1
|
Novais YC, Borges J, Ferreira-Moraes FA, Tamura EK. Sleep medicine and chronobiology education among Brazilian medical students. Braz J Med Biol Res 2024; 57:e14147. [PMID: 39699376 DOI: 10.1590/1414-431x2024e14147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 11/05/2024] [Indexed: 12/20/2024] Open
Abstract
Chronobiology and sleep medicine are pivotal disciplines for understanding human health. Additionally, the lack of training in medical schools exacerbates the underdiagnosis and undertreatment of sleep disorders. This study investigated the exposure of Brazilian medical students to chronobiology and sleep medicine during their undergraduate education and assessed their knowledge in these areas. The study was conducted between December 2021 and June 2022 through the administration of an online questionnaire (Google Forms) to medical students in the final two years of undergraduate studies. The questionnaire gathered student data (i.e., sex, age, and educational institution), research data (stage in the medical program with exposure to chronobiology or sleep medicine), and responses to a questionnaire on basic knowledge of sleep medicine and chronobiology (adapted from Assessing Sleep Knowledge in Medical Education - ASKME). A total of 240 students from medical schools in Brazil participated, 4.6% of whom reported no exposure to either subject, with exposure declining as students progressed through the curriculum. Only 3.7% reported specific disciplines covering these topics. Over half of the students encountered learning barriers, such as limited curriculum time. Despite these challenges, the accuracy rate in responses regarding chronobiology and sleep medicine was 79.75%, positively correlating with exposure level and knowledge retention. This study underscores the urgent need for enhanced education in sleep medicine and chronobiology within Brazilian medical schools. It offers insights into the current landscape of sleep medicine education in Brazil and lays groundwork for future efforts to integrate these essential subjects into medical school curricula.
Collapse
Affiliation(s)
- Y C Novais
- Grupo de Pesquisa em Cronobiologia, Departamento de Ciências da Saúde, Universidade Estadual de Santa Cruz, Ilhéus, BA, Brasil
| | - J Borges
- Grupo de Pesquisa em Cronobiologia, Departamento de Ciências da Saúde, Universidade Estadual de Santa Cruz, Ilhéus, BA, Brasil
| | - F A Ferreira-Moraes
- Grupo de Pesquisa em Cronobiologia, Departamento de Ciências da Saúde, Universidade Estadual de Santa Cruz, Ilhéus, BA, Brasil
| | - E K Tamura
- Grupo de Pesquisa em Cronobiologia, Departamento de Ciências da Saúde, Universidade Estadual de Santa Cruz, Ilhéus, BA, Brasil
| |
Collapse
|
2
|
Carvalho F, Galantinho A, Somers MJ, Do Linh San E. Influence of season, sex, and interspecific interactions on the diel activity patterns of two sympatric African small carnivores. Sci Rep 2024; 14:29701. [PMID: 39614080 DOI: 10.1038/s41598-024-80619-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 11/20/2024] [Indexed: 12/01/2024] Open
Abstract
Animal activity patterns vary seasonally and between species, facilitating species coexistence. In Africa, however, factors affecting the activity of many small carnivores remain poorly understood, especially for congeneric and sympatric species whose similar sizes may lead to interspecific competition. Here, we investigated differences and variations in the activity patterns of two sympatric Viverridae species in a seasonal African landscape. We continuously radio-tracked 15 small-spotted genets (Genetta genetta) and five Cape genets (G. tigrina) over 24-h cycles throughout the year. We analysed the effects of season, sex, and interspecific interactions on circadian rhythms using multi-cosinor regression models. Both species maintained a nocturnal activity pattern year-round, decreasing activity significantly during the cold-dry season. This pattern aligns with the thermoregulatory hypothesis-especially for species with an elongated body like genets-suggesting decreased activity under extreme cold weather conditions to conserve energy. Females in both species were less active than males, possibly due to their smaller home ranges, especially during the cold-dry season. These effects were particularly pronounced in Cape genets, which primarily inhabit riverine forests. Female Cape genets adjusted their activity onset, possibly to minimize encounters with males, mostly during the hot-wet season when caring for their offspring. Small-spotted genets shifted their activity onset and peak in riverine forests-areas of potential contact with Cape genets-compared to areas without Cape genets. Overall, our study underscores the critical role of seasonal environmental changes and interspecific interactions in shaping the activity patterns of two carnivore species within a semi-arid Albany Thicket landscape.
