1
|
Annunziata G, Caprio M, Verde L, Carella AM, Camajani E, Benvenuto A, Paolini B, De Nicola L, Aucella F, Bellizzi V, Barberi S, Grassi D, Fogacci F, Colao A, Cicero AFG, Prodam F, Aimaretti G, Muscogiuri G, Barrea L. Nutritional assessment and medical dietary therapy for management of obesity in patients with non-dialysis chronic kidney disease: a practical guide for endocrinologist, nutritionists and nephrologists. A consensus statement from the Italian society of endocrinology (SIE), working group of the club nutrition-hormones and metabolism; the Italian society of nutraceuticals (SINut), club ketodiets and nutraceuticals "KetoNut-SINut"; and the Italian society of nephrology (SIN). J Endocrinol Invest 2024; 47:2889-2913. [PMID: 39292364 DOI: 10.1007/s40618-024-02446-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 08/19/2024] [Indexed: 09/19/2024]
Abstract
PURPOSE Chronic kidney disease (CKD) is a serious health concern with an estimated prevalence of about 13.4% worldwide. It is cause and consequence of various comorbidities, including cardiovascular diseases. In parallel, common pathological conditions closely related to ageing and unhealthy dietary habits increase the risk of CKD development and progression, including type 2 diabetes and obesity. Among these, obesity is either independent risk factor for new onset kidney disease or accelerates the rate of decline of kidney function by multiple mechanisms. Therefore, the role of diets aimed at attaining weight loss in patients with obesity is clearly essential to prevent CKD as to slow disease progression. Various dietary approaches have been licensed for the medical dietary therapy in CKD, including low-protein diet and Mediterranean diet. Interestingly, emerging evidence also support the use of low-carbohydrate/ketogenic diet (LCD/KD) in these patients. More specifically, LCD/KDs may efficiently promote weight loss, improve metabolic parameters, and reduce inflammation and oxidative stress, resulting in a dietary strategy that act globally in managing collateral conditions that are directly and indirectly related to the kidney function. CONCLUSION This consensus statement from the Italian Society of Endocrinology (SIE), working group of the Club Nutrition - Hormones and Metabolism; the Italian Society of Nutraceuticals (SINut), Club Ketodiets and Nutraceuticals "KetoNut-SINut"; and the Italian Society of Nephrology (SIN) is intended to be a guide for Endocrinologist, Nutritionists and Nephrologist who deal with the management of patients with obesity with non-dialysis CKD providing a practical guidance on assessing nutritional status and prescribing the optimal diet in order to best manage obesity to prevent CKD and its progression to dialysis.
Collapse
Affiliation(s)
- G Annunziata
- Facoltà di Scienze Umane, della Formazione e dello Sport, Università Telematica Pegaso, Via Porzio, Centro Direzionale, Isola F2, 80143, Naples, Italy
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - M Caprio
- Laboratory of Cardiovascular Endocrinology, IRCCS San Raffaele, Rome, Italy
- Department for the Promotion of Human Sciences and Quality of Life, San Raffaele Roma Open University, Via di Val Cannuta 247, 00166, Rome, Italy
| | - L Verde
- Department of Public Health, University of Naples Federico II, Via Sergio Pansini 5, 80131, Naples, Italy
| | - A M Carella
- Facoltà di Scienze Umane, della Formazione e dello Sport, Università Telematica Pegaso, Via Porzio, Centro Direzionale, Isola F2, 80143, Naples, Italy
- Internal Medicine Department, "T. Masselli-Mascia" Hospital-San Severo (Foggia), Foggia, Italy
| | - E Camajani
- Department for the Promotion of Human Sciences and Quality of Life, San Raffaele Roma Open University, Via di Val Cannuta 247, 00166, Rome, Italy
| | - A Benvenuto
- Internal Medicine Department, "T. Masselli-Mascia" Hospital-San Severo (Foggia), Foggia, Italy
| | - B Paolini
- Department of Innovation, experimentation and clinical research, Unit of dietetics and clinical nutrition, S. Maria Alle Scotte Hospital, University of Siena, Siena, SI, Italy
| | - L De Nicola
- Nephrology and Dialysis Unit, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - F Aucella
- Nephrology and Dialysis Unit, "Casa Sollievo Della Sofferenza" Foundation, Scientific Institut for Reserch and Health Care, San Giovanni Rotondo, FG, Italy
| | - V Bellizzi
- Nephrology and Dialysis Division, AORN "Sant'Anna E San Sebastiano" Hospital, Caserta, Italy
| | - S Barberi
