28/2023] Open
Abstract
BACKGROUND Skeletal muscle generates force and movements and maintains posture. Under pathological conditions, muscle fibers suffer an imbalance in protein synthesis/degradation. This event causes muscle mass loss and decreased strength and muscle function, a syndrome known as sarcopenia. Recently, our laboratory described secondary sarcopenia in a chronic cholestatic liver disease (CCLD) mouse model. Interestingly, the administration of ursodeoxycholic acid (UDCA), a hydrophilic bile acid, is an effective therapy for cholestatic hepatic alterations. However, the effect of UDCA on skeletal muscle mass and functionality has never been evaluated, nor the possible involved mechanisms. METHODS We assessed the ability of UDCA to generate sarcopenia in C57BL6 mice and develop a sarcopenic-like phenotype in C2C12 myotubes and isolated muscle fibers. In mice, we measured muscle strength by a grip strength test, muscle mass by bioimpedance and mass for specific muscles, and physical function by a treadmill test. We also detected the fiber's diameter and content of sarcomeric proteins. In C2C12 myotubes and/or isolated muscle fibers, we determined the diameter and troponin I level to validate the cellular effect. Moreover, to evaluate possible mechanisms, we detected puromycin incorporation, p70S6K, and 4EBP1 to evaluate protein synthesis and ULK1, LC3 I, and II protein levels to determine autophagic flux. The mitophagosome-like structures were detected by transmission electron microscopy. RESULTS UDCA induced sarcopenia in healthy mice, evidenced by decreased strength, muscle mass, and physical function, with a decline in the fiber's diameter and the troponin I protein levels. In the C2C12 myotubes, we observed that UDCA caused a reduction in the diameter and content of MHC, troponin I, puromycin incorporation, and phosphorylated forms of p70S6K and 4EBP1. Further, we detected increased levels of phosphorylated ULK1, the LC3II/LC3I ratio, and the number of mitophagosome-like structures. These data suggest that UDCA induces a sarcopenic-like phenotype with decreased protein synthesis and autophagic flux. CONCLUSIONS Our results indicate that UDCA induces sarcopenia in mice and sarcopenic-like features in C2C12 myotubes and/or isolated muscle fibers concomitantly with decreased protein synthesis and alterations in autophagic flux.
Collapse
Affiliation(s)
- Josué Orozco-Aguilar
- Laboratory of Muscle Pathology, Fragility and Aging, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
- Millennium Institute On Immunology and Immunotherapy, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
- Facultad de Farmacia, Universidad de Costa Rica, San José, Costa Rica
| | - Franco Tacchi
- Laboratory of Muscle Pathology, Fragility and Aging, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
- Millennium Institute On Immunology and Immunotherapy, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
| | - Francisco Aguirre
- Laboratory of Muscle Pathology, Fragility and Aging, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
- Millennium Institute On Immunology and Immunotherapy, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
| | - Mayalen Valero-Breton
- Laboratory of Muscle Pathology, Fragility and Aging, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
- Millennium Institute On Immunology and Immunotherapy, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
| | - Mauricio Castro-Sepulveda
- Exercise Physiology and Metabolism Laboratory, School of Kinesiology, Faculty of Medicine, Finis Terrae University, Santiago, Chile
| | - Felipe Simon
- Millennium Institute On Immunology and Immunotherapy, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile.
- Laboratory of Integrative Physiopathology, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile.
- Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Universidad de Chile, Santiago, Chile.
| | - Claudio Cabello-Verrugio
- Laboratory of Muscle Pathology, Fragility and Aging, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile.
- Millennium Institute On Immunology and Immunotherapy, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile.
| |
Collapse
|
12
|
Gasser B, Niederseer D, Frey WO, Catuogno S, Flück M. ACE-I/D Allele Modulates Improvements of Cardiorespiratory Function and Muscle Performance with Interval-Type Exercise. Genes (Basel) 2023; 14:1100. [PMID: 37239460 PMCID: PMC10218657 DOI: 10.3390/genes14051100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/15/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
Background: The prominent insertion/deletion polymorphism in the gene for the major modulator of tissue perfusion, angiotensin-converting enzyme (ACE-I/D) is associated with variability in adjustments in cardiac and skeletal muscle performance with standard forms of endurance and strength type training. Here, we tested whether the ACE-I/D genotype would be associated with variability in the effects of interval-type training on peak and aerobic performance of peripheral muscle and cardio-vasculature and post-exercise recovery. Methods: Nine healthy subjects (39.0 ± 14.7 years of age; 64.6 ± 16.1 kg, 173.6 ± 9.9) completed eight weeks of interval training on a soft robotic device based on repeated sets of a pedaling exercise at a matched intensity relative to their peak aerobic power output. Prior to and post-training, peak anaerobic and aerobic power output was assessed, mechanical work and metabolic stress (oxygen saturation and hemoglobin concentrations of Musculus vastus lateralis (VAS) and Musculus gastrocnemius (GAS), blood lactate and factors setting cardiac output such as heart rate, systolic and diastolic blood pressure were monitored during ramp-incremental exercise and interval exercise with the calculation of areas under the curve (AUC), which were put in relation to the produced muscle work. Genotyping was performed based on I- and D-allele-specific polymerase chain reactions on genomic DNA from mucosal swaps. The significance of interaction effects between training and ACE I-allele on absolute and work-related values was assessed with repeated measures ANOVA. Results: Subjects delivered 87% more muscle work/power, 106% more cardiac output, and muscles experienced ~72% more of a deficit in oxygen saturation and a ~35% higher passage of total hemoglobin during single interval exercise after the eight weeks of training. Interval training affected aspects of skeletal muscle metabolism and performance, whose variability was associated with the ACE I-allele. This concerned the economically favorable alterations in the work-related AUC for the deficit of SmO2 in the VAS and GAS muscles during the ramp exercise for the I-allele carriers and opposing deteriorations in non-carriers. Conversely, oxygen saturation in the VAS and GAS at rest and during interval exercise was selectively improved after training for the non-carriers of the I-allele when the AUC of tHb per work during interval exercise deteriorated in the carriers. Training also improved aerobic peak power output by 4% in the carriers but not the non-carriers (p = 0.772) of the ACE I-allele while reducing negative peak power (-27.0%) to a lesser extent in the ACE I-allele carriers than the non-carriers. Variability in cardiac parameters (i.e., the AUC of heart rate and glucose during ramp exercise, was similar to the time to recovery of maximal tHb in both muscles after cessation of ramp exercise, only associated with the ACE I-allele but not training per se. Diastolic blood pressure and cardiac output during recovery from exhaustive ramp exercise demonstrated a trend for training-associated differences in association with the ACE I-allele. Discussion: The exercise-type dependent manifestation of antidromic adjustments in leg muscle perfusion and associated local aerobic metabolism between carriers and non-carriers of the ACE I-allele with the interval-training highlight that non-carriers of the I-allele do not present an essential handicap to improve perfusion-related aerobic muscle metabolism but that the manifestation of responsiveness depends on the produced work. Conclusions: The deployed interval-type of exercise produced ACE I-allele-related differences in the alterations of negative anaerobic performance and perfusion-related aerobic muscle metabolism, which manifestation is exercise specific. The training-invariant ACE I-allele-associated differences in heart rate and blood glucose concentration emphasize that the repeated impact of the interval stimulus, despite a near doubling of the initial metabolic load, was insufficient to overturn ACE-related genetic influences on cardiovascular function.
Collapse
Affiliation(s)
- Benedikt Gasser
- Departement für Bewegung und Sport, Universität Basel, CH-4052 Basel, Switzerland
| | - David Niederseer
- Department of Cardiology, University Hospital Zurich, University of Zurich, CH-8008 Zurich, Switzerland;
| | - Walter O. Frey
- Swiss Olympic Medical Center, Balgrist University Hospital, CH-8008 Zurich, Switzerland; (W.O.F.); (S.C.)
| | - Silvio Catuogno
- Swiss Olympic Medical Center, Balgrist University Hospital, CH-8008 Zurich, Switzerland; (W.O.F.); (S.C.)
| | - Martin Flück
- Laboratory for Muscle Plasticity, University of Zurich, Balgrist Campus, CH-8008 Zurich, Switzerland
- Department of Medicine, University of Fribourg, CH-1700 Fribourg, Switzerland
| |
Collapse
|
13
|
Methenitis S, Nomikos T, Mpampoulis T, Kontou E, Kiourelli KM, Evangelidou E, Papadopoulos C, Papadimas G, Terzis G. Different eccentric-based power training volumes improve glycemic, lipidemic profile and body composition of females in a dose-dependent manner: Associations with muscle fibres composition adaptations. Eur J Sport Sci 2023; 23:241-250. [PMID: 35001855 DOI: 10.1080/17461391.2022.2027024] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The present study aimed to investigate the effect of different volumes of fast eccentric-based training on body composition and lipidemic-glycemic profiles in females, as well as to explore the relationship between the change in glycemic-lipidemic profiles and the change in muscle fibre composition. Twenty-nine young females were assigned into three groups and performed 10 weeks (2 training sessions per week) of either 3 (LV), 6 (MV) or 9 (HV) sets/session of four fast velocity eccentric-only half-squats against 70% of concentric 1RM, followed by 3 maximum countermovement jumps (CMJ) after each set. Body composition, vastus lateralis fibre-type composition, and resting blood lipidemic and glycemic indices were evaluated 1 week before and after the training intervention. Significant changes in body composition, fasting glucose, HOMA-IR and blood lipids were found after training with MV and HV (p < 0.05; η2: 0.135-0.390). Significant correlations were found between muscle fibres' percentage cross-sectional areas (%CSA) and resting glycemic-lipid values (r:-0.543to 0.730, p < 0.05). Training-induced changes of glycemic-lipid profiles were highly correlated to those of type IIa and IIx %CSAs (r: -0.895 to 0.898, p < 0.05). Partial Correlations revealed a significant impact of the imposed training volumes on these correlations. These results suggest that six but mostly nine sets per training session of the imposed training stimuli are needed for beneficial changes in resting glycemic-lipidemic profiles, changes which are related to the training-induced changes in muscle fibre composition. However, these relationships are dictated by the imposed training volumes.Highlights Power training induces beneficial changes in body composition, glycemic and lipidemic profiles.Greater training volumes are needed for the healthier changes in glycemic-lipidemic profiles.Higher Type I, IIA and lower IIX percentage cross-sectional areas are linked with healthier body composition and glycemic-lipidemic profiles.Individuals experiencing the greatest increase in Type IIa and decrease in Type IIX muscle fibres cross-sectional areas after power training are those with the greatest beneficial changes in body composition, glycemic and lipidemic profiles.
Collapse
Affiliation(s)
- Spyridon Methenitis
- Sports Performance Laboratory, School of Physical Education & Sports Science, National and Kapodistrian University of Athens, Athens, Greece
| | - Tzortzis Nomikos
- Department of Nutrition and Dietetics, School of Health Sciences & Education, Harokopio University, Athens, Greece
| | - Thomas Mpampoulis
- Sports Performance Laboratory, School of Physical Education & Sports Science, National and Kapodistrian University of Athens, Athens, Greece
| | - Eleni Kontou
- Sports Performance Laboratory, School of Physical Education & Sports Science, National and Kapodistrian University of Athens, Athens, Greece
| | - Kleio-Maria Kiourelli
- Department of Nutrition and Dietetics, School of Health Sciences & Education, Harokopio University, Athens, Greece
| | - Eftychia Evangelidou
- Department of Infection Control, G.N.N. Ionias "Konstantopouleio-Patision" Hospital, Athens, Greece
| | - Constantinos Papadopoulos
- A' Neurology Clinic, Aiginition Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - George Papadimas
- A' Neurology Clinic, Aiginition Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Gerasimos Terzis
- Sports Performance Laboratory, School of Physical Education & Sports Science, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
14
|
Transcriptomic and proteomic time-course analyses based on Metascape reveal mechanisms against muscle atrophy in hibernating Spermophilus dauricus. Comp Biochem Physiol A Mol Integr Physiol 2023; 275:111336. [PMID: 36280225 DOI: 10.1016/j.cbpa.2022.111336] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 10/18/2022] [Accepted: 10/18/2022] [Indexed: 11/19/2022]
Abstract
Hibernating Spermophilus dauricus is resistant to muscle atrophy. Comprehensive transcriptome and proteome time-course analyses based on Metascape can further reveal the underlying processes (pre-hibernation stage, PRE; torpor stage, TOR; interbout arousal stage, IBA; and post-hibernation stage, POST). Transcriptome analysis showed that the cellular responses to growth factor stimulus and discrete oxygen levels continuously changed during hibernation. Proteomic analysis showed that neutrophil degranulation, sulfur compound metabolic process, and generation of precursor metabolites and energy continuously changed during hibernation. Molecular complex detection (MCODE) analysis in both transcriptome and proteome indicated that smooth muscle contraction was involved in the POST versus IBA stage, and peroxisome proliferator-activated receptor delta (Ppard), Myc proto-oncogene (Myc), Sp1 transcription factor (Sp1), and nuclear factor Kappa B subunit 1 (NFκB1) are the common TFs during the hibernation process. Integrated transcriptome and proteome analyses found 18 molecules in the TOR versus PRE stage, 1 molecule in the IBA versus TOR stage, and 16 molecules in the POST versus IBA stage. Among these molecules, carnitine palmitoyltransferase 1A (Cpt1a), SET and MYND domain containing 2 (Smyd2), four and a half LIM domains 1(Fhl1), reactive oxygen species modulator 1 (Romo1), and translocase of the inner mitochondrial membrane 50 (Timm50) were testified by Western blot. In conclusion, novel muscle atrophy resistance mechanisms can be deciphered by time-course transcriptome and proteome analyses based on Metascape.
