1
|
Jäger R, Heileson JL, Abou Sawan S, Dickerson BL, Leonard M, Kreider RB, Kerksick CM, Cornish SM, Candow DG, Cordingley DM, Forbes SC, Tinsley GM, Bongiovanni T, Cannataro R, Campbell BI, Arent SM, Stout JR, Kalman DS, Antonio J. International Society of Sports Nutrition Position Stand: Long-Chain Omega-3 Polyunsaturated Fatty Acids. J Int Soc Sports Nutr 2025; 22:2441775. [PMID: 39810703 PMCID: PMC11737053 DOI: 10.1080/15502783.2024.2441775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 12/09/2024] [Indexed: 01/16/2025] Open
Abstract
Position Statement: The International Society of Sports Nutrition (ISSN) presents this position based on a critical examination of the literature surrounding the effects of long-chain omega-3 polyunsaturated fatty acid (ω-3 PUFA) supplementation on exercise performance, recovery, and brain health. This position stand is intended to provide a scientific foundation for athletes, dietitians, trainers, and other practitioners regarding the effects of supplemental ω-3 PUFA in healthy and athletic populations. The following conclusions represent the official position of the ISSN: Athletes may be at a higher risk for ω-3 PUFA insufficiency.Diets rich in ω-3 PUFA, including supplements, are effective strategies for increasing ω-3 PUFA levels.ω-3 PUFA supplementation, particularly eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), has been shown to enhance endurance capacity and cardiovascular function during aerobic-type exercise.ω-3 PUFA supplementation may not confer a muscle hypertrophic benefit in young adults.ω-3 PUFA supplementation in combination with resistance training may improve strength in a dose- and duration-dependent manner.ω-3 PUFA supplementation may decrease subjective measures of muscle soreness following intense exercise.ω-3 PUFA supplementation can positively affect various immune cell responses in athletic populations.Prophylactic ω-3 PUFA supplementation may offer neuroprotective benefits in athletes exposed to repeated head impacts.ω-3 PUFA supplementation is associated with improved sleep quality.ω-3 PUFA are classified as prebiotics; however, studies on the gut microbiome and gut health in athletes are currently lacking.
Collapse
Affiliation(s)
| | - Jeffery L. Heileson
- Walter Reed National Military Medical Center, Nutrition Services Division, Bethesda, MD, USA
- Department of Health, Human Performance, and Recreation, Baylor University, Waco, TX, USA
| | | | - Broderick L. Dickerson
- Exercise & Sport Nutrition Lab, Human Clinical Research Facility, Department of Kinesiology and Sport Management, Texas A&M University, College Station, TX, USA
| | - Megan Leonard
- Exercise & Sport Nutrition Lab, Human Clinical Research Facility, Department of Kinesiology and Sport Management, Texas A&M University, College Station, TX, USA
| | - Richard B. Kreider
- Exercise & Sport Nutrition Lab, Human Clinical Research Facility, Department of Kinesiology and Sport Management, Texas A&M University, College Station, TX, USA
| | - Chad M. Kerksick
- Exercise and Performance Nutrition Laboratory, College of Science, Technology, and Health, Lindenwood University, St. Charles, MO, USA
| | - Stephen M. Cornish
- Faculty of Kinesiology and Recreation Management, University of Manitoba, Winnipeg, Canada
| | - Darren G. Candow
- Faculty of Kinesiology and Health Studies, University of Regina, Regina, Canada
| | - Dean M. Cordingley
- Applied Health Sciences Program, Faculty of Graduate Studies, University of Manitoba, Winnipeg, Canada
| | - Scott C. Forbes
- Department of Physical Education Studies, Brandon University, Brandon, Canada
| | - Grant M. Tinsley
- Department of Kinesiology and Sport Management, Texas Tech University, Lubbock, TX, USA
| | - Tindaro Bongiovanni
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
- Player Health & Performance Department, Palermo Football Club, Palermo, Italy
| | - Roberto Cannataro
- GalaScreen Laboratories, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
- Research Division, Dynamical Business & Science Society – DBSS International SAS, Bogotá, Colombia, USA
| | - Bill I. Campbell
- Performance& Physique Enhancement Laboratory, Exercise Science Program, University of South Florida, Tampa, FL, USA
| | - Shawn M. Arent
- Department of Exercise Science, Arnold School of Public Health, University of South Carolina, Columbia, SC, USA
| | - Jeffrey R. Stout
- School of Kinesiology and Rehabilitation Sciences, University of Central Florida, Orlando, FL, USA
| | - Douglas S. Kalman
- Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Davie, FL, USA
| | - Jose Antonio
- Department of Health and Human Performance, Nova Southeastern University, Davie, FL, USA
| |
Collapse
|
2
|
Huang CJ, Choo KB. Circular RNAs and host genes act synergistically in regulating cellular processes and functions in skeletal myogenesis. Gene 2025; 940:149189. [PMID: 39724991 DOI: 10.1016/j.gene.2024.149189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 11/14/2024] [Accepted: 12/20/2024] [Indexed: 12/28/2024]
Abstract
Circular RNAs (circRNAs) are post-transcriptional regulators generated from backsplicing of pre-mRNAs of host genes. A major circRNA regulatory mechanism involves microRNA (miRNA) sequestering, relieving miRNA-blocked mRNAs for translation and functions. To investigate possible circRNA-host gene relationship, skeletal myogenesis is chosen as a study model for its developmental importance and for readily available muscle tissues from farm animals for studies at different myogenic stages. This review aims to provide an integrated interpretations on methodologies, regulatory mechanisms and possible host gene-circRNA synergistic functional relationships in skeletal myogenesis, focusing on myoblast differentiation and proliferation, core drivers of muscle formation in myogenesis, while other myogenic processes that play supportive roles in the structure, maintenance and function of muscle tissues are also briefly discussed. On literature review,thirty-two circRNAs derived from thirty-one host genes involved in various myogenic stages are identified; twenty-two (68.6 %) of these circRNAs regulate myogenesis by sequestering miRNAs to engage PI3K/AKT and other signaling pathways while four (12.5 %) are translated into proteins for functions. In circRNA-host gene relationship,ten (32.3 %) host genes are shown to regulate myogenesis,nine (29.0 %) are specific to skeletal muscle functions,and twelve (38.8 %) are linked to skeletal muscle disorders.Our analysis of skeletal myogenesis suggests that circRNAs and host genes act synergistically to regulate cellular functions. Such circRNA-host gene functional synergism may also be found in other major cellular processes. CircRNAs may have evolved later than miRNAs to counteract the suppressive effects of miRNAs and to augment host gene functions to further fine-tune gene regulation.
Collapse
Affiliation(s)
- Chiu-Jung Huang
- Department of Animal Science & Graduate Institute of Biotechnology, College of Environmental Planning & Bioresources (former School of Agriculture), Chinese Culture University, Taipei, Taiwan.
| | - Kong Bung Choo
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan.
| |
Collapse
|
3
|
Both P, Kim S, Kang J, Arjona M, Benjamin DI, Nutter CW, Goshayeshi A, Rando TA. Protocol for quantifying muscle fiber size, number, and central nucleation of mouse skeletal muscle cross-sections using Myotally software. STAR Protoc 2025; 6:103555. [PMID: 39799576 DOI: 10.1016/j.xpro.2024.103555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 10/11/2024] [Accepted: 12/12/2024] [Indexed: 01/15/2025] Open
Abstract
Here, we present a protocol for using Myotally, a user-friendly software for fast, automated quantification of muscle fiber size, number, and central nucleation from immunofluorescent stains of mouse skeletal muscle cross-sections. We describe steps for installing the software, preparing compatible images, finding the file path, and selecting key parameters like image quality and size limits. We also detail optional features, such as measuring mean fluorescence. By automating these traditionally labor-intensive processes, Myotally improves research efficiency and data consistency.
Collapse
Affiliation(s)
- Pieter Both
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA; Stem Cell Biology and Regenerative Medicine Graduate Program, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Soochi Kim
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Biotechnology and Bioinformatics, Korea University, Sejong 30019, Republic of Korea
| | - Jengmin Kang
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Marina Arjona
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Daniel I Benjamin
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Christopher W Nutter
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Armon Goshayeshi
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Thomas A Rando
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA; Neurology Service, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304, USA.
| |
Collapse
|
4
|
Mallett G. The effect of exercise and physical activity on skeletal muscle epigenetics and metabolic adaptations. Eur J Appl Physiol 2025:10.1007/s00421-025-05704-6. [PMID: 39775881 DOI: 10.1007/s00421-025-05704-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 12/28/2024] [Indexed: 01/11/2025]
Abstract
Physical activity (PA) and exercise elicit adaptations and physiological responses in skeletal muscle, which are advantageous for preserving health and minimizing chronic illnesses. The complicated atmosphere of the exercise response can be attributed to hereditary and environmental variables. The primary cause of these adaptations and physiological responses is the transcriptional reactions that follow exercise, whether endurance- (ET) or resistance- training (RT). As a result, the essential metabolic and regulatory pathways and myogenic genes associated with skeletal muscle alter in response to acute and chronic exercise. Epigenetics is the study of the relationship between genetics and the environment. Exercise evokes signaling pathways that strongly alter myofiber metabolism and skeletal muscle physiological and contractile properties. Epigenetic modifications have recently come to light as essential regulators of exercise adaptations. Research has shown various epigenetic markers linked to PA and exercise. The most critical epigenetic alterations in gene transcription identified are DNA methylation and histone modifications, which are associated with the transcriptional response of skeletal muscle to exercise and facilitate the modification to exercise. Other changes in the epigenetic markers are starting to emerge as essential processes for gene transcription, including acetylation as a new epigenetic modification, mediated changes by methylation, phosphorylation, and micro-RNA (miRNA). This review briefly introduces PA and exercise and associated benefits, provides a summary of epigenetic modifications, and a fundamental review of skeletal muscle physiology. The objectives of this review are 1) to discuss exercise-induced adaptations related to epigenetics and 2) to examine the interaction between exercise metabolism and epigenetics.
Collapse
Affiliation(s)
- Gregg Mallett
- Department of Kinesiology, Health Promotion, and Recreation, University of North Texas, Denton, TX, USA.
| |
Collapse
|
5
|
Huang CY, Han IS, Hsieh PS, Tsai MC, Chien HC. Dichloroacetate, a pyruvate dehydrogenase activator, alleviates high-fat-induced impairment of myogenic differentiation in skeletal muscles. Basic Clin Pharmacol Toxicol 2025; 136:e14102. [PMID: 39501987 DOI: 10.1111/bcpt.14102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 10/21/2024] [Accepted: 10/23/2024] [Indexed: 12/20/2024]
Abstract
Obesity-induced impairment of myogenic differentiation leads to muscle loss and sarcopenia. Pyruvate dehydrogenase (PDH) plays a crucial role in glucose metabolism and is associated with muscle differentiation. However, the effect of dichloroacetate (DCA), a PDH activator, on obesity-induced impairment of myogenic differentiation remains unknown. Here, we evaluated the effects of DCA treatment on high-fat intake-induced impairment of myogenic differentiation in C2C12 cells and C57BL/6 mice. In C2C12 cells, DCA treatment improved PDH activity that was reduced by palmitate (PAL) and decreased the lactate concentrations in the media. Additionally, DCA reversed PAL- and high-fat diet (HFD)-induced decrease in the expression of myoblast determination protein 1 (MyoD), myogenin (MyoG) and myosin heavy chain (MyHC) in C2C12 cells and C57BL/6 mice. To explore the possible mechanism, DCA treatment restored the levels of p-Akt, p-FoxO1, p-FoxO3a and p-p38 MAPK levels in PAL-treated C2C12 cells. Moreover, the protective effects of DCA were reversed by treatment with the Akt inhibitor MK2206 in C2C12 cells. In summary, DCA treatment alleviated high-fat intake-induced impairment of myogenic differentiation via Akt signalling, suggesting its potential in treating obesity-associated muscle loss and sarcopenia.
Collapse
Affiliation(s)
- Chuang-Yen Huang
- Department of Obstetrics and Gynecology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
- Graduate Institute of Medical Science, National Defense Medical Center, Taipei, Taiwan
| | - I-Shan Han
- Department of Physiology and Biophysics, Graduate Institute of Physiology, National Defense Medical Center, Taipei, Taiwan
| | - Po-Shiuan Hsieh
- Graduate Institute of Medical Science, National Defense Medical Center, Taipei, Taiwan
- Department of Physiology and Biophysics, Graduate Institute of Physiology, National Defense Medical Center, Taipei, Taiwan
| | - Min-Chien Tsai
- Department of Physiology and Biophysics, Graduate Institute of Physiology, National Defense Medical Center, Taipei, Taiwan
| | - Hung-Che Chien
- Department of Physiology and Biophysics, Graduate Institute of Physiology, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
6
|
Zhang L, Fu C, Zhou M, Miao W, Sun W, Xu J, Cao S, Zhu S. Deletion of RBM20 exon 9 impairs skeletal muscle growth and satellite cell function in pigs. Biochem Biophys Res Commun 2025; 742:151076. [PMID: 39632296 DOI: 10.1016/j.bbrc.2024.151076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/09/2024] [Accepted: 11/25/2024] [Indexed: 12/07/2024]
Abstract
Maintaining healthy skeletal tissue is essential for overall well-being and quality of life. Skeletal muscle plays a key role in this process, yet models for studying its detailed function are limited. While RNA-binding motif protein 20 (RBM20) is primarily associated with dilated cardiomyopathy (DCM), its role in skeletal muscle remains largely unexplored. This study investigates RBM20 function in skeletal muscle using an RBM20 exon 9 deletion pig model (RBM20E9D). The deletion of exon 9 resulted in loosely arranged muscle fibers, large inter-fiber gaps, and irregular organization, leading to impaired muscle growth and development. Analysis of skeletal muscle satellite cells revealed significantly reduced proliferation, diminished myotube formation in vitro, and disrupted sarcomere structure due to exon 9 deletion. Given the critical role of satellite cell proliferation and differentiation in muscle repair, RBM20E9D pigs offer a novel model for studying the mechanisms underlying skeletal muscle injury, repair, and growth.
Collapse
Affiliation(s)
- Li Zhang
- Engineering Technology Research Center for Modern Animal Science and Novel Veterinary Pharmaceutic Development, Jiangsu Key Laboratory for High-Tech Research and Development of Veterinary Biopharmaceuticals, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 225300, China; Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 225300, China
| | - Changyao Fu
- Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 225300, China
| | - Mo Zhou
- Engineering Technology Research Center for Modern Animal Science and Novel Veterinary Pharmaceutic Development, Jiangsu Key Laboratory for High-Tech Research and Development of Veterinary Biopharmaceuticals, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 225300, China; Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 225300, China
| | - Wei Miao
- Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 225300, China
| | - Weixiang Sun
- Engineering Technology Research Center for Modern Animal Science and Novel Veterinary Pharmaceutic Development, Jiangsu Key Laboratory for High-Tech Research and Development of Veterinary Biopharmaceuticals, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 225300, China; Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 225300, China
| | - Jialong Xu
- Medical School, Nanjing University, Nanjing 210093, China
| | - Shinuo Cao
- Engineering Technology Research Center for Modern Animal Science and Novel Veterinary Pharmaceutic Development, Jiangsu Key Laboratory for High-Tech Research and Development of Veterinary Biopharmaceuticals, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 225300, China; Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 225300, China.
| | - Shanyuan Zhu
- Engineering Technology Research Center for Modern Animal Science and Novel Veterinary Pharmaceutic Development, Jiangsu Key Laboratory for High-Tech Research and Development of Veterinary Biopharmaceuticals, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 225300, China; Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 225300, China.
| |
Collapse
|
7
|
Skiles CM, Boyd G, Gouw A, Robbins E, Minchev K, Ryder J, Ploutz-Snyder L, Trappe TA, Trappe S. Myonuclear and satellite cell content of the vastus lateralis and soleus with 70 days of simulated microgravity and the NASA SPRINT exercise program. J Appl Physiol (1985) 2025; 138:195-202. [PMID: 39656504 DOI: 10.1152/japplphysiol.00468.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 11/21/2024] [Accepted: 11/22/2024] [Indexed: 01/11/2025] Open
Abstract
We previously observed a range of whole muscle and individual slow and fast myofiber size responses (mean: +4 to -24%) in quadriceps (vastus lateralis) and triceps surae (soleus) muscles of individuals undergoing 70 days of simulated microgravity with or without the NASA SPRINT exercise countermeasures program. The purpose of the current investigation was to further explore, in these same individuals, the content of myonuclei and satellite cells, both of which are key regulators of skeletal muscle mass. Individuals completed 6° head-down-tilt bedrest (BR, n = 9), bedrest with resistance and aerobic exercise (BRE, n = 9), or bedrest with resistance and aerobic exercise and low-dose testosterone (BRE + T, n = 8). The number of myonuclei and satellite cells associated with each slow [myosin heavy chain (MHC) I] and fast (MHC IIa) myofiber in the vastus lateralis was not changed (P > 0.05) pre- to postbedrest within the BR, BRE, or BRE + T groups. Similarly, in the soleus, the number of myonuclei associated with each slow and fast myofiber, and the number of satellite cells associated with each slow myofiber were not changed (P > 0.05) pre- to postbedrest within the BR, BRE, or BRE + T groups. It appears that even with relatively large perturbations in muscle mass over a few months of simulated microgravity, or with partially or completely effective exercise countermeasures, human skeletal muscle tightly regulates the abundance of myonuclei and satellite cells. Thus, exercise countermeasures efficacy for skeletal muscle atrophy appears to be independent of myonuclei and satellite cell abundance.NEW & NOTEWORTHY This study showed that after 70 days of simulated microgravity, human skeletal muscle does not alter the number of nuclei or satellite cells associated with slow or fast myofibers in the two muscle groups most negatively influenced by microgravity exposure [i.e., quadriceps (vastus lateralis) and triceps surae (soleus)]. Furthermore, the efficacy of exercise countermeasures for maintaining the mass of these muscles does not appear to be related to the myocellular content of nuclei or satellite cells.
