1
|
Pessoa L. The Spiraling Cognitive-Emotional Brain: Combinatorial, Reciprocal, and Reentrant Macro-organization. J Cogn Neurosci 2024; 36:2697-2711. [PMID: 38530327 DOI: 10.1162/jocn_a_02146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
This article proposes a framework for understanding the macro-scale organization of anatomical pathways in the mammalian brain. The architecture supports flexible behavioral decisions across a spectrum of spatiotemporal scales. The proposal emphasizes the combinatorial, reciprocal, and reentrant connectivity-called CRR neuroarchitecture-between cortical, BG, thalamic, amygdala, hypothalamic, and brainstem circuits. Thalamic nuclei, especially midline/intralaminar nuclei, are proposed to act as hubs routing the flow of signals between noncortical areas and pFC. The hypothalamus also participates in multiregion circuits via its connections with cortex and thalamus. At slower timescales, long-range behaviors integrate signals across levels of the neuroaxis. At fast timescales, parallel engagement of pathways allows urgent behaviors while retaining flexibility. Overall, the proposed architecture enables context-dependent, adaptive behaviors spanning proximate to distant spatiotemporal scales. The framework promotes an integrative perspective and a distributed, heterarchical view of brain function.
Collapse
|
2
|
Glezer A, Garmes HM, Kasuki L, Martins M, Elias PCL, Nogueira VDSN, Rosa-E-Silva ACJDS, Maciel GAR, Benetti-Pinto CL, Nácul AP. Hyperprolactinemia in women: diagnostic approach. REVISTA BRASILEIRA DE GINECOLOGIA E OBSTETRÍCIA 2024; 46:e-FPS04. [PMID: 38765533 PMCID: PMC11078114 DOI: 10.61622/rbgo/2024fps04] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024] Open
Affiliation(s)
- Andrea Glezer
- Universidade de São Paulo Hospital das Clínicas Faculdade de Medicina São PauloSP Brazil Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Heraldo Mendes Garmes
- Universidade Estadual de Campinas Faculdade de Ciências Médicas CampinasSP Brazil Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Leandro Kasuki
- Universidade Federal do Rio de Janeiro Hospital Universitário Clementino Fraga Filho Rio de JaneiroRJ Brazil Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Manoel Martins
- Universidade Federal do Ceará Departamento de Medicina Clínica e Núcleo de Pesquisa e Desenvolvimento de Medicamentos FortalezaCE Brazil Departamento de Medicina Clínica e Núcleo de Pesquisa e Desenvolvimento de Medicamentos, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | - Paula Condé Lamparelli Elias
- Universidade de São Paulo Faculdade de Medicina de Ribeirão Preto Departamento de Clínica Médica, Hospital das Clínicas Ribeirão PretoSP Brazil Departamento de Clínica Médica, Hospital das Clínicas, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Vania Dos Santos Nunes Nogueira
- Universidade Estadual Paulista Faculdade de Medicina de Botucatu Departamento de Clínica Médica BotucatuSP Brazil Departamento de Clínica Médica, Faculdade de Medicina de Botucatu, Universidade Estadual Paulista (UNESP), Botucatu, SP, Brazil
| | - Ana Carolina Japur de Sá Rosa-E-Silva
- Universidade de São Paulo Faculdade de Medicina de Ribeirão Preto Departamento de Ginecologia e Obstetrícia Ribeirão PretoSP Brazil Departamento de Ginecologia e Obstetrícia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Gustavo Arantes Rosa Maciel
- Universidade de São Paulo Departamento de Obstetrícia e Ginecologia Faculdade de Medicina Sao PauloSP Brazil Departamento de Obstetrícia e Ginecologia, Disciplina de Ginecologia, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, Sao Paulo, SP, Brazil
| | - Cristina Laguna Benetti-Pinto
- Universidade Estadual de Campinas Departamento de Obstetrícia e Ginecologia Faculdade de Ciências Médicas CampinasSP Brazil Departamento de Obstetrícia e Ginecologia, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Unicamp, Campinas, SP, Brazil
| | - Andrea Prestes Nácul
- Unidade de Reprodução Humana Hospital Fêmina Grupo Hospitalar Conceição Porto AlegreRS Brazil Unidade de Reprodução Humana, Hospital Fêmina, Grupo Hospitalar Conceição, Porto Alegre, RS, Brazil
| |
Collapse
|
3
|
Glezer A, Mendes Garmes H, Kasuki L, Martins M, Condé Lamparelli Elias P, Dos Santos Nunes Nogueira V, Rosa-E-Silva ACJDS, Maciel GAR, Benetti-Pinto CL, Prestes Nácul A. Diagnosis of hyperprolactinemia in women: A Position Statement from the Brazilian Federation of Gynecology and Obstetrics Associations (Febrasgo) and the Brazilian Society of Endocrinology and Metabolism (SBEM). ARCHIVES OF ENDOCRINOLOGY AND METABOLISM 2024; 68:e230502. [PMID: 38578472 PMCID: PMC11081055 DOI: 10.20945/2359-4292-2023-0502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 02/29/2024] [Indexed: 04/06/2024]
Abstract
Hyperprolactinemia is a frequent cause of menstrual irregularity, galactorrhea, hypogonadism, and infertility. The most common etiologies of hyperprolactinemia can be classified as physiological, pharmacological, and pathological. Among pathological conditions, it is essential to distinguish prolactinomas from other tumors and pituitary lesions presenting with hyperprolactinemia due to pituitary stalk disconnection. Proper investigation considering clinical data, laboratory tests, and, if necessary, imaging evaluation, is important to identify the correctcause of hyperprolactinemia and manage the patient properly. This position statement by the Brazilian Federation of Gynecology and Obstetrics Associations (Febrasgo) and Brazilian Societyof Endocrinology and Metabolism (SBEM) addresses the recommendations for measurement of serum prolactin levels and the investigations of symptomatic and asymptomatic hyperprolactinemia and medication-induced hyperprolactinemia in women.
Collapse
Affiliation(s)
- Andrea Glezer
- Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil,
| | - Heraldo Mendes Garmes
- Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas, SP, Brasil
| | - Leandro Kasuki
- Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| | - Manoel Martins
- Departamento de Medicina Clínica e Núcleo de Pesquisa e Desenvolvimento de Medicamentos, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| | - Paula Condé Lamparelli Elias
- Departamento de Clínica Médica, Hospital das Clínicas, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brasil
| | | | | | - Gustavo Arantes Rosa Maciel
- Departamento de Obstetrícia e Ginecologia, Disciplina de Ginecologia, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
| | - Cristina Laguna Benetti-Pinto
- Departamento de Obstetrícia e Ginecologia, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Unicamp, Campinas, SP, Brasil
| | - Andrea Prestes Nácul
- Unidade de Reprodução Humana, Hospital Femina, Grupo Hospitalar Conceição, Porto Alegre, RS, Brasil
| |
Collapse
|
4
|
Buemann B. Does activation of oxytocinergic reward circuits postpone the decline of the aging brain? Front Psychol 2023; 14:1250745. [PMID: 38222845 PMCID: PMC10786160 DOI: 10.3389/fpsyg.2023.1250745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/20/2023] [Indexed: 01/16/2024] Open
Abstract
Oxytocin supports reproduction by promoting sexual- and nursing behavior. Moreover, it stimulates reproductive organs by different avenues. Oxytocin is released to the blood from terminals of oxytocinergic neurons which project from the hypothalamus to the pituitary gland. Concomitantly, the dendrites of these neurons discharge oxytocin into neighboring areas of the hypothalamus. At this location it affects other neuroendocrine systems by autocrine and paracrine mechanisms. Moreover, sensory processing, affective functions, and reward circuits are influenced by oxytocinergic neurons that reach different sites in the brain. In addition to its facilitating impact on various aspects of reproduction, oxytocin is revealed to possess significant anti-inflammatory, restoring, and tranquilizing properties. This has been demonstrated both in many in-vivo and in-vitro studies. The oxytocin system may therefore have the capacity to alleviate detrimental physiological- and mental stress reactions. Thus, high levels of endogenous oxytocin may counteract inadequate inflammation and malfunctioning of neurons and supportive cells in the brain. A persistent low-grade inflammation increasing with age-referred to as inflammaging-may lead to a cognitive decline but may also predispose to neurodegenerative diseases such as Alzheimer's and Parkinson. Interestingly, animal studies indicate that age-related destructive processes in the body can be postponed by techniques that preserve immune- and stem cell functions in the hypothalamus. It is argued in this article that sexual activity-by its stimulating impact on the oxytocinergic activity in many regions of the brain-has the capacity to delay the onset of age-related cerebral decay. This may also postpone frailty and age-associated diseases in the body. Finally, oxytocin possesses neuroplastic properties that may be applied to expand sexual reward. The release of oxytocin may therefore be further potentiated by learning processes that involves oxytocin itself. It may therefore be profitable to raise the consciousness about the potential health benefits of sexual activity particularly among the seniors.
Collapse
|
5
|
Wilson KM, Arquilla AM, Saltzman W. The parental umwelt: Effects of parenthood on sensory processing in rodents. J Neuroendocrinol 2023; 35:e13237. [PMID: 36792373 DOI: 10.1111/jne.13237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 01/26/2023]
Abstract
An animal's umwelt, comprising its perception of the sensory environment, which is inherently subjective, can change across the lifespan in accordance with major life events. In mammals, the onset of motherhood, in particular, is associated with a neural and sensory plasticity that alters a mother's detection and use of sensory information such as infant-related sensory stimuli. Although the literature surrounding mammalian mothers is well established, very few studies have addressed the effects of parenthood on sensory plasticity in mammalian fathers. In this review, we summarize the major findings on the effects of parenthood on behavioural and neural responses to sensory stimuli from pups in rodent mothers, with a focus on the olfactory, auditory, and somatosensory systems, as well as multisensory integration. We also review the available literature on sensory plasticity in rodent fathers. Finally, we discuss the importance of sensory plasticity for effective parental care, hormonal modulation of plasticity, and an exploration of temporal, ecological, and life-history considerations of sensory plasticity associated with parenthood. The changes in processing and/or perception of sensory stimuli associated with the onset of parental care may have both transient and long-lasting effects on parental behaviour and cognition in both mothers and fathers; as such, several promising areas of study, such as on the molecular/genetic, neurochemical, and experiential underpinnings of parenthood-related sensory plasticity, as well as determinants of interspecific variation, remain potential avenues for further exploration.