Collapse
Affiliation(s)
- Filipe Carvalho
- Department of Zoology and Entomology, University of Fort Hare, Alice, South Africa.
- Centro de Investigação em Biodiversidade e Recursos Genéticos, CIBIO/InBio, Universidade do Porto, Vairão, Portugal.
| | - Ana Galantinho
- Department of Zoology and Entomology, University of Fort Hare, Alice, South Africa
| | - Michael J Somers
- Eugène Marais Chair of Wildlife Management, Mammal Research Institute, Centre for Invasion Biology, Department of Zoology and Entomology, University of Pretoria, Pretoria, South Africa
| | - Emmanuel Do Linh San
- Department of Zoology and Entomology, University of Fort Hare, Alice, South Africa
- Department of Biological and Agricultural Sciences, Sol Plaatje University, Kimberley, South Africa
| |
Collapse
|
3
|
Patlin BH, Mok H, Arra M, Haspel JA. Circadian rhythms in solid organ transplantation. J Heart Lung Transplant 2024; 43:849-857. [PMID: 38310995 PMCID: PMC11070314 DOI: 10.1016/j.healun.2024.01.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/17/2024] [Accepted: 01/29/2024] [Indexed: 02/06/2024] Open
Abstract
Circadian rhythms are daily cycles in physiology that can affect medical interventions. This review considers how these rhythms may relate to solid organ transplantation. It begins by summarizing the mechanism for circadian rhythm generation known as the molecular clock, and basic research connecting the clock to biological activities germane to organ acceptance. Next follows a review of clinical evidence relating time of day to adverse transplantation outcomes. The concluding section discusses knowledge gaps and practical areas where applying circadian biology might improve transplantation success.
Collapse
Affiliation(s)
- Brielle H Patlin
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Huram Mok
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Monaj Arra
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Jeffrey A Haspel
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri.
| |
Collapse
|
4
|
Burtscher J, Hohenauer E, Burtscher M, Millet GP, Egg M. Environmental and behavioral regulation of HIF-mitochondria crosstalk. Free Radic Biol Med 2023; 206:63-73. [PMID: 37385566 DOI: 10.1016/j.freeradbiomed.2023.06.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/05/2023] [Accepted: 06/19/2023] [Indexed: 07/01/2023]
Abstract
Reduced oxygen availability (hypoxia) can lead to cell and organ damage. Therefore, aerobic species depend on efficient mechanisms to counteract detrimental consequences of hypoxia. Hypoxia inducible factors (HIFs) and mitochondria are integral components of the cellular response to hypoxia and coordinate both distinct and highly intertwined adaptations. This leads to reduced dependence on oxygen, improved oxygen supply, maintained energy provision by metabolic remodeling and tapping into alternative pathways and increased resilience to hypoxic injuries. On one hand, many pathologies are associated with hypoxia and hypoxia can drive disease progression, for example in many cancer and neurological diseases. But on the other hand, controlled induction of hypoxia responses via HIFs and mitochondria can elicit profound health benefits and increase resilience. To tackle pathological hypoxia conditions or to apply health-promoting hypoxia exposures efficiently, cellular and systemic responses to hypoxia need to be well understood. Here we first summarize the well-established link between HIFs and mitochondria in orchestrating hypoxia-induced adaptations and then outline major environmental and behavioral modulators of their interaction that remain poorly understood.