- Department of Clinical and Molecular Medicine, Renal Unit, Sant'Andrea University Hospital, "Sapienza" University of Rome, Rome, Italy
| | - D Grassi
- Internal Medicine Unit-Val Vibrata Hospital-Sant'Omero (TE)-Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - F Fogacci
- Hypertension and Cardiovascular Risk Factors Research Centre, Medical and Surgical Sciences Department, Alma Mater Studiorum University of Bologna, 40100, Bologna, Italy
- Cardiovascular Medicine Unit, IRCCS Azienda Ospedaliero-Universitaria Di Bologna, 40138, Bologna, Italy
| | - A Colao
- Unità di Endocrinologia, Diabetologia e Andrologia, Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli Federico II, Via Sergio Pansini 5, 80131, Naples, Italy
- Centro Italiano per la Cura e il Benessere del Paziente con Obesità (C.I.B.O), Unità di Endocrinologia, Diabetologia e Andrologia, Dipartimento di Medicina Clinica e Chirurgia, Università Degli Studi di Napoli Federico II, Via Sergio Pansini 5, 80131, Naples, Italy
- Cattedra Unesco "Educazione Alla Salute e Allo Sviluppo Sostenibile", University Federico II, 80131, Naples, Italy
| | - A F G Cicero
- Hypertension and Cardiovascular Risk Factors Research Centre, Medical and Surgical Sciences Department, Alma Mater Studiorum University of Bologna, 40100, Bologna, Italy
- Cardiovascular Medicine Unit, IRCCS Azienda Ospedaliero-Universitaria Di Bologna, 40138, Bologna, Italy
| | - F Prodam
- Department of Translational Medicine, Università del Piemonte Orientale, Novara, Italy
- Department of Health Sciences, University of Piemonte Orientale, Novara, Italy
| | - G Aimaretti
- Department of Translational Medicine, Università del Piemonte Orientale, Novara, Italy
| | - G Muscogiuri
- Unità di Endocrinologia, Diabetologia e Andrologia, Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli Federico II, Via Sergio Pansini 5, 80131, Naples, Italy.
- Centro Italiano per la Cura e il Benessere del Paziente con Obesità (C.I.B.O), Unità di Endocrinologia, Diabetologia e Andrologia, Dipartimento di Medicina Clinica e Chirurgia, Università Degli Studi di Napoli Federico II, Via Sergio Pansini 5, 80131, Naples, Italy.
- Cattedra Unesco "Educazione Alla Salute e Allo Sviluppo Sostenibile", University Federico II, 80131, Naples, Italy.
| | - L Barrea
- Centro Italiano per la Cura e il Benessere del Paziente con Obesità (C.I.B.O), Unità di Endocrinologia, Diabetologia e Andrologia, Dipartimento di Medicina Clinica e Chirurgia, Università Degli Studi di Napoli Federico II, Via Sergio Pansini 5, 80131, Naples, Italy
- Dipartimento di Benessere, Nutrizione e Sport, Università Telematica Pegaso, Centro Direzionale, Via Porzio, Isola F2, 80143, Naples, Italy
| |
Collapse
|
2
|
Alvarez de la Rosa D, Ramos-Hernández Z, Weller-Pérez J, Johnson TA, Hager GL. The impact of mineralocorticoid and glucocorticoid receptor interaction on corticosteroid transcriptional outcomes. Mol Cell Endocrinol 2024; 594:112389. [PMID: 39423940 DOI: 10.1016/j.mce.2024.112389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/23/2024] [Accepted: 10/16/2024] [Indexed: 10/21/2024]
Abstract
The mineralocorticoid and glucocorticoid receptors (MR and GR, respectively) are members of the steroid receptor subfamily of nuclear receptors. Their main function is to act as ligand-activated transcription factors, transducing the effects of corticosteroid hormones (aldosterone and glucocorticoids) by modulating gene expression. Corticosteroid signaling is essential for homeostasis and adaptation to different forms of stress. GR responds to glucocorticoids by regulating genes involved in development, metabolism, immunomodulation and brain function. MR is best known for mediating the effects of aldosterone, a key hormone controlling electrolyte and water homeostasis. In addition to aldosterone, MR binds glucocorticoids (cortisol and corticosterone) with equally high affinity. This ligand promiscuity has important repercussions to understand MR function, as well as glucocorticoid signaling. MR and GR share significant sequence and structural similarities, regulate overlapping sets of genes and are able to interact forming heteromeric complexes. However, the precise role of these heteromers in regulating corticosteroid-regulated transcriptional outcomes remains an open question. In this review, we examine the evidence supporting MR-GR heteromerization, the molecular determinants of complex formation and their possible role in differential regulation of transcription in different cellular contexts and ligand availability.