Collapse
Affiliation(s)
- Kerianne M Wilson
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA, USA
- Department of Biology, Pomona College, Claremont, CA, USA
| | - April M Arquilla
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA, USA
| | - Wendy Saltzman
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA, USA
- Neuroscience Graduate Program, University of California, Riverside, CA, USA
| |
Collapse
|
6
|
Raise-Abdullahi P, Meamar M, Vafaei AA, Alizadeh M, Dadkhah M, Shafia S, Ghalandari-Shamami M, Naderian R, Afshin Samaei S, Rashidy-Pour A. Hypothalamus and Post-Traumatic Stress Disorder: A Review. Brain Sci 2023; 13:1010. [PMID: 37508942 PMCID: PMC10377115 DOI: 10.3390/brainsci13071010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/25/2023] [Accepted: 06/28/2023] [Indexed: 07/30/2023] Open
Abstract
Humans have lived in a dynamic environment fraught with potential dangers for thousands of years. While fear and stress were crucial for the survival of our ancestors, today, they are mostly considered harmful factors, threatening both our physical and mental health. Trauma is a highly stressful, often life-threatening event or a series of events, such as sexual assault, war, natural disasters, burns, and car accidents. Trauma can cause pathological metaplasticity, leading to long-lasting behavioral changes and impairing an individual's ability to cope with future challenges. If an individual is vulnerable, a tremendously traumatic event may result in post-traumatic stress disorder (PTSD). The hypothalamus is critical in initiating hormonal responses to stressful stimuli via the hypothalamic-pituitary-adrenal (HPA) axis. Linked to the prefrontal cortex and limbic structures, especially the amygdala and hippocampus, the hypothalamus acts as a central hub, integrating physiological aspects of the stress response. Consequently, the hypothalamic functions have been attributed to the pathophysiology of PTSD. However, apart from the well-known role of the HPA axis, the hypothalamus may also play different roles in the development of PTSD through other pathways, including the hypothalamic-pituitary-thyroid (HPT) and hypothalamic-pituitary-gonadal (HPG) axes, as well as by secreting growth hormone, prolactin, dopamine, and oxytocin. This review aims to summarize the current evidence regarding the neuroendocrine functions of the hypothalamus, which are correlated with the development of PTSD. A better understanding of the role of the hypothalamus in PTSD could help develop better treatments for this debilitating condition.
Collapse
Affiliation(s)
| | - Morvarid Meamar
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran
| | - Abbas Ali Vafaei
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran
- Department of Physiology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Maryam Alizadeh
- Department of Basic Medical Sciences, Faculty of Medicine, Qom Medical Sciences, Islamic Azad University, Qom, Iran
| | - Masoomeh Dadkhah
- Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Sakineh Shafia
- Immunogenetics Research Center, Department of Physiology, Mazandaran University of Medical Sciences, Sari, Iran
| | | | - Ramtin Naderian
- Student Research Committee, Semnan University of Medical Sciences, Semnan, Iran
| | - Seyed Afshin Samaei
- Department of Neurology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Ali Rashidy-Pour
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran
- Department of Physiology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| |
Collapse
|
7
|
Moreira LKS, Moreira CVL, Custódio CHX, Dias MLP, Rosa DA, Ferreira-Neto ML, Colombari E, Costa EA, Fajemiroye JO, Pedrino GR. Post-partum depression: From clinical understanding to preclinical assessments. Front Psychiatry 2023; 14:1173635. [PMID: 37143780 PMCID: PMC10151489 DOI: 10.3389/fpsyt.2023.1173635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 03/29/2023] [Indexed: 05/06/2023] Open
Abstract
Post-partum depression (PPD) with varying clinical manifestations affecting new parents remains underdiagnosed and poorly treated. This minireview revisits the pharmacotherapy, and relevant etiological basis, capable of advancing preclinical research frameworks. Maternal tasks accompanied by numerous behavioral readouts demand modeling different paradigms that reflect the complex and heterogenous nature of PPD. Hence, effective PPD-like characterization in animals towards the discovery of pharmacological intervention demands research that deepens our understanding of the roles of hormonal and non-hormonal components and mediators of this psychiatric disorder.
Collapse
Affiliation(s)
| | | | | | - Matheus L. P. Dias
- Institute of Biological Sciences, Federal University of Goiás, Goiania, GO, Brazil
| | - Daniel A. Rosa
- Institute of Biological Sciences, Federal University of Goiás, Goiania, GO, Brazil
| | - Marcos L. Ferreira-Neto
- Department of Physiology, Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, Brazil
| | - Eduardo Colombari
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University (UNESP), Araraquara, Brazil
| | - Elson A. Costa
- Institute of Biological Sciences, Federal University of Goiás, Goiania, GO, Brazil
| | - James O. Fajemiroye
- Institute of Biological Sciences, Federal University of Goiás, Goiania, GO, Brazil
- Graduate Program in Pharmaceutical Sciences, Campus Arthur Wesley Archibald, Evangelical University of Goiás, Anápolis, Brazil
- *Correspondence: James O. Fajemiroye,
| | - Gustavo R. Pedrino
- Institute of Biological Sciences, Federal University of Goiás, Goiania, GO, Brazil
| |
Collapse
|
8
|
Kumari R, Fazekas EA, Morvai B, Udvari EB, Dóra F, Zachar G, Székely T, Pogány Á, Dobolyi Á. Transcriptomics of Parental Care in the Hypothalamic-Septal Region of Female Zebra Finch Brain. Int J Mol Sci 2022; 23:ijms23052518. [PMID: 35269661 PMCID: PMC8910180 DOI: 10.3390/ijms23052518] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/21/2022] [Accepted: 02/22/2022] [Indexed: 02/07/2023] Open
Abstract
(1) Background: The objective of this study was to uncover genomic causes of parental care. Since birds do not lactate and, therefore, do not show the gene expressional changes required for lactation, we investigate gene expression associated with parenting in caring and non-caring females in an avian species, the small passerine bird zebra finch (Taeniopygia guttata). Here, we compare expression patterns in the hypothalamic–septal region since, previously, we showed that this area is activated in parenting females. (2) Methods: Transcriptome sequencing was first applied in a dissected part of the zebra finch brain related to taking care of the nestlings as compared to a control group of social pairs without nestlings. (3) Results: We found genes differentially expressed between caring and non-caring females. When introducing a log2fold change threshold of 1.5, 13 annotated genes were significantly upregulated in breeding pairs, while 39 annotated genes were downregulated. Significant enrichments of dopamine and acetylcholine biosynthetic processes were identified among upregulated pathways, while pro-opiomelanocortin and thyroid hormone pathways were downregulated, suggesting the importance of these systems in parental care. Network analysis further suggested neuro-immunological changes in mothers. (4) Conclusions: The results confirm the roles of several hypothesized major pathways in parental care, whereas novel pathways are also proposed.
Collapse
Affiliation(s)
- Rashmi Kumari
- MTA-ELTE Laboratory of Molecular and Systems Neurobiology, Eötvös Loránd Network of Research Excellence and Eötvös Loránd University, 1117 Budapest, Hungary; (R.K.); (E.A.F.); (E.B.U.)
- Department of Physiology and Neurobiology, Eötvös Loránd University, 1117 Budapest, Hungary
| | - Emese A. Fazekas
- MTA-ELTE Laboratory of Molecular and Systems Neurobiology, Eötvös Loránd Network of Research Excellence and Eötvös Loránd University, 1117 Budapest, Hungary; (R.K.); (E.A.F.); (E.B.U.)
- Department of Ethology, Eötvös Loránd University, 1117 Budapest, Hungary; (B.M.); (Á.P.)
| | - Boglárka Morvai
- Department of Ethology, Eötvös Loránd University, 1117 Budapest, Hungary; (B.M.); (Á.P.)
| | - Edina B. Udvari
- MTA-ELTE Laboratory of Molecular and Systems Neurobiology, Eötvös Loránd Network of Research Excellence and Eötvös Loránd University, 1117 Budapest, Hungary; (R.K.); (E.A.F.); (E.B.U.)
| | - Fanni Dóra
- Department of Anatomy, Histology and Embryology, Semmelweis University, 1093 Budapest, Hungary; (F.D.); (G.Z.)
| | - Gergely Zachar
- Department of Anatomy, Histology and Embryology, Semmelweis University, 1093 Budapest, Hungary; (F.D.); (G.Z.)
| | - Tamás Székely
- Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, UK;
| | - Ákos Pogány
- Department of Ethology, Eötvös Loránd University, 1117 Budapest, Hungary; (B.M.); (Á.P.)
| | - Árpád Dobolyi
- MTA-ELTE Laboratory of Molecular and Systems Neurobiology, Eötvös Loránd Network of Research Excellence and Eötvös Loránd University, 1117 Budapest, Hungary; (R.K.); (E.A.F.); (E.B.U.)
- Department of Physiology and Neurobiology, Eötvös Loránd University, 1117 Budapest, Hungary
- Correspondence: ; Tel.: +36-1-372-2500 (ext. 8775)
| |
Collapse
|
9
|
Calik-Ksepka A, Stradczuk M, Czarnecka K, Grymowicz M, Smolarczyk R. Lactational Amenorrhea: Neuroendocrine Pathways Controlling Fertility and Bone Turnover. Int J Mol Sci 2022; 23:ijms23031633. [PMID: 35163554 PMCID: PMC8835773 DOI: 10.3390/ijms23031633] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/28/2022] [Accepted: 01/28/2022] [Indexed: 02/06/2023] Open
Abstract
Lactation is a physiological state of hyperprolactinemia and associated amenorrhea. Despite the fact that exact mechanisms standing behind the hypothalamus-pituitary-ovarian axis during lactation are still not clear, a general overview of events leading to amenorrhea may be suggested. Suckling remains the most important stimulus maintaining suppressive effect on ovaries after pregnancy. Breastfeeding is accompanied by high levels of prolactin, which remain higher than normal until the frequency and duration of daily suckling decreases and allows normal menstrual function resumption. Hyperprolactinemia induces the suppression of hypothalamic Kiss1 neurons that directly control the pulsatile release of GnRH. Disruption in the pulsatile manner of GnRH secretion results in a strongly decreased frequency of corresponding LH pulses. Inadequate LH secretion and lack of pre-ovulatory surge inhibit the progression of the follicular phase of a menstrual cycle and result in anovulation and amenorrhea. The main consequences of lactational amenorrhea are connected with fertility issues and increased bone turnover. Provided the fulfillment of all the established conditions of its use, the lactational amenorrhea method (LAM) efficiently protects against pregnancy. Because of its accessibility and lack of additional associated costs, LAM might be especially beneficial in low-income, developing countries, where modern contraception is hard to obtain. Breastfeeding alone is not equal to the LAM method, and therefore, it is not enough to successfully protect against conception. That is why LAM promotion should primarily focus on conditions under which its use is safe and effective. More studies on larger study groups should be conducted to determine and confirm the impact of behavioral factors, like suckling parameters, on the LAM efficacy. Lactational bone loss is a physiologic mechanism that enables providing a sufficient amount of calcium to the newborn. Despite the decline in bone mass during breastfeeding, it rebuilds after weaning and is not associated with a postmenopausal decrease in BMD and osteoporosis risk. Therefore, it should be a matter of concern only for lactating women with additional risk factors or with low BMD before pregnancy. The review summarizes the effect that breastfeeding exerts on the hypothalamus-pituitary axis as well as fertility and bone turnover aspects of lactational amenorrhea. We discuss the possibility of the use of lactation as contraception, along with this method's prevalence, efficacy, and influencing factors. We also review the literature on the topic of lactational bone loss: its mechanism, severity, and persistence throughout life.
Collapse
Affiliation(s)
- Anna Calik-Ksepka
- Department of Gynaecological Endocrinology, Medical University of Warsaw, Karowa 2, 00-315 Warsaw, Poland; (M.G.); (R.S.)