Collapse
|
15
|
Nyland J, Pyle B, Krupp R, Kittle G, Richards J, Brey J. ACL microtrauma: healing through nutrition, modified sports training, and increased recovery time. J Exp Orthop 2022; 9:121. [PMID: 36515744 PMCID: PMC9751252 DOI: 10.1186/s40634-022-00561-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 12/05/2022] [Indexed: 12/15/2022] Open
Abstract
PURPOSE Sports injuries among youth and adolescent athletes are a growing concern, particularly at the knee. Based on our current understanding of microtrauma and anterior cruciate ligament (ACL) healing characteristics, this clinical commentary describes a comprehensive plan to better manage ACL microtrauma and mitigate the likelihood of progression to a non-contact macrotraumatic ACL rupture. METHODS Medical literature related to non-contact ACL injuries among youth and adolescent athletes, collagen and ACL extracellular matrix metabolism, ACL microtrauma and sudden failure, and concerns related to current sports training were reviewed and synthesized into a comprehensive intervention plan. RESULTS With consideration for biopsychosocial model health factors, proper nutrition and modified sports training with increased recovery time, a comprehensive primary ACL injury prevention plan is described for the purpose of better managing ACL microtrauma, thereby reducing the incidence of non-contact macrotraumatic ACL rupture among youth and adolescent athletes. CONCLUSION Preventing non-contact ACL injuries may require greater consideration for reducing accumulated ACL microtrauma. Proper nutrition including glycine-rich collagen peptides, or gelatin-vitamin C supplementation in combination with healthy sleep, and adjusted sports training periodization with increased recovery time may improve ACL extracellular matrix collagen deposition homeostasis, decreasing sudden non-contact ACL rupture incidence likelihood in youth and adolescent athletes. Successful implementation will require compliance from athletes, parents, coaches, the sports medicine healthcare team, and event organizers. Studies are needed to confirm the efficacy of these concepts. LEVEL OF EVIDENCE V.
Collapse
Affiliation(s)
- J Nyland
- Norton Orthopedic Institute, 9880 Angies Way, Louisville, KY, 40241, USA.
- MSAT Program, Spalding University, 901 South Third St, Louisville, KY, USA.
- Department of Orthopaedic Surgery, University of Louisville, Louisville, KY, USA.
| | - B Pyle
- MSAT Program, Spalding University, 901 South Third St, Louisville, KY, USA
| | - R Krupp
- Norton Orthopedic Institute, 9880 Angies Way, Louisville, KY, 40241, USA
- Department of Orthopaedic Surgery, University of Louisville, Louisville, KY, USA
| | - G Kittle
- MSAT Program, Spalding University, 901 South Third St, Louisville, KY, USA
| | - J Richards
- Department of Orthopaedic Surgery, University of Louisville, Louisville, KY, USA
| | - J Brey
- Norton Orthopedic Institute, 9880 Angies Way, Louisville, KY, 40241, USA
- Department of Orthopaedic Surgery, University of Louisville, Louisville, KY, USA
| |
Collapse
|
16
|
Molecular mechanisms of exercise contributing to tissue regeneration. Signal Transduct Target Ther 2022; 7:383. [PMID: 36446784 PMCID: PMC9709153 DOI: 10.1038/s41392-022-01233-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 10/03/2022] [Accepted: 10/17/2022] [Indexed: 12/03/2022] Open
Abstract
Physical activity has been known as an essential element to promote human health for centuries. Thus, exercise intervention is encouraged to battle against sedentary lifestyle. Recent rapid advances in molecular biotechnology have demonstrated that both endurance and resistance exercise training, two traditional types of exercise, trigger a series of physiological responses, unraveling the mechanisms of exercise regulating on the human body. Therefore, exercise has been expected as a candidate approach of alleviating a wide range of diseases, such as metabolic diseases, neurodegenerative disorders, tumors, and cardiovascular diseases. In particular, the capacity of exercise to promote tissue regeneration has attracted the attention of many researchers in recent decades. Since most adult human organs have a weak regenerative capacity, it is currently a key challenge in regenerative medicine to improve the efficiency of tissue regeneration. As research progresses, exercise-induced tissue regeneration seems to provide a novel approach for fighting against injury or senescence, establishing strong theoretical basis for more and more "exercise mimetics." These drugs are acting as the pharmaceutical alternatives of those individuals who cannot experience the benefits of exercise. Here, we comprehensively provide a description of the benefits of exercise on tissue regeneration in diverse organs, mainly focusing on musculoskeletal system, cardiovascular system, and nervous system. We also discuss the underlying molecular mechanisms associated with the regenerative effects of exercise and emerging therapeutic exercise mimetics for regeneration, as well as the associated opportunities and challenges. We aim to describe an integrated perspective on the current advances of distinct physiological mechanisms associated with exercise-induced tissue regeneration on various organs and facilitate the development of drugs that mimics the benefits of exercise.
Collapse
|
17
|
Blazev R, Carl CS, Ng YK, Molendijk J, Voldstedlund CT, Zhao Y, Xiao D, Kueh AJ, Miotto PM, Haynes VR, Hardee JP, Chung JD, McNamara JW, Qian H, Gregorevic P, Oakhill JS, Herold MJ, Jensen TE, Lisowski L, Lynch GS, Dodd GT, Watt MJ, Yang P, Kiens B, Richter EA, Parker BL. Phosphoproteomics of three exercise modalities identifies canonical signaling and C18ORF25 as an AMPK substrate regulating skeletal muscle function. Cell Metab 2022; 34:1561-1577.e9. [PMID: 35882232 DOI: 10.1016/j.cmet.2022.07.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 05/31/2022] [Accepted: 07/08/2022] [Indexed: 11/03/2022]
Abstract
Exercise induces signaling networks to improve muscle function and confer health benefits. To identify divergent and common signaling networks during and after different exercise modalities, we performed a phosphoproteomic analysis of human skeletal muscle from a cross-over intervention of endurance, sprint, and resistance exercise. This identified 5,486 phosphosites regulated during or after at least one type of exercise modality and only 420 core phosphosites common to all exercise. One of these core phosphosites was S67 on the uncharacterized protein C18ORF25, which we validated as an AMPK substrate. Mice lacking C18ORF25 have reduced skeletal muscle fiber size, exercise capacity, and muscle contractile function, and this was associated with reduced phosphorylation of contractile and Ca2+ handling proteins. Expression of C18ORF25 S66/67D phospho-mimetic reversed the decreased muscle force production. This work defines the divergent and canonical exercise phosphoproteome across different modalities and identifies C18ORF25 as a regulator of exercise signaling and muscle function.
Collapse
Affiliation(s)
- Ronnie Blazev
- Department of Anatomy & Physiology, The University of Melbourne, Parkville, VIC, Australia; Centre for Muscle Research, The University of Melbourne, Parkville, VIC, Australia
| | - Christian S Carl
- August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, The University of Copenhagen, Copenhagen, Denmark
| | - Yaan-Kit Ng
- Department of Anatomy & Physiology, The University of Melbourne, Parkville, VIC, Australia; Centre for Muscle Research, The University of Melbourne, Parkville, VIC, Australia
| | - Jeffrey Molendijk
- Department of Anatomy & Physiology, The University of Melbourne, Parkville, VIC, Australia; Centre for Muscle Research, The University of Melbourne, Parkville, VIC, Australia
| | - Christian T Voldstedlund
- August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, The University of Copenhagen, Copenhagen, Denmark
| | - Yuanyuan Zhao
- Department of Anatomy & Physiology, The University of Melbourne, Parkville, VIC, Australia
| | - Di Xiao
- Children's Medical Research Institute, The University of Sydney, Camperdown, NSW, Australia; School of Mathematics and Statistics, The University of Sydney, Camperdown, NSW, Australia
| | - Andrew J Kueh
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Paula M Miotto
- Department of Anatomy & Physiology, The University of Melbourne, Parkville, VIC, Australia
| | - Vanessa R Haynes
- Department of Anatomy & Physiology, The University of Melbourne, Parkville, VIC, Australia
| | - Justin P Hardee
- Department of Anatomy & Physiology, The University of Melbourne, Parkville, VIC, Australia; Centre for Muscle Research, The University of Melbourne, Parkville, VIC, Australia
| | - Jin D Chung
- Department of Anatomy & Physiology, The University of Melbourne, Parkville, VIC, Australia; Centre for Muscle Research, The University of Melbourne, Parkville, VIC, Australia
| | - James W McNamara
- Department of Anatomy & Physiology, The University of Melbourne, Parkville, VIC, Australia; Centre for Muscle Research, The University of Melbourne, Parkville, VIC, Australia; Murdoch Children's Research Institute and Melbourne Centre for Cardiovascular Genomics and Regenerative Medicine, The Royal Children's Hospital, Parkville, VIC, Australia
| | - Hongwei Qian
- Department of Anatomy & Physiology, The University of Melbourne, Parkville, VIC, Australia; Centre for Muscle Research, The University of Melbourne, Parkville, VIC, Australia
| | - Paul Gregorevic
- Department of Anatomy & Physiology, The University of Melbourne, Parkville, VIC, Australia; Centre for Muscle Research, The University of Melbourne, Parkville, VIC, Australia
| | | | - Marco J Herold
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Thomas E Jensen
- August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, The University of Copenhagen, Copenhagen, Denmark
| | - Leszek Lisowski
- Children's Medical Research Institute, The University of Sydney, Camperdown, NSW, Australia; Military Institute of Medicine, Warsaw, Poland
| | - Gordon S Lynch
- Department of Anatomy & Physiology, The University of Melbourne, Parkville, VIC, Australia; Centre for Muscle Research, The University of Melbourne, Parkville, VIC, Australia
| | - Garron T Dodd
- Department of Anatomy & Physiology, The University of Melbourne, Parkville, VIC, Australia
| | - Matthew J Watt
- Department of Anatomy & Physiology, The University of Melbourne, Parkville, VIC, Australia
| | - Pengyi Yang
- Children's Medical Research Institute, The University of Sydney, Camperdown, NSW, Australia; The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Bente Kiens
- August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, The University of Copenhagen, Copenhagen, Denmark.
| | - Erik A Richter
- August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, The University of Copenhagen, Copenhagen, Denmark.
| | - Benjamin L Parker
- Department of Anatomy & Physiology, The University of Melbourne, Parkville, VIC, Australia; Centre for Muscle Research, The University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
18
|
Lundberg TR, Feuerbacher JF, Sünkeler M, Schumann M. The Effects of Concurrent Aerobic and Strength Training on Muscle Fiber Hypertrophy: A Systematic Review and Meta-Analysis. Sports Med 2022. [DOI: 10.1007/s40279-022-01688-x p] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Abstract
Background
Whole muscle hypertrophy does not appear to be negatively affected by concurrent aerobic and strength training compared to strength training alone. However, there are contradictions in the literature regarding the effects of concurrent training on hypertrophy at the myofiber level.
Objective
The current study aimed to systematically examine the extent to which concurrent aerobic and strength training, compared with strength training alone, influences type I and type II muscle fiber size adaptations. We also conducted subgroup analyses to examine the effects of the type of aerobic training, training modality, exercise order, training frequency, age, and training status.
Design
A systematic literature search was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) [PROSPERO: CRD42020203777]. The registered protocol was modified to include only muscle fiber hypertrophy as an outcome.
Data Sources
PubMed/MEDLINE, ISI Web of Science, Embase, CINAHL, SPORTDiscus, and Scopus were systematically searched on 12 August, 2020, and updated on 15 March, 2021.
Eligibility Criteria
Population: healthy adults of any sex and age; intervention: supervised, concurrent aerobic and strength training of at least 4 weeks; comparison: identical strength training prescription, with no aerobic training; and outcome: muscle fiber hypertrophy.