Collapse
Affiliation(s)
- Johannes Burtscher
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland.
| | - Erich Hohenauer
- Rehabilitation and Exercise Science Laboratory (RES Lab), Department of Business Economics, Health and Social Care, University of Applied Sciences and Arts of Southern Switzerland, Landquart, Switzerland; International University of Applied Sciences THIM, Landquart, Switzerland; Department of Neurosciences and Movement Science, University of Fribourg, Fribourg, Switzerland; Department of Movement and Sport Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Martin Burtscher
- Department of Sport Science, University of Innsbruck, Innsbruck, Austria
| | - Grégoire P Millet
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Margit Egg
- Institute of Zoology, University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
5
|
Gribanov IA, Zarubina EG. Disruption of regulatory mechanisms as a stress factor for patients with metabolic syndrome. BULLETIN OF THE MEDICAL INSTITUTE "REAVIZ" (REHABILITATION, DOCTOR AND HEALTH) 2022. [DOI: 10.20340/vmi-rvz.2022.6.clin.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Introduction. Throughout history, humanity has lived and developed in accordance with its biological rhythms, which provided the adaptation of the body to the factors of external and internal environment, ensuring the normal synchronous functioning of all its components.The purpose of this work was to study the stressful influence of circadian rhythms disturbance on patients with metabolic syndrome (MS) under conditions of dark deprivation.Material and methods of investigation. We selected patients with MS and disturbed circadian rhythms – a total of 102 people (all men) from among those who constantly work at night, in whom a decrease in melatonin levels was recorded at the preliminary stage. According to the set objectives, 102 patients (young age according to WHO criteria) were divided into three groups of 33, 37 and 32 persons according to the criterion "duration of influence of dark deprivation and MS history duration": 0–5, 5–10 and over 10 years. In the first group the mean age was 30.1 ± 1.4 years, in the second group – 36.5 ± 1.5 years, in the third group the mean age did not exceed 40.3 ± 0.9 years. Melatonin levels (as confirmation of circadian rhythm disturbances) in blood serum were studied in all study participants using Melatonin ELISA immunoassay kit (IBL, Germany). Results and discussion. Normally, when blood cortisol is measured before 10 a.m., its average value varies in a wide range from138 to 635 nmol/l. The increase up to 700 nmol/l is admitted, which is regarded as a negative influence of external factors during the examination. However, one should keep in mind that during evening measurements, cortisol levels in men may normally decrease to 80 nmol/l.Conclusions. Thus, dark deprivation in patients with metabolic syndrome leads to the formation of a stress response. Maximum changes occur after 10 years of disturbance of regulatory mechanisms and lead to a pronounced imbalance between the sympathetic and parasympathetic nervous system, increased vascular tone and changes in the profile of blood pressure during the day towards the predominance of Non-dippers and Night-peers, which increases the risk of progression of metabolic syndrome symptoms.
Collapse
|
6
|
A. Markovics J. Training the Conductor of the Brainwave Symphony: In Search of a Common Mechanism of Action for All Methods of Neurofeedback. ARTIF INTELL 2022. [DOI: 10.5772/intechopen.98343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
There are several different methods of neurofeedback, most of which presume an operant conditioning model whereby the subject learns to control their brain activity in particular regions of the brain and/or at particular brainwave frequencies based on reinforcement. One method, however, called infra-low frequency [ILF] neurofeedback cannot be explained through this paradigm, yet it has profound effects on brain function. Like a conductor of a symphony, recent evidence demonstrates that the primary ILF (typically between 0.01–0.1 Hz), which correlates with the fluctuation of oxygenated and deoxygenated blood in the brain, regulates all of the classic brainwave bands (i.e. alpha, theta, delta, beta, gamma). The success of ILF neurofeedback suggests that all forms of neurofeedback may work through a similar mechanism that does not fit the operant conditioning paradigm. This chapter focuses on the possible mechanisms of action for ILF neurofeedback, which may be generalized, based on current evidence.