- Correspondence:
| | - Monika Stradczuk
- Student’s Academic Association, Department of Gynecological Endocrinology, Faculty of Medicine, Medical University of Warsaw, Żwirki i Wigury 61, 02-091 Warsaw, Poland; (M.S.); (K.C.)
| | - Karolina Czarnecka
- Student’s Academic Association, Department of Gynecological Endocrinology, Faculty of Medicine, Medical University of Warsaw, Żwirki i Wigury 61, 02-091 Warsaw, Poland; (M.S.); (K.C.)
| | - Monika Grymowicz
- Department of Gynaecological Endocrinology, Medical University of Warsaw, Karowa 2, 00-315 Warsaw, Poland; (M.G.); (R.S.)
| | - Roman Smolarczyk
- Department of Gynaecological Endocrinology, Medical University of Warsaw, Karowa 2, 00-315 Warsaw, Poland; (M.G.); (R.S.)
| |
Collapse
|
10
|
Abstract
Fluid secretion by exocrine glandular organs is essential to the survival of mammals. Each glandular unit within the body is uniquely organized to carry out its own specific functions, with failure to establish these specialized structures resulting in impaired organ function. Here, we review glandular organs in terms of shared and divergent architecture. We first describe the structural organization of the diverse glandular secretory units (the end-pieces) and their fluid transporting systems (the ducts) within the mammalian system, focusing on how tissue architecture corresponds to functional output. We then highlight how defects in development of end-piece and ductal architecture impacts secretory function. Finally, we discuss how knowledge of exocrine gland structure-function relationships can be applied to the development of new diagnostics, regenerative approaches and tissue regeneration.
Collapse
Affiliation(s)
- Sameed Khan
- Department of Obstetrics Gynecology and Reproductive Biology, Michigan State University, East Lansing, MI 48824, USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Sarah Fitch
- Department of Obstetrics Gynecology and Reproductive Biology, Michigan State University, East Lansing, MI 48824, USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Sarah Knox
- Department of Cell and Tissue Biology, University of California, San Francisco, CA 94143, USA
| | - Ripla Arora
- Department of Obstetrics Gynecology and Reproductive Biology, Michigan State University, East Lansing, MI 48824, USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
11
|
Kirsch P, Kunadia J, Shah S, Agrawal N. Metabolic effects of prolactin and the role of dopamine agonists: A review. Front Endocrinol (Lausanne) 2022; 13:1002320. [PMID: 36246929 PMCID: PMC9562454 DOI: 10.3389/fendo.2022.1002320] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 09/15/2022] [Indexed: 11/13/2022] Open
Abstract
Prolactin is a polypeptide hormone that is well known for its role in reproductive physiology. Recent studies highlight its role in neurohormonal appetite regulation and metabolism. Elevated prolactin levels are widely associated with worsening metabolic disease, but it appears that low prolactin levels could also be metabolically unfavorable. This review discusses the pathophysiology of prolactin related metabolic changes, and the less commonly recognized effects of prolactin on adipose tissue, pancreas, liver, and small bowel. Furthermore, the effect of dopamine agonists on the metabolic profiles of patients with hyperprolactinemia are discussed as well.
Collapse
Affiliation(s)
- Polly Kirsch
- New York University (NYU) Grossman School of Medicine, NYU Langone Health, New York, NY, United States
| | - Jessica Kunadia
- Department of Medicine, NYU Langone Health, New York, NY, United States
| | - Shruti Shah
- New York University (NYU) Grossman School of Medicine, NYU Langone Health, New York, NY, United States
| | - Nidhi Agrawal
- Department of Medicine, NYU Langone Health, New York, NY, United States
- *Correspondence: Nidhi Agrawal,
| |
Collapse
|
12
|
Markov AG, Shadrin LV, Kruglova NM, Fedorova AA, Razgovorova IA, Chernysheva MP. Is Thyrotropin-Releasing Hormone an Integrator of Prolactin- and Oxytocin-Dependent Processes in the Mammary Gland and Maternal Behavior of Lactating Mice? J EVOL BIOCHEM PHYS+ 2021. [DOI: 10.1134/s0022093021050203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
13
|
Li D, Liu X, Li T, Wang X, Jia S, Wang P, Wang YF. Involvement of Protein Kinase A in Oxytocin Neuronal Activity in Rat Dams with Pup Deprivation. Neurochem Res 2021; 46:980-991. [PMID: 33611682 DOI: 10.1007/s11064-020-03218-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/20/2020] [Accepted: 12/27/2020] [Indexed: 10/22/2022]
Abstract
Oxytocin (OT) neuronal activity is the key factor for breastfeeding and it can be disrupted by mother-baby separation. To explore cellular mechanisms underlying OT neuronal activity, we studied the role of protein kinase A (PKA) in OT neuronal activity in the supraoptic nucleus (SON) using a rodent model of pup deprivation (PD) Intermittent (IPD) or continuous (CPD) PD significantly reduced suckling duration and number of milk ejections in lactating rats, particularly those with CPD. In Western blots of the SON, PD increased expressions of OT receptor (OTR) and its immediate downstream effectors, Gαq and Gβ subunits, particularly IPD, but reduced the expression of catalytic subunit of PKA (cPKA). In brain slices, inhibition of PKA blocked prostaglandin E2-evoked increase in firing activity including burst firing in OT neurons. In IPD dams, filamentous actin formed ring-like structures in the cytoplasmic region of OT neurons, which was reduced in CPD. Moreover, molecular association between actin and cPKA also reduced in PD dams. Incubation of brain slices with OT reduced the expression of cPKA, which was blocked by pretreatment with atosiban, an antagonist of OTR. These results indicate that PD disrupts OT neuronal activity through dissociating the Gq proteins and PKA in OTR-associated signaling cascade, which couples with reduced interactions between filamentous actin and PKA in OT neurons in the SON. This study highlights that PKA can be a novel target treating abnormal OT neuronal activity and its associated diseases.
Collapse
Affiliation(s)
- Dongyang Li
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, 150081, China
- Department of Physiology, Hainan Medical University, Haikou, China
| | - Xiaoyu Liu
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, 150081, China
| | - Tong Li
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, 150081, China
| | - Xiaoran Wang
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, 150081, China
| | - Shuwei Jia
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, 150081, China
| | - Ping Wang
- Department of Genetics, School of Basic Medical Sciences, Harbin Medical University, Harbin, 150081, China
| | - Yu-Feng Wang
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, 150081, China.
| |
Collapse
|
14
|
Pires J, Nelissen R, Mansvelder HD, Meredith RM. Spontaneous synchronous network activity in the neonatal development of mPFC in mice. Dev Neurobiol 2021; 81:207-225. [PMID: 33453138 PMCID: PMC8048581 DOI: 10.1002/dneu.22811] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 12/31/2020] [Accepted: 01/03/2021] [Indexed: 12/28/2022]
Abstract
Spontaneous Synchronous Network Activity (SSA) is a hallmark of neurodevelopment found in numerous central nervous system structures, including neocortex. SSA occurs during restricted developmental time‐windows, commonly referred to as critical periods in sensory neocortex. Although part of the neocortex, the critical period for SSA in the medial prefrontal cortex (mPFC) and the underlying mechanisms for generation and propagation are unknown. Using Ca2+ imaging and whole‐cell patch‐clamp in an acute mPFC slice mouse model, the development of spontaneous activity and SSA was investigated at cellular and network levels during the two first postnatal weeks. The data revealed that developing mPFC neuronal networks are spontaneously active and exhibit SSA in the first two postnatal weeks, with peak synchronous activity at postnatal days (P)8–9. Networks remain active but are desynchronized by the end of this 2‐week period. SSA was driven by excitatory ionotropic glutamatergic transmission with a small contribution of excitatory GABAergic transmission at early time points. The neurohormone oxytocin desynchronized SSA in the first postnatal week only without affecting concurrent spontaneous activity. By the end of the second postnatal week, inhibiting GABAA receptors restored SSA. These findings point to the emergence of GABAA receptor‐mediated inhibition as a major factor in the termination of SSA in mouse mPFC.
Collapse
Affiliation(s)
- Johny Pires
- Department of Integrative Neurophysiology, Center for Neurogenomics & Cognitive Research, Faculty of Science, Neuroscience Campus Amsterdam, VU University Amsterdam, Amsterdam, the Netherlands
| | - Rosalie Nelissen
- Department of Integrative Neurophysiology, Center for Neurogenomics & Cognitive Research, Faculty of Science, Neuroscience Campus Amsterdam, VU University Amsterdam, Amsterdam, the Netherlands
| | - Huibert D Mansvelder
- Department of Integrative Neurophysiology, Center for Neurogenomics & Cognitive Research, Faculty of Science, Neuroscience Campus Amsterdam, VU University Amsterdam, Amsterdam, the Netherlands
| | - Rhiannon M Meredith
- Department of Integrative Neurophysiology, Center for Neurogenomics & Cognitive Research, Faculty of Science, Neuroscience Campus Amsterdam, VU University Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
15
|
Tai APL, Lau WKW. Revisit the Effectiveness of Educational Kinesiology on Stress and Anxiety Amelioration in Kindergarteners With Special Needs Using Biological Measures. Front Psychiatry 2021; 12:773659. [PMID: 34955921 PMCID: PMC8702520 DOI: 10.3389/fpsyt.2021.773659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 11/19/2021] [Indexed: 11/16/2022] Open
Abstract
Background: Educational kinesiology is a popular intervention that aims to improve brain functioning via physical movements. Yet, it lacks supporting scientific evidence and is regarded as pseudoscience. Given the popularity of educational kinesiology in school settings, it is important to revisit its effectiveness through scientific research. Previous studies that evaluated the effectiveness of educational kinesiology relied mainly on subjective measures, in which subjective bias is inevitable. Cortisol and oxytocin levels in saliva have been reported to be reliable stress and anxiety markers that provide unbiased objective data. This study explores the effect of educational kinesiology on the changes in salivary cortisol and oxytocin levels in kindergarteners with special needs. Methods: A quasi-experimental design was adopted in this study. Thirty-seven kindergarteners (3.5-6.5 years old) who were either diagnosed with one type of special needs or referred by school principals due to the requirement of special supports at school were assigned to either the intervention group, which received 1-h educational kinesiology intervention weekly for a total of 10 weeks, or the wait-list control group. Saliva samples were collected at baseline and after the completion of intervention programme for the measurement of cortisol and oxytocin levels. Scores of Parent-rated Preschool Anxiety Scale (PAS-TC) were also collected at pre- and post-intervention. Because of the small samples, non-parametric tests such as Mann-Whitney U test, Quade test, and Fisher's exact tests were used in this study where appropriate. Results: After controlled for the effect at baseline, gender and types of special needs, the changes in oxytocin levels were significantly higher in the intervention group compared with control [F (1, 35) = 4.747, p = 0.036, eta2 = 0.119], whereas no significant between-group difference in changes of cortisol levels was observed [F (1, 35) = 0.306, p = 0.584, eta2 = 0.009]. Results from PAS-TC showed significant improvement in anxiety levels after the intervention in the intervention group (p = 0.048, ϕ = 0.344, p = 0.037). Conclusions: Our findings suggest a plausible anti-anxiety effect of educational kinesiology in kindergarteners with special needs by elevating the oxytocin levels. Future studies are warranted to further confirm our findings with a larger sample.