Collapse
Affiliation(s)
- Chad M Skiles
- Human Performance Laboratory, Ball State University, Muncie, Indiana, United States
| | - Gerard Boyd
- Human Performance Laboratory, Ball State University, Muncie, Indiana, United States
| | - Aaron Gouw
- Human Performance Laboratory, Ball State University, Muncie, Indiana, United States
| | - Ethan Robbins
- Human Performance Laboratory, Ball State University, Muncie, Indiana, United States
| | - Kiril Minchev
- Human Performance Laboratory, Ball State University, Muncie, Indiana, United States
| | - Jeffrey Ryder
- Universities Space Research Association, NASA Johnson Space Center, Houston, Texas, United States
| | - Lori Ploutz-Snyder
- Universities Space Research Association, NASA Johnson Space Center, Houston, Texas, United States
| | - Todd A Trappe
- Human Performance Laboratory, Ball State University, Muncie, Indiana, United States
| | - Scott Trappe
- Human Performance Laboratory, Ball State University, Muncie, Indiana, United States
| |
Collapse
|
8
|
Lilley T, Camera DM, Kwa FAA. Repairing muscle with broccoli-derived sulforaphane: A preclinical evaluation for the treatment of mitochondrial myopathies. Drug Discov Today 2024; 30:104283. [PMID: 39736463 DOI: 10.1016/j.drudis.2024.104283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/16/2024] [Accepted: 12/24/2024] [Indexed: 01/01/2025]
Abstract
Skeletal muscle health relies on the production of adenosine triphosphate (ATP) in the mitochondria. ATP production is accompanied by oxidative phosphorylation, which generates reactive oxygen species (ROS). When there is an imbalance in ROS levels, oxidative stress and subsequent mitochondrial dysfunction, mitochondrial myopathies including sarcopenia, chronic progressive external ophthalmoplegia, and proximal myopathy can result. Such incurable myopathies are characterised by aberrant metabolism, limited ATP production, and muscle atrophy. Broccoli-derived sulforaphane has emerged as a novel treatment for mitochondrial myopathies because of its antioxidant and anti-inflammatory properties. This review discusses preclinical models that reveal sulforaphane's potential therapeutic benefits and limitations in treating mitochondrial myopathies.
Collapse
Affiliation(s)
- Thomas Lilley
- Department of Health Sciences and Biostatistics, Swinburne University of Technology, Melbourne, Australia
| | - Donny M Camera
- Department of Health Sciences and Biostatistics, Swinburne University of Technology, Melbourne, Australia
| | - Faith A A Kwa
- Department of Health Sciences and Biostatistics, Swinburne University of Technology, Melbourne, Australia.
| |
Collapse
|
9
|
Jiang B, Chen B, Xu J, Luo J, Yao M. Focused Electric Field Technology: A Novel Myoelectrical Stimulation Technology for Noninvasive Aging Muscle Rejuvenation. J Cosmet Dermatol 2024:e16749. [PMID: 39719683 DOI: 10.1111/jocd.16749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/12/2024] [Accepted: 12/12/2024] [Indexed: 12/26/2024]
Abstract
BACKGROUND Myoelectrical stimulation improves muscle function and reduces muscle atrophy and aging. However, research on the mechanism underlying its cosmetic effect remains limited. AIMS The aim of this study was to evaluate the cosmetic effects of the myoelectrical stimulation provided by the wearable intelligent flexible beauty device and its focused electric field technology (FEFT) on facial skin and muscle rejuvenation. PATIENTS/METHODS We conducted a single-blind, randomized, self-controlled clinical efficacy experiment on 31 female volunteers using the device. Using an FEFT-based platform, mice with d-galactose-induced skeletal muscle aging were subjected to surface myoelectrical stimulation of the gastrocnemius. Immunohistochemical analysis of skeletal muscles and protein immunoblotting were used to analyze the effects of FEFT. RESULTS After 14 days of use, facial skin elasticity significantly increased, wrinkle firmness significantly decreased, and the lift height of the upper eyelid and eye corner angle significantly increased in the volunteers. Clinical evaluation showed improvements in the drooping of the upper eyelid and eye bags. Self-evaluation questionnaires indicated alleviation of facial wrinkles. These improvements were more pronounced after 28 days. In mice, FEFT alleviated aging-induced muscle fiber atrophy, muscle fiber cross-sectional area reduction, and muscle satellite cell loss. FEFT also increased the expression of myogenic factors, including myogenic differentiation 1 (MYOD1). CONCLUSIONS FEFT exerted a skin-tightening effect by initiating myogenic processes and increasing the transformation of muscle satellite cells. Our research promotes the development of FEFT-based medical rehabilitation or cosmetic anti-aging products and provides a foundation for further application and comprehensive efficacy evaluation in human clinical settings.
Collapse
Affiliation(s)
- Boyang Jiang
- FLOSSOM Shenzhen Research Institute, Shenzhen, China
- Shenzhen Rawskin Dermatology, Shenzhen, China
| | - Bingbing Chen
- FLOSSOM Shenzhen Research Institute, Shenzhen, China
| | - Jia Xu
- FLOSSOM Shenzhen Research Institute, Shenzhen, China
| | - Jieshu Luo
- Shenzhen Rawskin Dermatology, Shenzhen, China
| | - Min Yao
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine China, Shanghai, China
| |
Collapse
|
10
|
Lv X, Wang X, Yue J, Wang X, Chen H, Gao Q. Effect of traction therapy on muscle satellite cell proliferation and differentiation in a rat model of knee stiffness. Stem Cell Res Ther 2024; 15:490. [PMID: 39707518 DOI: 10.1186/s13287-024-04108-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 12/06/2024] [Indexed: 12/23/2024] Open
Abstract
BACKGROUND In the rat knee stiffness model, the duration of traction treatment is mostly 20-40 min; however, relatively few studies have been conducted on longer traction treatment of extended knee stiffness in rats. Therefore, the aim of this study was to explore the efficacy of prolonged traction and its mechanism of action in extended knee stiffness in rats. METHODS The model of extended knee joint stiffness was established in rats and treated with powered flexion position traction. On the 10th and 20th days respectively, passive range of motion (PROM) assessments and musculoskeletal ultrasound were conducted. Rectus femoris muscle tissues were taken for Western blotting (WB) to detect the expression of muscle satellite cells proliferation and differentiation signaling factors. Histopathological staining was used to evaluate the degree of muscle atrophy and muscle fibrosis in the rectus femoris muscle, and immunofluorescence double staining was used to detect proliferation of muscle satellite cells number. The results from these analyses were used to assess the therapeutic outcomes of the traction treatment. RESULTS The findings indicated that chronic persistent traction significantly improved joint mobility, notably enhanced the proliferation of muscle satellite cells, and inhibited their differentiation. Furthermore, the treatment facilitated the repair and regeneration of damaged tissues, reduced muscular atrophy and fibrosis in the rectus femoris muscle, and alleviated knee stiffness. CONCLUSION Chronic persistent traction can effectively relieve knee joint stiffness, and its mechanism is related to the activation and proliferation of the rectus femoris muscle satellite cells, thereby promoting the repair and regeneration of damaged skeletal muscle.
Collapse
Affiliation(s)
- Xiaoqian Lv
- The Second Affiliated Hospital of Bengbu Medical University, Bengbu, 233040, China
| | - Xiaoyu Wang
- The Affiliated Taian City Central Hospital of Qingdao University, Taian, 271000, China
| | - Jianxing Yue
- The Second Affiliated Hospital of Bengbu Medical University, Bengbu, 233040, China
| | - Xin Wang
- The Affiliated Taian City Central Hospital of Qingdao University, Taian, 271000, China
| | - Haoyue Chen
- The Affiliated Taian City Central Hospital of Qingdao University, Taian, 271000, China
| | - Qiang Gao
- The Affiliated Taian City Central Hospital of Qingdao University, Taian, 271000, China.
| |
Collapse
|
11
|
Zhao Y, Zhang L, Hao R, Li S, Li S, Shi S, Tong H, Liu B. PEAR1 Promotes Myoblast Proliferation Through Notch Signaling Pathway. BIOLOGY 2024; 13:1063. [PMID: 39765730 PMCID: PMC11673774 DOI: 10.3390/biology13121063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/30/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025]
Abstract
PEAR1, also known as platelet endothelial aggregation receptor 1, is known to play a crucial role in the migration and differentiation of muscle satellite cells (MuSCs). However, its specific effects on skeletal muscle development and regeneration require further exploration. In this study, the expression of PEAR1; the proliferation marker proteins of Pax7, CCNB1, and PCNA; and the key molecules of N1-ICD, N2-ICD, and Hes1 were all increased gradually during the process of C2C12 cell proliferation. Furthermore, Western blotting and EdU results showed that when PEAR1 was over-expressed or inhibited, the proliferation status of C2C12 cell was increased or reduced respectively. This implied that PEAR1 could regulate myoblast proliferation and might be relate to Notch cell signaling pathway. A subsequent immunoprecipitation experiment result showed that the interaction between PEAR1 and Notch1 or Notch2, respectively. Then Western blotting and EdU results showed that the proliferation of C2C12 cell was inhibited under the treatment of Notch signaling pathway inhibitor RIN1. Meanwhile, the proliferation capacity of C2C12 cell could not be improved by treatment with RIN1 even though PEAR1 was over-expressed. These results showed that PEAR1 may regulated C2C12 cell proliferation though Notch signaling pathway. Additionally, a mouse model of muscle injury repair injected with bupivacaine hydrochloride was established in this study. Immunohistochemistry results exhibited that PEAR1 may regulate skeletal muscle post-injury regeneration relevant to Notch1 and Notch2 in different patterns. These findings provide valuable insights into the potential involvement of PEAR1 in skeletal muscle development and post-injury regeneration.
Collapse
Affiliation(s)
- Yahao Zhao
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China; (Y.Z.); (L.Z.); (R.H.); (S.L.); (S.L.)
- Laboratory of Cell and Developmental Biology, Northeast Agricultural University, Harbin 150030, China;
| | - Lu Zhang
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China; (Y.Z.); (L.Z.); (R.H.); (S.L.); (S.L.)
- Laboratory of Cell and Developmental Biology, Northeast Agricultural University, Harbin 150030, China;
| | - Ruotong Hao
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China; (Y.Z.); (L.Z.); (R.H.); (S.L.); (S.L.)
- Laboratory of Cell and Developmental Biology, Northeast Agricultural University, Harbin 150030, China;
| | - Shuang Li
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China; (Y.Z.); (L.Z.); (R.H.); (S.L.); (S.L.)
- Laboratory of Cell and Developmental Biology, Northeast Agricultural University, Harbin 150030, China;
| | - Shufeng Li
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China; (Y.Z.); (L.Z.); (R.H.); (S.L.); (S.L.)
- Laboratory of Cell and Developmental Biology, Northeast Agricultural University, Harbin 150030, China;
| | - Shuai Shi
- Laboratory of Cell and Developmental Biology, Northeast Agricultural University, Harbin 150030, China;
- Department of Cardiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin 150006, China
| | - Huili Tong
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China; (Y.Z.); (L.Z.); (R.H.); (S.L.); (S.L.)
- Laboratory of Cell and Developmental Biology, Northeast Agricultural University, Harbin 150030, China;
| | - Bingchen Liu
- Department of Cardiology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou 310009, China
- Heart Regeneration and Repair Key Laboratory of Zhejiang Province, Hangzhou 310009, China
| |
Collapse
|
12
|
Varshney A, Manickam N, Orchard P, Tovar A, Ventresca C, Zhang Z, Feng F, Mears J, Erdos MR, Narisu N, Nishino K, Rai V, Stringham HM, Jackson AU, Tamsen T, Gao C, Yang M, Koues OI, Welch JD, Burant CF, Williams LK, Jenkinson C, DeFronzo RA, Norton L, Saramies J, Lakka TA, Laakso M, Tuomilehto J, Mohlke KL, Kitzman JO, Koistinen HA, Liu J, Boehnke M, Collins FS, Scott LJ, Parker SCJ. Population-scale skeletal muscle single-nucleus multi-omic profiling reveals extensive context specific genetic regulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.15.571696. [PMID: 38168419 PMCID: PMC10760134 DOI: 10.1101/2023.12.15.571696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Skeletal muscle, the largest human organ by weight, is relevant in several polygenic metabolic traits and diseases including type 2 diabetes (T2D). Identifying genetic mechanisms underlying these traits requires pinpointing cell types, regulatory elements, target genes, and causal variants. Here, we use genetic multiplexing to generate population-scale single nucleus (sn) chromatin accessibility (snATAC-seq) and transcriptome (snRNA-seq) maps across 287 frozen human skeletal muscle biopsies representing nearly half a million nuclei. We identify 13 cell types and integrate genetic variation to discover >7,000 expression quantitative trait loci (eQTL) and >100,000 chromatin accessibility QTLs (caQTL) across cell types. Learning patterns of e/caQTL sharing across cell types increased precision of effect estimates. We identify high-resolution cell-states and context-specific e/caQTL with significant genotype by context interaction. We identify nearly 2,000 eGenes colocalized with caQTL and construct causal directional maps for chromatin accessibility and gene expression. Almost 3,500 genome-wide association study (GWAS) signals across 38 relevant traits colocalize with sn-e/caQTL, most in a cell-specific manner. These signals typically colocalize with caQTL and not eQTL, highlighting the importance of population-scale chromatin profiling for GWAS functional studies. Finally, our GWAS-caQTL colocalization data reveal distinct cell-specific regulatory paradigms. Our results illuminate the genetic regulatory architecture of human skeletal muscle at high resolution epigenomic, transcriptomic, and cell-state scales and serve as a template for population-scale multi-omic mapping in complex tissues and traits.
Collapse
Affiliation(s)
- Arushi Varshney
- Dept. of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Nandini Manickam
- Dept. of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Peter Orchard
- Dept. of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Adelaide Tovar
- Dept. of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Christa Ventresca
- Dept. of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
- Dept. of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Zhenhao Zhang
- Dept. of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Fan Feng
- Dept. of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Joseph Mears
- Dept. of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Michael R Erdos
- Center for Precision Health Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Narisu Narisu
- Center for Precision Health Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Kirsten Nishino
- Dept. of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Vivek Rai
- Dept. of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Heather M Stringham
- Department of Biostatistics, Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Anne U Jackson
- Department of Biostatistics, Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Tricia Tamsen
- Biomedical Research Core Facilities Advanced Genomics Core, University of Michigan, Ann Arbor, MI, USA
| | - Chao Gao
- Dept. of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Mao Yang
- Department of Internal Medicine, Center for Individualized and Genomic Medicine Research, Henry Ford Hospital, Detroit, MI, USA
| | - Olivia I Koues
- Biomedical Research Core Facilities Advanced Genomics Core, University of Michigan, Ann Arbor, MI, USA
| | - Joshua D Welch
- Dept. of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Charles F Burant
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - L Keoki Williams
- Department of Internal Medicine, Center for Individualized and Genomic Medicine Research, Henry Ford Hospital, Detroit, MI, USA
| | - Chris Jenkinson
- South Texas Diabetes and Obesity Research Institute, School of Medicine, University of Texas, Rio Grande Valley, TX, USA
| | - Ralph A DeFronzo
- Department of Medicine/Diabetes Division, University of Texas Health, San Antonio, TX, USA
| | - Luke Norton
- Department of Medicine/Diabetes Division, University of Texas Health, San Antonio, TX, USA
| | - Jouko Saramies
- Savitaipale Health Center, South Karelia Central Hospital, Lappeenranta, Finland
| | - Timo A Lakka
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Markku Laakso
- Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| | - Jaakko Tuomilehto
- Dept. of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, Finland
- Dept. of Public Health, University of Helsinki, Helsinki, Finland
- Diabetes Research Group, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Karen L Mohlke
- Dept. of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | - Jacob O Kitzman
- Dept. of Human Genetics, University of Michigan, Ann Arbor, MI, USA
- Dept. of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Heikki A Koistinen
- Dept. of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, Finland
- Department of Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Jie Liu
- Dept. of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Michael Boehnke
- Department of Biostatistics, Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Francis S Collins
- Center for Precision Health Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Laura J Scott
- Department of Biostatistics, Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Stephen C J Parker
- Dept. of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
- Dept. of Human Genetics, University of Michigan, Ann Arbor, MI, USA
- Department of Biostatistics, Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
13
|
Deng K, Luo R, Chen Y, Liu X, Xi Y, Usman M, Jiang X, Li Z, Zhang J. Electrical Stimulation Therapy - Dedicated to the Perfect Plastic Repair. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2409884. [PMID: 39680745 DOI: 10.1002/advs.202409884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 11/19/2024] [Indexed: 12/18/2024]
Abstract
Tissue repair and reconstruction are a clinical difficulty. Bioelectricity has been identified as a critical factor in supporting tissue and cell viability during the repair process, presenting substantial potential for clinical application. This review delves into various sources of electrical stimulation and identifies appropriate electrode materials for clinical use. It also highlights the biological mechanisms of electrical stimulation at both the subcellular and cellular levels, elucidating how these interactions facilitate the repair and regeneration processes across different organs. Moreover, specific electrode materials and stimulation sources are outlined, detailing their impact on cellular activity. The future development trends are projected from two perspectives: the optimization of equipment performance and the fulfillment of clinical demands, focusing on the feasibility, safety, and cost-effectiveness of technologies.