Collapse
|
7
|
Kim ES, Oh CE. Sleep and vaccine administration time as factors influencing vaccine immunogenicity. KOSIN MEDICAL JOURNAL 2022. [DOI: 10.7180/kmj.22.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The immunogenicity of vaccines is affected by host, external, environmental, and vaccine factors; in addition, sleep or circadian rhythms may also have effects. With the use of vaccines to mitigate the coronavirus disease 2019 (COVID-19) pandemic, research is underway to clarify what time of the day is optimal for COVID-19 vaccination and how disturbances of circadian rhythms will affect the immunogenicity of the vaccine in shift workers. Studies on the relationship between sleep time and the immunogenicity of vaccines for influenza and hepatitis have demonstrated that less sleep time and sleep deprivation tended to adversely affect immunogenicity. In some studies, there were even sex differences in these effects. When comparing shift workers with disturbances in their circadian rhythms and those who only worked during the day, one study found less antibody formation in shift workers; however, further studies on the relationship between shift work and the immunogenicity of vaccines are needed. Studies on the relationship between vaccine administration time and immunogenicity have shown different results according to age and sex. Therefore, future studies on vaccine administration time and immunogenicity may require an individualized approach for each vaccine and each population to be vaccinated. There is accumulating evidence on the effects of sleep and vaccine administration time on the immunogenicity of vaccines. However, further studies are needed to determine whether the association between immunogenicity and circadian rhythms and vaccine administration time can be used as a basis to increase the immunogenicity for individual vaccines.
Collapse
|
8
|
Zhen Y, Ge L, Xu Q, Hu L, Wei W, Huang J, Loor JJ, Yang Q, Wang M, Zhou P. Normal Light-Dark and Short-Light Cycles Regulate Intestinal Inflammation, Circulating Short-chain Fatty Acids and Gut Microbiota in Period2 Gene Knockout Mice. Front Immunol 2022; 13:848248. [PMID: 35371053 PMCID: PMC8971677 DOI: 10.3389/fimmu.2022.848248] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 02/21/2022] [Indexed: 01/20/2023] Open
Abstract
Regular environmental light–dark (LD) cycle-regulated period circadian clock 2 (Per2) gene expression is essential for circadian oscillation, nutrient metabolism, and intestinal microbiota balance. Herein, we combined environmental LD cycles with Per2 gene knockout to investigate how LD cycles mediate Per2 expression to regulate colonic and cecal inflammatory and barrier functions, microbiome, and short-chain fatty acids (SCFAs) in the circulation. Mice were divided into knockout (KO) and wild type (CON) under normal light–dark cycle (NLD) and short-light (SL) cycle for 2 weeks after 4 weeks of adaptation. The concentrations of SCFAs in the serum and large intestine, the colonic and cecal epithelial circadian rhythm, SCFAs transporter, inflammatory and barrier-related genes, and Illumina 16S rRNA sequencing were measured after euthanasia during 10:00–12:00. KO decreased the feeding frequency at 0:00–2:00 but increased at 12:00–14:00 both under NLD and SL. KO upregulated the expression of Per1 and Rev-erbα in the colon and cecum, while it downregulated Clock and Bmal1. In terms of inflammatory and barrier functions, KO increased the expression of Tnf-α, Tlr2, and Nf-κb p65 in the colon and cecum, while it decreased Claudin and Occludin-1. KO decreased the concentrations of total SCFAs and acetate in the colon and cecum, but it increased butyrate, while it had no impact on SCFAs in the serum. KO increased the SCFAs transporter because of the upregulation of Nhe1, Nhe3, and Mct4. Sequencing data revealed that KO improved bacteria α-diversity and increased Lachnospiraceae and Ruminococcaceae abundance, while it downregulated Erysipelatoclostridium, Prevotellaceae UCG_001, Olsenella, and Christensenellaceae R-7 under NLD in KO mice. Most of the differential bacterial genus were enriched in amino acid and carbohydrate metabolism pathways. Overall, Per2 knockout altered circadian oscillation in the large intestine, KO improved intestinal microbiota diversity, the increase in Clostridiales abundance led to the reduction in SCFAs in the circulation, concentrations of total SCFAs and acetate decreased, while butyrate increased and SCFAs transport was enhanced. These alterations may potentially lead to inflammation of the large intestine. Short-light treatment had minor impact on intestinal microbiome and metabolism.