Collapse
Affiliation(s)
- Alan Pui-Lun Tai
- Department of Special Education and Counselling, The Education University of Hong Kong, Hong Kong, Hong Kong SAR, China.,Integrated Centre for Wellbeing, The Education University of Hong Kong, Hong Kong, Hong Kong SAR, China.,Bioanalytical Laboratory for Educational Sciences, The Education University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Way Kwok-Wai Lau
- Department of Special Education and Counselling, The Education University of Hong Kong, Hong Kong, Hong Kong SAR, China.,Integrated Centre for Wellbeing, The Education University of Hong Kong, Hong Kong, Hong Kong SAR, China.,Bioanalytical Laboratory for Educational Sciences, The Education University of Hong Kong, Hong Kong, Hong Kong SAR, China
| |
Collapse
|
16
|
Grinman D, Athonvarungkul D, Wysolmerski J, Jeong J. Calcium Metabolism and Breast Cancer: Echoes of Lactation? ACTA ACUST UNITED AC 2020; 15:63-70. [PMID: 33299957 DOI: 10.1016/j.coemr.2020.11.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Lactation requires a series of adaptations in maternal calcium and bone metabolism to ensure a steady supply of calcium to the lactating mammary gland. The alterations in systemic metabolism are accompanied by alterations in the expression of calcium receptors, channels, binding proteins, pumps and transporters in mammary epithelial cells to increase the uptake of calcium from the extracellular fluid and to transport it into milk. Intracellular calcium regulates signaling pathways that mediate changes in cell proliferation, differentiation and death and many of the molecules involved in supporting and coordinating calcium secretion into milk are re-expressed and redeployed to support malignant behavior in breast cancer cells. In this article, we review adaptations of systemic calcium homeostasis during lactation, as well as the mechanisms of milk calcium transport. We then discuss how reactivation of these pathways contributes to the pathophysiology of breast cancer.
Collapse
Affiliation(s)
- Diego Grinman
- Section of Endocrinology and Metabolism, Department of Medicine, Yale School of Medicine
| | - Diana Athonvarungkul
- Section of Endocrinology and Metabolism, Department of Medicine, Yale School of Medicine
| | - John Wysolmerski
- Section of Endocrinology and Metabolism, Department of Medicine, Yale School of Medicine
| | - Jaekwang Jeong
- Section of Endocrinology and Metabolism, Department of Medicine, Yale School of Medicine
| |
Collapse
|
17
|
Dobolyi A, Oláh S, Keller D, Kumari R, Fazekas EA, Csikós V, Renner É, Cservenák M. Secretion and Function of Pituitary Prolactin in Evolutionary Perspective. Front Neurosci 2020; 14:621. [PMID: 32612510 PMCID: PMC7308720 DOI: 10.3389/fnins.2020.00621] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Accepted: 05/19/2020] [Indexed: 12/16/2022] Open
Abstract
The hypothalamo-pituitary system developed in early vertebrates. Prolactin is an ancient vertebrate hormone released from the pituitary that exerts particularly diverse functions. The purpose of the review is to take a comparative approach in the description of prolactin, its secretion from pituitary lactotrophs, and hormonal functions. Since the reproductive and osmoregulatory roles of prolactin are best established in a variety of species, these functions are the primary subjects of discussion. Different types of prolactin and prolactin receptors developed during vertebrate evolution, which will be described in this review. The signal transduction of prolactin receptors is well conserved among vertebrates enabling us to describe the whole subphylum. Then, the review focuses on the regulation of prolactin release in mammals as we have the most knowledge on this class of vertebrates. Prolactin secretion in response to different reproductive stimuli, such as estrogen-induced release, mating, pregnancy and suckling is detailed. Reproduction in birds is different from that in mammals in several aspects. Prolactin is released during incubation in avian species whose regulation and functional significance are discussed. Little information is available on prolactin in reptiles and amphibians; therefore, they are mentioned only in specific cases to explain certain evolutionary aspects. In turn, the osmoregulatory function of prolactin is well established in fish. The different types of pituitary prolactin in fish play particularly important roles in the adaptation of eutherian species to fresh water environments. To achieve this function, prolactin is released from lactotrophs in hyposmolarity, as they are directly osmosensitive in fish. In turn, the released prolactin acts on branchial epithelia, especially ionocytes of the gill to retain salt and excrete water. This review will highlight the points where comparative data give new ideas or suggest new approaches for investigation in other taxa.
Collapse
Affiliation(s)
- Arpád Dobolyi
- MTA-ELTE Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology, Institute of Biology, Eötvös Loránd University, Budapest, Hungary
- Laboratory of Neuromorphology, Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Szilvia Oláh
- MTA-ELTE Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology, Institute of Biology, Eötvös Loránd University, Budapest, Hungary
| | - Dávid Keller
- Laboratory of Neuromorphology, Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Rashmi Kumari
- MTA-ELTE Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology, Institute of Biology, Eötvös Loránd University, Budapest, Hungary
| | - Emese A. Fazekas
- MTA-ELTE Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology, Institute of Biology, Eötvös Loránd University, Budapest, Hungary
| | - Vivien Csikós
- MTA-ELTE Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology, Institute of Biology, Eötvös Loránd University, Budapest, Hungary
| | - Éva Renner
- Human Brain Tissue Bank and Microdissection Laboratory, Semmelweis University, Budapest, Hungary
| | - Melinda Cservenák
- MTA-ELTE Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology, Institute of Biology, Eötvös Loránd University, Budapest, Hungary
| |
Collapse
|
18
|
Schredelseker T, Veit F, Dorsky RI, Driever W. Bsx Is Essential for Differentiation of Multiple Neuromodulatory Cell Populations in the Secondary Prosencephalon. Front Neurosci 2020; 14:525. [PMID: 32581684 PMCID: PMC7290237 DOI: 10.3389/fnins.2020.00525] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 04/28/2020] [Indexed: 01/17/2023] Open
Abstract
The hypothalamus is characterized by great neuronal diversity, with many neuropeptides and other neuromodulators being expressed within its multiple anatomical domains. The regulatory networks directing hypothalamic development have been studied in detail, but, for many neuron types, control of differentiation is still not understood. The highly conserved Brain-specific homeobox (Bsx) transcription factor has previously been described in regulating Agrp and Npy expression in the hypothalamic arcuate nucleus (ARC) in mice. While Bsx is expressed in many more subregions of both tuberal and mamillary hypothalamus, the functions therein are not known. Using genetic analyses in zebrafish, we show that most bsx expression domains are dependent on Nkx2.1 and Nkx2.4 homeodomain transcription factors, while a subset depends on Otp. We show that the anatomical pattern of the ventral forebrain appears normal in bsx mutants, but that Bsx is necessary for the expression of many neuropeptide encoding genes, including agrp, penka, vip, trh, npb, and nts, in distinct hypothalamic anatomical domains. We also found Bsx to be critical for normal expression of two Crh family members, crhb and uts1, as well as crhbp, in the hypothalamus and the telencephalic septal region. Furthermore, we demonstrate a crucial role for Bsx in serotonergic, histaminergic and nitrergic neuron development in the hypothalamus. We conclude that Bsx is critical for the terminal differentiation of multiple neuromodulatory cell types in the forebrain.
Collapse
Affiliation(s)
- Theresa Schredelseker
- Developmental Biology, Institute Biology 1, Faculty of Biology, Albert Ludwig University of Freiburg, Freiburg im Breisgau, Germany.,BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg im Breisgau, Germany.,CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg im Breisgau, Germany
| | - Florian Veit
- Developmental Biology, Institute Biology 1, Faculty of Biology, Albert Ludwig University of Freiburg, Freiburg im Breisgau, Germany
| | - Richard I Dorsky
- Department of Neurobiology & Anatomy, University of Utah, Salt Lake City, UT, United States
| | - Wolfgang Driever
- Developmental Biology, Institute Biology 1, Faculty of Biology, Albert Ludwig University of Freiburg, Freiburg im Breisgau, Germany.,BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg im Breisgau, Germany.,CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg im Breisgau, Germany
| |
Collapse
|
19
|
Tóth A, Pethő M, Keserű D, Simon D, Hajnik T, Détári L, Dobolyi Á. Complete sleep and local field potential analysis regarding estrus cycle, pregnancy, postpartum and post-weaning periods and homeostatic sleep regulation in female rats. Sci Rep 2020; 10:8546. [PMID: 32444809 PMCID: PMC7244504 DOI: 10.1038/s41598-020-64881-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 03/05/2020] [Indexed: 02/07/2023] Open
Abstract
Sleep and local field potential (LFP) characteristics were addressed during the reproductive cycle in female rats using long-term (60-70 days) recordings. Changes in homeostatic sleep regulation was tested by sleep deprivation (SDep). The effect of mother-pup separation on sleep was also investigated during the postpartum (PP) period. First half of the pregnancy and early PP period showed increased wakefulness (W) and higher arousal indicated by elevated beta and gamma activity. Slow wave sleep (SWS) recovery was suppressed while REM sleep replacement was complete after SDep in the PP period. Pup separation decreased maternal W during early-, but increased during middle PP while did not affect during late PP. More W, less SWS, higher light phase beta activity but lower gamma activity was seen during the post-weaning estrus cycle compared to the virgin one. Maternal sleep can be governed by the fetuses/pups needs and their presence, which elevate W of mothers. Complete REM sleep- and incomplete SWS replacement after SDep in the PP period may reflect the necessity of maternal REM sleep for the offspring while SWS increase may compete with W essential for maternal care. Maternal experience may cause sleep and LFP changes in the post-weaning estrus cycle.
Collapse
Affiliation(s)
- Attila Tóth
- In vivo Electrophysiology Research Group, Department of Physiology and Neurobiology, Eötvös Loránd University, Budapest, Hungary.
| | - Máté Pethő
- In vivo Electrophysiology Research Group, Department of Physiology and Neurobiology, Eötvös Loránd University, Budapest, Hungary
| | - Dóra Keserű
- In vivo Electrophysiology Research Group, Department of Physiology and Neurobiology, Eötvös Loránd University, Budapest, Hungary
| | - Dorina Simon
- MTA-ELTE Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology, Hungarian Academy of Sciences and Eötvös Loránd University, Budapest, Hungary
| | - Tünde Hajnik
- In vivo Electrophysiology Research Group, Department of Physiology and Neurobiology, Eötvös Loránd University, Budapest, Hungary
| | - László Détári
- In vivo Electrophysiology Research Group, Department of Physiology and Neurobiology, Eötvös Loránd University, Budapest, Hungary
| | - Árpád Dobolyi
- MTA-ELTE Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology, Hungarian Academy of Sciences and Eötvös Loránd University, Budapest, Hungary
| |
Collapse
|
20
|
Golan Y, Assaraf YG. Genetic and Physiological Factors Affecting Human Milk Production and Composition. Nutrients 2020; 12:E1500. [PMID: 32455695 PMCID: PMC7284811 DOI: 10.3390/nu12051500] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 05/17/2020] [Accepted: 05/19/2020] [Indexed: 02/07/2023] Open
Abstract
Human milk is considered the optimal nutrition for infants as it provides additional attributes other than nutritional support for the infant and contributes to the mother's health as well. Although breastfeeding is the most natural modality to feed infants, nowadays, many mothers complain about breastfeeding difficulties. In addition to environmental factors that may influence lactation outcomes including maternal nutrition status, partner's support, stress, and latching ability of the infant, intrinsic factors such as maternal genetics may also affect the quantitative production and qualitative content of human milk. These genetic factors, which may largely affect the infant's growth and development, as well as the mother's breastfeeding experience, are the subject of the present review. We specifically describe genetic variations that were shown to affect quantitative human milk supply and/or its qualitative content. We further discuss possible implications and methods for diagnosis as well as treatment modalities. Although cases of nutrient-deficient human milk are considered rare, in some ethnic groups, genetic variations that affect human milk content are more abundant, and they should receive greater attention for diagnosis and treatment when necessary. From a future perspective, early genetic diagnosis should be directed to target and treat breastfeeding difficulties in real time.