Collapse
Affiliation(s)
- Kexin Deng
- Department of Plastic Surgery, State Key Laboratory of Trauma and Chemical Poisoning, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Ruizeng Luo
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ying Chen
- Department of Plastic Surgery, State Key Laboratory of Trauma and Chemical Poisoning, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Xiaoqiang Liu
- Department of Plastic Surgery, State Key Laboratory of Trauma and Chemical Poisoning, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Yuanyin Xi
- A Breast Disease Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Muhammad Usman
- Department of Plastic Surgery and Burn, Central Hospital Affiliated with Chongqing University of Technology, Chongqing, 400054, P.R. China
| | - Xupin Jiang
- Department of Plastic Surgery, State Key Laboratory of Trauma and Chemical Poisoning, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Zhou Li
- Department of Plastic Surgery, State Key Laboratory of Trauma and Chemical Poisoning, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiaping Zhang
- Department of Plastic Surgery, State Key Laboratory of Trauma and Chemical Poisoning, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| |
Collapse
|
14
|
Yin K, Zhang C, Deng Z, Wei X, Xiang T, Yang C, Chen C, Chen Y, Luo F. FAPs orchestrate homeostasis of muscle physiology and pathophysiology. FASEB J 2024; 38:e70234. [PMID: 39676717 PMCID: PMC11647758 DOI: 10.1096/fj.202400381r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 10/26/2024] [Accepted: 11/26/2024] [Indexed: 12/17/2024]
Abstract
As a common clinical manifestation, muscle weakness is prevalent in people with mobility disorders. Further studies of muscle weakness have found that patients with muscle weakness present with persistent muscle inflammation, loss of muscle fibers, fat infiltration, and interstitial fibrosis. Therefore, we propose the concept of muscle microenvironment homeostasis, which explains the abnormal pathological changes in muscles through the imbalance of muscle microenvironment homeostasis. And we identified an interstitial progenitor cell FAP during the transition from normal muscle microenvironment homeostasis to muscle microenvironment imbalance caused by muscle damage diseases. As a kind of pluripotent stem cell, FAPs do not participate in myogenic differentiation, but can differentiate into fibroblasts, adipocytes, osteoblasts, and chondrocytes. As a kind of mesenchymal progenitor cell, it is involved in the generation of extracellular matrix, regulate muscle regeneration, and maintain neuromuscular junction. However, the muscle microenvironment is disrupted by the causative factors, and the abnormal activities of FAPs eventually contribute to the complex pathological changes in muscles. Targeting the mechanisms of these muscle pathological changes, we have identified appropriate signaling targets for FAPs to improve and even treat muscle damage diseases. In this review, we propose the construction of muscle microenvironmental homeostasis and find the key cells that cause pathological changes in muscle after homeostasis is broken. By studying the mechanism of abnormal differentiation and apoptosis of FAPs, we found a strategy to inhibit the abnormal pathological changes in muscle damage diseases and improve muscle regeneration.
Collapse
Affiliation(s)
- Kai Yin
- Department of OrthopedicsSouthwest Hospital, Third Military Medical University (Army Medical University)ChongqingPeople's Republic of China
| | - Chengmin Zhang
- Department of OrthopedicsSouthwest Hospital, Third Military Medical University (Army Medical University)ChongqingPeople's Republic of China
| | - Zihan Deng
- Department of OrthopedicsSouthwest Hospital, Third Military Medical University (Army Medical University)ChongqingPeople's Republic of China
| | - Xiaoyu Wei
- Department of OrthopedicsSouthwest Hospital, Third Military Medical University (Army Medical University)ChongqingPeople's Republic of China
| | - Tingwen Xiang
- Department of OrthopedicsSouthwest Hospital, Third Military Medical University (Army Medical University)ChongqingPeople's Republic of China
| | - Chuan Yang
- Department of Biomedical Materials ScienceThird Military Medical University (Army Medical University)ChongqingPeople's Republic of China
| | - Can Chen
- Department for Combat Casualty Care TrainingTraining Base for Army Health Care, Army Medical University (Third Military Medical University)ChongqingPeople's Republic of China
| | - Yueqi Chen
- Department of OrthopedicsSouthwest Hospital, Third Military Medical University (Army Medical University)ChongqingPeople's Republic of China
| | - Fei Luo
- Department of OrthopedicsSouthwest Hospital, Third Military Medical University (Army Medical University)ChongqingPeople's Republic of China
| |
Collapse
|
15
|
Rieger L, Molina T, Fabre P, Greffard K, Pellerito O, Dort J, Bilodeau JF, Dumont NA. Transcriptomic and lipidomic profiling reveals distinct bioactive lipid signatures in slow and fast muscles and highlights the role of resolvin-D2 in fiber type determination during myogenesis. FASEB J 2024; 38:e70250. [PMID: 39698915 DOI: 10.1096/fj.202401747r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 11/14/2024] [Accepted: 12/04/2024] [Indexed: 12/20/2024]
Abstract
Skeletal muscles are predominantly composed of long, multinucleated muscle fibers, classified according to their metabolic and contractile phenotype. The determination of fiber types is influenced by various factors (e.g., innervation, hormones, physical demand). Our laboratory and others showed that resolvins, lipid mediators derived from omega-3 fatty acids, promote muscle regeneration and function after an injury or in models of muscular dystrophies; however, the effect of resolvins on the determination of muscle phenotype remains unknown. Here, we investigated the impact of lipid mediators on muscle phenotype during myogenesis. Transcriptomics analysis of single-nuclei RNAseq data sets revealed that the enzymes responsible for bioactive lipids biosynthesis are differentially expressed in slow fibers versus fast fibers. Lipidomics analysis of slow-twitch muscle (soleus) versus fast-twitch muscle (tibialis anterior) showed that the levels of lipids derived from arachidonic acid are similar between muscle groups, but lipids derived from alpha-linolenic acid, linoleic acid, eicosapentaenoic acid, and docosahexaenoic acid are enriched in slow-twitch muscle. Screening for different lipids in vitro showed that resolvin-D2 enhances the formation of myotubes expressing the slow myosin heavy chain isoform. In vivo, the administration of resolvin-D2 enhances muscle strength, increases myofiber size, and affects fiber typing in injured muscles but not in uninjured muscles. Resolvin-D2 promoted the transition toward the dominant fiber types in regenerating muscle (i.e., type I in the slow-twitch soleus and type IIB in the fast-twitch tibialis anterior muscle), suggesting its participation in fiber typing in conjunction with other factors. Overall, these findings identified new roles of bioactive lipids in the regulation of fiber typing, which could have therapeutic applicability in muscle injuries or dystrophies.
Collapse
Affiliation(s)
- Lupann Rieger
- CHU Sainte-Justine Research Center, Montreal, Quebec, Canada
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Thomas Molina
- CHU Sainte-Justine Research Center, Montreal, Quebec, Canada
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Paul Fabre
- CHU Sainte-Justine Research Center, Montreal, Quebec, Canada
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Karine Greffard
- Endocrinology and Nephrology Unit, CHU de Québec-Laval University Research Center, Quebec, Quebec, Canada
| | | | - Junio Dort
- School of Pharmaceutical Sciences, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Jean-François Bilodeau
- Endocrinology and Nephrology Unit, CHU de Québec-Laval University Research Center, Quebec, Quebec, Canada
- Department of Medicine, Faculty of Medicine, Université Laval, Quebec, Quebec, Canada
| | - Nicolas A Dumont
- CHU Sainte-Justine Research Center, Montreal, Quebec, Canada
- School of Rehabilitation, Faculty of Medicine, Université de Montréal, Montréal, Quebec, Canada
| |
Collapse
|
16
|
Chinvattanachot G, Rivas D, Duque G. Mechanisms of muscle cells alterations and regeneration decline during aging. Ageing Res Rev 2024; 102:102589. [PMID: 39566742 DOI: 10.1016/j.arr.2024.102589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 10/27/2024] [Accepted: 11/14/2024] [Indexed: 11/22/2024]
Abstract
Skeletal muscles are essential for locomotion and body metabolism regulation. As muscles age, they lose strength, elasticity, and metabolic capability, leading to ineffective motion and metabolic derangement. Both cellular and extracellular alterations significantly influence muscle aging. Satellite cells (SCs), the primary muscle stem cells responsible for muscle regeneration, become exhausted, resulting in diminished population and functionality during aging. This decline in SC function impairs intercellular interactions as well as extracellular matrix production, further hindering muscle regeneration. Other muscle-resident cells, such as fibro-adipogenic progenitors (FAPs), pericytes, and immune cells, also deteriorate with age, reducing local growth factor activities and responsiveness to stress or injury. Systemic signaling, including hormonal changes, contributes to muscle cellular catabolism and disrupts muscle homeostasis. Collectively, these cellular and environmental components interact, disrupting muscle homeostasis and regeneration in advancing age. Understanding these complex interactions offers insights into potential regenerative strategies to mitigate age-related muscle degeneration.
Collapse
Affiliation(s)
- Guntarat Chinvattanachot
- Department of Orthopedics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand; Bone, Muscle & Geroscience Group, Research Institute of the McGill University Health Centre, Montreal, QC, Canada.
| | - Daniel Rivas
- Bone, Muscle & Geroscience Group, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Gustavo Duque
- Bone, Muscle & Geroscience Group, Research Institute of the McGill University Health Centre, Montreal, QC, Canada; Dr. Joseph Kaufmann Chair in Geriatric Medicine, Department of Medicine, McGill University, Montreal, QC, Canada
| |
Collapse
|
17
|
Gong Z, Zhang X, Cui J, Chen W, Huang X, Yang Q, Li T, Zhang W. IFRD2, a target of miR-2400, regulates myogenic differentiation of bovine skeletal muscle satellite cells via decreased phosphorylation of ERK1/2 proteins. J Muscle Res Cell Motil 2024; 45:253-262. [PMID: 38896394 DOI: 10.1007/s10974-024-09677-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 06/13/2024] [Indexed: 06/21/2024]
Abstract
The proliferation and differentiation of skeletal muscle satellite cells is a complex physiological process involving various transcription factors and small RNA molecules. This study aimed to understand the regulatory mechanisms underlying these processes, focusing on interferon-related development factor 2 (IFRD2) as a target gene of miRNA-2400 in bovine skeletal MuSCs (MuSCs). IFRD2 was identified as a target gene of miRNA-2400 involved in regulating the proliferation and differentiation of bovine skeletal MuSCs. Our results indicate that miR-2400 can target binding the 3'UTR of IFRD2 and inhibit its translation. mRNA and protein expression levels of IFRD2 increased significantly with increasing days of differentiation. Moreover, overexpression of the IFRD2 gene inhibited proliferation and promoted differentiation of bovine MuSCs. Conversely, the knockdown of the gene had the opposite effect. Overexpression of IFRD2 resulted in the inhibition of ERK1/2 phosphorylation levels in bovine MuSCs, which in turn promoted differentiation. In summary, IFRD2, as a target gene of miR-2400, crucially affects bovine skeletal muscle proliferation and differentiation by precisely regulating ERK1/2 phosphorylation.
Collapse
Affiliation(s)
- Zhian Gong
- Department of Life Science and Agroforestry, Qiqihar University, No. 42 Wenhua Street, Jianhua District, Qiqihar, 161000, PR China
| | - Xiaoyu Zhang
- Department of Life Science and Agroforestry, Qiqihar University, No. 42 Wenhua Street, Jianhua District, Qiqihar, 161000, PR China
| | - Jingxuan Cui
- Department of Life Science and Agroforestry, Qiqihar University, No. 42 Wenhua Street, Jianhua District, Qiqihar, 161000, PR China
| | - Wen Chen
- Department of Life Science and Agroforestry, Qiqihar University, No. 42 Wenhua Street, Jianhua District, Qiqihar, 161000, PR China
| | - Xin Huang
- Department of Life Science and Agroforestry, Qiqihar University, No. 42 Wenhua Street, Jianhua District, Qiqihar, 161000, PR China
- Key Laboratory of Resistance Gene Engineering and Protection of Biodiversity in Cold Areas, Qiqihar, Heilongjiang Province, 161000, PR China
| | - Qingzhu Yang
- Department of Life Science and Agroforestry, Qiqihar University, No. 42 Wenhua Street, Jianhua District, Qiqihar, 161000, PR China
- Key Laboratory of Resistance Gene Engineering and Protection of Biodiversity in Cold Areas, Qiqihar, Heilongjiang Province, 161000, PR China
| | - Tie Li
- Department of Life Science and Agroforestry, Qiqihar University, No. 42 Wenhua Street, Jianhua District, Qiqihar, 161000, PR China
| | - Weiwei Zhang
- Department of Life Science and Agroforestry, Qiqihar University, No. 42 Wenhua Street, Jianhua District, Qiqihar, 161000, PR China.
| |
Collapse
|
18
|
Xie Z, Liu C, Sun C, Liu Y, Peng J, Meng L, Deng J, Wang Z, Yang C, Yuan Y, Xie Z. Single-Nucleus RNA Sequencing Unravels Early Mechanisms of Human Becker Muscular Dystrophy. Ann Neurol 2024; 96:1070-1085. [PMID: 39192489 DOI: 10.1002/ana.27070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 08/04/2024] [Accepted: 08/11/2024] [Indexed: 08/29/2024]
Abstract
OBJECTIVE The transcriptional heterogeneity at a single-nucleus level in human Becker muscular dystrophy (BMD) dystrophic muscle has not been explored. Here, we aimed to understand the transcriptional heterogeneity associated with myonuclei, as well as other mononucleated cell types that underly BMD pathogenesis by performing single-nucleus RNA sequencing. METHODS We profiled single-nucleus transcriptional profiles of skeletal muscle samples from 7 BMD patients and 3 normal controls. RESULTS A total of 17,216 nuclei (12,879 from BMD patients and 4,337 from controls) were classified into 13 known cell types, including 9 myogenic lineages and 4 non-myogenic lineages, and 1 unclassified nuclear type according to their cell identities. Among them, type IIx myonuclei were the first to degenerate in response to dystrophin reduction. Differential expression analysis revealed that the fibro-adipogenic progenitors (FAPs) population had the largest transcriptional changes among all cell types. Sub-clustering analysis identified a significantly compositional increase in the activated FAPs (aFAPs) subpopulation in BMD muscles. Pseudotime analysis, regulon inference, and deconvolution analysis of bulk RNA-sequencing data derived from 29 BMD patients revealed that the aFAPs subpopulation, a distinctive and previously unrecognized mononuclear subtype, was profibrogenic and expanded in BMD patients. Muscle quantitative real-time polymerase chain reaction and immunofluorescence analysis confirmed that the mRNA and protein levels of the aFAPs markers including LUM, DCN, and COL1A1 in BMD patients were significantly higher than those in controls, respectively. INTERPRETATION Our results provide insights into the transcriptional diversity of human BMD muscle at a single-nucleus resolution and new potential targets for anti-fibrosis therapies in BMD. ANN NEUROL 2024;96:1070-1085.