Collapse
Affiliation(s)
- Diego Alvarez de la Rosa
- Instituto de Tecnologías Biomédicas and Departamento de Ciencias Médicas Básicas, Universidad de La Laguna, La Laguna, Tenerife, Spain.
| | - Zuleima Ramos-Hernández
- Instituto de Tecnologías Biomédicas and Departamento de Ciencias Médicas Básicas, Universidad de La Laguna, La Laguna, Tenerife, Spain
| | - Julián Weller-Pérez
- Instituto de Tecnologías Biomédicas and Departamento de Ciencias Médicas Básicas, Universidad de La Laguna, La Laguna, Tenerife, Spain
| | - Thomas A Johnson
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Gordon L Hager
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
3
|
Hemanth M, Venugopal S, Devaraj C, Shashank CG, Ponnuvel P, Mandal PK, Sejian V. Comparative assessment of climate resilient potential in four poultry genotypes reared in hot-humid tropical environment: a preliminary evaluation. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2024; 68:2267-2279. [PMID: 39085661 DOI: 10.1007/s00484-024-02744-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 06/20/2024] [Accepted: 07/18/2024] [Indexed: 08/02/2024]
Abstract
The general objective of this study is to comparatively assess the climate-resilient potential of four different poultry genotypes-Giriraja (n = 8), Country chicken (n = 8), Naked neck (n = 8), and Kadaknath (n = 8)-reared in a hot-humid tropical environment. Birds from all genotypes had ad libitum access to feed and water and were exposed to identical environmental temperatures in the experimental shed. Diurnal meteorological data were recorded inside and outside the shed daily. Blood biochemical, hormonal, and endocrine variables were monitored monthly until the birds reached 12 weeks of age. Significant variations (P < 0.01) were observed at different intervals in variables, including total protein, albumin, globulin, triglycerides, and cholesterol. Genotype-specific differences were noted in triglycerides (P < 0.01), albumin (P < 0.01), total protein (P < 0.05), and cholesterol (P < 0.05). Inter-genotype variations (P < 0.05) were also observed in serum cortisol, T3, and T4 levels. Distinct variations (P < 0.05) were also observed during specific intervals, particularly in cortisol and T3 levels. The study of hepatic mRNA expression of HSPs and HSF-1 revealed a significant breed difference (P < 0.05) in the expression pattern of HSP60, HSP70, HSP90, and HSP110, while no difference was observed between genotypes for HSP40 and HSF-1. The study highlights the Naked Neck breed as an exemplar of resilience, showcasing its distinctive ability to maintain homeostasis under heat stress compared to other genotypes. The genetic and physiological insights gained from this investigation offer prospective pathways for aligning sustainable poultry farming with environmental exigencies.
Collapse
Affiliation(s)
- M Hemanth
- Rajiv Gandhi Institute of Veterinary Education and Research, Kurumbapet, Puducherry, 605009, India
| | - S Venugopal
- Rajiv Gandhi Institute of Veterinary Education and Research, Kurumbapet, Puducherry, 605009, India
| | - C Devaraj
- ICAR-National Institute of Animal Nutrition and Physiology, Audugodi, Bangalore, Karnataka, 560030, India
| | - C G Shashank
- ICAR-National Institute of Animal Nutrition and Physiology, Audugodi, Bangalore, Karnataka, 560030, India
| | - P Ponnuvel
- Rajiv Gandhi Institute of Veterinary Education and Research, Kurumbapet, Puducherry, 605009, India
| | - P K Mandal
- Rajiv Gandhi Institute of Veterinary Education and Research, Kurumbapet, Puducherry, 605009, India
| | - V Sejian
- Rajiv Gandhi Institute of Veterinary Education and Research, Kurumbapet, Puducherry, 605009, India.