Collapse
Affiliation(s)
| | - Yehuda G. Assaraf
- The Fred Wyszkowski Cancer Research Laboratory, Department of Biology, Technion-Israel Institute of Technology, Haifa 3200003, Israel;
| |
Collapse
|
21
|
Kutina AV, Makashov AA, Balbotkina EV, Karavashkina TA, Natochin YV. Subtypes of Neurohypophyseal Nonapeptide Receptors and Their Functions in Rat Kidneys. Acta Naturae 2020; 12:73-83. [PMID: 32477601 PMCID: PMC7245957 DOI: 10.32607/actanaturae.10943] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 02/11/2020] [Indexed: 11/20/2022] Open
Abstract
The nonapeptides of neurohypophysis, vasotocin and mesotocin, detected in most vertebrates, are replaced by vasopressin and oxytocin in mammals. Using bioinformatics methods, we determined the spectrum of receptor subtypes for these hormones in mammals and their physiological effects in the kidneys of rats. A search for sequences similar to the vertebrate vasotocin receptor by proteomes and transcriptomas of nine mammalian species and the rat genome revealed three subtypes of vasopressin receptors (V1a, V1b, and V2) and one type of oxytocin receptors. In the kidneys of non-anesthetized rats, which received a water load of 2 ml per 100 g of body weight, three effects of vasopressin were revealed: 1) increased reabsorption of water and sodium, 2) increased excretion of potassium ions, and 3) increased excretion of sodium ions. It has been suggested that each of the effects on the kidney is associated with selective stimulation of the vasopressin receptor subtypes V2, V1b, and V1a depending on the concentration of nonapeptide. In experiments on non-anaesthetized rats with a water load, the injection of oxytocin reduces the reabsorption of solute-free water in the kidneys and increases the excretion of sodium ions. The possible physiological mechanisms behind the realization of both effects with the participation of a single type of oxytocin receptors are being analyzed. Thus, the spectrum of activated receptor subtypes varies depending on the current concentration of neurohypophyseal hormones, as a result of which the predominant effect on renal function changes, which ensures precise regulation of water-salt homeostasis.
Collapse
Affiliation(s)
- A. V. Kutina
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, Saint Petersburg, 194223 Russia
| | - A. A. Makashov
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, Saint Petersburg, 194223 Russia
| | - E. V. Balbotkina
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, Saint Petersburg, 194223 Russia
| | - T. A. Karavashkina
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, Saint Petersburg, 194223 Russia
| | - Yu. V. Natochin
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, Saint Petersburg, 194223 Russia
| |
Collapse
|
22
|
Abstract
Hyperprolactinaemia is one of the most common problems in clinical endocrinology. It relates with various aetiologies (physiological, pharmacological, pathological), the clarification of which requires careful history taking and clinical assessment. Analytical issues (presence of macroprolactin or of the hook effect) need to be taken into account when interpreting the prolactin values. Medications and sellar/parasellar masses (prolactin secreting or acting through “stalk effect”) are the most common causes of pathological hyperprolactinaemia. Hypogonadism and galactorrhoea are well-recognized manifestations of prolactin excess, although its implications on bone health, metabolism and immune system are also expanding. Treatment mainly aims at restoration and maintenance of normal gonadal function/fertility, and prevention of osteoporosis; further specific management strategies depend on the underlying cause. In this review, we provide an update on the diagnostic and management approaches for the patient with hyperprolactinaemia and on the current data looking at the impact of high prolactin on metabolism, cardiovascular and immune systems.
Collapse
|
23
|
Zong H, Meng F, Zhang Y, Wei G, Zhao H. Clinical study of the effects of deep brain stimulation on urinary dysfunctions in patients with Parkinson's disease. Clin Interv Aging 2019; 14:1159-1166. [PMID: 31417246 PMCID: PMC6599892 DOI: 10.2147/cia.s204368] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 05/11/2019] [Indexed: 11/23/2022] Open
Abstract
Purpose: To evaluate the effect of deep brain stimulation (DBS) on urinary dysfunctions in Parkinson’s patients. Patients and methods: A total of 416 patients, diagnosed with Parkinson’s disease (PD) based on the UK Parkinson’s Disease Society Brain Bank Diagnostic Criteria, were enrolled in the study, including 307 males and 109 females. The effects of DBS treatment on urinary functions during urination and bladder storage of these patients were evaluated using testing and assessment scales, such as the American Urological Association Symptom Index (AUA-SI), Overactive Bladder Symptom Scores (OAB-SS), Quality Of Life Scale (QOL), and urodynamic tests. The data were statistically analyzed with the chi-square test and both independent-samples t-test and paired-samples t-test were used in this study. Results: Symptoms of urinary dysfunctions, such as urinary frequency, urgency, and incontinence, in the patients with PD were notably relieved by DBS treatment (P<0.05), and the OAB-SS and bladder storage problems were greatly improved as well (P<0.05). Compared with those in male patients, DBS surgery significantly improved the AUA-SI, urinary symptom scores, and QOL in female PD patients (P<0.05), as well as other functional indicators related to the urinary tract, including the maximum urinary flow rate, detrusor pressure at peak flow, and residual urine volume in female PD patients (P<0.05). Conclusion: DBS surgery is effective in improving urinary functions in PD patients, as primarily reflected by the alleviation of urinary symptoms such as urinary frequency, urgency, and incontinence. Female PD patients displayed better urinary function outcomes from DBS treatment than did male patients.
Collapse
Affiliation(s)
- Huantao Zong
- Department of Urology, Beijing Tiantan Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Fangang Meng
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Yong Zhang
- Department of Urology, Beijing Tiantan Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Guangzhu Wei
- Department of Urology, Beijing Tiantan Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Huiqing Zhao
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, People's Republic of China
| |
Collapse
|
24
|
The role of neurotransmitters and neuromodulators in the pathogenesis of cluster headache: a review. Neurol Sci 2019; 40:39-44. [PMID: 30825019 DOI: 10.1007/s10072-019-03768-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The pathogenesis underlying cluster headache remains an unresolved issue. Although both the autonomic system and the hypothalamus play a central role, the modality of their involvement remains largely unknown. It is, also, unknown why the duration of the pain attacks is so brief and why their onset and termination are abrupt and extremely painful. This review summarizes the evidence to date accumulated in favor of a possible role of anomalies in the metabolism of tyrosine, tryptophan, and arginine in these unresolved issues.
Collapse
|
25
|
Keller M, Vandenberg LN, Charlier TD. The parental brain and behavior: A target for endocrine disruption. Front Neuroendocrinol 2019; 54:100765. [PMID: 31112731 PMCID: PMC6708493 DOI: 10.1016/j.yfrne.2019.100765] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 05/15/2019] [Accepted: 05/17/2019] [Indexed: 12/25/2022]
Abstract
During pregnancy, the sequential release of progesterone, 17β-estradiol, prolactin, oxytocin and placental lactogens reorganize the female brain. Brain structures such as the medial preoptic area, the bed nucleus of the stria terminalis and the motivation network including the ventral tegmental area and the nucleus accumbens are reorganized by this specific hormonal schedule such that the future mother will be ready to provide appropriate care for her offspring right at parturition. Any disruption to this hormone pattern, notably by exposures to endocrine disrupting chemicals (EDC), is therefore likely to affect the maternal brain and result in maladaptive maternal behavior. Development effects of EDCs have been the focus of intense study, but relatively little is known about how the maternal brain and behavior are affected by EDCs. We encourage further research to better understand how the physiological hormone sequence prepares the mother's brain and how EDC exposure could disturb this reorganization.
Collapse
Affiliation(s)
- Matthieu Keller
- Laboratoire de Physiologie de la Reproduction & des Comportements, UMR 7247 INRA/CNRS/Université de Tours/IFCE, Nouzilly, France
| | - Laura N Vandenberg
- School of Public Health and Health Sciences, University of Massachusetts, Amherst, USA
| | - Thierry D Charlier
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail), UMR_S 1085, F-35000 Rennes, France.
| |
Collapse
|
26
|
Grzeskowiak LE, Wlodek ME, Geddes DT. What Evidence Do We Have for Pharmaceutical Galactagogues in the Treatment of Lactation Insufficiency?-A Narrative Review. Nutrients 2019; 11:nu11050974. [PMID: 31035376 PMCID: PMC6567188 DOI: 10.3390/nu11050974] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 04/23/2019] [Accepted: 04/24/2019] [Indexed: 11/23/2022] Open
Abstract
Inadequate breast milk supply is a frequently reported reason for early discontinuation of breastfeeding and represents a critical opportunity for intervening to improve breastfeeding outcomes. For women who continue to experience insufficient milk supply despite the utilisation of non-pharmacological lactation support strategies, pharmacological intervention with medications used to augment lactation, commonly referred to as galactagogues, is common. Galactagogues exert their pharmacological effects through altering the complex hormonal milieu regulating lactation, particularly prolactin and oxytocin. This narrative review provides an appraisal of the existing evidence regarding the efficacy and safety of pharmaceutical treatments for lactation insufficiency to guide their use in clinical practice. The greatest body of evidence surrounds the use of domperidone, with studies demonstrating moderate short-term improvements in breast milk supply. Evidence regarding the efficacy and safety of metoclopramide is less robust, but given that it shares the same mechanism of action as domperidone it may represent a potential treatment alternative where domperidone is unsuitable. Data on remaining interventions such as oxytocin, prolactin and metformin is too limited to support their use in clinical practice. The review provides an overview of key evidence gaps and areas of future research, including the impacts of pharmaceutical galactagogues on breast milk composition and understanding factors contributing to individual treatment response to pharmaceutical galactagogues.
Collapse
Affiliation(s)
- Luke E Grzeskowiak
- Adelaide Medical School, Robinson Research Institute, The University of Adelaide, Adelaide, SA 5005, Australia.
- SA Pharmacy, Flinders Medical Centre, SA Health, Bedford Park, Adelaide, SA 5042, Australia.
| | - Mary E Wlodek
- Department of Physiology, The University of Melbourne, Melbourne, VIC 3010, Australia.
| | - Donna T Geddes
- School of Molecular Sciences, The University of Western Australia, Crawley, Perth, WA 6009, Australia.