Collapse
Affiliation(s)
- Zhihao Xie
- Department of Neurology, Peking University First Hospital, Beijing, China
- Department of Epidemiology and Biostatistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Chang Liu
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Chengyue Sun
- Department of Neurology, Peking University People's Hospital, Beijing, China
| | - Yilin Liu
- Department of Pathology, Peking Union Medical College Hospital, Beijing, China
| | - Jieru Peng
- Department of Epidemiology and Biostatistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Lingchao Meng
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Jianwen Deng
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Zhaoxia Wang
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Chunxia Yang
- Department of Epidemiology and Biostatistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Yun Yuan
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Zhiying Xie
- Department of Neurology, Peking University First Hospital, Beijing, China
| |
Collapse
|
19
|
Zhang D, Yin L, Lin Z, Yu C, Li J, Ren P, Yang C, Qiu M, Liu Y. miR-136-5p/FZD4 axis is critical for Wnt signaling-mediated myogenesis and skeletal muscle regeneration. J Cell Physiol 2024; 239:e31046. [PMID: 37218742 DOI: 10.1002/jcp.31046] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/04/2023] [Accepted: 05/10/2023] [Indexed: 05/24/2023]
Abstract
Skeletal muscle can undergo a regenerative process in response to injury or disease to maintain muscle quality and function. Myogenesis depends on the proliferation and differentiation of myoblasts, and miRNAs can maintain the balance between them by precisely regulating many key factors in the myogenic network. Here, we found that miR-136-5p was significantly upregulated during the proliferation and differentiation of C2C12 cells. We demonstrate that miR-136-5p acts as a myogenic negative regulator during the development of mouse C2C12 myoblasts. In terms of mechanism, miR-136-5p inhibits the formation of β-catenin/LEF/TCF DNA-binding factor transcriptional regulatory complex by targeting FZD4, a gating protein in the Wnt signaling pathway, thereby enhancing downstream myogenic factors and finally promoting myoblast proliferation and differentiation. In addition, in BaCl2-induced muscle injury mouse model, miR-136-5p knockdown accelerated the regeneration of skeletal muscle after injury, and further led to the improvement of gastrocnemius muscle mass and muscle fiber diameter, while being suppressed by shFZD4 lentivirus infection. In summary, these results demonstrate the essential role of miR-136-5p/FZD4 axis in skeletal muscle regeneration. Given the conservation of miR-136-5p among species, miR-136-5p may be a new target for treating human skeletal muscle injury and improving the production of animal meat products.
Collapse
Affiliation(s)
- Donghao Zhang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Lingqian Yin
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Zhongzhen Lin
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Chunlin Yu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, Sichuan, China
| | - Jingjing Li
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, China
| | - Peng Ren
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, China
| | - Chaowu Yang
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, Sichuan, China
| | - Mohan Qiu
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, Sichuan, China
| | - Yiping Liu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| |
Collapse
|
20
|
Gu Y, Shen J, Hao Z, Zhen H, Wu X, Wang J, Li M, Ren C, Liu Y, Zhao Y, Yang P, Wang X. Molecular Characteristics of Circ_002156 and Its Effects on Proliferation and Differentiation of Caprine Skeletal Muscle Satellite Cells. Int J Mol Sci 2024; 25:12745. [PMID: 39684452 DOI: 10.3390/ijms252312745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/15/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
The proliferation and differentiation of skeletal muscle satellite cells (SMSCs) are responsible for the development of skeletal muscle. In our previous study, circ_002156 was found to be highly expressed in caprine Longissimus Dorsi muscle, but the regulatory role of the circular RNAs (circRNA) in goat SMSCs remains unclear. In this study, the authenticity of circ_002156 was validated, and its structurally characteristic and cellular localization as well as tissue expression of circ_002156 and its parent genes were investigated. Moreover, the effects of circ_002156 on the viability, proliferation, and differentiation of SMSCs were also studied. The circ_002156 is located on caprine chromosome 19 with a length of 36,478. The circRNA structurally originates from myosin heavy chain 2 (MYH2), MYH1, and MYH4 as well as intergenic sequences among the parent genes. RT-PCR and Sanger sequencing confirmed the authenticity of circ_002156. Most circ_002156 (55.5%) was expressed in the nuclei of SMSCs, while 44.5% of circ_002156 was located in the cytoplasm. The circ_002156 and its three parent genes had higher expression levels in the triceps brachii, quadriceps femoris, and longissimus dorsi muscle tissues than in the other five tissues. The expression of circ_002156 and its parent genes MYH1 and MYH4 reached the maximum on day 8 of differentiation, while MYH2 in expression reached the peak on day 4 after differentiation. The Pearson correlation coefficients revealed that circ_002156 had moderate or high positive correlations with the three parent genes in the expression of both quadriceps femoris muscle and SMSCs during different differentiation stages. The small interfering RNA circ_002156 (named si-circ_002156) remarkably increased the viability of the SMSCs. The si-circ_002156 also increased the number and parentage of Edu-labeled positive SMSCs as well as the expression levels of four cell proliferation marker genes. These suggest that circ_002156 inhibited the proliferation of SMSCs. Meanwhile, si-circ_002156 decreased the area of MyHC-labeled positive myotubes, the myotube fusion index, and myotube size as well as the expression of its three parent genes and four cell differentiation marker genes, suggesting a positive effect of circ_002156 on the differentiation of SMSCs. This study contributes to a better understanding of the roles of circ_002156 in the proliferation and differentiation of SMSCs.
Collapse
Affiliation(s)
- Yuanhua Gu
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Jiyuan Shen
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Zhiyun Hao
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Huimin Zhen
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Xinmiao Wu
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Jiqing Wang
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Mingna Li
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Chunyan Ren
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Yuan Liu
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Yuan Zhao
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Pan Yang
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Xuanyu Wang
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
21
|
Ma X, La Y, Wang T, Huang C, Feng F, Guo X, Bao P, Wu X, Chu M, Liang C, Yan P. Lnc-MEG8 regulates yak myoblast differentiation via the miR-22-3p/RTL1 axis. BMC Genomics 2024; 25:1146. [PMID: 39604828 PMCID: PMC11600685 DOI: 10.1186/s12864-024-11038-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 11/12/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND The yak (Bos grunniens) is essential to the livelihoods of Tibetan people on the Qinghai-Tibet Plateau; however, its growth and productivity are constrained by the region's harsh climate and high altitude. Yak skeletal muscle myoblasts, which have evolved to thrive under these challenging conditions, offer a valuable model for investigating muscle development. In this study, we performed transcriptome profiling of yak longissimus dorsi muscle at different growth stages, identifying a key long non-coding RNA, LncRNA-XR_314844 (Lnc-MEG8), with a potential role in muscle development. RESULTS We developed a novel technique to isolate high-quality yak myoblasts, enabling detailed analysis of Lnc-MEG8. Our results indicated that Lnc-MEG8's subcellular localization varies during muscle cell growth: it is found in both the nucleus and cytoplasm during proliferation but shifts mainly to the cytoplasm during differentiation. Functional experiments showed that Lnc-MEG8 promotes cell proliferation and inhibits differentiation, while its silencing had the opposite effect. Further analysis revealed that both Lnc-MEG8 and the gene RTL1 share miR-22-3p as a common target. Dual-luciferase assays confirmed miR-22-3p directly targets both Lnc-MEG8 and RTL1 mRNA. Co-transfection of Lnc-MEG8 and a miR-22-3p mimic restored RTL1 expression, highlighting Lnc-MEG8's regulatory role. Lnc-MEG8 also counteracts miR-22-3p's suppression of key muscle genes such as MyF5 and MyoG, facilitating myotube formation. CONCLUSION These findings demonstrate that the Lnc-MEG8-miR-22-3p-RTL1 axis plays a crucial role in yak muscle development, providing insights that could advance muscle tissue engineering and enhance yak meat quality.
Collapse
Affiliation(s)
- Xiaoming Ma
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Institute of Western Agriculture, the , Chinese Academy of Agricultural Sciences, Changji, China
- Key Laboratory of Animal Genetics and Breeding On Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Yongfu La
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Key Laboratory of Animal Genetics and Breeding On Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Tong Wang
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Key Laboratory of Animal Genetics and Breeding On Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Chun Huang
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Key Laboratory of Animal Genetics and Breeding On Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Fen Feng
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Key Laboratory of Animal Genetics and Breeding On Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xian Guo
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Key Laboratory of Animal Genetics and Breeding On Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Pengjia Bao
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Key Laboratory of Animal Genetics and Breeding On Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xiaoyun Wu
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Key Laboratory of Animal Genetics and Breeding On Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Min Chu
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Key Laboratory of Animal Genetics and Breeding On Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Chunnian Liang
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China.
- Key Laboratory of Animal Genetics and Breeding On Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Lanzhou, China.
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Chinese Academy of Agricultural Sciences, Lanzhou, China.
| | - Ping Yan
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China.
- Institute of Western Agriculture, the , Chinese Academy of Agricultural Sciences, Changji, China.
- Key Laboratory of Animal Genetics and Breeding On Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Lanzhou, China.
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Chinese Academy of Agricultural Sciences, Lanzhou, China.
| |
Collapse
|
22
|
Chung JD, Porrello ER, Lynch GS. Muscle regeneration and muscle stem cells in metabolic disease. Free Radic Biol Med 2024:S0891-5849(24)01075-X. [PMID: 39581389 DOI: 10.1016/j.freeradbiomed.2024.11.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 11/05/2024] [Accepted: 11/15/2024] [Indexed: 11/26/2024]
Abstract
Skeletal muscle has a high regenerative capacity due to its resident adult muscle stem cells (MuSCs), which can repair damaged tissue by forming myofibres de novo. Stem cell dependent regeneration is critical for maintaining skeletal muscle health, and different conditions can draw heavily on MuSC support to preserve muscle function, including metabolic diseases such as diabetes. The global incidence and burden of diabetes is increasing, and skeletal muscle is critical for maintaining systemic metabolic homeostasis and improving outcomes for diabetic patients. Thus, poor muscle health in diabetes, termed diabetic myopathy, is an important complication that must be addressed. The health of MuSCs is also affected by diabetes, responsible for the poor muscle regenerative capacity and contributing to the functional decline in diabetic patients. Here, we review the impact of diabetes and metabolic disease on MuSCs and skeletal muscle, including potential mechanisms for impaired muscle regeneration and MuSC dysfunction, and how these deficits could be addressed.
Collapse
Affiliation(s)
- Jin D Chung
- Centre for Muscle Research, Department of Anatomy and Physiology, The University of Melbourne, Melbourne 3010, VIC, Australia; Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne 3052, VIC, Australia; Novo Nordisk Foundation Center for Stem Cell Medicine, Murdoch Children's Research Institute, Melbourne 3052, VIC, Australia
| | - Enzo R Porrello
- Centre for Muscle Research, Department of Anatomy and Physiology, The University of Melbourne, Melbourne 3010, VIC, Australia; Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne 3052, VIC, Australia; Novo Nordisk Foundation Center for Stem Cell Medicine, Murdoch Children's Research Institute, Melbourne 3052, VIC, Australia; Department of Paediatrics, The University of Melbourne, Melbourne 3010, VIC, Australia
| | - Gordon S Lynch
- Centre for Muscle Research, Department of Anatomy and Physiology, The University of Melbourne, Melbourne 3010, VIC, Australia.
| |
Collapse
|
23
|
Li H, Dong X, Wang L, Wen H, Qi X, Zhang K, Li Y. Genome-wide identification of Fgfr genes and function analysis of Fgfr4 in myoblasts differentiation of Lateolabrax maculatus. Gene 2024; 927:148717. [PMID: 38908457 DOI: 10.1016/j.gene.2024.148717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/29/2024] [Accepted: 06/19/2024] [Indexed: 06/24/2024]
Abstract
Fibroblast growth factor receptors (Fgfrs) are involved in cell proliferation, differentiation, and migration via complex signaling pathways in different tissues. Our previous studies showed that fibroblast growth factor receptor 4 (fgfr4) was detected in the most significant quantitative trait loci (QTL) for growth traits. However, studies focusing on the function of fgfr4 on the growth of bony fish are still limited. In this study, we identified seven fgfr genes in spotted sea bass (Lateolabrax maculatus) genome, namely fgfr1a, fgfr1b, fgfr2, fgfr3, fgfr4, fgfr5a, and fgfr5b. Phylogenetic analysis, syntenic analysis and gene structure analysis were conducted to further support the accuracy of our annotation and classification results. Additionally, fgfr4 showed the highest expression levels among fgfrs during the proliferation and differentiation stages of spotted sea bass myoblasts. To further study the function of fgfr4 in myogenesis, dual-fluorescence in situ hybridization (ISH) assay was conducted, and the results showed co-localization of fgfr4 with marker gene of skeletal muscle satellite cells. By treating differentiating myoblasts cultured in vitro with BLU-554, the mRNA expressions of myogenin (myog) and the numbers of myotubes formed by myoblasts increased significantly compared to negative control group. These results indicated that Fgfr4 inhibits the differentiation of myoblasts in spotted sea bass. Our findings contributed to filling a research gap on fgfr4 in bony fish myogenesis and the theoretical understanding of growth trait regulation of spotted sea bass.
Collapse
Affiliation(s)
- Hao Li
- Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Qingdao 266003, China
| | - Ximeng Dong
- Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Qingdao 266003, China
| | - Lingyu Wang
- Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Qingdao 266003, China
| | - Haishen Wen
- Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Qingdao 266003, China
| | - Xin Qi
- Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Qingdao 266003, China
| | - Kaiqiang Zhang
- Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Qingdao 266003, China
| | - Yun Li
- Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Qingdao 266003, China; Sanya Oceanographic Institution, Ocean University of China, Sanya 572000, China.
| |
Collapse
|
24
|
Xu R, Cao JW, Geng Y, Xu TC, Guo MY. Polystyrene nano-plastics impede skeletal muscle development and induce lipid accumulation via the PPARγ/LXRβ pathway in vivo and in vitro in mice. Arch Toxicol 2024; 98:3713-3725. [PMID: 39096369 DOI: 10.1007/s00204-024-03831-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 07/25/2024] [Indexed: 08/05/2024]
Abstract
Nano-plastics (NPs) have emerged as a significant environmental pollutant, widely existing in water environment, and pose a serious threat to health and safety with the intake of animals. Skeletal muscle, a vital organ for complex life activities and functional demands, has received limited attention regarding the effects of NPs. In this study, the effects of polystyrene NPs (PS-NPs) on skeletal muscle development were studied by oral administration of different sizes (1 mg/kg) of PS-NPs in mice. The findings revealed that PS-NPs resulted in skeletal muscle damage and significantly hindered muscle differentiation, exhibiting an inverse correlation with PS-NPs particle size. Morphological analysis demonstrated PS-NPs caused partial disruption of muscle fibers, increased spacing between fibers, and lipid accumulation. RT-qPCR and western blots analyses indicated that PS-NPs exposure downregulated the expression of myogenic differentiation-related factors (Myod, Myog and Myh2), activated PPARγ/LXRβ pathway, and upregulated the expressions of lipid differentiation-related factors (SREBP1C, SCD-1, FAS, ACC1, CD36/FAT, ADIPOQ, C/EBPα and UCP-1). In vitro experiments, C2C12 cells were used to confirm cellular penetration of PS-NPs (0, 100, 200, 400 μg/mL) through cell membranes along with activation of PPARγ expression. Furthermore, to verify LXRβ as a key signaling molecule, silencing RNA transfection experiments were conducted, resulting in no increase in the expressions of PPARγ, LXRβ, SREBP1C, FAS, CD36/FAT, ADIPOQ, C/EBPα and UCP-1 even after exposure to PS-NPs. However, the expressions of SCD-1and ACC1 remained unaffected. The present study evidenced that exposure to PS-NPs induced lipid accumulation via the PPARγ/LXRβ pathway thereby influencing skeletal muscle development.
Collapse
Affiliation(s)
- Ran Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Jing-Wen Cao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Yuan Geng
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Tian-Chao Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Meng-Yao Guo
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
| |
Collapse
|
25
|
Jing J, Yang WX, Pan QQ, Zhang SH, Cao HG, Zhang ZJ, Ling YH. Regulatory role of lncMD1 in goat skeletal muscle satellite cell differentiation via miR-133a-3p and miR-361-3p targeting. Int J Biol Macromol 2024; 280:135807. [PMID: 39306179 DOI: 10.1016/j.ijbiomac.2024.135807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/18/2024] [Accepted: 09/18/2024] [Indexed: 09/26/2024]
Abstract
Skeletal muscle satellite cells (SMSCs) are pivotal in skeletal muscle development and are influenced by numerous regulatory factors. This study focuses on the regulatory and functional mechanism roles of lncMD1, a muscle-specific long non-coding RNA, in the proliferation and differentiation of goat SMSCs. Employing in vitro cultured goat SMSCs, this study demonstrated that lncMD1, functions as a decoy for miR-133a-3p and miR-361-3p. This interaction competitively binds these microRNAs to modulate the expression of dynactin subunit 2 (DCTN2) and dynactin subunit 1 (DCTN1), thereby affects SMSCs proliferation and differentiation. These findings enhance the understanding of non-coding RNAs in goat SMSCs growth cycles and offer a theoretical foundation for exploring the molecular processes of goat skeletal muscle myogenic development.