Results
A total of 15 studies were included. The estimated standardized mean difference based on the random-effects model was − 0.23 (95% confidence interval [CI] − 0.46 to − 0.00, p = 0.050) for overall muscle fiber hypertrophy. The standardized mean differences were − 0.34 (95% CI − 0.72 to 0.04, p = 0.078) and − 0.13 (95% CI − 0.39 to 0.12, p = 0.315) for type I and type II fiber hypertrophy, respectively. A negative effect of concurrent training was observed for type I fibers when aerobic training was performed by running but not cycling (standardized mean difference − 0.81, 95% CI − 1.26 to − 0.36). None of the other subgroup analyses (i.e., based on concurrent training frequency, training status, training modality, and training order of same-session training) revealed any differences between groups.
Conclusions
In contrast to previous findings on whole muscle hypertrophy, the present results suggest that concurrent aerobic and strength training may have a small negative effect on fiber hypertrophy compared with strength training alone. Preliminary evidence suggests that this interference effect may be more pronounced when aerobic training is performed by running compared with cycling, at least for type I fibers.
Collapse
|
19
|
The Effect of Selected Polymorphisms of the ACTN3, ACE, HIF1A and PPARA Genes on the Immediate Supercompensation Training Effect of Elite Slovak Endurance Runners and Football Players. Genes (Basel) 2022; 13:genes13091525. [PMID: 36140693 PMCID: PMC9498790 DOI: 10.3390/genes13091525] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/11/2022] [Accepted: 08/22/2022] [Indexed: 01/26/2023] Open
Abstract
We aimed to evaluate the effect of selected polymorphisms of the ACTN3, ACE, HIF1A and PPARA genes on the immediate supercompensation training effect of elite Slovak endurance runners and football players compared with a sedentary control group. Adaptation effect levels were evaluated by 10 s continuous vertical jump test parameters measured by Optojump. Genetic polymorphisms were determined by PCR and Sanger sequencing. We found significant differences in the effect of PPARA genotypes in the experimental group. C allele genotypes represented an advantage in immediate supercompensation (p < 0.05). We observed a significant combined effect of multiple genes on immediate supercompensation (p < 0.05): the RR genotype of the ACTN3 gene, the ID genotype of the ACE gene, the Pro/Pro genotype of HIF1A, and the GC and GG genotypes of PPARA genes. In the control group, we found a significant effect (p < 0.05) on immediate supercompensation of the II genotype of the ACE gene and the Pro/Ser genotype of the HIF1A gene. We found significant differences in genotype frequency of ACE (p < 0.01) and PPARA (p < 0.001) genes. We confirmed that individual genetic polymorphisms of ACTN3, ACE, HIF1A and PPARA genes have a different effect on the level of immediate supercompensation of the lower limbs depending on the training adaptation of the probands and the combination of genotypes.
Collapse
|
20
|
Touron J, Perrault H, Maisonnave L, Patrac V, Walrand S, Malpuech-Brugère C, Pereira B, Burelle Y, Costes F, Richard R. Effects of exercise-induced metabolic and mechanical loading on skeletal muscle mitochondrial function in male rats. J Appl Physiol (1985) 2022; 133:611-621. [PMID: 35900326 DOI: 10.1152/japplphysiol.00719.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Over the last decades, a growing interest in eccentric (ECC) exercise has emerged, but mitochondrial adaptations to ECC training remain poorly documented. Using an approach for manipulating mechanical and metabolic exercise power, we positioned that for same metabolic power, training using concentric (CON) or ECC contractions would induce similar skeletal muscle mitochondrial adaptations. Sixty adult rats were randomly assigned to a control (CTRL) or three treadmill training groups running at 15m·min-1 for 45min, 5days weekly for 8 weeks at targeted upward or downward slopes. Animals from the CON (+15%) and ECC30 (-30%) groups trained at iso-metabolic power while CON and ECC15 (-15%) exercised at iso-mechanical power. Assessments were made of Vastus Intermedius mitochondrial respiration (oxygraphy), enzymatic activities (spectrophotometry) and real-time qPCR for mRNA transcripts. Maximal rates of mitochondrial respiration was 14-15% higher in CON and ECC30 compared to CTRL and ECC15. Apparent Km for ADP for trained groups was 40-66% higher than CTRL, with statistical significance reached for CON and ECC30. Complex I and citrate synthase activities were 1.6 (ECC15) to 1.8 (ECC30 and CON) times values of CTRL. Complex IV activity was higher than CTRL (p<0.05) only for CON and ECC30. mRNA transcripts analyses showed higher TFAM, SLC25A4, CKMT2 and PPID in the ECC30 compared to CTRL. Findings confirm that training-induced skeletal muscle mitochondrial function adaptations are governed by the extent of metabolic overload irrespective of exercise modality. The distinctive ECC30 mRNA transcript pattern may reflect a cytoskeleton damage-repair or ECC adaptive cycle that differs from that of biogenesis.
Collapse
Affiliation(s)
- Julianne Touron
- UCA- INRAE UMR 1019, Human Nutrition Unit, ASMS team, Clermont-Ferrand, France
| | - Hélène Perrault
- Respiratory Division, McGill University Health Center, Montreal, Canada
| | - Laura Maisonnave
- UCA- INRAE UMR 1019, Human Nutrition Unit, ASMS team, Clermont-Ferrand, France
| | - Véronique Patrac
- UCA- INRAE UMR 1019, Human Nutrition Unit, ASMS team, Clermont-Ferrand, France
| | - Stephane Walrand
- UCA- INRAE UMR 1019, Human Nutrition Unit, ASMS team, Clermont-Ferrand, France
| | | | - Bruno Pereira
- Delegation to Clinical Research and Innovation, University Hospital of Clermont-Ferrand, Clermont-Ferrand, France
| | - Yan Burelle
- Faculty of Health Sciences, University of Ottawa, Ottawa, Canada
| | - Frédéric Costes
- UCA- INRAE UMR 1019, Human Nutrition Unit, ASMS team, Clermont-Ferrand, France.,Department of Sports Medicine and Functional Explorations, University Hospital of Clermont-Ferrand, Clermont-Ferrand, France
| | - Ruddy Richard
- UCA- INRAE UMR 1019, Human Nutrition Unit, ASMS team, Clermont-Ferrand, France.,Delegation to Clinical Research and Innovation, University Hospital of Clermont-Ferrand, Clermont-Ferrand, France.,Department of Sports Medicine and Functional Explorations, University Hospital of Clermont-Ferrand, Clermont-Ferrand, France
| |
Collapse
|
21
|
Mengeste AM, Nikolić N, Dalmao Fernandez A, Feng YZ, Nyman TA, Kersten S, Haugen F, Kase ET, Aas V, Rustan AC, Thoresen GH. Insight Into the Metabolic Adaptations of Electrically Pulse-Stimulated Human Myotubes Using Global Analysis of the Transcriptome and Proteome. Front Physiol 2022; 13:928195. [PMID: 35874526 PMCID: PMC9298736 DOI: 10.3389/fphys.2022.928195] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 06/15/2022] [Indexed: 12/02/2022] Open
Abstract
Electrical pulse stimulation (EPS) has proven to be a useful tool to interrogate cell-specific responses to muscle contraction. In the present study, we aimed to uncover networks of signaling pathways and regulatory molecules responsible for the metabolic effects of exercise in human skeletal muscle cells exposed to chronic EPS. Differentiated myotubes from young male subjects were exposed to EPS protocol 1 (i.e. 2 ms, 10 V, and 0.1 Hz for 24 h), whereas myotubes from middle-aged women and men were exposed to protocol 2 (i.e. 2 ms, 30 V, and 1 Hz for 48 h). Fuel handling as well as the transcriptome, cellular proteome, and secreted proteins of EPS-treated myotubes from young male subjects were analyzed using a combination of high-throughput RNA sequencing, high-resolution liquid chromatography-tandem mass spectrometry, oxidation assay, and immunoblotting. The data showed that oxidative metabolism was enhanced in EPS-exposed myotubes from young male subjects. Moreover, a total of 81 differentially regulated proteins and 952 differentially expressed genes (DEGs) were observed in these cells after EPS protocol 1. We also found 61 overlapping genes while comparing the DEGs to mRNA expression in myotubes from the middle-aged group exposed to protocol 2, assessed by microarray. Gene ontology (GO) analysis indicated that significantly regulated proteins and genes were enriched in biological processes related to glycolytic pathways, positive regulation of fatty acid oxidation, and oxidative phosphorylation, as well as muscle contraction, autophagy/mitophagy, and oxidative stress. Additionally, proteomic identification of secreted proteins revealed extracellular levels of 137 proteins were changed in myotubes from young male subjects exposed to EPS protocol 1. Selected putative myokines were measured using ELISA or multiplex assay to validate the results. Collectively, our data provides new insight into the transcriptome, proteome and secreted proteins alterations following in vitro exercise and is a valuable resource for understanding the molecular mechanisms and regulatory molecules mediating the beneficial metabolic effects of exercise.
Collapse
Affiliation(s)
- Abel M Mengeste
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Nataša Nikolić
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Andrea Dalmao Fernandez
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Yuan Z Feng
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Tuula A Nyman
- Department of Immunology, Institute of Clinical Medicine, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Sander Kersten
- Division of Human Nutrition and Health, Wageningen University, Wageningen, Netherlands
| | - Fred Haugen
- Department of Work Psychology and Physiology, STAMI-The National Institute of Occupational Health, Oslo, Norway
| | - Eili Tranheim Kase
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Vigdis Aas
- Department of Life Sciences and Health, Faculty of Health Sciences, OsloMet-Oslo Metropolitan University, Oslo, Norway
| | - Arild C Rustan
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway
| | - G Hege Thoresen
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway.,Department of Pharmacology, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
22
|
Charlot A, Morel L, Bringolf A, Georg I, Charles AL, Goupilleau F, Geny B, Zoll J. Octanoic Acid-Enrichment Diet Improves Endurance Capacity and Reprograms Mitochondrial Biogenesis in Skeletal Muscle of Mice. Nutrients 2022; 14:nu14132721. [PMID: 35807901 PMCID: PMC9268503 DOI: 10.3390/nu14132721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/20/2022] [Accepted: 06/27/2022] [Indexed: 12/04/2022] Open
Abstract
Background: Medium Chain Fatty Acids (MCFAs) are a dietary supplement that exhibit interesting properties, due to their smaller molecular size. The acute consumption of MCFAs is expected to enhance exercise performance. However, the short-term effects of MCFAs on endurance performance remains poorly understood. The aim of our study is to evaluate the octanoic acid (C8)-rich diet effect on endurance capacity, and to explore their molecular and cellular effects. Methods: C57BL/6J mice were fed with a chow diet (Control group) or an octanoic acid-rich diet (C8 diet) for 6 weeks. Spontaneous activity, submaximal and maximal exercise tests were carried out to characterize the exercise capacities of the mice. Beta-oxidation and mitochondrial biogenesis pathways were explored in skeletal muscle by RT-qPCR, Western Blot (Quadriceps) and histochemical staining (Gastrocnemius). Results: Mice fed with a C8-rich diet presented a higher spontaneous activity (p < 0.05) and endurance capacities (p < 0.05) than the control, but no effect on maximal effort was observed. They also presented changes in the skeletal muscle metabolic phenotype, with a higher number of the oxidative fibers, rich in mitochondria. At the molecular level, the C8-diet induced an AMPK activation (p < 0.05), associated with a significant increase in PGC1a and CS gene expression and protein levels. Conclusion: Our study provided evidence that C8-enrichment as a food supplementation improves endurance capacities and activates mitochondrial biogenesis pathways leading to higher skeletal muscle oxidative capacities.
Collapse
Affiliation(s)
- Anouk Charlot
- Centre de Recherche de Biomédecine de Strasbourg, UR 3072 Mitochondrie, Stress Oxydant et Protection Musculaire, Université de Strasbourg, 67000 Strasbourg, France; (A.B.); (I.G.); (A.-L.C.); (F.G.); (B.G.)