| |
Collapse
|
27
|
Sox10 Regulates Plasticity of Epithelial Progenitors toward Secretory Units of Exocrine Glands. Stem Cell Reports 2019; 12:366-380. [PMID: 30713042 PMCID: PMC6373627 DOI: 10.1016/j.stemcr.2019.01.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 12/31/2018] [Accepted: 01/02/2019] [Indexed: 12/16/2022] Open
Abstract
Understanding how epithelial progenitors within exocrine glands establish specific cell lineages and form complex functional secretory units is vital for organ regeneration. Here we identify the transcription factor Sox10 as essential for both the maintenance and differentiation of epithelial KIT+FGFR2b+ progenitors into secretory units, containing acinar, myoepithelial, and intercalated duct cells. The KIT/FGFR2b-Sox10 axis marks the earliest multi-potent and tissue-specific progenitors of exocrine glands. Genetic deletion of epithelial Sox10 leads to loss of secretory units, which reduces organ size and function, but the ductal tree is retained. Intriguingly, the remaining duct progenitors do not compensate for loss of Sox10 and lack plasticity to properly form secretory units. However, overexpression of Sox10 in these ductal progenitors enhances their plasticity toward KIT+ progenitors and induces differentiation into secretory units. Therefore, Sox10 controls plasticity and multi-potency of epithelial KIT+ cells in secretory organs, such as mammary, lacrimal, and salivary glands. Sox10 marks the initial multi-potent KIT+ progenitors of exocrine glandular tissues KIT+ progenitors require Sox10 for their maintenance Sox10 is necessary for proper lineage development of secretory units Sox10 is sufficient to induce cell plasticity in non-KIT+ epithelial cells
Collapse
|
28
|
Klein MO, Battagello DS, Cardoso AR, Hauser DN, Bittencourt JC, Correa RG. Dopamine: Functions, Signaling, and Association with Neurological Diseases. Cell Mol Neurobiol 2019; 39:31-59. [PMID: 30446950 DOI: 10.1007/s10571-018-0632-3] [Citation(s) in RCA: 507] [Impact Index Per Article: 101.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 11/02/2018] [Indexed: 02/07/2023]
Abstract
The dopaminergic system plays important roles in neuromodulation, such as motor control, motivation, reward, cognitive function, maternal, and reproductive behaviors. Dopamine is a neurotransmitter, synthesized in both central nervous system and the periphery, that exerts its actions upon binding to G protein-coupled receptors. Dopamine receptors are widely expressed in the body and function in both the peripheral and the central nervous systems. Dopaminergic signaling pathways are crucial to the maintenance of physiological processes and an unbalanced activity may lead to dysfunctions that are related to neurodegenerative diseases. Unveiling the neurobiology and the molecular mechanisms that underlie these illnesses may contribute to the development of new therapies that could promote a better quality of life for patients worldwide. In this review, we summarize the aspects of dopamine as a catecholaminergic neurotransmitter and discuss dopamine signaling pathways elicited through dopamine receptor activation in normal brain function. Furthermore, we describe the potential involvement of these signaling pathways in evoking the onset and progression of some diseases in the nervous system, such as Parkinson's, Schizophrenia, Huntington's, Attention Deficit and Hyperactivity Disorder, and Addiction. A brief description of new dopaminergic drugs recently approved and under development treatments for these ailments is also provided.
Collapse
Affiliation(s)
- Marianne O Klein
- Laboratory of Chemical Neuroanatomy, Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, 05508-000, Brazil
| | - Daniella S Battagello
- Laboratory of Chemical Neuroanatomy, Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, 05508-000, Brazil
| | - Ariel R Cardoso
- Laboratory of Chemical Neuroanatomy, Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, 05508-000, Brazil
| | - David N Hauser
- Center for Translational Neuroscience, Sanford Burnham Prebys (SBP) Medical Discovery Institute, 10901 North Torrey Pines Rd., La Jolla, CA, 92037, USA
| | - Jackson C Bittencourt
- Laboratory of Chemical Neuroanatomy, Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, 05508-000, Brazil.
- Center for Neuroscience and Behavior, Institute of Psychology, USP, São Paulo, Brazil.
| | - Ricardo G Correa
- Center for Translational Neuroscience, Sanford Burnham Prebys (SBP) Medical Discovery Institute, 10901 North Torrey Pines Rd., La Jolla, CA, 92037, USA.
| |
Collapse
|
29
|
Mustoe A, Taylor JH, French JA. Oxytocin structure and function in New World monkeys: from pharmacology to behavior. Integr Zool 2018; 13:634-654. [PMID: 29436774 PMCID: PMC6089668 DOI: 10.1111/1749-4877.12318] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Oxytocin (OT) is a hypothalamic nonapeptide that mediates a host of physiological and behavioral processes including reproductive physiology and social attachments. While the OT sequence structure is highly conserved among mammals, New World monkeys (NWMs) represent an unusual "hot spot" in OT structure variability among mammals. At least 6 distinct OT ligand variants among NWMs exist, yet it is currently unclear whether these evolved structural changes result in meaningful functional consequences. NWMs offer a new area to explore how these modifications to OT and its canonical G-protein coupled OT receptor (OTR) may mediate specific cellular, physiological and behavioral outcomes. In this review, we highlight relationships between OT ligand and OTR structural variability, specifically examining coevolution between OT ligands, OTRs, and physiological and behavioral phenotypes across NWMs. We consider whether these evolved modifications to the OT structure alter pharmacological profiles at human and marmoset OTRs, including changes to receptor binding, intracellular signaling and receptor internalization. Finally, we evaluate whether exogenous manipulation using OT variants in marmoset monkeys differentially enhance or impair behavioral processes involved in social relationships between pairmates, opposite-sex strangers, and parents and their offspring. Overall, it appears that changes to OT ligands in NWMs result in important changes ranging from cellular signaling to broad measures of social behavior.
Collapse
Affiliation(s)
- Aaryn Mustoe
- Program in Neuroscience and Behavior, University of Nebraska at Omaha, Omaha, Nebraska, USA
| | - Jack H Taylor
- Program in Neuroscience and Behavior, University of Nebraska at Omaha, Omaha, Nebraska, USA
| | - Jeffrey A French
- Program in Neuroscience and Behavior, University of Nebraska at Omaha, Omaha, Nebraska, USA
| |
Collapse
|
30
|
Holschbach MA, Vitale EM, Lonstein JS. Serotonin-specific lesions of the dorsal raphe disrupt maternal aggression and caregiving in postpartum rats. Behav Brain Res 2018; 348:53-64. [PMID: 29653128 DOI: 10.1016/j.bbr.2018.04.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 03/28/2018] [Accepted: 04/06/2018] [Indexed: 11/29/2022]
Abstract
The behavioral modifications associated with early motherhood, which include high aggression, caring for the young, and low anxiety, are all affected by acute pharmacological manipulation of serotonin signaling. However, the effects on all these behaviors of permanently disrupting serotonin signaling from one of its primary sources, the dorsal raphe nucleus (DR), have not been examined in detail. To address this, serotonin-specific lesions centered on the dorsomedial DR (DRdm; DR subregion strongly implicated in emotional behaviors) were induced at mid-pregnancy (day 15) or early postpartum (day 2) in rats using a saporin-conjugated neurotoxin targeting the serotonin transporter (Anti-SERT-SAP). Prepartum or postpartum Anti-SERT-SAP reduced DRdm serotonin immunoreactivity by ∼40-65%, and postpartum Anti-SERT-SAP also reduced it in the ventromedial and lateral wings of the DR, as well as in the median raphe. Serotonin-immunoreactive fibers were significantly reduced in the anterior hypothalamus, but not medial preoptic area, of lesioned dams. Pre- or postpartum lesions both greatly reduced maternal aggression, but while prepartum lesions did not affect later undisturbed maternal caregiving, the larger postpartum lesions prevented the postpartum decline in kyphotic nursing and reduced pup licking. Serotonin lesions did not affect pup retrieval, but the prepartum lesions temporarily increased maternal hovering over and licking the pups observed immediately after the disruptive retrieval tests. Dams' anxiety-like behaviors and litter weight gains were unaffected by the lesions. These findings suggest that DRdm serotonin projecting to the AH is particularly critical for maternal aggression, but that more widespread disruption of midbrain raphe serotonin is necessary to greatly impair maternal caregiving. Postpartum anxiety may rely more on other neurochemical systems or different midbrain serotonergic cell populations.
Collapse
Affiliation(s)
- M Allie Holschbach
- Neuroscience Program, 108 Giltner Hall, Michigan State University, East Lansing, MI, 48824, USA
| | - Erika M Vitale
- Department of Psychology, 108 Giltner Hall, Michigan State University, East Lansing, MI, 48824, USA
| | - Joseph S Lonstein
- Neuroscience Program, 108 Giltner Hall, Michigan State University, East Lansing, MI, 48824, USA; Department of Psychology, 108 Giltner Hall, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
31
|
Katz TA, Wu AH, Stanczyk FZ, Wang R, Koh WP, Yuan JM, Oesterreich S, Butler LM. Determinants of prolactin in postmenopausal Chinese women in Singapore. Cancer Causes Control 2018; 29:51-62. [PMID: 29124543 PMCID: PMC5962355 DOI: 10.1007/s10552-017-0978-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 10/30/2017] [Indexed: 12/29/2022]
Abstract
PURPOSE Mechanistic and observational data together support a role for prolactin in breast cancer development. Determinants of prolactin in Asian populations have not been meaningfully explored, despite the lower risk of breast cancer in Asian populations. METHODS Determinants of plasma prolactin were evaluated in 442 postmenopausal women enrolled in the Singapore Chinese Health Study, a population-based prospective cohort study. At baseline all cohort members completed an in-person interview that elicited information on diet, menstrual and reproductive history, and lifestyle factors. One year after cohort initiation we began collecting blood samples. Quantified were plasma concentrations of prolactin, estrone, estradiol, testosterone, androstenedione, and sex hormone-binding globulin (SHBG). Analysis of covariance method was used for statistical analyses with age at blood draw, time since last meal, and time at blood draw as covariates. RESULTS Mean prolactin levels were 25.1% lower with older age at menarche (p value = 0.001), and 27.6% higher with greater years between menarche and menopause (p value = 0.009). Prolactin levels were also positively associated with increased sleep duration (p value = 0.005). The independent determinants of prolactin were years from menarche to menopause, hours of sleep, and the plasma hormones estrone and SHBG (all p values < 0.01). CONCLUSION The role of prolactin in breast cancer development may involve reproductive and lifestyle factors, such as a longer duration of menstrual cycling and sleep patterns.
Collapse
Affiliation(s)
- Tiffany A Katz
- Department of Pharmacology and Chemical Biology, Women's Cancer Research Center, Magee Women's Research Institute, University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
- Department of Molecular and Cellular Biology, The Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, USA
| | - Anna H Wu
- Department of Preventive Medicine, University of Southern California Keck School of Medicine, Los Angeles, CA, USA
| | - Frank Z Stanczyk
- Department of Urology, University of Southern California Keck School of Medicine, Los Angeles, CA, USA
| | - Renwei Wang
- Cancer Control and Population Sciences, University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
| | - Woon-Puay Koh
- Duke-NUS Medical School, Singapore, Singapore
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
| | - Jian-Min Yuan
- Cancer Control and Population Sciences, University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
- Department of Epidemiology, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA, USA
| | - Steffi Oesterreich
- Department of Pharmacology and Chemical Biology, Women's Cancer Research Center, Magee Women's Research Institute, University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
| | - Lesley M Butler
- Cancer Control and Population Sciences, University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA.
- Department of Epidemiology, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA, USA.
| |
Collapse
|
32
|
Donhoffner ME, Al Saleh S, Schink O, Wood RI. Prosocial effects of prolactin in male rats: Social recognition, social approach and social learning. Horm Behav 2017; 96:122-129. [PMID: 28935447 PMCID: PMC5722671 DOI: 10.1016/j.yhbeh.2017.09.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 09/14/2017] [Accepted: 09/17/2017] [Indexed: 11/25/2022]
Abstract
Prolactin (PRL) and oxytocin (OT) are pituitary hormones essential for lactation, but also promote sexual behavior. OT stimulates social behaviors, such as recognition, approach, and learning, but less is known about PRL in these behaviors. Since PRL and OT have complementary functions in reproduction, we hypothesized that PRL increases social recognition, approach, and learning. Male Long-Evans rats received ovine PRL (oPRL; 0.5, 2.0 or 5.0mg/kg), the PRL antagonist bromocriptine (0.1, 3.0 or 5.0mg/kg) or saline 20 mins before testing for recognition of familiar vs. unfamiliar stimulus males. Saline controls preferred the unfamiliar male (p<0.05), while bromocriptine blocked this preference. oPRL did not increase preference. To measure social approach, we determined if PRL restores approach 2h after defeat by an aggressive male. Defeated rats avoided the aggressive male. 2mg/kg oPRL, before or after defeat, restored approach towards the aggressive male (p<0.05). In non-defeated rats, oPRL or 3mg/kg bromocriptine had no effect. To determine if PRL increases social learning, we tested social transmission of food preference. Rats choose between two unfamiliar flavors, one of which they have previously been exposed to through interaction with a demonstrator rat. Vehicle controls preferred chow with the demonstrated flavor over the novel flavor. oPRL-treated rats were similar. Bromocriptine-treated rats failed to show a preference. When tested one week later, only oPRL-treated rats preferred the demonstrated flavor. The results suggest that PRL is required for social recognition and learning, and that increasing PRL enhances social memory and approach, similar to OT.