- ICAR-National Institute of Animal Nutrition and Physiology, Audugodi, Bangalore, Karnataka, 560030, India.
| |
Collapse
|
4
|
Guo G, Wang W, Tu M, Zhao B, Han J, Li J, Pan Y, Zhou J, Ma W, Liu Y, Sun T, Han X, An Y. Deciphering adipose development: Function, differentiation and regulation. Dev Dyn 2024; 253:956-997. [PMID: 38516819 DOI: 10.1002/dvdy.708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 03/02/2024] [Accepted: 03/10/2024] [Indexed: 03/23/2024] Open
Abstract
The overdevelopment of adipose tissues, accompanied by excess lipid accumulation and energy storage, leads to adipose deposition and obesity. With the increasing incidence of obesity in recent years, obesity is becoming a major risk factor for human health, causing various relevant diseases (including hypertension, diabetes, osteoarthritis and cancers). Therefore, it is of significance to antagonize obesity to reduce the risk of obesity-related diseases. Excess lipid accumulation in adipose tissues is mediated by adipocyte hypertrophy (expansion of pre-existing adipocytes) or hyperplasia (increase of newly-formed adipocytes). It is necessary to prevent excessive accumulation of adipose tissues by controlling adipose development. Adipogenesis is exquisitely regulated by many factors in vivo and in vitro, including hormones, cytokines, gender and dietary components. The present review has concluded a comprehensive understanding of adipose development including its origin, classification, distribution, function, differentiation and molecular mechanisms underlying adipogenesis, which may provide potential therapeutic strategies for harnessing obesity without impairing adipose tissue function.
Collapse
Affiliation(s)
- Ge Guo
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Wanli Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Mengjie Tu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Binbin Zhao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Jiayang Han
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Jiali Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Yanbing Pan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Jie Zhou
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Wen Ma
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Yi Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Tiantian Sun
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Xu Han
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Yang An
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| |
Collapse
|
5
|
Schena E, Mattioli E, Peres C, Zanotti L, Morselli P, Iozzo P, Guzzardi MA, Bernardini C, Forni M, Nesci S, Caprio M, Cecchetti C, Pagotto U, Gabusi E, Cattini L, Lisignoli G, Blalock W, Gambineri A, Lattanzi G. Mineralocorticoid Receptor Antagonism Prevents Type 2 Familial Partial Lipodystrophy Brown Adipocyte Dysfunction. Cells 2023; 12:2586. [PMID: 37998321 PMCID: PMC10670260 DOI: 10.3390/cells12222586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/29/2023] [Accepted: 11/02/2023] [Indexed: 11/25/2023] Open
Abstract
Type-2 Familial Partial Lipodystrophy (FPLD2), a rare lipodystrophy caused by LMNA mutations, is characterized by a loss of subcutaneous fat from the trunk and limbs and excess accumulation of adipose tissue in the neck and face. Several studies have reported that the mineralocorticoid receptor (MR) plays an essential role in adipose tissue differentiation and functionality. We previously showed that brown preadipocytes isolated from a FPLD2 patient's neck aberrantly differentiate towards the white lineage. As this condition may be related to MR activation, we suspected altered MR dynamics in FPLD2. Despite cytoplasmic MR localization in control brown adipocytes, retention of MR was observed in FPLD2 brown adipocyte nuclei. Moreover, overexpression of wild-type or mutated prelamin A caused GFP-MR recruitment to the nuclear envelope in HEK293 cells, while drug-induced prelamin A co-localized with endogenous MR in human preadipocytes. Based on in silico analysis and in situ protein ligation assays, we could suggest an interaction between prelamin A and MR, which appears to be inhibited by mineralocorticoid receptor antagonism. Importantly, the MR antagonist spironolactone redirected FPLD2 preadipocyte differentiation towards the brown lineage, avoiding the formation of enlarged and dysmorphic lipid droplets. Finally, beneficial effects on brown adipose tissue activity were observed in an FPLD2 patient undergoing spironolactone treatment. These findings identify MR as a new lamin A interactor and a new player in lamin A-linked lipodystrophies.