- Correspondence: (A.C.); (J.Z.)
| | - Lucas Morel
- Department of Infection and Immunity, Luxembourg Institute of Health, 4354 Esch-sur-Alzette, Luxembourg;
- Faculty of Science, Technology and Medicine, University of Luxembourg, 6, Rue-Kalergi, 1359 Luxembourg, Luxembourg
| | - Anthony Bringolf
- Centre de Recherche de Biomédecine de Strasbourg, UR 3072 Mitochondrie, Stress Oxydant et Protection Musculaire, Université de Strasbourg, 67000 Strasbourg, France; (A.B.); (I.G.); (A.-L.C.); (F.G.); (B.G.)
| | - Isabelle Georg
- Centre de Recherche de Biomédecine de Strasbourg, UR 3072 Mitochondrie, Stress Oxydant et Protection Musculaire, Université de Strasbourg, 67000 Strasbourg, France; (A.B.); (I.G.); (A.-L.C.); (F.G.); (B.G.)
| | - Anne-Laure Charles
- Centre de Recherche de Biomédecine de Strasbourg, UR 3072 Mitochondrie, Stress Oxydant et Protection Musculaire, Université de Strasbourg, 67000 Strasbourg, France; (A.B.); (I.G.); (A.-L.C.); (F.G.); (B.G.)
| | - Fabienne Goupilleau
- Centre de Recherche de Biomédecine de Strasbourg, UR 3072 Mitochondrie, Stress Oxydant et Protection Musculaire, Université de Strasbourg, 67000 Strasbourg, France; (A.B.); (I.G.); (A.-L.C.); (F.G.); (B.G.)
| | - Bernard Geny
- Centre de Recherche de Biomédecine de Strasbourg, UR 3072 Mitochondrie, Stress Oxydant et Protection Musculaire, Université de Strasbourg, 67000 Strasbourg, France; (A.B.); (I.G.); (A.-L.C.); (F.G.); (B.G.)
- Service de Physiologie et d’Explorations Fonctionnelles Respiratoires, Hôpitaux Universitaires de Strasbourg, 67000 Strasbourg, France
| | - Joffrey Zoll
- Centre de Recherche de Biomédecine de Strasbourg, UR 3072 Mitochondrie, Stress Oxydant et Protection Musculaire, Université de Strasbourg, 67000 Strasbourg, France; (A.B.); (I.G.); (A.-L.C.); (F.G.); (B.G.)
- Service de Physiologie et d’Explorations Fonctionnelles Respiratoires, Hôpitaux Universitaires de Strasbourg, 67000 Strasbourg, France
- Correspondence: (A.C.); (J.Z.)
| |
Collapse
|
23
|
Norrbom JM, Ydfors M, Lovric A, Perry CGR, Rundqvist H, Rullman E. A HIF-1 signature dominates the attenuation in the human skeletal muscle transcriptional response to high-intensity interval training. J Appl Physiol (1985) 2022; 132:1448-1459. [PMID: 35482326 DOI: 10.1152/japplphysiol.00310.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
High-intensity interval training (HIIT) generates profound metabolic adaptations in skeletal muscle. These responses mirror performance improvements but follow a non-linear pattern comprised of an initial fast phase followed by a gradual plateau effect. The complete time-dependent molecular sequelae that regulates this plateau effect remains unknown. We hypothesize that the plateau effect during HIIT is restricted to specific pathways with communal upstream transcriptional regulation. To investigate this, eleven healthy men performed nine sessions of HIIT (10x4 minutes of cycling at 91 % of HRmax) over a 3-week period. Before and 3h after the 1st and 9th exercise bout, skeletal muscle biopsies were obtained, and RNA sequencing performed. Almost 2,000 genes across 84 pathways were differentially expressed in response to a single HIIT session. The overall transcriptional response to acute exercise was strikingly similar at 3 weeks, 83 % (n=1650) of the genes regulated after the 1st bout of exercise were similarly regulated by the 9th bout, albeit with a smaller effect size, and the response attenuated to on average 70 % of the 1st bout. The attenuation differed substantially between pathways and was very pronounced for glycolysis and cellular adhesion but more preserved for MAPK and VEGF-A signalling. The attenuation was driven by a combination of changes in steady-state expression and specific transcriptional regulation. Given that the exercise intensity was progressively increased, and that the attenuation was pathway specific, we suggest that moderation of muscular adaptation after a period of training stems from targeted regulation rather than a diminished exercise stimulus.
Collapse
Affiliation(s)
| | - Mia Ydfors
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Alen Lovric
- Department of Laboratory Medicine, Clinical Physiology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Christopher G R Perry
- School of Kinesiology and Health Science and the Muscle Health Research Centre, York University, Toronto, Ontario, Canada
| | - Helene Rundqvist
- Department of Laboratory Medicine, Clinical Physiology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Eric Rullman
- Department of Laboratory Medicine, Clinical Physiology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
24
|
Lundberg TR, Feuerbacher JF, Sünkeler M, Schumann M. The Effects of Concurrent Aerobic and Strength Training on Muscle Fiber Hypertrophy: A Systematic Review and Meta-Analysis. Sports Med 2022; 52:2391-2403. [PMID: 35476184 PMCID: PMC9474354 DOI: 10.1007/s40279-022-01688-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2022] [Indexed: 11/17/2022]
Abstract
Background Whole muscle hypertrophy does not appear to be negatively affected by concurrent aerobic and strength training compared to strength training alone. However, there are contradictions in the literature regarding the effects of concurrent training on hypertrophy at the myofiber level. Objective The current study aimed to systematically examine the extent to which concurrent aerobic and strength training, compared with strength training alone, influences type I and type II muscle fiber size adaptations. We also conducted subgroup analyses to examine the effects of the type of aerobic training, training modality, exercise order, training frequency, age, and training status. Design A systematic literature search was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) [PROSPERO: CRD42020203777]. The registered protocol was modified to include only muscle fiber hypertrophy as an outcome. Data Sources PubMed/MEDLINE, ISI Web of Science, Embase, CINAHL, SPORTDiscus, and Scopus were systematically searched on 12 August, 2020, and updated on 15 March, 2021. Eligibility Criteria Population: healthy adults of any sex and age; intervention: supervised, concurrent aerobic and strength training of at least 4 weeks; comparison: identical strength training prescription, with no aerobic training; and outcome: muscle fiber hypertrophy. Results A total of 15 studies were included. The estimated standardized mean difference based on the random-effects model was − 0.23 (95% confidence interval [CI] − 0.46 to − 0.00, p = 0.050) for overall muscle fiber hypertrophy. The standardized mean differences were − 0.34 (95% CI − 0.72 to 0.04, p = 0.078) and − 0.13 (95% CI − 0.39 to 0.12, p = 0.315) for type I and type II fiber hypertrophy, respectively. A negative effect of concurrent training was observed for type I fibers when aerobic training was performed by running but not cycling (standardized mean difference − 0.81, 95% CI − 1.26 to − 0.36). None of the other subgroup analyses (i.e., based on concurrent training frequency, training status, training modality, and training order of same-session training) revealed any differences between groups. Conclusions In contrast to previous findings on whole muscle hypertrophy, the present results suggest that concurrent aerobic and strength training may have a small negative effect on fiber hypertrophy compared with strength training alone. Preliminary evidence suggests that this interference effect may be more pronounced when aerobic training is performed by running compared with cycling, at least for type I fibers. Supplementary Information The online version contains supplementary material available at 10.1007/s40279-022-01688-x.
Collapse
Affiliation(s)
- Tommy R Lundberg
- Division of Clinical Physiology, Department of Laboratory Medicine, Karolinska Institute, Stockholm, Sweden.,Unit of Clinical Physiology, Karolinska University Hospital, Stockholm, Sweden
| | - Joshua F Feuerbacher
- Institute of Cardiovascular Research and Sports Medicine, Department of Molecular and Cellular Sports Medicine, German Sport University, Am Sportpark Müngersdorf 6, 50933, Cologne, Germany
| | - Marvin Sünkeler
- Institute of Cardiovascular Research and Sports Medicine, Department of Molecular and Cellular Sports Medicine, German Sport University, Am Sportpark Müngersdorf 6, 50933, Cologne, Germany
| | - Moritz Schumann
- Institute of Cardiovascular Research and Sports Medicine, Department of Molecular and Cellular Sports Medicine, German Sport University, Am Sportpark Müngersdorf 6, 50933, Cologne, Germany.
| |
Collapse
|
25
|
Zhang Y, Wang L, Kang H, Lin CY, Fan Y. Applying exercise-mimetic engineered skeletal muscle model to interrogate the adaptive response of irisin to mechanical force. iScience 2022; 25:104135. [PMID: 35434556 PMCID: PMC9010619 DOI: 10.1016/j.isci.2022.104135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 02/28/2022] [Accepted: 03/17/2022] [Indexed: 11/30/2022] Open
Abstract
Physical exercise induces the secretion of irisin from contractile muscle into circulation; however, the adaptive response of irisin to mechanical stimulus in skeletal muscle in vitro remains numerously unknown. In an effort to investigate whether irisin is inducible in vitro, we developed a bioreactor consisting of a retractable mechanical force controller and a conditional tissue culture system. Upon this model, a distinguished surge of irisin was detected in stretched myotubes as cyclic strain initiated, and the surge was able to be stalled by knocking out FNDC5. Intriguingly, increased irisin secretory is associated with the shifts of MyHC isoforms from anaerobic type to aerobic type in myotubes. We further revealed that PGC-1α1 and PGC-1α4 mRNAs expression, rather than PGC-1α2 and PGC-1α3, contributed to the generation of irisin in myotubes during cyclic strain. Lastly, combined with co-culturing MC3T3 osteoblasts, we demonstrated the bioactivity of generated irisin, promoting the osteogenic differentiation. Irisin is producible in an exercise-mimetic engineered skeletal muscle model Enhanced irisin production in response to a long-term cyclic stretch PGC-1α1 and PGC-1α4 mRNAs expression contributed to the generation of irisin Demonstration that induced irisin in our model regulating osteoblasts as native ways
Collapse
Affiliation(s)
- Yuwei Zhang
- Key laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Centre for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Lizhen Wang
- Key laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Centre for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Hongyan Kang
- Key laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Centre for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Chia-Ying Lin
- Key laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Centre for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China.,Department of Biomedical, Chemical & Environmental Engineering, University of Cincinnati, Cincinnati, USA.,Department of Orthopaedic Surgery, University of Cincinnati, Cincinnati, USA.,Department of Neurosurgery, University of Cincinnati, Cincinnati, USA
| | - Yubo Fan
- Key laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Centre for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China.,School of Engineering Medicine, Beihang University, Beijing 100083, China
| |
Collapse
|
26
|
Wahl P, Bloch W, Proschinger S. The Molecular Signature of High-intensity Training in the Human Body. Int J Sports Med 2022; 43:195-205. [PMID: 34265857 PMCID: PMC8885329 DOI: 10.1055/a-1551-9294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 07/13/2021] [Indexed: 11/11/2022]
Abstract
High-intensity training is becoming increasingly popular outside of elite sport for health prevention and rehabilitation. This expanded application of high-intensity training in different populations requires a deeper understanding of its molecular signature in the human body. Therefore, in this integrative review, cellular and systemic molecular responses to high-intensity training are described for skeletal muscle, cardiovascular system, and the immune system as major effectors and targets of health and performance. Different kinds of stimuli and resulting homeostatic perturbations (i. e., metabolic, mechanical, neuronal, and hormonal) are reflected, taking into account their role in the local and systemic deflection of molecular sensors and mediators, and their role in tissue and organ adaptations. In skeletal muscle, a high metabolic perturbation induced by high-intensity training is the major stimulus for skeletal muscle adaptation. In the cardio-vascular system, high-intensity training induces haemodynamic stress and deflection of the Ca 2+ handling as major stimuli for functional and structural adaptation of the heart and vessels. For the immune system haemodynamic stress, hormones, exosomes, and O2 availability are proposed stimuli that mediate their effects by alteration of different signalling processes leading to local and systemic (anti)inflammatory responses. Overall, high-intensity training shows specific molecular signatures that demonstrate its high potential to improve health and physical performance.
Collapse
Affiliation(s)
- Patrick Wahl
- Institute of Cardiovascular Research and Sport Medicine, German Sport
University Cologne, Cologne, Germany
- The German Research Center of Elite Sport Cologne, German Sport
University Cologne, Koln, Germany
- MSH Medical School Hamburg, Institute of Interdisciplinary Exercise
Science and Sports Medicine, Hamburg, Germany
| | - Wilhelm Bloch
- The German Research Center of Elite Sport Cologne, German Sport
University Cologne, Koln, Germany
- Molecular and Cellular Sport Medicine, German Sport university,
Cologne, Germany
| | - Sebastian Proschinger
- Department for Molecular and Cellular Sports Medicine, Institute for
Cardiovascular Research and Sports Medicine, German Sport University Cologne,
Cologne, Germany
| |
Collapse
|
27
|
Regulation of Energy Substrate Metabolism in Endurance Exercise. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18094963. [PMID: 34066984 PMCID: PMC8124511 DOI: 10.3390/ijerph18094963] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/24/2021] [Accepted: 04/26/2021] [Indexed: 12/25/2022]
Abstract
The human body requires energy to function. Adenosine triphosphate (ATP) is the cellular currency for energy-requiring processes including mechanical work (i.e., exercise). ATP used by the cells is ultimately derived from the catabolism of energy substrate molecules—carbohydrates, fat, and protein. In prolonged moderate to high-intensity exercise, there is a delicate interplay between carbohydrate and fat metabolism, and this bioenergetic process is tightly regulated by numerous physiological, nutritional, and environmental factors such as exercise intensity and duration, body mass and feeding state. Carbohydrate metabolism is of critical importance during prolonged endurance-type exercise, reflecting the physiological need to regulate glucose homeostasis, assuring optimal glycogen storage, proper muscle fuelling, and delaying the onset of fatigue. Fat metabolism represents a sustainable source of energy to meet energy demands and preserve the ‘limited’ carbohydrate stores. Coordinated neural, hormonal and circulatory events occur during prolonged endurance-type exercise, facilitating the delivery of fatty acids from adipose tissue to the working muscle for oxidation. However, with increasing exercise intensity, fat oxidation declines and is unable to supply ATP at the rate of the exercise demand. Protein is considered a subsidiary source of energy supporting carbohydrates and fat metabolism, contributing to approximately 10% of total ATP turnover during prolonged endurance-type exercise. In this review we present an overview of substrate metabolism during prolonged endurance-type exercise and the regulatory mechanisms involved in ATP turnover to meet the energetic demands of exercise.