Collapse
Affiliation(s)
- Jing Jing
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, Anhui, China; Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Germplasm Innovation, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Wang-Xin Yang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, Anhui, China; Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Germplasm Innovation, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Qian-Qian Pan
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, Anhui, China; Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Germplasm Innovation, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Si-Huan Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, Anhui, China; Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Germplasm Innovation, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Hong-Guo Cao
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, Anhui, China; Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Germplasm Innovation, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Zi-Jun Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, Anhui, China; Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Germplasm Innovation, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Ying-Hui Ling
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, Anhui, China; Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Germplasm Innovation, Anhui Agricultural University, Hefei 230036, Anhui, China.
| |
Collapse
|
26
|
Kim YA, Oh S, Park G, Park S, Park Y, Choi H, Kim M, Choi J. Characteristics of bovine muscle satellite cell from different breeds for efficient production of cultured meat. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2024; 66:1257-1272. [PMID: 39691610 PMCID: PMC11647411 DOI: 10.5187/jast.2023.e115] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/11/2023] [Accepted: 10/17/2023] [Indexed: 12/19/2024]
Abstract
The purpose of this study was comparing in vitro performances of three breeds of donor satellite cells for cultured meat and selecting the optimal donor and providing insight into the selection of donors for cultured meat production. Cattle muscle satellite cells were isolated from the muscle tissue of Hanwoo, Holstein, and Jeju black cattle, and then sorted by fluorescence activated cell sorting (FACS). Regarding proliferation of satellite cells, all three breeds showed similar trends. The myogenic potential, based on PAX7 and MYOD mRNA expression levels, was similar or significantly higher for Holstein than other breeds. When the area, width, and fusion index of the myotube were calculated through immunofluorescence staining of myosin, it was expressed upward for Holstein in all experiments except myotube area at passage 8. In addition, it was confirmed that Holstein's muscle satellite cells showed an upward expression in the amount of gene and protein expression related to myogenic. In the case of gene expression of MYOG, DES, and MYH4 known to play a key role in differentiation into muscles, it was confirmed that Holstein's muscle satellite cells expressed higher levels. CAV3, IGF1 and TNNT1, which contribute to hypertrophy and differentiation of muscle cells, showed high expression in Holstein. Our results suggest using cells from Holstein cattle can increase the efficiency of cultured meat production, compared to Hanwoo and Jeju breeds, because the cells exhibit superior differentiation behavior which would lead to greater yields during the maturation phase of bioprocessing.
Collapse
Affiliation(s)
- Yun-a Kim
- Department of Animal Science, Chungbuk National University, Cheongju 28644, Korea
| | - Sehyuk Oh
- Department of Animal Science, Chungbuk National University, Cheongju 28644, Korea
| | - Gyutae Park
- Department of Animal Science, Chungbuk National University, Cheongju 28644, Korea
| | - Sanghun Park
- Department of Animal Science, Chungbuk National University, Cheongju 28644, Korea
| | - Yunhwan Park
- Department of Animal Science, Chungbuk National University, Cheongju 28644, Korea
| | - Hyunsoo Choi
- Department of Animal Science, Chungbuk National University, Cheongju 28644, Korea
| | - Minjung Kim
- Food Functionality Research Division, Korea Food Research Institute, Wanju 55365, Korea
| | - Jungseok Choi
- Department of Animal Science, Chungbuk National University, Cheongju 28644, Korea
| |
Collapse
|
27
|
Cui H, Wang Y, Zhu Y, Liu X, Liu L, Wang J, Tan X, Wang Y, Xing S, Luo N, Liu L, Liu R, Zheng M, Zhao G, Wen J. Genomic insights into the contribution of de novo lipogenesis to intramuscular fat deposition in chicken. J Adv Res 2024; 65:19-31. [PMID: 38065407 PMCID: PMC11519054 DOI: 10.1016/j.jare.2023.12.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/29/2023] [Accepted: 12/01/2023] [Indexed: 10/21/2024] Open
Abstract
INTRODUCTION The proportion of animal based foods in daily diet of consumers is constantly increasing, with chicken being highly favored due to its high protein and low fat characteristics. The consumption of chicken around the world is steadily increasing. Intramuscular fat (IMF) is a key indicator affecting meat quality. OBJECT High IMF content can contribute to improve the quality of chicken meat. The regulatory mechanism of IMF deposition in chicken is poorly understood, so its complete elucidation is essential to improve chicken meat quality. METHOD Here, we performed whole genome resequencing on 516 yellow feather chickens and single-cell RNA sequencing on 3 63-day-old female JXY chickens. In addition, transcriptome sequencing techniques were also performed on breast muscle tissue of JXY chickens at different developmental stages. And 13C isotope tracing technique was applied. RESULTS In this study, a large-scale genetic analysis of an IMF-selected population and a control population identified fatty acid synthase (FASN) as a key gene for improving IMF content. Also, contrary to conventional view, de novo lipogenesis (DNL) was deemed to be an important contributor to IMF deposition. As expected, further analyses by isotope tracing and other techniques, confirmed that DNL mainly occurs in myocytes, contributing about 40% of the total fatty acids through the regulation of FASN, using the available FAs as substrates. Additionally, we also identified a relevant causal mutation in the FASN gene with effects on FA composition. CONCLUSION These findings contribute to the understanding of fat metabolism in muscle tissue of poultry, and provide the feasible strategy for the production of high-quality chicken meat.
Collapse
Affiliation(s)
- Huanxian Cui
- State Key Laboratory of Animal Biotech Breeding, State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - Yongli Wang
- State Key Laboratory of Animal Biotech Breeding, State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - Yuting Zhu
- State Key Laboratory of Animal Biotech Breeding, State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - Xiaojing Liu
- State Key Laboratory of Animal Biotech Breeding, State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - Lu Liu
- State Key Laboratory of Animal Biotech Breeding, State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - Jie Wang
- State Key Laboratory of Animal Biotech Breeding, State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - Xiaodong Tan
- State Key Laboratory of Animal Biotech Breeding, State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - Yidong Wang
- State Key Laboratory of Animal Biotech Breeding, State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - Siyuan Xing
- State Key Laboratory of Animal Biotech Breeding, State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - Na Luo
- State Key Laboratory of Animal Biotech Breeding, State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - Li Liu
- State Key Laboratory of Animal Biotech Breeding, State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - Ranran Liu
- State Key Laboratory of Animal Biotech Breeding, State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - Maiqing Zheng
- State Key Laboratory of Animal Biotech Breeding, State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - Guiping Zhao
- State Key Laboratory of Animal Biotech Breeding, State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China.
| | - Jie Wen
- State Key Laboratory of Animal Biotech Breeding, State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China.
| |
Collapse
|
28
|
Rahman FA, Hian-Cheong DJ, Boonstra K, Ma A, Thoms JP, Zago AS, Quadrilatero J. Augmented mitochondrial apoptotic signaling impairs C2C12 myoblast differentiation following cellular aging through sequential passaging. J Cell Physiol 2024; 239:e31155. [PMID: 38212955 DOI: 10.1002/jcp.31155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/28/2023] [Accepted: 11/02/2023] [Indexed: 01/13/2024]
Abstract
Aging is associated with the steady decline of several cellular processes. The loss of skeletal muscle mass, termed sarcopenia, is one of the major hallmarks of aging. Aged skeletal muscle exhibits a robust reduction in its regenerative capacity due to dysfunction (i.e., senescence, lack of self-renewal, and impaired differentiation) of resident muscle stem cells, called satellite cells. To replicate aging in vitro, immortalized skeletal muscle cells (myoblasts) can be treated with various agents to mimic age-related dysfunction; however, these come with their own set of limitations. In the present study, we used sequential passaging of mouse myoblasts to mimic impaired differentiation that is observed in aged skeletal muscle. Further, we investigated mitochondrial apoptotic mechanisms to better understand the impaired differentiation in these "aged" cells. Our data shows that sequential passaging (>20 passages) of myoblasts is accompanied with significant reductions in differentiation and elevated cell death. Furthermore, high-passage (HP) myoblasts exhibit greater mitochondrial-mediated apoptotic signaling through mitochondrial BAX translocation, CYCS and AIFM1 release, and caspase-9 activation. Finally, we show that inhibition of mitochondrial outer membrane permeability partly recovered differentiation in HP myoblasts. Together, our findings suggests that mitochondrial apoptotic signaling is a contributing factor to the diminished differentiation that is observed in aged myoblasts.
Collapse
Affiliation(s)
- Fasih A Rahman
- Department of Kinesiology and Health Sciences, University of Waterloo, Waterloo, ON, Canada
| | - Dylan J Hian-Cheong
- Department of Kinesiology and Health Sciences, University of Waterloo, Waterloo, ON, Canada
| | - Kristen Boonstra
- Department of Kinesiology and Health Sciences, University of Waterloo, Waterloo, ON, Canada
| | - Andrew Ma
- Department of Kinesiology and Health Sciences, University of Waterloo, Waterloo, ON, Canada
| | - James P Thoms
- Department of Kinesiology and Health Sciences, University of Waterloo, Waterloo, ON, Canada
| | - Anderson S Zago
- Department of Physical Education, School of Sciences, Sao Paulo State University, Bauru, Brazil
| | - Joe Quadrilatero
- Department of Kinesiology and Health Sciences, University of Waterloo, Waterloo, ON, Canada
| |
Collapse
|
29
|
Sun L, Yuan C, An X, Kong L, Zhang D, Chen B, Lu Z, Liu J. Delta-like noncanonical notch ligand 2 regulates the proliferation and differentiation of sheep myoblasts through the Wnt/β-catenin signaling pathway. J Cell Physiol 2024; 239:e31385. [PMID: 39030845 DOI: 10.1002/jcp.31385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/25/2024] [Accepted: 07/05/2024] [Indexed: 07/22/2024]
Abstract
This study delved into the role of delta-like noncanonical notch ligand 2 (DLK2) in the cell cycle, proliferation, apoptosis, and differentiation of myoblasts, as well as its interaction with the classical Wnt/β-catenin signaling pathway in regulating myoblast function. The research revealed that upregulation of DLK2 in myoblasts during the proliferation phase enhanced myoblast proliferation, facilitated cell cycle progression, and reduced apoptosis. Conversely, downregulation of DLK2 expression using siRNA during the differentiation phase promoted myoblast hypertrophy and fusion, suppressed the expression of muscle fiber degradation factors, and expedited the differentiation process. DLK2 regulates myoblasts function by influencing the expression of various factors associated with the Wnt/β-catenin signaling pathway, including CTNNB1, FZD1, FZD6, RSPO1, RSPO4, WNT4, WNT5A, and adenomatous polyposis coli. In essence, DLK2, with the involvement of the Wnt/β-catenin signaling pathway, plays a crucial regulatory role in the cell cycle, proliferation, apoptosis, and differentiation of myoblasts.
Collapse
Affiliation(s)
- Lixia Sun
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, China
- Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Chao Yuan
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, China
- Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xuejiao An
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, China
- Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Lingying Kong
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, China
- Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Dan Zhang
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, China
- Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Bowen Chen
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, China
- Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Zengkui Lu
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, China
- Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Jianbin Liu
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, China
- Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou, China
| |
Collapse
|
30
|
Sun C, Swoboda CO, Morales FM, Calvo C, Petrany MJ, Parameswaran S, VonHandorf A, Weirauch MT, Lepper C, Millay DP. Lineage tracing of nuclei in skeletal myofibers uncovers distinct transcripts and interplay between myonuclear populations. Nat Commun 2024; 15:9372. [PMID: 39477931 PMCID: PMC11526147 DOI: 10.1038/s41467-024-53510-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 10/10/2024] [Indexed: 11/02/2024] Open
Abstract
Multinucleated skeletal muscle cells need to acquire additional nuclei through fusion with activated skeletal muscle stem cells when responding to both developmental and adaptive growth stimuli. A fundamental question in skeletal muscle biology has been the reason underlying this need for new nuclei in cells that already harbor hundreds of nuclei. Here we utilize nuclear RNA-sequencing approaches and develop a lineage tracing strategy capable of defining the transcriptional state of recently fused nuclei and distinguishing this state from that of pre-existing nuclei. Our findings reveal the presence of conserved markers of newly fused nuclei both during development and after a hypertrophic stimulus in the adult. However, newly fused nuclei also exhibit divergent gene expression that is determined by the myogenic environment to which they fuse. Moreover, accrual of new nuclei through fusion is required for nuclei already resident in adult myofibers to mount a normal transcriptional response to a load-inducing stimulus. We propose a model of mutual regulation in the control of skeletal muscle development and adaptations, where newly fused and pre-existing myonuclear populations influence each other to maintain optimal functional growth.
Collapse
Affiliation(s)
- Chengyi Sun
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Casey O Swoboda
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Fabian Montecino Morales
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Cristofer Calvo
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Michael J Petrany
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Sreeja Parameswaran
- Division of Human Genetics, Center for Autoimmune Genetics and Etiology (CAGE), Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Andrew VonHandorf
- Division of Human Genetics, Center for Autoimmune Genetics and Etiology (CAGE), Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Matthew T Weirauch
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Division of Human Genetics, Center for Autoimmune Genetics and Etiology (CAGE), Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Christoph Lepper
- Department of Physiology & Cell Biology, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Douglas P Millay
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
31
|
Sun Z, Cheng X, Wang Z, Qiao C, Qian H, Yuan T, Lv Z, Sun W, Zhang H, Liu Y, Lu Z, Lin J, Lai C, Wang Y, Yang X, Wang X, Meng J, Bao N. Single-nucleus transcriptomics reveals subsets of degenerative myonuclei after rotator cuff tear-induced muscle atrophy. Cell Prolif 2024:e13763. [PMID: 39435630 DOI: 10.1111/cpr.13763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 09/06/2024] [Accepted: 09/23/2024] [Indexed: 10/23/2024] Open
Abstract
Rotator cuff tear (RCT) is the primary cause of shoulder pain and disability and frequently trigger muscle degeneration characterised by muscle atrophy, fatty infiltration and fibrosis. Single-nucleus RNA sequencing (snRNA-seq) was used to reveal the transcriptional changes in the supraspinatus muscle after RCT. Supraspinatus muscles were obtained from patients with habitual shoulder dislocation (n = 3) and RCT (n = 3). In response to the RCT, trajectory analysis showed progression from normal myonuclei to ANKRD1+ myonuclei, which captured atrophy-and fatty infiltration-related regulons (KLF5, KLF10, FOSL1 and BHLHE40). Transcriptomic alterations in fibro/adipogenic progenitors (FAPs) and muscle satellite cells (MuSCs) have also been studied. By predicting cell-cell interactions, we observed communication alterations between myofibers and muscle-resident cells following RCT. Our findings reveal the plasticity of muscle cells in response to RCT and offer valuable insights into the molecular mechanisms and potential therapeutic targets of RCT.
Collapse
Affiliation(s)
- Ziying Sun
- Department of Orthopedics, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, People's Republic of China
| | - Xi Cheng
- Department of Orthopedics, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, People's Republic of China
| | - Zheng Wang
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, People's Republic of China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu, People's Republic of China
| | - Chenfeng Qiao
- Department of Orthopedics, Jinling Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People's Republic of China
| | - Hong Qian
- Department of Orthopedics, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, People's Republic of China
| | - Tao Yuan
- Department of Orthopedics, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, People's Republic of China
| | - Zhongyang Lv
- Department of Orthopedics, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, People's Republic of China
| | - Wenshuang Sun
- Department of Orthopedics, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, People's Republic of China
| | - Hanwen Zhang
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, People's Republic of China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu, People's Republic of China
| | - Yuan Liu
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, People's Republic of China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu, People's Republic of China
| | - Zhihao Lu
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, People's Republic of China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu, People's Republic of China
| | - Jintao Lin
- Department of Orthopedics, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, People's Republic of China
| | - Chengteng Lai
- Department of Orthopedics, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, People's Republic of China
| | - Yang Wang
- Department of Orthopedics, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, People's Republic of China
| | - Xiaojiang Yang
- Department of Orthopedics, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, People's Republic of China
| | - Xingyun Wang
- Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Jia Meng
- Department of Orthopedics, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, People's Republic of China
- Department of Orthopedics, Jinling Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People's Republic of China
| | - Nirong Bao
- Department of Orthopedics, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, People's Republic of China
- Department of Orthopedics, Jinling Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People's Republic of China
| |
Collapse
|
32
|
Kawata S, Seki S, Nishiura A, Kitaoka Y, Iwamori K, Fukada SI, Kogo M, Tanaka S. Preservation of masseter muscle until the end stage in the SOD1G93A mouse model for ALS. Sci Rep 2024; 14:24279. [PMID: 39414899 PMCID: PMC11484890 DOI: 10.1038/s41598-024-74669-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 09/27/2024] [Indexed: 10/18/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) progressively impairs motor neurons, leading to muscle weakness and loss of voluntary muscle control. This study compared the effects of SOD1 mutation on masticatory and limb muscles from disease onset to death in ALS model mice. Notably, limb muscles begin to atrophy soon after ALS-like phenotype appear, whereas masticatory muscles maintain their volume and function in later stages. Our analysis showed that, unlike limb muscles, masticatory muscles retain their normal structure and cell makeup throughout most of the disease course. We found an increase in the number of muscle satellite cells (SCs), which are essential for muscle repair, in masticatory muscles. In addition, we observed no reduction in the number of muscle nuclei and no muscle fibre-type switching in masticatory muscles. This indicates that masticatory muscles have a higher resistance to ALS-related damage than limb muscles, likely because of differences in cell composition and repair mechanisms. Understanding why masticatory muscles are less affected by ALS could lead to the development of new treatments. This study highlights the importance of studying different muscle groups in ALS to clarify disease aetiology and mechanisms.