Collapse
Affiliation(s)
- Mary E Donhoffner
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA 90033, USA
| | - Samar Al Saleh
- Department of Integrative Anatomical Sciences, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90033, USA; Department of Pharmaceutical Biosciences, Uppsala University, Sweden
| | - Olivia Schink
- Department of Integrative Anatomical Sciences, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90033, USA; Department of Pharmaceutical Biosciences, Uppsala University, Sweden
| | - Ruth I Wood
- Department of Integrative Anatomical Sciences, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90033, USA.
| |
Collapse
|
33
|
LaPlante CD, Catanese MC, Bansal R, Vandenberg LN. Bisphenol S Alters the Lactating Mammary Gland and Nursing Behaviors in Mice Exposed During Pregnancy and Lactation. Endocrinology 2017; 158:3448-3461. [PMID: 28977596 PMCID: PMC5659700 DOI: 10.1210/en.2017-00437] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 07/10/2017] [Indexed: 11/19/2022]
Abstract
High doses of estrogenic pharmaceuticals were once prescribed to women to halt lactation. Yet, the effects of low-level xenoestrogens on lactation remain poorly studied. We investigated the effects of bisphenol S (BPS), an estrogen receptor (ER) agonist, on the lactating mammary gland; the arcuate nucleus, a region of the hypothalamus important for neuroendocrine control of lactational behaviors; and nursing behavior in CD-1 mice. Female mice were exposed to vehicle, 2 or 200 µg BPS/kg/d from pregnancy day 9 until lactational day (LD) 20, and tissues were collected on LD21. Tissues were also collected from a second group at LD2. BPS exposure significantly reduced the fraction of the mammary gland comprised of lobules, the milk-producing units, on LD21, but not LD2. BPS also altered expression of Esr1 and ERα in the mammary gland at LD21, consistent with early involution. In the arcuate nucleus, no changes were observed in expression of signal transducer and activator of transcription 5, a marker of prolactin signaling, or ERα, suggesting that BPS may act directly on the mammary gland. However, observations of nursing behavior collected during the lactational period revealed stage-specific effects on both pup and maternal nursing behaviors; BPS-treated dams spent significantly more time nursing later in the lactational period, and BPS-treated pups were less likely to initiate nursing. Pup growth and development were also stunted. These data indicate that low doses of BPS can alter lactational behaviors and the maternal mammary gland. Together, they support the hypothesis that pregnancy and lactation are sensitive to low-dose xenoestrogen exposures.
Collapse
Affiliation(s)
- Charlotte D. LaPlante
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts–Amherst, Amherst, Massachusetts 01003
| | - Mary C. Catanese
- Graduate Program in Neuroscience and Behavior, University of Massachusetts–Amherst, Amherst, Massachusetts 01003
| | - Ruby Bansal
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts–Amherst, Amherst, Massachusetts 01003
| | - Laura N. Vandenberg
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts–Amherst, Amherst, Massachusetts 01003
- Graduate Program in Neuroscience and Behavior, University of Massachusetts–Amherst, Amherst, Massachusetts 01003
| |
Collapse
|
34
|
Serrano-Nascimento C, Salgueiro RB, Vitzel KF, Pantaleão T, Corrêa da Costa VM, Nunes MT. Iodine excess exposure during pregnancy and lactation impairs maternal thyroid function in rats. Endocr Connect 2017; 6:510-521. [PMID: 28814477 PMCID: PMC5597975 DOI: 10.1530/ec-17-0106] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 08/16/2017] [Indexed: 12/21/2022]
Abstract
Adequate maternal iodine consumption during pregnancy and lactation guarantees normal thyroid hormones (TH) production, which is crucial to the development of the fetus. Indeed, iodine deficiency is clearly related to maternal hypothyroidism and deleterious effects in the fetal development. Conversely, the effects of iodine excess (IE) consumption on maternal thyroid function are still controversial. Therefore, this study aimed to investigate the impact of IE exposure during pregnancy and lactation periods on maternal hypothalamus-pituitary-thyroid axis. IE-exposed dams presented reduced serum TH concentration and increased serum thyrotropin (TSH) levels. Moreover, maternal IE exposure increased the hypothalamic expression of Trh and the pituitary expression of Trhr, Dio2, Tsha and Tshb mRNA, while reduced the Gh mRNA content. Additionally, IE-exposed dams presented thyroid morphological alterations, increased thyroid oxidative stress and decreased expression of thyroid genes/proteins involved in TH synthesis, secretion and metabolism. Furthermore, Dio1 mRNA expression and D1 activity were reduced in the liver and the kidney of IE-treated animals. Finally, the mRNA expression of Slc5a5 and Slc26a4 were reduced in the mammary gland of IE-exposed rats. The latter results are in accordance with the reduction of prolactin expression and serum levels in IE-treated dams. In summary, our study indicates that the exposure to IE during pregnancy and lactation induces primary hypothyroidism in rat dams and impairs iodide transfer to the milk.
Collapse
Affiliation(s)
- Caroline Serrano-Nascimento
- Department of Physiology and BiophysicsInstitute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Rafael Barrera Salgueiro
- Department of Physiology and BiophysicsInstitute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Kaio Fernando Vitzel
- Department of Physiology and BiophysicsInstitute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Thiago Pantaleão
- Carlos Chagas Filho Biophysics InstituteFederal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Maria Tereza Nunes
- Department of Physiology and BiophysicsInstitute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
35
|
Fischer EK, O'Connell LA. Modification of feeding circuits in the evolution of social behavior. ACTA ACUST UNITED AC 2017; 220:92-102. [PMID: 28057832 DOI: 10.1242/jeb.143859] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Adaptive trade-offs between foraging and social behavior intuitively explain many aspects of individual decision-making. Given the intimate connection between social behavior and feeding/foraging at the behavioral level, we propose that social behaviors are linked to foraging on a mechanistic level, and that modifications of feeding circuits are crucial in the evolution of complex social behaviors. In this Review, we first highlight the overlap between mechanisms underlying foraging and parental care and then expand this argument to consider the manipulation of feeding-related pathways in the evolution of other complex social behaviors. We include examples from diverse taxa to highlight that the independent evolution of complex social behaviors is a variation on the theme of feeding circuit modification.
Collapse
Affiliation(s)
- Eva K Fischer
- Center for Systems Biology, Harvard University, Cambridge, MA 02138, USA
| | - Lauren A O'Connell
- Center for Systems Biology, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
36
|
Xiao L, Priest MF, Nasenbeny J, Lu T, Kozorovitskiy Y. Biased Oxytocinergic Modulation of Midbrain Dopamine Systems. Neuron 2017; 95:368-384.e5. [PMID: 28669546 DOI: 10.1016/j.neuron.2017.06.003] [Citation(s) in RCA: 174] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 03/03/2017] [Accepted: 05/26/2017] [Indexed: 01/08/2023]
Abstract
The release of dopamine (DA) regulates rewarding behavior and motor actions through striatum-targeting efferents from ventral tegmental area (VTA) and substantia nigra pars compacta (SNc). Here, we map and functionally characterize axonal projections from oxytocin neurons in the hypothalamic paraventricular nucleus to midbrain DA regions. Electrophysiological recordings of DA neurons reveal that both the application of oxytocin and optogenetic stimulation of oxytocinergic terminals suffice to increase DA neuron activity in the VTA but downregulate it in SNc. This biased modulation is mediated by oxytocin and vasopressin G-protein-coupled receptors. Oxytocin release directly activates DA neurons and indirectly inhibits them through local GABA neurons, but the relative magnitudes of the two mechanisms differ in VTA and SNc. Oxytocin-modulated DA neurons give rise to canonical striatal projections. Since hypothalamic oxytocinergic projections also target the striatum, oxytocin is poised to bias the balance of DA tone through multiple sites in vertebrate reward circuits.
Collapse
Affiliation(s)
- Lei Xiao
- Department of Neurobiology, Northwestern University, Evanston, IL 60208, USA
| | - Michael F Priest
- Department of Neurobiology, Northwestern University, Evanston, IL 60208, USA
| | - Jordan Nasenbeny
- Department of Neurobiology, Northwestern University, Evanston, IL 60208, USA
| | - Ting Lu
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL 60208, USA
| | | |
Collapse
|
37
|
Holm J, Eriksson L, Ploner A, Eriksson M, Rantalainen M, Li J, Hall P, Czene K. Assessment of Breast Cancer Risk Factors Reveals Subtype Heterogeneity. Cancer Res 2017; 77:3708-3717. [PMID: 28512241 DOI: 10.1158/0008-5472.can-16-2574] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 02/05/2017] [Accepted: 04/19/2017] [Indexed: 11/16/2022]
Abstract
Subtype heterogeneity for breast cancer risk factors has been suspected, potentially reflecting etiologic differences and implicating risk prediction. However, reports are conflicting regarding the presence of heterogeneity for many exposures. To examine subtype heterogeneity across known breast cancer risk factors, we conducted a case-control analysis of 2,632 breast cancers and 15,945 controls in Sweden. Molecular subtype was predicted from pathology record-derived IHC markers by a classifier trained on PAM50 subtyping. Multinomial logistic regression estimated separate ORs for each subtype by the exposures parity, age at first birth, breastfeeding, menarche, hormone replacement therapy use, somatotype at age 18, benign breast disease, mammographic density, polygenic risk score, family history of breast cancer, and BRCA mutations. We found clear subtype heterogeneity for genetic factors and breastfeeding. Polygenic risk score was associated with all subtypes except for the basal-like (Pheterogeneity < 0.0001). "Never breastfeeding" was associated with increased risk of basal-like subtype [OR 4.17; 95% confidence interval (CI) 1.89-9.21] compared with both nulliparity (reference) and breastfeeding. Breastfeeding was not associated with risk of HER2-overexpressing type, but protective for all other subtypes. The observed heterogeneity in risk of distinct breast cancer subtypes for germline variants supports heterogeneity in etiology and has implications for their use in risk prediction. The association between basal-like subtype and breastfeeding merits more research into potential causal mechanisms and confounders. Cancer Res; 77(13); 3708-17. ©2017 AACR.