Collapse
|
28
|
de Meeûs d’Argenteuil C, Boshuizen B, Oosterlinck M, van de Winkel D, De Spiegelaere W, de Bruijn CM, Goethals K, Vanderperren K, Delesalle CJG. Flexibility of equine bioenergetics and muscle plasticity in response to different types of training: An integrative approach, questioning existing paradigms. PLoS One 2021; 16:e0249922. [PMID: 33848308 PMCID: PMC8043414 DOI: 10.1371/journal.pone.0249922] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 03/26/2021] [Indexed: 12/16/2022] Open
Abstract
Equine bioenergetics have predominantly been studied focusing on glycogen and fatty acids. Combining omics with conventional techniques allows for an integrative approach to broadly explore and identify important biomolecules. Friesian horses were aquatrained (n = 5) or dry treadmill trained (n = 7) (8 weeks) and monitored for: evolution of muscle diameter in response to aquatraining and dry treadmill training, fiber type composition and fiber cross-sectional area of the M. pectoralis, M. vastus lateralis and M. semitendinosus and untargeted metabolomics of the M. pectoralis and M. vastus lateralis in response to dry treadmill training. Aquatraining was superior to dry treadmill training to increase muscle diameter in the hindquarters, with maximum effect after 4 weeks. After dry treadmill training, the M. pectoralis showed increased muscle diameter, more type I fibers, decreased fiber mean cross sectional area, and an upregulated oxidative metabolic profile: increased β-oxidation (key metabolites: decreased long chain fatty acids and increased long chain acylcarnitines), TCA activity (intermediates including succinyl-carnitine and 2-methylcitrate), amino acid metabolism (glutamine, aromatic amino acids, serine, urea cycle metabolites such as proline, arginine and ornithine) and xenobiotic metabolism (especially p-cresol glucuronide). The M. vastus lateralis expanded its fast twitch profile, with decreased muscle diameter, type I fibers and an upregulation of glycolytic and pentose phosphate pathway activity, and increased branched-chain and aromatic amino acid metabolism (cis-urocanate, carnosine, homocarnosine, tyrosine, tryptophan, p-cresol-glucuronide, serine, methionine, cysteine, proline and ornithine). Trained Friesians showed increased collagen and elastin turn-over. Results show that branched-chain amino acids, aromatic amino acids and microbiome-derived xenobiotics need further study in horses. They feed the TCA cycle at steps further downstream from acetyl CoA and most likely, they are oxidized in type IIA fibers, the predominant fiber type of the horse. These study results underline the importance of reviewing existing paradigms on equine bioenergetics.
Collapse
Affiliation(s)
- Constance de Meeûs d’Argenteuil
- Department of Virology, Parasitology and Immunology, Research Group of Comparative Physiology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Berit Boshuizen
- Department of Virology, Parasitology and Immunology, Research Group of Comparative Physiology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
- Wolvega Equine Hospital, Oldeholtpade, The Netherlands
| | - Maarten Oosterlinck
- Department of Surgery and Anaesthesiology of Domestic Animals, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | | | - Ward De Spiegelaere
- Department of Morphology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | | | - Klara Goethals
- Department of Nutrition, Genetics and Ethology, Research Group Biometrics, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Katrien Vanderperren
- Department of Veterinary Medical Imaging and Small Animal Orthopaedics, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Cathérine John Ghislaine Delesalle
- Department of Virology, Parasitology and Immunology, Research Group of Comparative Physiology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|
29
|
Devrim-Lanpir A, Hill L, Knechtle B. Efficacy of Popular Diets Applied by Endurance Athletes on Sports Performance: Beneficial or Detrimental? A Narrative Review. Nutrients 2021; 13:nu13020491. [PMID: 33540813 PMCID: PMC7912997 DOI: 10.3390/nu13020491] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/28/2021] [Accepted: 01/29/2021] [Indexed: 12/12/2022] Open
Abstract
Endurance athletes need a regular and well-detailed nutrition program in order to fill their energy stores before training/racing, to provide nutritional support that will allow them to endure the harsh conditions during training/race, and to provide effective recovery after training/racing. Since exercise-related gastrointestinal symptoms can significantly affect performance, they also need to develop strategies to address these issues. All these factors force endurance athletes to constantly seek a better nutritional strategy. Therefore, several new dietary approaches have gained interest among endurance athletes in recent decades. This review provides a current perspective to five popular diet approaches: (a) vegetarian diets, (b) high-fat diets, (c) intermittent fasting diets, (d) gluten-free diet, and (e) low fermentable oligosaccharides, disaccharides, monosaccharides and polyols (FODMAP) diets. We reviewed scientific studies published from 1983 to January 2021 investigating the impact of these popular diets on the endurance performance and health aspects of endurance athletes. We also discuss all the beneficial and harmful aspects of these diets, and offer key suggestions for endurance athletes to consider when following these diets.
Collapse
Affiliation(s)
- Aslı Devrim-Lanpir
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Istanbul Medeniyet University, 34862 Istanbul, Turkey;
| | - Lee Hill
- Division of Gastroenterology & Nutrition, Department of Pediatrics, McMaster University, Hamilton, ON L8N 3Z5, Canada;
| | - Beat Knechtle
- Medbase St. Gallen, am Vadianplatz, 9001 St. Gallen, Switzerland
- Institute of Primary Care, University of Zurich, 8091 Zurich, Switzerland
- Correspondence: ; Tel.: +41-(0)-71-226-93-00
| |
Collapse
|
30
|
Matthey-Doret R, Draghi JA, Whitlock MC. Plasticity via feedback reduces the cost of developmental instability. Evol Lett 2020; 4:570-580. [PMID: 33312691 PMCID: PMC7719546 DOI: 10.1002/evl3.202] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 09/10/2020] [Accepted: 10/10/2020] [Indexed: 12/11/2022] Open
Abstract
Costs of plasticity are thought to have important physiological and evolutionary consequences. A commonly predicted cost to plasticity is that plastic genotypes are likely to suffer from developmental instability. Adaptive plasticity requires that the developing organism can in some way sense what environment it is in or how well it is performing in that environment. These two information pathways—an “environmental signal” or a “performance signal” that indicates how well a developing phenotype matches the optimum in the current environment—can differ in their consequences for the organism and its evolution. Here, we consider how developmental instability might emerge as a side‐effect of these two distinct mechanisms. Because a performance cue allows a regulatory feedback loop connecting a trait to a feedback signal, we hypothesized that plastic genotypes using a performance signal would be more developmentally robust compared to those using a purely environmental signal. Using a numerical model of a network of gene interactions, we show that plasticity comes at a cost of developmental instability when the plastic response is mediated via an environmental signal, but not when it is mediated via a performance signal. We also show that a performance signal mechanism can evolve even in a constant environment, leading to genotypes preadapted for plasticity to novel environments even in populations without a history of environmental heterogeneity.
Collapse
Affiliation(s)
- Remi Matthey-Doret
- Institute of Ecology and Evolution Universität Bern Bern 3012 Switzerland.,Department of Zoology and Biodiversity Research Centre University of British Columbia Vancouver BC V6T 1Z4 Canada.,Department of Biological Sciences Virginia Tech Blacksburg Virginia 24061
| | - Jeremy A Draghi
- Department of Zoology and Biodiversity Research Centre University of British Columbia Vancouver BC V6T 1Z4 Canada.,Department of Biological Sciences Virginia Tech Blacksburg Virginia 24061
| | - Michael C Whitlock
- Department of Zoology and Biodiversity Research Centre University of British Columbia Vancouver BC V6T 1Z4 Canada
| |
Collapse
|
31
|
McGee SL, Hargreaves M. Exercise adaptations: molecular mechanisms and potential targets for therapeutic benefit. Nat Rev Endocrinol 2020; 16:495-505. [PMID: 32632275 DOI: 10.1038/s41574-020-0377-1] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/29/2020] [Indexed: 12/19/2022]
Abstract
Exercise is fundamental for good health, whereas physical inactivity underpins many chronic diseases of modern society. It is well appreciated that regular exercise improves metabolism and the metabolic phenotype in a number of tissues. The phenotypic alterations observed in skeletal muscle are partly mediated by transcriptional responses that occur following each individual bout of exercise. This adaptive response increases oxidative capacity and influences the function of myokines and extracellular vesicles that signal to other tissues. Our understanding of the epigenetic and transcriptional mechanisms that mediate the skeletal muscle gene expression response to exercise as well as of their upstream signalling pathways has advanced substantially in the past 10 years. With this knowledge also comes the opportunity to design new therapeutic strategies based on the biology of exercise for a variety of chronic conditions where regular exercise might be a challenge. This Review provides an overview of the beneficial adaptive responses to exercise and details the molecular mechanisms involved. The possibility of designing therapeutic interventions based on these molecular mechanisms is addressed, using relevant examples that have exploited this approach.
Collapse
Affiliation(s)
- Sean L McGee
- Metabolic Research Unit, School of Medicine and Institute for Mental and Physical Health and Clinical Translation (iMPACT), Deakin University, Geelong, Victoria, Australia.
| | - Mark Hargreaves
- Department of Physiology, The University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
32
|
Association of Reallocating Time in Different Intensities of Physical Activity with Weight Status Changes among Normal-Weight Chinese Children: A National Prospective Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17165761. [PMID: 32784949 PMCID: PMC7459607 DOI: 10.3390/ijerph17165761] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 07/29/2020] [Accepted: 07/30/2020] [Indexed: 12/24/2022]
Abstract
Background: Time spent in different intensity-specific physical activities is codependent, but the substitution effect of different activities on weight status changes in children remains unclear. This study aims to investigate the prospective association between reallocating time in different intensities of physical activity and weight status changes among Chinese children. Methods: A national sample of 15,100 normal-weight children aged 7–18 years (46.7% boys) were recruited in September 2013 and followed up for nine months. Vigorous-intensity physical activity (VPA), moderate-intensity physical activity (MPA), walking, and sedentary time were obtained by International Physical Activity Questionnaire Short Form (IPAQ-SF). Height and weight were objectively measured, by which body mass index (BMI) and BMI z-score were calculated. Weight status was classified by the Chinese criteria for 7- to 18-year-old children. Isotemporal substitution analyses (including single-factor model, partition model, and isotemporal substitution model) were applied to examine the association of time allocation with weight status changes. Results: Each 30 min/day of increase in VPA was favorably associated with a 13.2% reduced risk of incident overweight/obesity in a single-factor model and a 15.6% reduced risk in a partition model. Negative associations were found between VPA, MPA, walking and the risk of being underweight in the single-factor model, but not in the partition model. In substitution models, replacing 30 min/day sedentary time with an equal amount of VPA was favorably associated with a 16.1% reduction of the risk of being overweight/obese. Conclusion: These findings highlight the need for promoting vigorous-intensity physical activity in children.
Collapse
|
33
|
Margaritelis NV, Paschalis V, Theodorou AA, Kyparos A, Nikolaidis MG. Redox basis of exercise physiology. Redox Biol 2020; 35:101499. [PMID: 32192916 PMCID: PMC7284946 DOI: 10.1016/j.redox.2020.101499] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/20/2020] [Accepted: 03/05/2020] [Indexed: 12/15/2022] Open
Abstract
Redox reactions control fundamental processes of human biology. Therefore, it is safe to assume that the responses and adaptations to exercise are, at least in part, mediated by redox reactions. In this review, we are trying to show that redox reactions are the basis of exercise physiology by outlining the redox signaling pathways that regulate four characteristic acute exercise-induced responses (muscle contractile function, glucose uptake, blood flow and bioenergetics) and four chronic exercise-induced adaptations (mitochondrial biogenesis, muscle hypertrophy, angiogenesis and redox homeostasis). Based on our analysis, we argue that redox regulation should be acknowledged as central to exercise physiology.