Collapse
Affiliation(s)
- Yongkang Zhen
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural Reclamation Sciences, Shihezi, China
| | - Ling Ge
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Qiaoyun Xu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Liangyu Hu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- Human and Animal Physiology, Wageningen University & Research, Wageningen, Netherlands
| | - Wenjun Wei
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Jiantao Huang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Juan J. Loor
- Mammalian Nutrition Physiology Genomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana, IL, United States
| | - Qingyong Yang
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural Reclamation Sciences, Shihezi, China
| | - Mengzhi Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural Reclamation Sciences, Shihezi, China
- *Correspondence: Mengzhi Wang, ; Ping Zhou,
| | - Ping Zhou
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural Reclamation Sciences, Shihezi, China
- *Correspondence: Mengzhi Wang, ; Ping Zhou,
| |
Collapse
|
9
|
Gut Seasons: Photoperiod Effects on Fecal Microbiota in Healthy and Cafeteria-Induced Obese Fisher 344 Rats. Nutrients 2022; 14:nu14030722. [PMID: 35277081 PMCID: PMC8839759 DOI: 10.3390/nu14030722] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/01/2022] [Accepted: 02/06/2022] [Indexed: 12/16/2022] Open
Abstract
Gut microbiota and biological rhythms are emerging as key factors in the modulation of several physiological and metabolic processes. However, little is known about their interaction and how this may affect host physiology and metabolism. Several studies have shown oscillations of gut microbiota that follows a circadian rhythmicity, but, in contrast, variations due to seasonal rhythms have not been sufficiently investigated yet. Thus, the goal of this study was to investigate the impact of different photoperiods, which mimic seasonal changes, on fecal microbiota composition and how this interaction affects diet-induced obesity development. To this aim, Fisher 344 male rats were housed under three photoperiods (L6, L12 and L18) and fed with standard chow diet or cafeteria diet (CAF) for 9 weeks. The 16S ribosomal sequencing of collected fecal samples was performed. The photoperiod exposure significantly altered the fecal microbiota composition under L18, especially in CAF-fed rats. Moreover, these alterations were associated with changes in body weight gain and different fat parameters. These findings suggest a clear impact of seasonal rhythms on gut microbiota, which ultimately translates into different susceptibilities to diet-induced obesity development. This is the first time to our knowledge that the photoperiod impact on gut microbiota composition has been described in an obesity context although further studies are needed in order to elucidate the mechanisms involved.
Collapse
|
10
|
Adamovich Y, Dandavate V, Asher G. Circadian clocks' interactions with oxygen sensing and signalling. Acta Physiol (Oxf) 2022; 234:e13770. [PMID: 34984824 DOI: 10.1111/apha.13770] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/14/2021] [Accepted: 01/01/2022] [Indexed: 12/14/2022]
Abstract
In mammals, physiology and metabolism are shaped both by immediate and anticipatory responses to environmental changes through the myriad of molecular mechanisms. Whilst the former is mostly mediated through different acute signalling pathways the latter is primarily orchestrated by the circadian clock. Oxygen is vital for life and as such mammals have evolved different mechanisms to cope with changes in oxygen levels. It is widely accepted that oxygen sensing through the HIF-1 signalling pathway is paramount for the acute response to changes in oxygen levels. Circadian clocks are molecular oscillators that control 24 hours rhythms in various aspects of physiology and behaviour. Evidence emerging in recent years points towards pervasive molecular and functional interactions between these two pathways on multiple levels. Daily oscillations in oxygen levels are circadian clock-controlled and can reset the clock through HIF-1. Furthermore, the circadian clock appears to modulate the hypoxic response. We review herein the literature related to the crosstalk between the circadian clockwork and the oxygen-signalling pathway in mammals at the molecular and physiological level both under normal and pathologic conditions.