Collapse
Affiliation(s)
- Sou Kawata
- Department of Oral and Maxillofacial Surgery, Graduate School of Dentistry, Osaka University, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Soju Seki
- Department of Oral and Maxillofacial Surgery, Graduate School of Dentistry, Osaka University, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Akira Nishiura
- Department of Oral and Maxillofacial Surgery, Graduate School of Dentistry, Osaka University, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yoshihiro Kitaoka
- University California, Los Angeles, School of Dentistry, Section of Biosystems and Function, Laboratory of Neuropharmacology, 714 Tiverton Los Angeles, CA 90095, United States
| | - Kanako Iwamori
- Laboratory of Stem Cell Regeneration and Adaptation, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - So-Ichiro Fukada
- Laboratory of Stem Cell Regeneration and Adaptation, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Mikihiko Kogo
- Department of Oral and Maxillofacial Surgery, Graduate School of Dentistry, Osaka University, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Susumu Tanaka
- Department of Oral and Maxillofacial Surgery, Graduate School of Dentistry, Osaka University, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
33
|
Mcleod JC, Lim C, Stokes T, Sharif JA, Zeynalli V, Wiens L, D’Souza AC, Colenso-Semple L, McKendry J, Morton RW, Mitchell CJ, Oikawa SY, Wahlestedt C, Paul Chapple J, McGlory C, Timmons JA, Phillips SM. Network-based modelling reveals cell-type enriched patterns of non-coding RNA regulation during human skeletal muscle remodelling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.11.606848. [PMID: 39416175 PMCID: PMC11482748 DOI: 10.1101/2024.08.11.606848] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
A majority of human genes produce non-protein-coding RNA (ncRNA), and some have roles in development and disease. Neither ncRNA nor human skeletal muscle is ideally studied using short-read sequencing, so we used a customised RNA pipeline and network modelling to study cell-type specific ncRNA responses during muscle growth at scale. We completed five human resistance-training studies (n=144 subjects), identifying 61% who successfully accrued muscle-mass. We produced 288 transcriptome-wide profiles and found 110 ncRNAs linked to muscle growth in vivo, while a transcriptome-driven network model demonstrated interactions via a number of discrete functional pathways and single-cell types. This analysis included established hypertrophy-related ncRNAs, including CYTOR - which was leukocyte-associated (FDR = 4.9 ×10-7). Novel hypertrophy-linked ncRNAs included PPP1CB-DT (myofibril assembly genes, FDR = 8.15 × 10-8), and EEF1A1P24 and TMSB4XP8 (vascular remodelling and angiogenesis genes, FDR = 2.77 × 10-5). We also discovered that hypertrophy lncRNA MYREM shows a specific myonuclear expression pattern in vivo. Our multi-layered analyses established that single-cell-associated ncRNA are identifiable from bulk muscle transcriptomic data and that hypertrophy-linked ncRNA genes mediate their association with muscle growth via multiple cell types and a set of interacting pathways.
Collapse
Affiliation(s)
- Jonathan C. Mcleod
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Changhyun Lim
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
- Population Health Sciences Institute, Faculty of Medicial Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Tanner Stokes
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Jalil-Ahmad Sharif
- Faculty of Medicine and Dentistry, Queen Mary University London, London, UK
| | - Vagif Zeynalli
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Lucas Wiens
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Alysha C D’Souza
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | | | - James McKendry
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
- Faculty of Land and Food Systems, Food, Nutrition & Health, University of British Columbia, BC, Canada
| | - Robert W. Morton
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | | | - Sara Y. Oikawa
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | | | - J Paul Chapple
- Faculty of Medicine and Dentistry, Queen Mary University London, London, UK
| | - Chris McGlory
- School of Kinesiology and Health Studies, Queens University, Kingston, ON, Canada
| | - James A. Timmons
- Faculty of Medicine and Dentistry, Queen Mary University London, London, UK
- University of Miami Miller School of Medicine, Miami, FL, USA
| | - Stuart M. Phillips
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
34
|
Xu X, Zhang M, Zhan S, Chen Y, Wei C, Cao J, Guo J, Dai D, Wang L, Zhong T, Zhang H, Li L. Global A-to-I RNA editing during myogenic differentiation of goat MuSCs. Front Vet Sci 2024; 11:1439029. [PMID: 39444736 PMCID: PMC11496035 DOI: 10.3389/fvets.2024.1439029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 09/25/2024] [Indexed: 10/25/2024] Open
Abstract
Background RNA editing, especially A-to-I editing sites, is a common RNA modification critical for stem cell differentiation, muscle development, and disease occurrence. Unveiling comprehensive RNA A-to-I editing events associated with myogenesis of the skeletal muscle satellite cells (MuSCs) is essential for extending our knowledge of the mechanism underpinning muscle development. Results A total of 9,632 RNA editing sites (RESs) were screened in the myoblasts (GM), myocytes (DM1), and myotubes (DM5) samples. Among these sites, 4,559 A-to-I edits were classified and further analyzed. There were 3,266 A-to-I sites in the protein-coding region, out of which 113 missense sites recoded protein. Notably, five A-to-I sites in the 3' UTR of four genes (TRAF6, NALF1, SLC38A1, ENSCHIG00000019092) altered their targeted miRNAs. Furthermore, a total of 370 A-to-I sites with different editing levels were detected, including FBN1, MYH10, GSK3B, CSNK1D, and PRKACB genes. These genes were predominantly enriched in the cytoskeleton in muscle cells, the hippo signaling pathway, and the tight junction. Furthermore, we identified 14 hub genes (TUFM, GSK3B, JAK2, RPSA, YARS1, CDH2, PRKACB, RUNX1, NOTCH2, CDC23, VCP, FBN1, RARS1, MEF2C) that potentially related to muscle development. Additionally, 123 stage-specific A-to-I editing sites were identified, with 43 sites in GM, 25 in DM1, and 55 in DM5 samples. These stage-specific edited genes significantly enriched essential biological pathways, including the cell cycle, oocyte meiosis, motor proteins, and hedgehog signaling pathway. Conclusion We systematically identified the RNA editing events in proliferating and differentiating goat MuSCs, which was crucial for expanding our understanding of the regulatory mechanisms of muscle development.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Hongping Zhang
- Farm Animal Genetic Resources Exploration Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Li Li
- Farm Animal Genetic Resources Exploration Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
35
|
Wang D, Chang F, Guo Z, Chen M, Feng T, Zhang M, Cui X, Jiang Y, Li J, Li Y, Yan J. The influence of Type I and III collagen on the proliferation, migration and differentiation of myoblasts. Tissue Cell 2024; 90:102506. [PMID: 39096791 DOI: 10.1016/j.tice.2024.102506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 07/07/2024] [Accepted: 07/29/2024] [Indexed: 08/05/2024]
Abstract
Myoblast is a kind of activated muscle stem cell. Its biological activities, such as proliferation, migration, differentiation, and fusion, play a crucial role in maintaining the integrity of the skeletal muscle system. These activities of myoblasts can be significantly influenced by the extracellular matrix. Collagen, being a principal constituent of the extracellular matrix, substantially influences these biological activities. In skeletal muscle, collagen I and III are two kinds of primary collagen types. Their influence on myoblasts and the difference between them remain ambiguous. The purpose of this study is to discover the influence of collagen I and III on biological function of myoblasts and compare their differences. We used C2C12 cell line and primary myoblasts to discover the effect of collagen I and III on proliferation, migration and differentiation of myoblasts and then performed the transcriptome sequencing and analysis. The results showed that both collagen I and III enhanced the proliferation of myoblasts, with no statistical difference between them. Similarly, collagen I and III enhanced the migration of myoblasts, with collagen I was more pronounced in Transwell assay. On the contrary, collagen I and III inhibited myoblasts differentiation, with collagen III was more pronounced at gene expression level. The transcriptome sequencing identified DEGs and enrichment analysis elucidated different terms between Type I and III collagen. Collectively, our research preliminarily elucidated the influence of collagen I and III on myoblasts and their difference and provided the preliminary experimental foundation for subsequent research.
Collapse
Affiliation(s)
- Duanyang Wang
- Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Feifan Chang
- Department of Orthopedics, Medical School of Nankai University, Tianjin, China
| | - Zhikang Guo
- Department of Endocrinology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ming Chen
- Department of Orthopedics, The Fourth Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Taojin Feng
- Department of Orthopedics, The Fourth Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Mingming Zhang
- Department of Orthopedics, The Fourth Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Xiang Cui
- Department of Orthopedics, The Fourth Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Yuheng Jiang
- Department of Orthopedics, The Fourth Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Jia Li
- Department of Orthopedics, The Fourth Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Yi Li
- Department of Orthopedics, The Fourth Medical Centre, Chinese PLA General Hospital, Beijing, China.
| | - Jinglong Yan
- Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.
| |
Collapse
|
36
|
Best CSW, Kung TA. Current and Future Directions for Upper Extremity Amputations: Comparisons Between Regenerative Peripheral Nerve Interface and Targeted Muscle Reinnervation Surgeries. Clin Plast Surg 2024; 51:583-592. [PMID: 39216944 DOI: 10.1016/j.cps.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Upper extremity amputation can lead to significant functional morbidity. The main goals after amputation are to minimize pain and maintain or improve functional status while optimizing the quality of life. Postamputation pain is common and can be addressed with regenerative peripheral nerve interface surgery or targeted muscle reinnervation surgery. Both modalities are effective in treating residual limb pain and phantom limb pain, as well as improving prosthetic use. Differences in surgical technique between the 2 approaches need to be weighed when deciding what strategy may be most appropriate for the patient.
Collapse
Affiliation(s)
- Christine S W Best
- Department of Surgery, Section of Plastic Surgery, University of Michigan, 1500 East Medical Center Drive, 2110 Taubman Center, SPC 5346, Ann Arbor, MI 48109-5346, USA
| | - Theodore A Kung
- Department of Surgery, Section of Plastic Surgery, University of Michigan, 1500 East Medical Center Drive, 2130 Taubman Center, Ann Arbor, MI 48109-5231, USA.
| |
Collapse
|
37
|
Park S, Rahaman KA, Kim YC, Jeon H, Han HS. Fostering tissue engineering and regenerative medicine to treat musculoskeletal disorders in bone and muscle. Bioact Mater 2024; 40:345-365. [PMID: 38978804 PMCID: PMC11228556 DOI: 10.1016/j.bioactmat.2024.06.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/26/2024] [Accepted: 06/11/2024] [Indexed: 07/10/2024] Open
Abstract
The musculoskeletal system, which is vital for movement, support, and protection, can be impaired by disorders such as osteoporosis, osteoarthritis, and muscular dystrophy. This review focuses on the advances in tissue engineering and regenerative medicine, specifically aimed at alleviating these disorders. It explores the roles of cell therapy, particularly Mesenchymal Stem Cells (MSCs) and Adipose-Derived Stem Cells (ADSCs), biomaterials, and biomolecules/external stimulations in fostering bone and muscle regeneration. The current research underscores the potential of MSCs and ADSCs despite the persistent challenges of cell scarcity, inconsistent outcomes, and safety concerns. Moreover, integrating exogenous materials such as scaffolds and external stimuli like electrical stimulation and growth factors shows promise in enhancing musculoskeletal regeneration. This review emphasizes the need for comprehensive studies and adopting innovative techniques together to refine and advance these multi-therapeutic strategies, ultimately benefiting patients with musculoskeletal disorders.
Collapse
Affiliation(s)
- Soyeon Park
- Biomaterials Research Center, Biomedical Research Division, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Khandoker Asiqur Rahaman
- Biomaterials Research Center, Biomedical Research Division, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Yu-Chan Kim
- Biomaterials Research Center, Biomedical Research Division, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea
| | - Hojeong Jeon
- Biomaterials Research Center, Biomedical Research Division, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Hyung-Seop Han
- Biomaterials Research Center, Biomedical Research Division, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea
| |
Collapse
|
38
|
Iwata T, Shirai T, Uemichi K, Tanimura R, Takemasa T. Effect of spermidine intake on skeletal muscle regeneration after chemical injury in male mice. Physiol Rep 2024; 12:e70092. [PMID: 39448391 PMCID: PMC11502205 DOI: 10.14814/phy2.70092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/05/2024] [Accepted: 10/07/2024] [Indexed: 10/26/2024] Open
Abstract
Skeletal muscle has a high regenerative ability and maintains homeostasis by rapidly regenerating from frequent damage caused by intense exercise or trauma. In sports, skeletal muscle damage occurs frequently due to intense exercise, so practical methods to promote skeletal muscle regeneration are required. Recent studies have shown that it may be possible to promote skeletal muscle regeneration through new pathways, such as promoting autophagy and improving mitochondrial function. Spermidine is a type of polyamine, and oral intake of spermidine promotes autophagy and improves mitochondrial function without inhibiting mTOR. Therefore, we evaluate the effects of spermidine intake on skeletal muscle regeneration after injury using a mouse model of cardiotoxin-induced muscle injury. Our results showed no significant change in skeletal muscle wet weight with spermidine intake at all time points. In addition, although spermidine intake significantly increased the mean fiber cross-sectional area 14 days after injury, these effects were not observed at other time points. In addition, we analyzed stem cells, autophagy, mTOR signaling, inflammation, and mitochondria, but no significant effects of spermidine intake were observed at almost all time points and protein expression levels. Therefore, spermidine intake does not affect skeletal muscle regeneration after chemical injury, and if there is any, it is very limited.
Collapse
Affiliation(s)
- Tomohiro Iwata
- Graduate School of Comprehensive Human SciencesUniversity of TsukubaTsukubaIbarakiJapan
| | - Takanaga Shirai
- Japan Society for Promotion ScienceChiyodaTokyoJapan
- Department of Human SciencesKanagawa UniversityYokohamaKanagawaJapan
| | - Kazuki Uemichi
- Japan Society for Promotion ScienceChiyodaTokyoJapan
- Faculty of Sport and Health ScienceRitsumeikan UniversityKusatsuShigaJapan
| | - Riku Tanimura
- Graduate School of Comprehensive Human SciencesUniversity of TsukubaTsukubaIbarakiJapan
- Japan Society for Promotion ScienceChiyodaTokyoJapan
| | - Tohru Takemasa
- Institute of Health and Sport SciencesUniversity of TsukubaTsukubaIbarakiJapan
| |
Collapse
|
39
|
Wright VJ, Schwartzman JD, Itinoche R, Wittstein J. The musculoskeletal syndrome of menopause. Climacteric 2024; 27:466-472. [PMID: 39077777 DOI: 10.1080/13697137.2024.2380363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/22/2024] [Accepted: 07/10/2024] [Indexed: 07/31/2024]
Abstract
Fifty-one percent of humans are born with ovaries. As the ovarian production of estrogen diminishes in midlife and ultimately stops, it is estimated that more than 47 million women worldwide enter the menopause transition annually. More than 70% will experience musculoskeletal symptoms and 25% will be disabled by them through the transition from perimenopause to postmenopause. This often-unrecognized collective of musculoskeletal symptoms, largely influenced by estrogen flux, includes arthralgia, loss of muscle mass, loss of bone density and progression of osteoarthritis, among others. In isolation, it can be difficult for clinicians and patients to adequately appreciate the substantial role of decreasing estrogen, anticipate the onset of related symptoms and actively treat to mitigate future detrimental processes. Thus, in this review we introduce a new term, the musculoskeletal syndrome of menopause, to describe the collective musculoskeletal signs and symptoms associated with the loss of estrogen. Given the significant effects of these processes on quality of life and the associated personal and financial costs, it is important for clinicians and the women they care for to be aware of this terminology and the constellation of musculoskeletal processes for which proper risk assessment and prophylactic management are of consequence.