Collapse
Affiliation(s)
- N V Margaritelis
- Department of Physical Education and Sport Science at Serres, Aristotle University of Thessaloniki, Thessaloniki, Greece; Dialysis Unit, 424 General Military Hospital of Thessaloniki, Thessaloniki, Greece.
| | - V Paschalis
- School of Physical Education and Sport Science, National and Kapodistrian University of Athens, Athens, Greece
| | - A A Theodorou
- Department of Life Sciences, School of Sciences, European University Cyprus, Nicosia, Cyprus
| | - A Kyparos
- Department of Physical Education and Sport Science at Serres, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - M G Nikolaidis
- Department of Physical Education and Sport Science at Serres, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| |
Collapse
|
34
|
Knuiman P, Hangelbroek R, Boekschoten M, Hopman M, Mensink M. Impact of protein supplementation during endurance training on changes in skeletal muscle transcriptome. BMC Genomics 2020; 21:397. [PMID: 32517654 PMCID: PMC7285456 DOI: 10.1186/s12864-020-6686-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 03/18/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Protein supplementation improves physiological adaptations to endurance training, but the impact on adaptive changes in the skeletal muscle transcriptome remains elusive. The present analysis was executed to determine the impact of protein supplementation on changes in the skeletal muscle transcriptome following 5-weeks of endurance training. RESULTS Skeletal muscle tissue samples from the vastus lateralis were taken before and after 5-weeks of endurance training to assess changes in the skeletal muscle transcriptome. One hundred and 63 genes were differentially expressed after 5-weeks of endurance training in both groups (q-value< 0.05). In addition, the number of genes differentially expressed was higher in the protein group (PRO) (892, q-value< 0.05) when compared with the control group (CON) (440, q-value< 0.05), with no time-by-treatment interaction effect (q-value> 0.05). Endurance training primarily affected expression levels of genes related to extracellular matrix and these changes tended to be greater in PRO than in CON. CONCLUSIONS Protein supplementation subtly impacts endurance training-induced changes in the skeletal muscle transcriptome. In addition, our transcriptomic analysis revealed that the extracellular matrix may be an important factor for skeletal muscle adaptation in response to endurance training. This trial was registered at clinicaltrials.gov as NCT03462381, March 12, 2018. TRIAL REGISTRATION This trial was registered at clinicaltrials.gov as NCT03462381.
Collapse
Affiliation(s)
- Pim Knuiman
- Division of Human Nutrition, Wageningen University & Research, Stippeneng 4, 6708, WE, Wageningen, The Netherlands. .,School of Biomedical Sciences, University of Leeds, Clarendon Way, Leeds, LS2 9JT, UK.
| | - Roland Hangelbroek
- Division of Human Nutrition, Wageningen University & Research, Stippeneng 4, 6708, WE, Wageningen, The Netherlands.,Advanced Analytics, Viqtor Davis B.V., Parijsboulevard 143 A, 3541, CS, Utrecht, The Netherlands
| | - Mark Boekschoten
- Division of Human Nutrition, Wageningen University & Research, Stippeneng 4, 6708, WE, Wageningen, The Netherlands
| | - Maria Hopman
- Division of Human Nutrition, Wageningen University & Research, Stippeneng 4, 6708, WE, Wageningen, The Netherlands.,Department of Physiology, Radboud University Medical Centre, Geert Grooteplein-West 32, 6525, GA, Nijmegen, The Netherlands
| | - Marco Mensink
- Division of Human Nutrition, Wageningen University & Research, Stippeneng 4, 6708, WE, Wageningen, The Netherlands
| |
Collapse
|
35
|
Nitzsche N, Lenz JC, Voronoi P, Schulz H. Adaption of Maximal Glycolysis Rate after Resistance Exercise with Different Volume Load. Sports Med Int Open 2020; 4:E39-E44. [PMID: 32377562 PMCID: PMC7198261 DOI: 10.1055/a-1146-4236] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 03/24/2020] [Accepted: 03/25/2020] [Indexed: 11/20/2022] Open
Abstract
The aim of this study was to investigate the effect of six-weeks of
resistance training with different volume load on the maximum glycolysis
rate. 24 male strength-trained volunteers were assigned in a high volume low
load (50% of their 1RM with 5 sets and reps up to muscle failure)
and a low volume high load (70% of their 1RM with 5 sets of ten
reps) resistance exercise group. The resistance training performed 3 days
per week over 6 weeks. The maximum glycolysis rate was determined using
isokinetic force testing before and after the intervention. There was a
significant increase in glycolysis rate over the training period across all
subjects (p=0.032). High volume low load exercise increased
significantly from 0.271±0.067
mmol·l
−1
·s
−1
to
0.298±0.067
mmol·l
−1
·s
−1
(p=0.022) and low volume high load exercise showed no significant
changes from 0.249±0.122
mmol·l
−1
·s
−1
to
0.291±0.089
mmol·l
−1
·s
−1
(p=0.233). No significant effect on glycolysis rate was observed
between the training groups (p=0.650). Resistance training increases
glycolysis rate regardless of volume load.
Collapse
Affiliation(s)
- Nico Nitzsche
- Institute of Human Movement Science and Health, Technische Universitat Chemnitz, Chemnitz, Germany
| | - Julian Christian Lenz
- Institute of Human Movement Science and Health, Technische Universitat Chemnitz, Chemnitz, Germany
| | - Pjotr Voronoi
- Institute of Human Movement Science and Health, Technische Universitat Chemnitz, Chemnitz, Germany
| | - Henry Schulz
- Institute of Human Movement Science and Health, Technische Universitat Chemnitz, Chemnitz, Germany
| |
Collapse
|
36
|
Torre-Villalvazo I, Alemán-Escondrillas G, Valle-Ríos R, Noriega LG. Protein intake and amino acid supplementation regulate exercise recovery and performance through the modulation of mTOR, AMPK, FGF21, and immunity. Nutr Res 2019; 72:1-17. [DOI: 10.1016/j.nutres.2019.06.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 05/16/2019] [Accepted: 06/26/2019] [Indexed: 12/12/2022]
|
37
|
The Effect of Carbohydrate Ingestion Following Eccentric Resistance Exercise on AKT/mTOR and ERK Pathways: A Randomized, Double-Blinded, Crossover Study. Int J Sport Nutr Exerc Metab 2019; 29:664-670. [DOI: 10.1123/ijsnem.2019-0075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 05/09/2019] [Accepted: 06/09/2019] [Indexed: 11/18/2022]
Abstract
Purpose: To determine the acute effects of carbohydrate (CHO) ingestion following a bout of maximal eccentric resistance exercise on key anabolic kinases of mammalian target of rapamycin and extracellular signal-regulated kinase (ERK) pathways. The authors’ hypothesis was that the activation of anabolic signaling pathways known to be upregulated by resistance exercise would be further stimulated by the physiological hyperinsulinemia resulting from CHO supplementation. Methods: Ten resistance-trained men were randomized in a crossover, double-blind, placebo (PLA)-controlled manner to ingest either a noncaloric PLA or 3 g/kg of CHO beverage throughout recovery from resistance exercise. Muscle biopsies were collected at rest, immediately after a single bout of intense lower body resistance exercise, and after 3 hr of recovery. Results: CHO ingestion elevated plasma glucose and insulin concentrations throughout recovery compared with PLA ingestion. The ERK pathway (phosphorylation of ERK1/2 [Thr202/Tyr204], RSK [Ser380], and p70S6K [Thr421/Ser424]) was markedly activated immediately after resistance exercise, without any effect of CHO supplementation. The phosphorylation state of AKT (Thr308) was unchanged postexercise in the PLA trial and increased at 3 hr of recovery above resting with ingestion of CHO compared with PLA. Despite stimulating-marked phosphorylation of AKT, CHO ingestion did not enhance resistance exercise–induced phosphorylation of p70S6K (Thr389) and rpS6 (Ser235/236 and Ser240/244). Conclusion: CHO supplementation after resistance exercise and hyperinsulinemia does not influence the ERK pathway nor the mTORC1 target p70S6K and its downstream proteins, despite the increased AKT phosphorylation.
Collapse
|
38
|
Acute sprint exercise transcriptome in human skeletal muscle. PLoS One 2019; 14:e0223024. [PMID: 31647849 PMCID: PMC6812755 DOI: 10.1371/journal.pone.0223024] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 09/11/2019] [Indexed: 12/25/2022] Open
Abstract
Aim To examine global gene expression response to profound metabolic and hormonal stress induced by acute sprint exercise. Methods Healthy men and women (n = 14) performed three all-out cycle sprints interspersed by 20 min recovery. Muscle biopsies were obtained before the first, and 2h and 20 min after last sprint. Microarray analysis was performed to analyse acute gene expression response and repeated blood samples were obtained. Results In skeletal muscle, a set of immediate early genes, FOS, NR4A3, MAFF, EGR1, JUNB were markedly upregulated after sprint exercise. Gene ontology analysis from 879 differentially expressed genes revealed predicted activation of various upstream regulators and downstream biofunctions. Gene signatures predicted an enhanced turnover of skeletal muscle mass after sprint exercise and some novel induced genes such as WNT9A, FZD7 and KLHL40 were presented. A substantial increase in circulating free fatty acids (FFA) was noted after sprint exercise, in parallel with upregulation of PGC-1A and the downstream gene PERM1 and gene signatures predicting enhanced lipid turnover. Increase in growth hormone and insulin in blood were related to changes in gene expressions and both hormones were predicted as upstream regulators. Conclusion This is the first study reporting global gene expression in skeletal muscle in response to acute sprint exercise and several novel findings are presented. First, in line with that muscle hypertrophy is not a typical finding after a period of sprint training, both hypertrophy and atrophy factors were regulated. Second, systemic FFA and hormonal and exposure might be involved in the sprint exercise-induced changes in gene expression.
Collapse
|
39
|
Abstract
Ketogenic diet (KD) is a nutritional regimen characterized by a high-fat and an adequate protein content and a very low carbohydrate level (less than 20 g per day or 5% of total daily energy intake). The insufficient level of carbohydrates forces the body to primarily use fat instead of sugar as a fuel source. Due to its characteristic, KD has often been used to treat metabolic disorders, obesity, cardiovascular disease, and type 2 diabetes. Skeletal muscle constitutes 40% of total body mass and is one of the major sites of glucose disposal. KD is a well-defined approach to induce weight loss, with its role in muscle adaptation and muscle hypertrophy less understood. Considering this lack of knowledge, the aim of this review was to examine the scientific evidence about the effects of KD on muscle hypertrophy. We first described the mechanisms of muscle hypertrophy per se, and secondly, we discussed the characteristics and the metabolic function of KD. Ultimately, we provided the potential mechanism that could explain the influence of KD on skeletal muscle hypertrophy.
Collapse
|
40
|
de Souza Cordeiro LM, Mario ÉG, Moreira CCL, Rodrigues AH, Wanner SP, Soares DD, Botion LM, Ferreira AVM. Aerobic training induces differential expression of genes involved in lipid metabolism in skeletal muscle and white adipose tissues. J Cell Biochem 2019; 120:18883-18893. [PMID: 31219211 DOI: 10.1002/jcb.29208] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 05/22/2019] [Accepted: 05/28/2019] [Indexed: 12/25/2022]
Abstract
Aerobic training induces adaptive responses in skeletal muscles and white adipose tissues, thus facilitating lipid utilization as energy substrates during a physical exercise session. However, the effects of training on cytokines levels and on transcription factors involved in lipid metabolism in muscle and different white adipose depots are still unclear; therefore, these were the aims of the present study. Nineteen adult male Wistar rats were randomly assigned to a trained group or a control, non-trained group. The 10-week training protocol consisted of running on a treadmill, during 1 hour per day, 5 days per week, at 75% of maximum aerobic speed. As expected, trained rats improved their aerobic performance and had augmented citrate synthase activity in the soleus, while the control rats did not. Although body weight was not different between groups, the adiposity index and white adipose depots (ie, epididymal and retroperitoneal) were reduced in trained rats. Training reduced serum concentration of insulin, but failed to change serum concentrations of glucose, triacylglycerol, total cholesterol, and nonesterified fatty acids. Training increased sterol regulatory element-binding protein-1c expression in the gastrocnemius and epididymal adipose tissue, and reduced peroxisome proliferator-activated receptor γ (PPARγ) expression in most of the tissues analyzed. The expression of PPARα and carnitine palmitoyltransferase 1 increased in the gastrocnemius and mesenteric adipose tissue but reduced in epididymal adipose tissue. Triacylglycerol content and tribbles 3 expression reduced in the gastrocnemius of trained rats. Tumor necrosis factor-α and interleukin-6 were increased in all adipose depots evaluated. Collectively, our data indicate that the 10-week aerobic training changed gene expression to improve muscle oxidative metabolism and facilitate lipid degradation in adipose tissues. Our data also highlight the existence of adaptive responses that are distinct between the skeletal muscle and white adipose tissue and between different adipose depots.