Collapse
Affiliation(s)
- Johanna Holm
- Department of Medical Epidemiology & Biostatistics, Karolinska Institutet, Solna, Sweden.
| | - Louise Eriksson
- Department of Medical Epidemiology & Biostatistics, Karolinska Institutet, Solna, Sweden.,Department of Oncology and Pathology, Karolinska Institutet and University Hospital, Stockholm, Sweden
| | - Alexander Ploner
- Department of Medical Epidemiology & Biostatistics, Karolinska Institutet, Solna, Sweden
| | - Mikael Eriksson
- Department of Medical Epidemiology & Biostatistics, Karolinska Institutet, Solna, Sweden
| | - Mattias Rantalainen
- Department of Medical Epidemiology & Biostatistics, Karolinska Institutet, Solna, Sweden
| | - Jingmei Li
- Department of Medical Epidemiology & Biostatistics, Karolinska Institutet, Solna, Sweden
| | - Per Hall
- Department of Medical Epidemiology & Biostatistics, Karolinska Institutet, Solna, Sweden.,Department of Oncology, Södersjukhuset, Stockholm, Sweden
| | - Kamila Czene
- Department of Medical Epidemiology & Biostatistics, Karolinska Institutet, Solna, Sweden
| |
Collapse
|
38
|
Augustine RA, Ladyman SR, Bouwer GT, Alyousif Y, Sapsford TJ, Scott V, Kokay IC, Grattan DR, Brown CH. Prolactin regulation of oxytocin neurone activity in pregnancy and lactation. J Physiol 2017; 595:3591-3605. [PMID: 28211122 DOI: 10.1113/jp273712] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Accepted: 01/30/2017] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS During lactation, prolactin promotes milk synthesis and oxytocin stimulates milk ejection. In virgin rats, prolactin inhibits the activity of oxytocin-secreting neurones. We found that prolactin inhibition of oxytocin neurone activity is lost in lactation, and that some oxytocin neurones were excited by prolactin in lactating rats. The change in prolactin regulation of oxytocin neurone activity was not associated with a change in activation of intracellular signalling pathways known to couple to prolactin receptors. The change in prolactin regulation of oxytocin neurone activity in lactation might allow coordinated activation of both populations of neurones when required for successful lactation. ABSTRACT Secretion of prolactin for milk synthesis and oxytocin for milk secretion is required for successful lactation. In virgin rats, prolactin inhibits oxytocin neurones but this effect would be counterproductive during lactation when secretion of both hormones is required for synthesis and delivery of milk to the newborn. Hence, we determined the effects of intracerebroventricular (i.c.v.) prolactin on oxytocin neurones in urethane-anaesthetised virgin, pregnant and lactating rats. Prolactin (2 μg) consistently inhibited oxytocin neurones in virgin and pregnant rats (by 1.9 ± 0.4 and 1.8 ± 0.5 spikes s-1 , respectively), but not in lactating rats; indeed, prolactin excited six of 27 oxytocin neurones by >1 spike s-1 in lactating rats but excited none in virgin or pregnant rats (χ22 = 7.2, P = 0.03). Vasopressin neurones were unaffected by prolactin (2 μg) in virgin rats but were inhibited by 1.1 ± 0.2 spikes s-1 in lactating rats. Immunohistochemistry showed that i.c.v. prolactin increased oxytocin expression in virgin and lactating rats and increased signal transducer and activator of transcription 5 phosphorylation to a similar extent in oxytocin neurones of virgin and lactating rats. Western blotting showed that i.c.v. prolactin did not affect phosphorylation of extracellular regulated kinase 1 or 2, or of Akt in the supraoptic or paraventricular nuclei of virgin or lactating rats. Hence, prolactin inhibition of oxytocin neurones is lost in lactation, which might allow concurrent elevation of prolactin secretion from the pituitary gland and activation of oxytocin neurones for synthesis and delivery of milk to the newborn.
Collapse
Affiliation(s)
- Rachael A Augustine
- Brain Health Research Centre, University of Otago, Dunedin, New Zealand.,Centre for Neuroendocrinology, University of Otago, Dunedin, New Zealand.,Department of Physiology, University of Otago, Dunedin, New Zealand
| | - Sharon R Ladyman
- Centre for Neuroendocrinology, University of Otago, Dunedin, New Zealand.,Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - Gregory T Bouwer
- Brain Health Research Centre, University of Otago, Dunedin, New Zealand.,Centre for Neuroendocrinology, University of Otago, Dunedin, New Zealand.,Department of Physiology, University of Otago, Dunedin, New Zealand
| | - Yousif Alyousif
- Centre for Neuroendocrinology, University of Otago, Dunedin, New Zealand.,Department of Physiology, University of Otago, Dunedin, New Zealand
| | - Tony J Sapsford
- Centre for Neuroendocrinology, University of Otago, Dunedin, New Zealand.,Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - Victoria Scott
- Centre for Neuroendocrinology, University of Otago, Dunedin, New Zealand.,Department of Physiology, University of Otago, Dunedin, New Zealand
| | - Ilona C Kokay
- Centre for Neuroendocrinology, University of Otago, Dunedin, New Zealand.,Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - David R Grattan
- Centre for Neuroendocrinology, University of Otago, Dunedin, New Zealand.,Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - Colin H Brown
- Brain Health Research Centre, University of Otago, Dunedin, New Zealand.,Centre for Neuroendocrinology, University of Otago, Dunedin, New Zealand.,Department of Physiology, University of Otago, Dunedin, New Zealand
| |
Collapse
|
39
|
Rezaei R, Wu Z, Hou Y, Bazer FW, Wu G. Amino acids and mammary gland development: nutritional implications for milk production and neonatal growth. J Anim Sci Biotechnol 2016; 7:20. [PMID: 27042295 PMCID: PMC4818943 DOI: 10.1186/s40104-016-0078-8] [Citation(s) in RCA: 132] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 03/10/2016] [Indexed: 01/22/2023] Open
Abstract
Milk is synthesized by mammary epithelial cells of lactating mammals. The synthetic capacity of the mammary gland depends largely on the number and efficiency of functional mammary epithelial cells. Structural development of the mammary gland occurs during fetal growth, prepubertal and post-pubertal periods, pregnancy, and lactation under the control of various hormones (particularly estrogen, growth hormone, insulin-like growth factor-I, progesterone, placental lactogen, and prolactin) in a species- and stage-dependent manner. Milk is essential for the growth, development, and health of neonates. Amino acids (AA), present in both free and peptide-bound forms, are the most abundant organic nutrients in the milk of farm animals. Uptake of AA from the arterial blood of the lactating dam is the ultimate source of proteins (primarily β-casein and α-lactalbumin) and bioactive nitrogenous metabolites in milk. Results of recent studies indicate extensive catabolism of branched-chain AA (leucine, isoleucine and valine) and arginine to synthesize glutamate, glutamine, alanine, aspartate, asparagine, proline, and polyamines. The formation of polypeptides from AA is regulated not only by hormones (e.g., prolactin, insulin and glucocorticoids) and the rate of blood flow across the lactating mammary gland, but also by concentrations of AA, lipids, glucose, vitamins and minerals in the maternal plasma, as well as the activation of the mechanistic (mammalian) target rapamycin signaling by certain AA (e.g., arginine, branched-chain AA, and glutamine). Knowledge of AA utilization (including metabolism) by mammary epithelial cells will enhance our fundamental understanding of lactation biology and has important implications for improving the efficiency of livestock production worldwide.
Collapse
Affiliation(s)
- Reza Rezaei
- />Department of Animal Science, Texas A&M University, College Station, TX 77843 USA
| | - Zhenlong Wu
- />State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, 100193 China
| | - Yongqing Hou
- />Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan Polytechnic University, Wuhan, 430023 China
| | - Fuller W. Bazer
- />Department of Animal Science, Texas A&M University, College Station, TX 77843 USA
| | - Guoyao Wu
- />Department of Animal Science, Texas A&M University, College Station, TX 77843 USA
- />State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, 100193 China
- />Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan Polytechnic University, Wuhan, 430023 China
| |
Collapse
|
40
|
Passoni I, Leonzino M, Gigliucci V, Chini B, Busnelli M. Carbetocin is a Functional Selective Gq Agonist That Does Not Promote Oxytocin Receptor Recycling After Inducing β-Arrestin-Independent Internalisation. J Neuroendocrinol 2016; 28. [PMID: 26751410 PMCID: PMC5021139 DOI: 10.1111/jne.12363] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 12/30/2015] [Accepted: 01/07/2016] [Indexed: 01/08/2023]
Abstract
Carbetocin, a long-acting oxytocin analogue, has been reported to elicit interesting and peculiar behavioural effects. The present study investigated the molecular pharmacology of carbetocin, aiming to better understand the molecular basis of its action in the brain. Using bioluminescence resonance energy transfer biosensors, we characterised the effects of carbetocin on the three human oxytocin/vasopressin receptors expressed in the nervous system: the oxytocin receptor (OXTR) and the vasopressin V1a (V1aR) and V1b (V1bR) receptors. Our results indicate that (i) carbetocin activates the OXTR but not the V1aR and V1bR at which it may act as an antagonist; (ii) carbetocin selectively activates only the OXTR/Gq pathway displaying a strong functional selectivity; (iii) carbetocin is a partial agonist at the OXTR/Gq coupling; (iv) carbetocin promotes OXTR internalisation via a previously unreported β-arrestin-independent pathway; and (v) carbetocin does not induce OXTR recycling to the plasma membrane. Altogether, these molecular pharmacology features identify carbetocin as a substantially different analogue compared to the endogenous oxytocin and, consequently, carbetocin is not expected to mimic oxytocin in the brain. Whether these unique features of carbetocin could be exploited therapeutically remains to be established.
Collapse
Affiliation(s)
- I Passoni
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy
| | - M Leonzino
- CNR, Institute of Neuroscience, Milan, Italy
| | - V Gigliucci
- CNR, Institute of Neuroscience, Milan, Italy
| | - B Chini
- CNR, Institute of Neuroscience, Milan, Italy
- Humanitas Clinical and Research Institute, Rozzano, Italy
| | - M Busnelli
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy
- CNR, Institute of Neuroscience, Milan, Italy
| |
Collapse
|
41
|
Abstract
The hypothalamic control of prolactin secretion is different from other anterior pituitary hormones, in that it is predominantly inhibitory, by means of dopamine from the tuberoinfundibular dopamine neurons. In addition, prolactin does not have an endocrine target tissue, and therefore lacks the classical feedback pathway to regulate its secretion. Instead, it is regulated by short loop feedback, whereby prolactin itself acts in the brain to stimulate production of dopamine and thereby inhibit its own secretion. Finally, despite its relatively simple name, prolactin has a broad range of functions in the body, in addition to its defining role in promoting lactation. As such, the hypothalamo-prolactin axis has many characteristics that are quite distinct from other hypothalamo-pituitary systems. This review will provide a brief overview of our current understanding of the neuroendocrine control of prolactin secretion, in particular focusing on the plasticity evident in this system, which keeps prolactin secretion at low levels most of the time, but enables extended periods of hyperprolactinemia when necessary for lactation. Key prolactin functions beyond milk production will be discussed, particularly focusing on the role of prolactin in inducing adaptive responses in multiple different systems to facilitate lactation, and the consequences if prolactin action is impaired. A feature of this pleiotropic activity is that functions that may be adaptive in the lactating state might be maladaptive if prolactin levels are elevated inappropriately. Overall, my goal is to give a flavour of both the history and current state of the field of prolactin neuroendocrinology, and identify some exciting new areas of research development.
Collapse
Affiliation(s)
- David R Grattan
- Centre for Neuroendocrinology and Department of AnatomyUniversity of Otago, PO Box 913, Dunedin 9054, New ZealandMaurice Wilkins Centre for Molecular BiodiscoveryAuckland, New Zealand Centre for Neuroendocrinology and Department of AnatomyUniversity of Otago, PO Box 913, Dunedin 9054, New ZealandMaurice Wilkins Centre for Molecular BiodiscoveryAuckland, New Zealand
| |
Collapse
|