Collapse
Affiliation(s)
- Vonda J Wright
- University of Central Florida College of Medicine, Orlando, FL, USA
| | | | - Rafael Itinoche
- University of Central Florida College of Medicine, Orlando, FL, USA
| | | |
Collapse
|
40
|
Mcleod J, Lim C, Stokes T, Sharif JA, Zeynalli V, Wiens L, D’Souza A, Colenso-Semple L, McKendry J, Morton R, Mitchell C, Oikawa S, Wahlestedt C, Chapple J, McGlory C, Timmons J, Phillips S. Network-based modelling reveals cell-type enriched patterns of non-coding RNA regulation during human skeletal muscle remodelling. NAR MOLECULAR MEDICINE 2024; 1:ugae016. [PMID: 39669123 PMCID: PMC11632610 DOI: 10.1093/narmme/ugae016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/09/2024] [Accepted: 10/21/2024] [Indexed: 12/14/2024]
Abstract
A majority of human genes produce non-protein-coding RNA (ncRNA), and some have roles in development and disease. Neither ncRNA nor human skeletal muscle is ideally studied using short-read sequencing, so we used a customized RNA pipeline and network modelling to study cell-type specific ncRNA responses during muscle growth at scale. We completed five human resistance-training studies (n = 144 subjects), identifying 61% who successfully accrued muscle-mass. We produced 288 transcriptome-wide profiles and found 110 ncRNAs linked to muscle growth in vivo, while a transcriptome-driven network model demonstrated interactions via a number of discrete functional pathways and single-cell types. This analysis included established hypertrophy-related ncRNAs, including CYTOR-which was leukocyte-associated (false discovery rate [FDR] = 4.9 × 10-7). Novel hypertrophy-linked ncRNAs included PPP1CB-DT (myofibril assembly genes, FDR = 8.15 × 10-8), and EEF1A1P24 and TMSB4XP8 (vascular remodelling and angiogenesis genes, FDR = 2.77 × 10-5). We also discovered that hypertrophy lncRNA MYREM shows a specific myonuclear expression pattern in vivo. Our multi-layered analyses established that single-cell-associated ncRNA are identifiable from bulk muscle transcriptomic data and that hypertrophy-linked ncRNA genes mediate their association with muscle growth via multiple cell types and a set of interacting pathways.
Collapse
Affiliation(s)
- Jonathan C Mcleod
- Department of Kinesiology, McMaster University, Hamilton, Ontario, L8S 4L8, Canada
| | - Changhyun Lim
- Department of Kinesiology, McMaster University, Hamilton, Ontario, L8S 4L8, Canada
- Population Health Sciences Institute, Faculty of Medicial Sciences, Newcastle University, Newcastle upon Tyne, NE2 4AX, UK
| | - Tanner Stokes
- Department of Kinesiology, McMaster University, Hamilton, Ontario, L8S 4L8, Canada
| | - Jalil-Ahmad Sharif
- Faculty of Medicine and Dentistry, Queen Mary University London, London, E1 4NS, UK
| | - Vagif Zeynalli
- Department of Kinesiology, McMaster University, Hamilton, Ontario, L8S 4L8, Canada
| | - Lucas Wiens
- Department of Kinesiology, McMaster University, Hamilton, Ontario, L8S 4L8, Canada
| | - Alysha C D’Souza
- Department of Kinesiology, McMaster University, Hamilton, Ontario, L8S 4L8, Canada
| | | | - James McKendry
- Department of Kinesiology, McMaster University, Hamilton, Ontario, L8S 4L8, Canada
- Faculty of Land and Food Systems, Food, Nutrition & Health, University of British Columbia, BC, V6T 1Z4, Canada
| | - Robert W Morton
- Department of Kinesiology, McMaster University, Hamilton, Ontario, L8S 4L8, Canada
| | - Cameron J Mitchell
- School of Kinesiology, University of British Columbia, BC, V6T 1Z1, Canada
| | - Sara Y Oikawa
- Department of Kinesiology, McMaster University, Hamilton, Ontario, L8S 4L8, Canada
| | - Claes Wahlestedt
- University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - J Paul Chapple
- Faculty of Medicine and Dentistry, Queen Mary University London, London, E1 4NS, UK
| | - Chris McGlory
- School of Kinesiology and Health Studies, Queens University, Kingston, ON, K7L 3N6, Canada
| | - James A Timmons
- Faculty of Medicine and Dentistry, Queen Mary University London, London, E1 4NS, UK
- University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Stuart M Phillips
- Department of Kinesiology, McMaster University, Hamilton, Ontario, L8S 4L8, Canada
| |
Collapse
|
41
|
Benjelloun B, Leempoel K, Boyer F, Stucki S, Streeter I, Orozco-terWengel P, Alberto FJ, Servin B, Biscarini F, Alberti A, Engelen S, Stella A, Colli L, Coissac E, Bruford MW, Ajmone-Marsan P, Negrini R, Clarke L, Flicek P, Chikhi A, Joost S, Taberlet P, Pompanon F. Multiple genomic solutions for local adaptation in two closely related species (sheep and goats) facing the same climatic constraints. Mol Ecol 2024; 33:e17257. [PMID: 38149334 DOI: 10.1111/mec.17257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 08/18/2023] [Accepted: 12/05/2023] [Indexed: 12/28/2023]
Abstract
The question of how local adaptation takes place remains a fundamental question in evolutionary biology. The variation of allele frequencies in genes under selection over environmental gradients remains mainly theoretical and its empirical assessment would help understanding how adaptation happens over environmental clines. To bring new insights to this issue we set up a broad framework which aimed to compare the adaptive trajectories over environmental clines in two domesticated mammal species co-distributed in diversified landscapes. We sequenced the genomes of 160 sheep and 161 goats extensively managed along environmental gradients, including temperature, rainfall, seasonality and altitude, to identify genes and biological processes shaping local adaptation. Allele frequencies at putatively adaptive loci were rarely found to vary gradually along environmental gradients, but rather displayed a discontinuous shift at the extremities of environmental clines. Of the 430 candidate adaptive genes identified, only 6 were orthologous between sheep and goats and those responded differently to environmental pressures, suggesting different putative mechanisms involved in local adaptation in these two closely related species. Interestingly, the genomes of the 2 species were impacted differently by the environment, genes related to signatures of selection were most related to altitude, slope and rainfall seasonality for sheep, and summer temperature and spring rainfall for goats. The diversity of candidate adaptive pathways may result from a high number of biological functions involved in the adaptations to multiple eco-climatic gradients, and a differential role of climatic drivers on the two species, despite their co-distribution along the same environmental gradients. This study describes empirical examples of clinal variation in putatively adaptive alleles with different patterns in allele frequency distributions over continuous environmental gradients, thus showing the diversity of genetic responses in adaptive landscapes and opening new horizons for understanding genomics of adaptation in mammalian species and beyond.
Collapse
Affiliation(s)
- Badr Benjelloun
- Livestock Genomics Laboratory, Regional Center of Agricultural Research Tadla, National Institute of Agricultural Research INRA, Rabat, Morocco
- Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, LECA, Grenoble, France
| | - Kevin Leempoel
- Laboratory of Geographic Information Systems (LASIG), School of Architecture, Civil and Environmental Engineering (ENAC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Frédéric Boyer
- Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, LECA, Grenoble, France
| | - Sylvie Stucki
- Laboratory of Geographic Information Systems (LASIG), School of Architecture, Civil and Environmental Engineering (ENAC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Ian Streeter
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, Cambridge, UK
| | - Pablo Orozco-terWengel
- School of Biosciences, Cardiff University, Wales, UK
- Sustainable Places Research Institute, Cardiff University, Cardiff, UK
| | - Florian J Alberto
- Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, LECA, Grenoble, France
| | - Bertrand Servin
- GenPhySE, Université de Toulouse, INRAE, INPT, ENVT, Castanet-Tolosan, France
| | - Filippo Biscarini
- Institute of Agricultural Biology and Biotechnology, Consiglio Nazionale delle Ricerche (CNR), Milan, Italy
| | - Adriana Alberti
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ. Evry, Université Paris-Saclay, Evry, France
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Stefan Engelen
- Genoscope, Institut de biologie François-Jacob, Commissariat à l'Energie Atomique CEA, Université Paris-Saclay, Evry, France
| | - Alessandra Stella
- Institute of Agricultural Biology and Biotechnology, Consiglio Nazionale delle Ricerche (CNR), Milan, Italy
| | - Licia Colli
- Dipartimento di Scienze Animali, della Nutrizione e degli Alimenti, Facoltà di Scienze Agrarie, Alimentari e Ambientali, Università Cattolica del S. Cuore, Piacenza, Italy
- BioDNA - Centro di Ricerca sulla Biodiversità e sul DNA Antico, Facoltà di Scienze Agrarie, Alimentari e Ambientali, Università Cattolica del S. Cuore, Piacenza, Italy
| | - Eric Coissac
- Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, LECA, Grenoble, France
| | - Michael W Bruford
- School of Biosciences, Cardiff University, Wales, UK
- Sustainable Places Research Institute, Cardiff University, Cardiff, UK
| | - Paolo Ajmone-Marsan
- Dipartimento di Scienze Animali, della Nutrizione e degli Alimenti, Facoltà di Scienze Agrarie, Alimentari e Ambientali, Università Cattolica del S. Cuore, Piacenza, Italy
- BioDNA - Centro di Ricerca sulla Biodiversità e sul DNA Antico, Facoltà di Scienze Agrarie, Alimentari e Ambientali, Università Cattolica del S. Cuore, Piacenza, Italy
| | - Riccardo Negrini
- Dipartimento di Scienze Animali, della Nutrizione e degli Alimenti, Facoltà di Scienze Agrarie, Alimentari e Ambientali, Università Cattolica del S. Cuore, Piacenza, Italy
- AIA Associazione Italiana Allevatori, Roma, Italy
| | - Laura Clarke
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, Cambridge, UK
| | - Paul Flicek
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, Cambridge, UK
| | - Abdelkader Chikhi
- Livestock Genomics Laboratory, Regional Center of Agricultural Research Tadla, National Institute of Agricultural Research INRA, Rabat, Morocco
| | - Stéphane Joost
- Laboratory of Geographic Information Systems (LASIG), School of Architecture, Civil and Environmental Engineering (ENAC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Pierre Taberlet
- Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, LECA, Grenoble, France
| | - François Pompanon
- Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, LECA, Grenoble, France
| |
Collapse
|
42
|
Li X, Zhu G, Zhao B. Chromatin remodeling in tissue stem cell fate determination. CELL REGENERATION (LONDON, ENGLAND) 2024; 13:18. [PMID: 39348027 PMCID: PMC11442411 DOI: 10.1186/s13619-024-00203-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 09/22/2024] [Indexed: 10/01/2024]
Abstract
Tissue stem cells (TSCs), which reside in specialized tissues, constitute the major cell sources for tissue homeostasis and regeneration, and the contribution of transcriptional or epigenetic regulation of distinct biological processes in TSCs has been discussed in the past few decades. Meanwhile, ATP-dependent chromatin remodelers use the energy from ATP hydrolysis to remodel nucleosomes, thereby affecting chromatin dynamics and the regulation of gene expression programs in each cell type. However, the role of chromatin remodelers in tissue stem cell fate determination is less well understood. In this review, we systematically discuss recent advances in epigenetic control by chromatin remodelers of hematopoietic stem cells, intestinal epithelial stem cells, neural stem cells, and skin stem cells in their fate determination and highlight the importance of their essential role in tissue homeostasis, development, and regeneration. Moreover, the exploration of the molecular and cellular mechanisms of TSCs is crucial for advancing our understanding of tissue maintenance and for the discovery of novel therapeutic targets.
Collapse
Affiliation(s)
- Xinyang Li
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China
- Z Lab, bioGenous BIOTECH, Shanghai, 200438, China
| | - Gaoxiang Zhu
- School of Basic Medical Sciences, Jiangxi Medical College, The First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, 330031, China
| | - Bing Zhao
- School of Basic Medical Sciences, Jiangxi Medical College, The First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, 330031, China.
- Z Lab, bioGenous BIOTECH, Shanghai, 200438, China.
| |
Collapse
|
43
|
Huang N, Zou K, Zhong Y, Luo Y, Wang M, Xiao L. Hotspots and trends in satellite cell research in muscle regeneration: A bibliometric visualization and analysis from 2010 to 2023. Heliyon 2024; 10:e37529. [PMID: 39309858 PMCID: PMC11415684 DOI: 10.1016/j.heliyon.2024.e37529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 08/26/2024] [Accepted: 09/04/2024] [Indexed: 09/25/2024] Open
Abstract
Background The incidence of muscle atrophy or sports injuries is increasing with time and population aging, thereby attracting considerable attention to muscle generation research. Muscle satellite cells, which play an important role in this process, lack comprehensive literature regarding their use for muscle regeneration. Hence, this study aimed to analyze the hotspots and trends in satellite cell research from 2010 to 2023, providing a reference for muscle regeneration research. Methods Studies on satellite cells' role in muscle regeneration from 2010 to 2023 were retrieved from the Web of Science Core Collection. Using CiteSpace and VOSviewer, we analyzed annual publications, authors and co-citing authors, countries and institutions, journals and co-citing journals, co-citing references, and keywords. Results From 2010 to 2023, 1468 papers were retrieved, indicating an overall increasing trend in the number of annual publications related to satellite cells in muscle regeneration. The United States had the highest number of publications, while the Institut National de la Santé et de la Recherche Médicale was the institution with the most publications. Among journals, " PloS One" had the highest number of published papers, and "Cell" emerged as the most co-cited journal. A total of 7425 authors were involved, with Michael A. Rudnicki being the author with the highest number of publications and the most co-cited author. The most cited reference was "Satellite cells and the muscle stem cell niche." Among keywords, "satellite cells" was the most common, with "heterogeneity" having the highest centrality. Frontier themes included "Duchenne muscular dystrophy," "skeletal muscle," "in-vivo," "muscle regeneration," "mice," "muscle atrophy," "muscle fibers," "inflammation," " mesenchymal stem cells," and "satellite cell." Conclusion This study presents the current status and trends in satellite cell research on muscle regeneration from 2010 to 2023 using bibliometric analyses, providing valuable insights into numerous future research directions.
Collapse
Affiliation(s)
- Nan Huang
- Department of Rehabilitation Medicine, the First Affiliated Hospital of Gannan Medical University, Ganzhou City, Jiangxi Province, 341000, PR China
- School of Rehabilitation Medicine, Gannan Medical University, Ganzhou City, Jiangxi Province, 341000, PR China
- Ganzhou Key Laboratory of Rehabilitation Medicine, Ganzhou City, Jiangxi Province, 341000, PR China
- Ganzhou Intelligent Rehabilitation Technology Innovation Center, Ganzhou City, Jiangxi Province, 341000, PR China
| | - Kang Zou
- Department of Critical Care Medicine, the First Affiliated Hospital of Gannan Medical University, Ganzhou City, Jiangxi Province, 341000, PR China
| | - Yanbiao Zhong
- Department of Rehabilitation Medicine, the First Affiliated Hospital of Gannan Medical University, Ganzhou City, Jiangxi Province, 341000, PR China
- School of Rehabilitation Medicine, Gannan Medical University, Ganzhou City, Jiangxi Province, 341000, PR China
- Ganzhou Key Laboratory of Rehabilitation Medicine, Ganzhou City, Jiangxi Province, 341000, PR China
| | - Yun Luo
- Department of Rehabilitation Medicine, the First Affiliated Hospital of Gannan Medical University, Ganzhou City, Jiangxi Province, 341000, PR China
- School of Rehabilitation Medicine, Gannan Medical University, Ganzhou City, Jiangxi Province, 341000, PR China
- Ganzhou Key Laboratory of Rehabilitation Medicine, Ganzhou City, Jiangxi Province, 341000, PR China
| | - Maoyuan Wang
- Department of Rehabilitation Medicine, the First Affiliated Hospital of Gannan Medical University, Ganzhou City, Jiangxi Province, 341000, PR China
- School of Rehabilitation Medicine, Gannan Medical University, Ganzhou City, Jiangxi Province, 341000, PR China
- Ganzhou Key Laboratory of Rehabilitation Medicine, Ganzhou City, Jiangxi Province, 341000, PR China
| | - Li Xiao
- Department of Rehabilitation Medicine, the First Affiliated Hospital of Gannan Medical University, Ganzhou City, Jiangxi Province, 341000, PR China
- School of Rehabilitation Medicine, Gannan Medical University, Ganzhou City, Jiangxi Province, 341000, PR China
- Ganzhou Key Laboratory of Rehabilitation Medicine, Ganzhou City, Jiangxi Province, 341000, PR China
| |
Collapse
|
44
|
Chen G, Zou J, He Q, Xia S, Xiao Q, Du R, Zhou S, Zhang C, Wang N, Feng Y. The Role of Non-Coding RNAs in Regulating Cachexia Muscle Atrophy. Cells 2024; 13:1620. [PMID: 39404384 PMCID: PMC11482569 DOI: 10.3390/cells13191620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/17/2024] [Accepted: 09/25/2024] [Indexed: 10/19/2024] Open
Abstract
Cachexia is a late consequence of various diseases that is characterized by systemic muscle loss, with or without fat loss, leading to significant mortality. Multiple signaling pathways and molecules that increase catabolism, decrease anabolism, and interfere with muscle regeneration are activated. Non-coding RNAs (ncRNAs), such as microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), play vital roles in cachexia muscle atrophy. This review mainly provides the mechanisms of specific ncRNAs to regulate muscle loss during cachexia and discusses the role of ncRNAs in cachectic biomarkers and novel therapeutic strategies that could offer new insights for clinical practice.