Collapse
Affiliation(s)
- Letícia Maria de Souza Cordeiro
- Laboratory of Immunometabolism, Department of Nutrition, Nursing School, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.,Laboratory of Cellular Metabolism, Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Érica Guilhen Mario
- Laboratory of Cellular Metabolism, Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Carolina Campos Lima Moreira
- Laboratory of Cellular Metabolism, Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Angélica Heringer Rodrigues
- Laboratory of Cellular Metabolism, Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Samuel Penna Wanner
- Exercise Physiology Laboratory, Department of Physical Education, School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Danusa Dias Soares
- Exercise Physiology Laboratory, Department of Physical Education, School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Leida Maria Botion
- Laboratory of Cellular Metabolism, Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Adaliene Versiani Matos Ferreira
- Laboratory of Immunometabolism, Department of Nutrition, Nursing School, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
41
|
Flück M, Viecelli C, Bapst AM, Kasper S, Valdivieso P, Franchi MV, Ruoss S, Lüthi JM, Bühler M, Claassen H, Hoppeler H, Gerber C. Knee Extensors Muscle Plasticity Over a 5-Years Rehabilitation Process After Open Knee Surgery. Front Physiol 2018; 9:1343. [PMID: 30337877 PMCID: PMC6178139 DOI: 10.3389/fphys.2018.01343] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 09/06/2018] [Indexed: 01/26/2023] Open
Abstract
We investigated molecular and cellular parameters which set metabolic and mechanical functioning of knee extensor muscles in the operated and contralateral control leg of 9 patients with a chronically insufficient anterior cruciate ligament (ACL; 26.6 ± 8.3 years, 8 males, 1 female) after open reconstructive surgery (week 0), after ambulant physiotherapy under cast immobilization (week 9), succeeding rehabilitation training (up to week 26), and subsequent voluntary physical activity (week 260). Clinical indices of knee function in the operated leg were improved at 52 weeks and remained at a comparable level at week 260. CSA of the quadriceps (-18%), MCSA of muscle fibers (-24%), and capillary-to-fiber ratio (-24%) in m. vastus lateralis from the ACL insufficient leg were lower at week 0 than reference values in the contralateral leg at week 260. Slow type fiber percentage (-35%) and mitochondrial volume density (-39%) were reduced in m. vastus lateralis from the operated leg at weeks 9 and 26. Composition alterations in the operated leg exceeded those in the contralateral leg and, with the exception of the volume density of subsarcolemmal mitochondria, returned to the reference levels at week 260. Leg-specific deterioration of metabolic characteristics in the vasti from the operated leg was reflected by the down-regulation of mitochondrial respiration complex I-III markers (-41-57%) at week 9. After rehabilitation training at week 26, the specific Y397 phosphorylation of focal adhesion kinase (FAK), which is a proxy for mechano-regulation, was elevated by 71% in the operated leg but not in the contralateral leg, which had performed strengthening type exercise during ambulant physiotherapy. Total FAK protein and Y397 phosphorylation levels were lowered in both legs at week 26 resulting in positive correlations with mitochondrial volume densities and mitochondrial protein levels. The findings emphasize that a loss of mechanical and metabolic characteristics in knee extensor muscle remains detectable years after untreated ACL rupture, which may be aggravated in the post-operative phase by the deterioration of slow-oxidative characteristics after reconstruction due to insufficient load-bearing muscle activity. The reestablishment of muscle composition subsequent to years of voluntary physical activity reinforces that slow-to-fast fiber transformation is reversible in humans.
Collapse
Affiliation(s)
- Martin Flück
- Department of Orthopedics, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Claudio Viecelli
- Department of Orthopedics, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Andreas M Bapst
- Department of Orthopedics, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Stephanie Kasper
- Department of Orthopedics, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Paola Valdivieso
- Department of Orthopedics, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Martino V Franchi
- Department of Orthopedics, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Severin Ruoss
- Department of Orthopedics, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Jean-Marc Lüthi
- Department of Orthopedic Surgery, Inselspital Bern, Bern, Switzerland
| | - Martin Bühler
- Department of Orthopedic Surgery, Inselspital Bern, Bern, Switzerland
| | | | - Hans Hoppeler
- Department of Anatomy, University of Bern, Bern, Switzerland
| | - Christian Gerber
- Department of Orthopedics, Balgrist University Hospital, University of Zurich, Zurich, Switzerland.,Department of Orthopedic Surgery, Inselspital Bern, Bern, Switzerland
| |
Collapse
|
42
|
Rittweger J, Albracht K, Flück M, Ruoss S, Brocca L, Longa E, Moriggi M, Seynnes O, Di Giulio I, Tenori L, Vignoli A, Capri M, Gelfi C, Luchinat C, Francheschi C, Bottinelli R, Cerretelli P, Narici M. Sarcolab pilot study into skeletal muscle's adaptation to long-term spaceflight. NPJ Microgravity 2018; 4:18. [PMID: 30246141 PMCID: PMC6141586 DOI: 10.1038/s41526-018-0052-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 07/04/2018] [Accepted: 07/10/2018] [Indexed: 12/31/2022] Open
Abstract
Spaceflight causes muscle wasting. The Sarcolab pilot study investigated two astronauts with regards to plantar flexor muscle size, architecture, and function, and to the underlying molecular adaptations in order to further the understanding of muscular responses to spaceflight and exercise countermeasures. Two crew members (A and B) spent 6 months in space. Crew member A trained less vigorously than B. Postflight, A showed substantial decrements in plantar flexor volume, muscle architecture, in strength and in fiber contractility, which was strongly mitigated in B. The difference between these crew members closely reflected FAK-Y397 abundance, a molecular marker of muscle's loading history. Moreover, crew member A showed downregulation of contractile proteins and enzymes of anaerobic metabolism, as well as of systemic markers of energy and protein metabolism. However, both crew members exhibited decrements in muscular aerobic metabolism and phosphate high energy transfer. We conclude that countermeasures can be effective, particularly when resistive forces are of sufficient magnitude. However, to fully prevent space-related muscular deterioration, intersubject variability must be understood, and intensive exercise countermeasures programs seem mandatory. Finally, proteomic and metabolomic analyses suggest that exercise benefits in space may go beyond mere maintenance of muscle mass, but rather extend to the level of organismic metabolism.
Collapse
Affiliation(s)
- Jörn Rittweger
- 1Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany.,2Department of Pediatrics and Adolescent Medicine, University of Cologne, Cologne, Germany
| | - Kirsten Albracht
- 3Faculty of Medical Engineering and Technomathematics, FH Aachen University of Applied Science Aachen, Aachen, Germany.,4Institute of Biomechanics and Orthopaedics, German Sport University, Cologne, Germany
| | - Martin Flück
- 5Department of Orthopaedics, University of Zürich, Zürich, Switzerland
| | - Severin Ruoss
- 5Department of Orthopaedics, University of Zürich, Zürich, Switzerland
| | - Lorenza Brocca
- 6Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Emanuela Longa
- 6Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | | | - Olivier Seynnes
- 8Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| | - Irene Di Giulio
- 9Centre for Human and Applied Physiological Sciences, King's College London, London, UK
| | - Leonardo Tenori
- 10Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Alessia Vignoli
- CERM Centro di Ricerca di Risonanze Magnetiche, Florence, Italy
| | - Miriam Capri
- 12Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Cecilia Gelfi
- 13Department of Biomedical Sciences for Health, University of Milan, Milano, Italy
| | | | - Claudio Francheschi
- 12Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Roberto Bottinelli
- 6Department of Molecular Medicine, University of Pavia, Pavia, Italy.,14Fondazione Salvatore Maugeri (IRCSS), Scientific Institute of Pavia, Pavia, Italy
| | | | - Marco Narici
- 15Department of Biomedical Sciences, University of Padova, Padova, Italy
| |
Collapse
|
43
|
Pol R, Hristovski R, Medina D, Balague N. From microscopic to macroscopic sports injuries. Applying the complex dynamic systems approach to sports medicine: a narrative review. Br J Sports Med 2018; 53:1214-1220. [PMID: 29674346 DOI: 10.1136/bjsports-2016-097395] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2018] [Indexed: 11/04/2022]
Abstract
A better understanding of how sports injuries occur in order to improve their prevention is needed for medical, economic, scientific and sports success reasons. This narrative review aims to explain the mechanisms that underlie the occurrence of sports injuries, and an innovative approach for their prevention on the basis of complex dynamic systems approach. First, we explain the multilevel organisation of living systems and how function of the musculoskeletal system may be impaired. Second, we use both, a constraints approach and a connectivity hypothesis to explain why and how the susceptibility to sports injuries may suddenly increase. Constraints acting at multiple levels and timescales replace the static and linear concept of risk factors, and the connectivity hypothesis brings an understanding of how the accumulation of microinjuries creates a macroscopic non-linear effect, that is, how a common motor action may trigger a severe injury. Finally, a recap of practical examples and challenges for the future illustrates how the complex dynamic systems standpoint, changing the way of thinking about sports injuries, offers innovative ideas for improving sports injury prevention.
Collapse
Affiliation(s)
- Rafel Pol
- Futbol Club Barcelona. Complex Systems in Sport Research Group, INEFC, Universitat de Lleida (UdL), Barcelona, Spain
| | - Robert Hristovski
- Complex Systems in Sport Research Group, Faculty of Physical Education, Sport and Health, Saints Cyril and Methodius University, Skopje, Macedonia (the former Yugoslav Republic of Macedonia)
| | - Daniel Medina
- Futbol Club Barcelona. Complex Systems in Sport Research Group, Barcelona, Spain
| | - Natalia Balague
- Complex Systems in Sport Research Group, INEFC, Universitat de Barcelona (UB), Barcelona, Spain
| |
Collapse
|
44
|
Wilson GM, Blanco R, Coon JJ, Hornberger TA. Identifying Novel Signaling Pathways: An Exercise Scientists Guide to Phosphoproteomics. Exerc Sport Sci Rev 2018; 46:76-85. [PMID: 29346157 PMCID: PMC6261359 DOI: 10.1249/jes.0000000000000146] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We propose that phosphoproteomic-based studies will radically advance our knowledge about exercise-regulated signaling events. However, these studies use cutting-edge technologies that can be difficult for nonspecialists to understand. Hence, this review is intended to help nonspecialists 1) understand the fundamental technologies behind phosphoproteomic analysis and 2) use various bioinformatic tools that can be used to interrogate phosphoproteomic datasets.
Collapse
Affiliation(s)
- Gary M. Wilson
- Department of Chemistry, University of Wisconsin–Madison
| | - Rocky Blanco
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin–Madison
| | - Joshua J. Coon
- Department of Chemistry, University of Wisconsin–Madison
- Genome Center of Wisconsin, University of Wisconsin–Madison
- Morgridge Institute for Research
- Department of Biomolecular Chemistry, University of Wisconsin–Madison, Madison, WI
| | - Troy A. Hornberger
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin–Madison
| |
Collapse
|
45
|
Safdar A, Tarnopolsky MA. Exosomes as Mediators of the Systemic Adaptations to Endurance Exercise. Cold Spring Harb Perspect Med 2018; 8:a029827. [PMID: 28490541 PMCID: PMC5830902 DOI: 10.1101/cshperspect.a029827] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Habitual endurance exercise training is associated with multisystemic metabolic adaptations that lower the risk of inactivity-associated disorders such as obesity and type 2 diabetes mellitus (T2DM). Identification of complex systemic signaling networks responsible for these benefits are of great interest because of their therapeutic potential in metabolic diseases; however, specific signals that modulate the multisystemic benefits of exercise in multiple tissues and organs are only recently being discovered. Accumulated evidence suggests that muscle and other tissues have an endocrine function and release peptides and nucleic acids into the circulation in response to acute endurance exercise to mediate the multisystemic adaptations. Factors released from skeletal muscle have been termed myokines and we propose that the total of all factors released in response to endurance exercise (including peptides, nucleic acids, and metabolites) be termed, "exerkines." We propose that many of the exerkines are released within extracellular vesicles called exosomes, which regulate peripheral organ cross talk. Exosomes (30-140 nm) and larger microvesicles [MVs] (100-1000 nm) are subcategories of extracellular vesicles that are released into the circulation. Exosomes contain peptides and several nucleic acids (microRNA [miRNA], messenger RNA [mRNA], mitochondrial DNA [mtDNA]) and are involved in intercellular/tissue exchange of their contents. An acute bout of endurance exercise increases circulating exosomes that are hypothesized to mediate organ cross talk to promote systemic adaptation to endurance exercise. Further support for the role of exosomes (and possibly MVs) in mediating the systemic benefits of exercise comes from the fact that the majority of the previously reported myokines/exerkines are found in extracellular vesicles databases (Vesiclepedia and ExoCarta). We propose that exosomes isolated from athletes following exercise or exosomes bioengineered to incorporate one or many of known exerkines will be therapeutically useful in the treatment of obesity, T2DM, and other aging-associated metabolic disorders.