Collapse
Affiliation(s)
- Yaarit Adamovich
- Department of Biomolecular Sciences Weizmann Institute of Science Rehovot Israel
| | - Vaishnavi Dandavate
- Department of Biomolecular Sciences Weizmann Institute of Science Rehovot Israel
| | - Gad Asher
- Department of Biomolecular Sciences Weizmann Institute of Science Rehovot Israel
| |
Collapse
|
11
|
Tamura EK, Oliveira-Silva KS, Ferreira-Moraes FA, Marinho EAV, Guerrero-Vargas NN. Circadian rhythms and substance use disorders: A bidirectional relationship. Pharmacol Biochem Behav 2021; 201:173105. [PMID: 33444601 DOI: 10.1016/j.pbb.2021.173105] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 01/03/2021] [Accepted: 01/04/2021] [Indexed: 01/23/2023]
Abstract
The circadian system organizes circadian rhythms (biological cycles that occur around 24 h) that couple environmental cues (zeitgebers) with internal functions of the organism. The misalignment between circadian rhythms and external cues is known as chronodisruption and contributes to the development of mental, metabolic and other disorders, including cancer, cardiovascular diseases and addictive disorders. Drug addiction represents a global public health concern and affects the health and well-being of individuals, families and communities. In this manuscript, we reviewed evidence indicating a bidirectional relationship between the circadian system and the development of addictive disorders. We provide information on the interaction between the circadian system and drug addiction for each drug or drug class (alcohol, cannabis, hallucinogens, psychostimulants and opioids). We also describe evidence showing that drug use follows a circadian pattern, which changes with the progression of addiction. Furthermore, clock gene expression is also altered during the development of drug addiction in many brain areas related to drug reward, drug seeking and relapse. The regulation of the glutamatergic and dopaminergic neurocircuitry by clock genes is postulated to be the main circadian mechanism underlying the escalation of drug addiction. The bidirectional interaction between the circadian system and drug addiction seems to be mediated by the effects caused by each drug or class of drugs of abuse. These studies provide new insights on the development of successful strategies aimed at restoring/stabilizing circadian rhythms to reduce the risk for addiction development and relapse.
Collapse
Affiliation(s)
- Eduardo K Tamura
- Department of Health Sciences, Universidade Estadual de Santa Cruz, BR-415, Rodovia Ilhéus- Itabuna, Km-16, Salobrinho, Ilhéus, Bahia 45662-000, Brazil.
| | - Kallyane S Oliveira-Silva
- Department of Health Sciences, Universidade Estadual de Santa Cruz, BR-415, Rodovia Ilhéus- Itabuna, Km-16, Salobrinho, Ilhéus, Bahia 45662-000, Brazil
| | - Felipe A Ferreira-Moraes
- Department of Health Sciences, Universidade Estadual de Santa Cruz, BR-415, Rodovia Ilhéus- Itabuna, Km-16, Salobrinho, Ilhéus, Bahia 45662-000, Brazil
| | - Eduardo A V Marinho
- Department of Health Sciences, Universidade Estadual de Santa Cruz, BR-415, Rodovia Ilhéus- Itabuna, Km-16, Salobrinho, Ilhéus, Bahia 45662-000, Brazil
| | - Natalí N Guerrero-Vargas
- Department of Anatomy, Faculty of Medicine, Universidad Nacional Autonóma de México, Av Universidad 3000, Ciudad Universitaria, México City 04510, Mexico
| |
Collapse
|
12
|
Mah A, Ayoub N, Toporikova N, Jones TC, Moore D. Locomotor activity patterns in three spider species suggest relaxed selection on endogenous circadian period and novel features of chronotype. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2020; 206:499-515. [PMID: 32219511 DOI: 10.1007/s00359-020-01412-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 01/07/2020] [Accepted: 02/21/2020] [Indexed: 01/19/2023]
Abstract
We examined the circadian rhythms of locomotor activity in three spider species in the Family Theridiidae under light-dark cycles and constant darkness. Contrary to previous findings in other organisms, we found exceptionally high variability in endogenous circadian period both within and among species. Many individuals exhibited circadian periods much lower (19-22 h) or much higher (26-30 h) than the archetypal circadian period. These results suggest relaxed selection on circadian period as well as an ability to succeed in nature despite a lack of circadian resonance with the 24-h daily cycle. Although displaying similar entrainment waveforms under light-dark cycles, there were remarkable differences among the three species with respect to levels of apparent masking and dispersion of activity under constant dark conditions. These behavioral differences suggest an aspect of chronotype adapted to the particular ecologies of the different species.