Collapse
Affiliation(s)
- Guoming Chen
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; (G.C.); (C.Z.); (N.W.)
| | - Jiayi Zou
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; (J.Z.); (Q.H.)
| | - Qianhua He
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; (J.Z.); (Q.H.)
| | - Shuyi Xia
- Fifth Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou 510405, China;
| | - Qili Xiao
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; (Q.X.); (S.Z.)
| | - Ruoxi Du
- Eighth Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou 510405, China;
| | - Shengmei Zhou
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; (Q.X.); (S.Z.)
| | - Cheng Zhang
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; (G.C.); (C.Z.); (N.W.)
| | - Ning Wang
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; (G.C.); (C.Z.); (N.W.)
| | - Yibin Feng
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; (G.C.); (C.Z.); (N.W.)
| |
Collapse
|
45
|
Hernandez-Torres F, Matias-Valiente L, Alzas-Gomez V, Aranega AE. Macrophages in the Context of Muscle Regeneration and Duchenne Muscular Dystrophy. Int J Mol Sci 2024; 25:10393. [PMID: 39408722 PMCID: PMC11477283 DOI: 10.3390/ijms251910393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/15/2024] [Accepted: 09/19/2024] [Indexed: 10/20/2024] Open
Abstract
Macrophages are essential to muscle regeneration, as they regulate inflammation, carry out phagocytosis, and facilitate tissue repair. These cells exhibit phenotypic switching from pro-inflammatory (M1) to anti-inflammatory (M2) states during muscle repair, influencing myoblast proliferation, differentiation, and myofiber formation. In Duchenne Muscular Dystrophy (DMD), asynchronous muscle injuries disrupt the normal temporal stages of regeneration, leading to fibrosis and failed regeneration. Altered macrophage activity is associated with DMD progression and physiopathology. Gaining insight into the intricate relationship between macrophages and muscle cells is crucial for creating effective therapies aimed at treating this muscle disorder. This review explores the dynamic functions of macrophages in muscle regeneration and their implications in DMD.
Collapse
Affiliation(s)
- Francisco Hernandez-Torres
- Department of Biochemistry and Molecular Biology III and Immunology, Faculty of Medicine, University of Granada, 18016 Granada, Spain;
- Medina Foundation, Technology Park of Health Sciences, 18016 Granada, Spain; (L.M.-V.); (V.A.-G.)
| | - Lidia Matias-Valiente
- Medina Foundation, Technology Park of Health Sciences, 18016 Granada, Spain; (L.M.-V.); (V.A.-G.)
- Department of Experimental Biology, Faculty of Experimental Sciences, University of Jaen, 23071 Jaen, Spain
| | - Virginia Alzas-Gomez
- Medina Foundation, Technology Park of Health Sciences, 18016 Granada, Spain; (L.M.-V.); (V.A.-G.)
- Department of Experimental Biology, Faculty of Experimental Sciences, University of Jaen, 23071 Jaen, Spain
| | - Amelia Eva Aranega
- Medina Foundation, Technology Park of Health Sciences, 18016 Granada, Spain; (L.M.-V.); (V.A.-G.)
- Department of Experimental Biology, Faculty of Experimental Sciences, University of Jaen, 23071 Jaen, Spain
| |
Collapse
|
46
|
Zhang P, Zhao X, Zhang S, Li G, Midgley AC, Fang Y, Zhao M, Nishinari K, Yao X. The important role of cellular mechanical microenvironment in engineering structured cultivated meat: Recent advances. Curr Res Food Sci 2024; 9:100865. [PMID: 39416367 PMCID: PMC11481608 DOI: 10.1016/j.crfs.2024.100865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 10/19/2024] Open
Abstract
Cultivated meat (CM) provides a potential solution to meet the rising demand for eco-friendly meat supply systems. Recent efforts focus on producing CM that replicates the architecture and textural toughness of natural skeletal muscle. Significance of the regulated role of cellular microenvironment in myogenesis has been reinforced by the substantial influence of mechanical cues in mediating the muscle tissue organization. However, the formation of structured CM has not been adequately described in context of the mechanical microenvironment. In this review, we provide an updated understanding of the myogenesis process within mechanically dynamic three-dimensional microenvironments, discuss the effects of environmental mechanical factors on muscle tissue regeneration and how cell mechanics respond to the mechanical condition, and further highlight the role of mechanical cues as important references in constructing a sustainable Hydrocolloids-based biomaterials for CM engineering. These findings help to overcome current limitations in improving the textural properties of CM.
Collapse
Affiliation(s)
- Pan Zhang
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Xu Zhao
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Shiling Zhang
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Guoliang Li
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Adam C. Midgley
- Key Laboratory of Bioactive Materials (MoE), College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Yapeng Fang
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Mouming Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Katsuyoshi Nishinari
- Glyn O. Phillips Hydrocolloid Research Centre, School of Bioengineering and Food Science, Hubei University of Technology, Wuhan, China
| | - Xiaolin Yao
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| |
Collapse
|
47
|
Piantino M, Muller Q, Nakadozono C, Yamada A, Matsusaki M. Towards more realistic cultivated meat by rethinking bioengineering approaches. Trends Biotechnol 2024:S0167-7799(24)00219-1. [PMID: 39271415 DOI: 10.1016/j.tibtech.2024.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/30/2024] [Accepted: 08/09/2024] [Indexed: 09/15/2024]
Abstract
Cultivated meat (CM) refers to edible lab-grown meat that incorporates cultivated animal cells. It has the potential to address some issues associated with real meat (RM) production, including the ethical and environmental impact of animal farming, and health concerns. Recently, various biomanufacturing methods have been developed to attempt to recreate realistic meat in the laboratory. We therefore overview recent achievements and challenges in the production of CM. We also discuss the issues that need to be addressed and suggest additional recommendations and potential criteria to help to bridge the gap between CM and RM from an engineering standpoint.
Collapse
Affiliation(s)
- Marie Piantino
- Consortium for Future Innovation by Cultured Meat, Osaka, Japan
| | - Quentin Muller
- Consortium for Future Innovation by Cultured Meat, Osaka, Japan
| | - Chika Nakadozono
- Consortium for Future Innovation by Cultured Meat, Osaka, Japan; Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Osaka, Japan; Shimadzu Analytical Innovation Research Laboratories, Osaka University, Osaka, Japan; Shimadzu Corporation, Kyoto, Japan
| | - Asuka Yamada
- Consortium for Future Innovation by Cultured Meat, Osaka, Japan; Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Osaka, Japan; Toppan Holdings Inc., Business Development Division, Technical Research Institute, Saitama, Japan
| | - Michiya Matsusaki
- Consortium for Future Innovation by Cultured Meat, Osaka, Japan; Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Osaka, Japan.
| |
Collapse
|
48
|
Okino R, Mukai K, Oguri S, Masuda M, Watanabe S, Yoneyama Y, Nagaosa S, Miyamoto T, Mochizuki A, Takahashi SI, Hakuno F. IGF-I concentration determines cell fate by converting signaling dynamics as a bifurcation parameter in L6 myoblasts. Sci Rep 2024; 14:20699. [PMID: 39237579 PMCID: PMC11377782 DOI: 10.1038/s41598-024-71739-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 08/30/2024] [Indexed: 09/07/2024] Open
Abstract
Insulin-like growth factor (IGF)-I mediates long-term activities that determine cell fate, including cell proliferation and differentiation. This study aimed to characterize the mechanisms by which IGF-I determines cell fate from the aspect of IGF-I signaling dynamics. In L6 myoblasts, myogenic differentiation proceeded under low IGF-I levels, whereas proliferation was enhanced under high levels. Mathematical and experimental analyses revealed that IGF-I signaling oscillated at low IGF-I levels but remained constant at high levels, suggesting that differences in IGF-I signaling dynamics determine cell fate. We previously reported that differential insulin receptor substrate (IRS)-1 levels generate a driving force for cell competition. Computational simulations and immunofluorescence analyses revealed that asynchronous IRS-1 protein oscillations were synchronized during myogenic processes through cell competition. Disturbances of cell competition impaired signaling synchronization and cell fusion, indicating that synchronization of IGF-I signaling oscillation is critical for myoblast cell fusion to form multinucleate myotubes.
Collapse
Affiliation(s)
- Ryosuke Okino
- Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
- Muscle Biology Laboratory, Research Team for Aging Science, Tokyo Metropolitan Institute for Geriatric and Gerontology (TMIG), Tokyo, Japan
| | - Kazuaki Mukai
- Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Shunpei Oguri
- Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Masato Masuda
- Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
- Faculty of Information Sciences and Arts, Toyo University, Saitama, Japan
| | - Satoshi Watanabe
- Advanced Institute for Materials Research, Tohoku University, Sendai, Japan
| | - Yosuke Yoneyama
- Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
- Institute of Research, Tokyo Medical and Dental University, Tokyo, Japan
| | - Sumine Nagaosa
- Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Takafumi Miyamoto
- Department of Endocrinology and Metabolism, Institute of Medicine, University of Tsukuba, Ibaraki, Japan
- Transborder Medical Research Center, University of Tsukuba, Ibaraki, Japan
- Cybermedicine Research Center, University of Tsukuba, Ibaraki, Japan
| | - Atsushi Mochizuki
- Laboratory of Mathematical Biology, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Shin-Ichiro Takahashi
- Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Fumihiko Hakuno
- Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
49
|
Cuijpers I, Dohmen CGM, Bouwman FG, Troost FJ, Sthijns MMJPE. Hesperetin but not ellagic acid increases myosin heavy chain expression and cell fusion in C2C12 myoblasts in the presence of oxidative stress. Front Nutr 2024; 11:1377071. [PMID: 39285862 PMCID: PMC11402829 DOI: 10.3389/fnut.2024.1377071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 07/24/2024] [Indexed: 09/19/2024] Open
Abstract
Introduction Skeletal muscle regeneration is impaired in elderly. An oxidative stress-induced decrease in differentiation capacity of muscle satellite cells is a key factor in this process. The aim of this study is to investigate whether orange polyphenol hesperetin and pomegranate polyphenol ellagic acid enhance myoblast differentiation in the presence and absence of oxidative stress, and to explore underlying mechanisms. Methods C2C12 myoblasts were proliferated for 24 h and differentiated for 120 h while exposed to hesperetin (5, 20, 50 μM), ellagic acid (0.05, 0.1 μM) or a combination (20 μM hesperetin, 0.05 μM ellagic acid) with and without oxidative stress-inducing compound menadione (9 μM) during 24 h of proliferation and during the first 5 h of differentiation. The number of proliferating cells was assessed using fluorescent labeling of incorporated 5-ethynyl-2'-deoxyuridine. Myosin heavy chain expression was assessed by fluorescence microscopy and cell fusion index was calculated. Furthermore, protein expression of phosphorylated p38 and myomixer were assessed using Western blot. Results None of the compounds induced effects on cell proliferation. Without menadione, 50 μM hesperetin increased fusion index by 12.6% compared to control (p < 0.01), while ellagic acid did not affect measured parameters of differentiation. Menadione treatment did not change myosin heavy chain expression and fusion index. In combination with menadione, 20 μM hesperetin increased myosin heavy chain expression by 35% (p < 0.01) and fusion index by 7% (p = 0.04) compared to menadione. Furthermore, the combination of menadione with hesperetin and ellagic acid increased myosin heavy chain expression by 35% compared to menadione (p = 0.02). Hesperetin and ellagic acid did not change p38 phosphorylation and myomixer expression compared to control, while treatment with menadione increased p38 phosphorylation (p < 0.01) after 5 h and decreased myomixer expression (p = 0.04) after 72 h of differentiation. Conclusion and discussion Hesperetin increased myosin heavy chain expression in the presence of oxidative stress induced by menadione, and increased cell fusion both in the presence and absence of menadione. Ellagic acid did not affect the measured parameters of myoblast differentiation. Therefore, hesperetin should be considered as nutritional prevention or treatment strategy to maintain muscle function in age-related diseases such as sarcopenia. Future research should focus on underlying mechanisms and translation of these results to clinical practice.
Collapse
Affiliation(s)
- Iris Cuijpers
- Department of Human Biology, Institute of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, Netherlands
- Food Innovation and Health, Centre for Healthy Eating and Food Innovation, Maastricht University Campus Venlo, Venlo, Netherlands
| | - Colin G M Dohmen
- Department of Human Biology, Institute of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, Netherlands
- Food Innovation and Health, Centre for Healthy Eating and Food Innovation, Maastricht University Campus Venlo, Venlo, Netherlands
| | - Freek G Bouwman
- Department of Human Biology, Institute of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, Netherlands
| | - Freddy J Troost
- Department of Human Biology, Institute of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, Netherlands
- Food Innovation and Health, Centre for Healthy Eating and Food Innovation, Maastricht University Campus Venlo, Venlo, Netherlands
| | - Mireille M J P E Sthijns
- Department of Human Biology, Institute of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, Netherlands
- Food Innovation and Health, Centre for Healthy Eating and Food Innovation, Maastricht University Campus Venlo, Venlo, Netherlands
| |
Collapse
|
50
|
Niu K, Chang L, Zhang R, Jiang Y, Shen X, Lu X, Zhang S, Ma K, Zhao Z, Li M, Hou Y, Wu Y. Bazi Bushen mitigates age-related muscular atrophy by alleviating cellular senescence of skeletal muscle. J Tradit Complement Med 2024; 14:510-521. [PMID: 39262657 PMCID: PMC11385411 DOI: 10.1016/j.jtcme.2024.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/06/2024] [Accepted: 01/21/2024] [Indexed: 09/13/2024] Open
Abstract
Background and aim Muscular atrophy is one of the most common age-related conditions characterized by the deterioration of skeletal muscle structures and impaired functions. It is associated with cellular senescence and chronic inflammation, which impair the function of muscle stem cells. Bazi Bushen (BZBS) is a patent compound Chinese medicine that has been shown to have anti-aging effects in various animal models. In this study, we investigated the effects and mechanisms of BZBS on muscular atrophy in naturally aged mice. Experimental procedure A muscular atrophy model of naturally aged mice (18 months) was employed with administration of BZBS (2 g/kg/d, 1 g/kg/d) and nicotinamide mononucleotide (NMN, 200 mg/kg/d). After six months of drug administration, muscle weight loss, muscle function and muscle histopathology were measured to evaluate the therapeutic effect of BZBS. The expression of cellular senescence, inflammatory and satellite cell-related factors were used to assess the effects of BZBS in inhibiting cellular senescence, reducing inflammation and improving muscle atrophy. Results and conclusion Compared with age matched natural aging mice, we found that BZBS improved muscle strength, mass, and morphology by reducing senescent cells, inflammatory cytokines, and intermyofiber fibrosis in aged muscle tissues. We also found that BZBS prevented the reduction of Pax7 positive stem cells and stimulated the activation and differentiation into myocytes. Our results suggest that BZBS might be a promising intervention in senile muscular atrophy.
Collapse
Affiliation(s)
- Kunxu Niu
- Hebei Medical University, Shijiazhuang, 050017, China
| | - Liping Chang
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, 050035, China
- High-level TCM Key Disciplines of National Administration of Traditional Chinese Medicine-Luobing Theory, Shijiazhuang, 050035, China
| | - Runtao Zhang
- Hebei Medical University, Shijiazhuang, 050017, China
| | - Yuning Jiang
- College of Traditional Chinese Medicine·College of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xiaogang Shen
- Hebei Medical University, Shijiazhuang, 050017, China
| | - Xuan Lu
- Hebei Medical University, Shijiazhuang, 050017, China
| | - Shixiong Zhang
- College of Traditional Chinese Medicine·College of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Kun Ma
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, 050035, China
- High-level TCM Key Disciplines of National Administration of Traditional Chinese Medicine-Luobing Theory, Shijiazhuang, 050035, China
| | - Zhiqin Zhao
- Hebei Medical University, Shijiazhuang, 050017, China
| | - Mengnan Li
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, 050035, China
- Key Laboratory of State Administration of TCM (Cardio-Cerebral Vessel Collateral Disease), Shijiazhuang, 050035, China
| | - Yunlong Hou
- Hebei Medical University, Shijiazhuang, 050017, China
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, 050035, China
| | - Yiling Wu
- Hebei Medical University, Shijiazhuang, 050017, China
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, 050035, China
| |
Collapse
|