Collapse
Affiliation(s)
- Adeel Safdar
- Department of Pediatrics, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - Mark A Tarnopolsky
- Department of Pediatrics, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
- Department of Pediatrics & Medicine, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| |
Collapse
|
46
|
Baum O, Sollberger C, Raaflaub A, Odriozola A, Spohr G, Frese S, Tschanz SA. Increased capillary tortuosity and pericapillary basement membrane thinning in skeletal muscle of mice undergoing running wheel training. ACTA ACUST UNITED AC 2018; 221:jeb.171819. [PMID: 29246972 DOI: 10.1242/jeb.171819] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Accepted: 12/09/2017] [Indexed: 01/09/2023]
Abstract
To work out which microvascular remodeling processes occur in murine skeletal muscle during endurance exercise, we subjected C57BL/6 mice to voluntary running wheel training for 1 week (1 wk-t) or 6 weeks (6 wks-t). By means of morphometry, the capillarity as well as the compartmental and sub-compartmental structure of the capillaries were quantitatively described at the light microscopy level and at the electron microscopy level, respectively, in the plantaris (PLNT) muscle of the exercising mice in comparison to untrained littermates. In the early phase of the training (1 wk-t), angiogenesis [32% higher capillary/fiber (C/F) ratio; P<0.05] in PLNT muscle was accompanied by a tendency for capillary lumen enlargement (30%; P=0.06) and a reduction of the pericapillary basement membrane thickness [(CBMT) 12.7%; P=0.09] as well as a 21% shortening of intraluminal protrusion length (P<0.05), all compared with controls. After long-term training (6 wks-t), when the mice reached a steady state in running activity, additional angiogenesis (C/F ratio: 76%; P<0.05) and a 16.3% increase in capillary tortuosity (P<0.05) were established, accompanied by reversal of the lumen expansion (23%; P>0.05), further reduction of the CBMT (16.5%; P<0.05) and additional shortening of the intraluminal protrusion length (23%; P<0.05), all compared with controls. Other structural indicators, such as capillary profile sizes, profile area densities, perimeters of the capillary compartments and concentrations of endothelium-pericyte peg-socket junctions, were not significantly different between the mouse groups. Besides angiogenesis, increase of capillary tortuosity and reduction of CBMT represent the most striking microvascular remodeling processes in skeletal muscle of mice that undergo running wheel training.
Collapse
Affiliation(s)
- Oliver Baum
- Institute of Physiology, Charité-Universitätsmedizin Berlin, D-10117 Berlin, Germany
| | | | - Andrea Raaflaub
- Institute of Anatomy, University of Bern, CH-3012 Bern, Switzerland
| | - Adolfo Odriozola
- Institute of Anatomy, University of Bern, CH-3012 Bern, Switzerland
| | - Gunnar Spohr
- Institute of Physiology, Charité-Universitätsmedizin Berlin, D-10117 Berlin, Germany
| | - Sebastian Frese
- Institute of Physiology, Charité-Universitätsmedizin Berlin, D-10117 Berlin, Germany
| | - Stefan A Tschanz
- Institute of Anatomy, University of Bern, CH-3012 Bern, Switzerland
| |
Collapse
|
47
|
Anton SD, Moehl K, Donahoo WT, Marosi K, Lee S, Mainous AG, Leeuwenburgh C, Mattson MP. Flipping the Metabolic Switch: Understanding and Applying the Health Benefits of Fasting. Obesity (Silver Spring) 2018; 26:254-268. [PMID: 29086496 PMCID: PMC5783752 DOI: 10.1002/oby.22065] [Citation(s) in RCA: 379] [Impact Index Per Article: 63.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 09/14/2017] [Accepted: 09/26/2017] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Intermittent fasting (IF) is a term used to describe a variety of eating patterns in which no or few calories are consumed for time periods that can range from 12 hours to several days, on a recurring basis. This review is focused on the physiological responses of major organ systems, including the musculoskeletal system, to the onset of the metabolic switch: the point of negative energy balance at which liver glycogen stores are depleted and fatty acids are mobilized (typically beyond 12 hours after cessation of food intake). RESULTS AND CONCLUSIONS Emerging findings suggest that the metabolic switch from glucose to fatty acid-derived ketones represents an evolutionarily conserved trigger point that shifts metabolism from lipid/cholesterol synthesis and fat storage to mobilization of fat through fatty acid oxidation and fatty acid-derived ketones, which serve to preserve muscle mass and function. Thus, IF regimens that induce the metabolic switch have the potential to improve body composition in overweight individuals. Moreover, IF regimens also induce the coordinated activation of signaling pathways that optimize physiological function, enhance performance, and slow aging and disease processes. Future randomized controlled IF trials should use biomarkers of the metabolic switch (e.g., plasma ketone levels) as a measure of compliance and of the magnitude of negative energy balance during the fasting period.
Collapse
Affiliation(s)
- Stephen D. Anton
- Department of Aging and Geriatric Research, Institute on Aging, Department of Clinical and Health Psychology, University of Florida, Gainesville, FL 32610
| | - Keelin Moehl
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, MD 21224
| | - William T. Donahoo
- Division of Endocrinology, Diabetes and Metabolism, University of Florida College of Medicine, Gainesville, FL 32610
| | - Krisztina Marosi
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, MD 21224
| | - Stephanie Lee
- Department of Aging and Geriatric Research, Institute on Aging, Department of Clinical and Health Psychology, University of Florida, Gainesville, FL 32610
| | - Arch G. Mainous
- Department of Health Services Research, Management and Policy; Department of Community Health and Family Medicine, University of Florida, Gainesville, FL 32610
| | - Christiaan Leeuwenburgh
- Department of Aging and Geriatric Research, Institute on Aging, Department of Clinical and Health Psychology, University of Florida, Gainesville, FL 32610
| | - Mark P. Mattson
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, MD 21224
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| |
Collapse
|
48
|
Margaritelis NV, Theodorou AA, Paschalis V, Veskoukis AS, Dipla K, Zafeiridis A, Panayiotou G, Vrabas IS, Kyparos A, Nikolaidis MG. Adaptations to endurance training depend on exercise-induced oxidative stress: exploiting redox interindividual variability. Acta Physiol (Oxf) 2018; 222. [PMID: 28544643 DOI: 10.1111/apha.12898] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 03/29/2017] [Accepted: 05/17/2017] [Indexed: 12/17/2022]
Abstract
AIM The aim of this study was to reveal the role of reactive oxygen and nitrogen species (RONS) in exercise adaptations under physiological in vivo conditions and without the interference from other exogenous redox agents (e.g. a pro-oxidant or antioxidant). METHODS We invented a novel methodological set-up that exploited the large redox interindividual variability in exercise responses. More specifically, we used exercise-induced oxidative stress as the 'classifier' measure (i.e. low, moderate and high) and investigated the physiological and redox adaptations after a 6-week endurance training protocol. RESULTS We demonstrated that the group with the low exercise-induced oxidative stress exhibited the lowest improvements in a battery of classic adaptations to endurance training (VO2 max, time trial and Wingate test) as well as in a set of redox biomarkers (oxidative stress biomarkers and antioxidants), compared to the high and moderate oxidative stress groups. CONCLUSION The findings of this study substantiate, for the first time in a human in vivo physiological context, and in the absence of any exogenous redox manipulation, the vital role of RONS produced during exercise in adaptations. The stratification approach, based on a redox phenotype, implemented in this study could be a useful experimental strategy to reveal the role of RONS and antioxidants in other biological manifestations as well.
Collapse
Affiliation(s)
- N. V. Margaritelis
- Department of Physical Education and Sports Science at Serres; Aristotle University of Thessaloniki; Serres Greece
- Intensive Care Unit; 424 General Military Hospital of Thessaloniki; Thessaloniki Greece
| | - A. A. Theodorou
- Department of Health Sciences; School of Sciences; European University Cyprus; Nicosia Cyprus
| | - V. Paschalis
- School of Physical Education and Sport Science; National and Kapodistrian University of Athens; Athens Greece
| | - A. S. Veskoukis
- Department of Physical Education and Sports Science at Serres; Aristotle University of Thessaloniki; Serres Greece
| | - K. Dipla
- Department of Physical Education and Sports Science at Serres; Aristotle University of Thessaloniki; Serres Greece
| | - A. Zafeiridis
- Department of Physical Education and Sports Science at Serres; Aristotle University of Thessaloniki; Serres Greece
| | - G. Panayiotou
- Department of Health Sciences; School of Sciences; European University Cyprus; Nicosia Cyprus
| | - I. S. Vrabas
- Department of Physical Education and Sports Science at Serres; Aristotle University of Thessaloniki; Serres Greece
| | - A. Kyparos
- Department of Physical Education and Sports Science at Serres; Aristotle University of Thessaloniki; Serres Greece
| | - M. G. Nikolaidis
- Department of Physical Education and Sports Science at Serres; Aristotle University of Thessaloniki; Serres Greece
| |
Collapse
|
49
|
García-Hermoso A, Saavedra JM, Ramírez-Vélez R, Ekelund U, Del Pozo-Cruz B. Reallocating sedentary time to moderate-to-vigorous physical activity but not to light-intensity physical activity is effective to reduce adiposity among youths: a systematic review and meta-analysis. Obes Rev 2017; 18:1088-1095. [PMID: 28524399 DOI: 10.1111/obr.12552] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 03/20/2017] [Accepted: 03/21/2017] [Indexed: 01/20/2023]
Abstract
The aim of the study was to summarize the evidence of the effects of reallocating time spent in sedentary behaviours in different activity intensities on youth's adiposity. Five databases were searched. Studies that reported the effects of replacing sedentary behaviour with light-intensity physical activity (LIPA) and/or moderate-to-vigorous physical activity (MVPA) on at least one adiposity parameter. The estimated regression coefficients (β) and 95% CIs were combined and meta-analysed. Data from 7,351 youths and five studies were analysed. Pooled analysis from cross-sectional studies shows that replacing sedentary time with LIPA showed no significant associations with any adiposity-related outcomes. Replacing sedentary time with MVPA was statistically associated with total body fat percentage (β = -2.512; p = 0.003), but not with body mass index or waist circumference. In subgroup analysis, the greatest magnitude of association was observed from studies where 60 min of sedentary behaviour was reallocated to 60 min of MVPA (β = -4.535; p < 0.001). Our results highlight the importance of promoting MVPA, which may improve body composition phenotypes in young people. This information can be used to develop more effective lifestyle interventions.
Collapse
Affiliation(s)
- A García-Hermoso
- Laboratorio de Ciencias de la Actividad Física, el Deporte y la Salud, Facultad de Ciencias Médicas, Universidad de Santiago de Chile USACH, Santiago, Chile
| | - J M Saavedra
- Physical Activity, Physical Education, Sport and Health Research Centre, Sports Science Department, School of Science and Engineering, Reykjavik University, Reykjavik, Iceland
| | - R Ramírez-Vélez
- Centro de Estudios en Medición de la Actividad Física (CEMA), Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá, Colombia
| | - U Ekelund
- Department of Sports Medicine, Norwegian School of Sports Sciences, Oslo, Norway
| | - B Del Pozo-Cruz
- Department of Exercise Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
50
|
TCA cycle rewiring fosters metabolic adaptation to oxygen restriction in skeletal muscle from rodents and humans. Sci Rep 2017; 7:9723. [PMID: 28852047 PMCID: PMC5575144 DOI: 10.1038/s41598-017-10097-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 07/07/2017] [Indexed: 12/15/2022] Open
Abstract
In mammals, hypoxic stress management is under the control of the Hypoxia Inducible Factors, whose activity depends on the stabilization of their labile α subunit. In particular, the skeletal muscle appears to be able to react to changes in substrates and O2 delivery by tuning its metabolism. The present study provides a comprehensive overview of skeletal muscle metabolic adaptation to hypoxia in mice and in human subjects exposed for 7/9 and 19 days to high altitude levels. The investigation was carried out combining proteomics, qRT-PCR mRNA transcripts analysis, and enzyme activities assessment in rodents, and protein detection by antigen antibody reactions in humans and rodents. Results indicate that the skeletal muscle react to a decreased O2 delivery by rewiring the TCA cycle. The first TCA rewiring occurs in mice in 2-day hypoxia and is mediated by cytosolic malate whereas in 10-day hypoxia the rewiring is mediated by Idh1 and Fasn, supported by glutamine and HIF-2α increments. The combination of these specific anaplerotic steps can support energy demand despite HIFs degradation. These results were confirmed in human subjects, demonstrating that the TCA double rewiring represents an essential factor for the maintenance of muscle homeostasis during adaptation to hypoxia.
Collapse
|