Collapse
Affiliation(s)
- Andrew Mah
- Center for Neural Science, New York University, 4 Washington Pl #809, New York, NY, 10003, USA
| | - Nadia Ayoub
- Department of Biology, Washington and Lee University, Howe Hall, Lexington, VA, 24450, USA
| | - Natalia Toporikova
- Department of Biology, Washington and Lee University, Howe Hall, Lexington, VA, 24450, USA
- Neuroscience Program, Washington and Lee University, 204 W. Washington Street, Lexington, VA, 24450, USA
| | - Thomas C Jones
- Department of Biological Sciences, East Tennessee State University, Box 70703, Johnson City, TN, 37604, USA
| | - Darrell Moore
- Department of Biological Sciences, East Tennessee State University, Box 70703, Johnson City, TN, 37604, USA.
| |
Collapse
|
13
|
Abstract
Circadian rhythms are daily cycles in biological function that are ubiquitous in nature. Understood as a means for organisms to anticipate daily environmental changes, circadian rhythms are also important for orchestrating complex biological processes such as immunity. Nowhere is this more evident than in the respiratory system, where circadian rhythms in inflammatory lung disease have been appreciated since ancient times. In this focused review we examine how emerging research on circadian rhythms is being applied to the study of fundamental lung biology and respiratory disease. We begin with a general introduction to circadian rhythms and the molecular circadian clock that underpins them. We then focus on emerging data tying circadian clock function to immunologic activities within the respiratory system. We conclude by considering outstanding questions about biological timing in the lung and how a better command of chronobiology could inform our understanding of complex lung diseases.
Collapse
Affiliation(s)
- Charles Nosal
- Division of Pulmonary and Critical Care Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, USA;
| | - Anna Ehlers
- Division of Pulmonary and Critical Care Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, USA;
| | - Jeffrey A Haspel
- Division of Pulmonary and Critical Care Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, USA;
| |
Collapse
|
14
|
Haspel JA, Anafi R, Brown MK, Cermakian N, Depner C, Desplats P, Gelman AE, Haack M, Jelic S, Kim BS, Laposky AD, Lee YC, Mongodin E, Prather AA, Prendergast BJ, Reardon C, Shaw AC, Sengupta S, Szentirmai É, Thakkar M, Walker WE, Solt LA. Perfect timing: circadian rhythms, sleep, and immunity - an NIH workshop summary. JCI Insight 2020; 5:131487. [PMID: 31941836 PMCID: PMC7030790 DOI: 10.1172/jci.insight.131487] [Citation(s) in RCA: 120] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Recent discoveries demonstrate a critical role for circadian rhythms and sleep in immune system homeostasis. Both innate and adaptive immune responses - ranging from leukocyte mobilization, trafficking, and chemotaxis to cytokine release and T cell differentiation -are mediated in a time of day-dependent manner. The National Institutes of Health (NIH) recently sponsored an interdisciplinary workshop, "Sleep Insufficiency, Circadian Misalignment, and the Immune Response," to highlight new research linking sleep and circadian biology to immune function and to identify areas of high translational potential. This Review summarizes topics discussed and highlights immediate opportunities for delineating clinically relevant connections among biological rhythms, sleep, and immune regulation.
Collapse
Affiliation(s)
- Jeffrey A. Haspel
- Division of Pulmonary, Critical Care and Sleep Medicine, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Ron Anafi
- Center for Sleep and Circadian Neurobiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Marishka K. Brown
- National Center on Sleep Disorders Research, Division of Lung Diseases, National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland, USA
| | - Nicolas Cermakian
- Douglas Mental Health University Institute, McGill University, Montreal, Quebec, Canada
| | - Christopher Depner
- Sleep and Chronobiology Laboratory, Department of Integrative Physiology, University of Colorado, Boulder, Colorado, USA
| | - Paula Desplats
- Department of Neurosciences and
- Department of Pathology, UCSD, La Jolla, California, USA
| | - Andrew E. Gelman
- Department of Surgery, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Monika Haack
- Human Sleep and Inflammatory Systems Laboratory, Department of Neurology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Sanja Jelic
- Division of Pulmonary, Allergy, and Critical Care Medicine, Columbia University School of Medicine, New York, New York, USA
| | - Brian S. Kim
- Center for the Study of Itch
- Department of Medicine
- Department of Anesthesiology
- Department of Pathology, and
- Department of Immunology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Aaron D. Laposky
- National Center on Sleep Disorders Research, Division of Lung Diseases, National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland, USA
| | - Yvonne C. Lee
- Division of Rheumatology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Emmanuel Mongodin
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Aric A. Prather
- Department of Psychiatry, UCSF, San Francisco, California, USA
| | - Brian J. Prendergast
- Department of Psychology and Committee on Neurobiology, University of Chicago, Chicago, Illinois, USA
| | - Colin Reardon
- Department, of Anatomy, Physiology, and Cell Biology, UCD School of Veterinary Medicine, Davis, California, USA
| | - Albert C. Shaw
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Shaon Sengupta
- Division of Neonatology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Éva Szentirmai
- Department of Biomedical Sciences, Elson S. Floyd College of Medicine, Washington State University, Spokane, Washington, USA
| | - Mahesh Thakkar
- Harry S. Truman Memorial Veterans Hospital, Columbia, Missouri, USA
- Department of Neurology, University of Missouri School of Medicine, Columbia, Missouri, USA
| | - Wendy E. Walker
- Center of Emphasis in Infectious Diseases, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Health Sciences Center, Texas Tech University, El Paso, Texas, USA
| | - Laura A. Solt
- Department of Immunology and Microbiology, Scripps Research Institute, Jupiter, Florida, USA
| |
Collapse
|
15
|
Gender and the circadian pattern of body temperature in normoxia and hypoxia. Respir Physiol Neurobiol 2016; 245:4-12. [PMID: 27866957 DOI: 10.1016/j.resp.2016.11.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 10/31/2016] [Accepted: 11/07/2016] [Indexed: 11/23/2022]
Abstract
Circadian patterns are at the core of many physiological processes, and their disruption can have short- and long-term consequences. This essay focuses on one of the best known patterns, the daily oscillation of body temperature (Tb), and the possibility of its difference between genders. From human and animal studies globally considered, the tentative conclusion is reached that differences in Tb circadian pattern between genders are very small and probably limited to the timing of the rhythm, not to its amplitude. Such similarity between genders, despite the differences in hormonal systems, presumably testifies to the importance that the Tb circadian pattern plays in the economy of the organism and its survival against environmental challenges. The second part of the article presents some previously unpublished experimental data from behaving male and female rats during hypoxia in synchronized conditions. In adult rats hypoxia (10.5% O2 for three days) caused a profound drop of the Tb daily oscillations; by day 3 they were 55% (♀) and 22% (♂) of the normoxic amplitudes, with a statistically significant gender difference. In pre-puberty rats (26-day old) hypoxia caused a major disruption of the circadian pattern qualitatively similar to the adults but not different between genders. Hence, on the basis of this preliminary set of data, it seems that sex-hormones may be a factor in how the Tb daily pattern responds to hypoxia. The implications of the effects of hypoxia on the circadian patterns, and the possibility that such effects may differ between genders, are matters that could have biological and clinical implications and deserve further investigations.
Collapse
|