Collapse
Affiliation(s)
- Elisa Schena
- Unit of Bologna, CNR—National Research Council of Italy, Institute of Molecular Genetics “Luigi Luca Cavalli-Sforza”, 40136 Bologna, Italy; (E.S.); (E.M.); (C.P.); (W.B.)
- IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Elisabetta Mattioli
- Unit of Bologna, CNR—National Research Council of Italy, Institute of Molecular Genetics “Luigi Luca Cavalli-Sforza”, 40136 Bologna, Italy; (E.S.); (E.M.); (C.P.); (W.B.)
- IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Chiara Peres
- Unit of Bologna, CNR—National Research Council of Italy, Institute of Molecular Genetics “Luigi Luca Cavalli-Sforza”, 40136 Bologna, Italy; (E.S.); (E.M.); (C.P.); (W.B.)
- IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Laura Zanotti
- Unit of Gynecology and Obstetrics, Division of Endocrinology and Diabetes Prevention and Care, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (L.Z.); (C.C.); (U.P.); (A.G.)
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy;
| | - Paolo Morselli
- Plastic Surgery Unit, Department of Specialised, Experimental and Diagnostic Medicine, Alma Mater Studiorum University of Bologna, S. Orsola-Malpighi Hospital, 40126 Bologna, Italy;
| | - Patricia Iozzo
- CNR—National Research Council of Italy, Institute of Clinical Physiology, 56124 Pisa, Italy; (P.I.); (M.A.G.)
| | - Maria Angela Guzzardi
- CNR—National Research Council of Italy, Institute of Clinical Physiology, 56124 Pisa, Italy; (P.I.); (M.A.G.)
| | - Chiara Bernardini
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Ozzano Emilia, Italy; (C.B.); (S.N.)
| | - Monica Forni
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy;
| | - Salvatore Nesci
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Ozzano Emilia, Italy; (C.B.); (S.N.)
| | - Massimiliano Caprio
- Laboratory of Cardiovascular Endocrinology, IRCCS San Raffaele, 00163 Rome, Italy;
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy
| | - Carolina Cecchetti
- Unit of Gynecology and Obstetrics, Division of Endocrinology and Diabetes Prevention and Care, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (L.Z.); (C.C.); (U.P.); (A.G.)
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy;
| | - Uberto Pagotto
- Unit of Gynecology and Obstetrics, Division of Endocrinology and Diabetes Prevention and Care, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (L.Z.); (C.C.); (U.P.); (A.G.)
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy;
| | - Elena Gabusi
- SC Laboratorio di Immunoreumatologia e Rigenerazione Tissutale, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (E.G.); (L.C.); (G.L.)
| | - Luca Cattini
- SC Laboratorio di Immunoreumatologia e Rigenerazione Tissutale, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (E.G.); (L.C.); (G.L.)
| | - Gina Lisignoli
- SC Laboratorio di Immunoreumatologia e Rigenerazione Tissutale, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (E.G.); (L.C.); (G.L.)
| | - William Blalock
- Unit of Bologna, CNR—National Research Council of Italy, Institute of Molecular Genetics “Luigi Luca Cavalli-Sforza”, 40136 Bologna, Italy; (E.S.); (E.M.); (C.P.); (W.B.)
- IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Alessandra Gambineri
- Unit of Gynecology and Obstetrics, Division of Endocrinology and Diabetes Prevention and Care, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (L.Z.); (C.C.); (U.P.); (A.G.)
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy;
| | - Giovanna Lattanzi
- Unit of Bologna, CNR—National Research Council of Italy, Institute of Molecular Genetics “Luigi Luca Cavalli-Sforza”, 40136 Bologna, Italy; (E.S.); (E.M.); (C.P.); (W.B.)
- IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| |
Collapse
|
6
|
Tang S, Li R, Ma W, Lian L, Gao J, Cao Y, Gan L. Cardiac-to-adipose axis in metabolic homeostasis and diseases: special instructions from the heart. Cell Biosci 2023; 13:161. [PMID: 37667400 PMCID: PMC10476430 DOI: 10.1186/s13578-023-01097-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 07/30/2023] [Indexed: 09/06/2023] Open
Abstract
Adipose tissue is essential for maintaining systemic metabolic homeostasis through traditional metabolic regulation, endocrine crosstalk, and extracellular vesicle production. Adipose dysfunction is a risk factor for cardiovascular diseases. The heart is a traditional pump organ. However, it has recently been recognized to coordinate interorgan cross-talk by providing peripheral signals known as cardiokines. These molecules include specific peptides, proteins, microRNAs and novel extracellular vesicle-carried cargoes. Current studies have shown that generalized cardiokine-mediated adipose regulation affects systemic metabolism. Cardiokines regulate lipolysis, adipogenesis, energy expenditure, thermogenesis during cold exposure and adipokine production. Moreover, cardiokines participate in pathological processes such as obesity, diabetes and ischemic heart injury. The underlying mechanisms of the cardiac-to-adipose axis mediated by cardiokines will be further discussed to provide potential therapeutic targets for metabolic diseases and support a new perspective on the need to correct adipose dysfunction after ischemic heart injury.
Collapse
Affiliation(s)
- Songling Tang
- Department of Emergency Medicine and Laboratory of Emergency Medicine, West China Hospital, West China School of Medicine, Sichuan University Chengdu, Chengdu, 610041, People's Republic of China
| | - Ruixin Li
- Department of Emergency Medicine and Laboratory of Emergency Medicine, West China Hospital, West China School of Medicine, Sichuan University Chengdu, Chengdu, 610041, People's Republic of China
| | - Wen Ma
- Sichuan University-The Hong Kong Polytechnic University Institute for Disaster Management and Reconstruction, Chengdu, China
| | - Liu Lian
- Department of Emergency Medicine and Laboratory of Emergency Medicine, West China Hospital, West China School of Medicine, Sichuan University Chengdu, Chengdu, 610041, People's Republic of China
| | - Jiuyu Gao
- Department of Emergency Medicine and Laboratory of Emergency Medicine, West China Hospital, West China School of Medicine, Sichuan University Chengdu, Chengdu, 610041, People's Republic of China
| | - Yu Cao
- Department of Emergency Medicine and Laboratory of Emergency Medicine, West China Hospital, West China School of Medicine, Sichuan University Chengdu, Chengdu, 610041, People's Republic of China.
- Sichuan University-The Hong Kong Polytechnic University Institute for Disaster Management and Reconstruction, Chengdu, China.
| | - Lu Gan
- Department of Emergency Medicine and Laboratory of Emergency Medicine, West China Hospital, West China School of Medicine, Sichuan University Chengdu, Chengdu, 610041, People's Republic of China.
| |
Collapse
|
7
|
Feraco A, Gorini S, Mammi C, Lombardo M, Armani A, Caprio M. Neutral Effect of Skeletal Muscle Mineralocorticoid Receptor on Glucose Metabolism in Mice. Int J Mol Sci 2023; 24:ijms24087412. [PMID: 37108574 PMCID: PMC10139152 DOI: 10.3390/ijms24087412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/07/2023] [Accepted: 04/09/2023] [Indexed: 04/29/2023] Open
Abstract
The mineralocorticoid receptor (MR) is able to regulate the transcription of a number of genes in the myotube, although its roles in skeletal muscle (SM) metabolism still await demonstration. SM represents a major site for glucose uptake, and its metabolic derangements play a pivotal role in the development of insulin resistance (IR). The aim of this study was to investigate the contribution of SM MR in mediating derangements of glucose metabolism in a mouse model of diet-induced obesity. We observed that mice fed a high-fat diet (HFD mice) showed impaired glucose tolerance compared to mice fed a normal diet (ND mice). Mice fed a 60% HFD treated with the MR antagonist Spironolactone (HFD + Spiro) for 12 weeks revealed an improvement in glucose tolerance, as measured with an intraperitoneal glucose tolerance test, compared with HFD mice. To investigate if blockade of SM MR could contribute to the favorable metabolic effects observed with pharmacological MR antagonism, we analyzed MR expression in the gastrocnemius, showing that SM MR protein abundance is downregulated by HFD compared to ND mice and that pharmacological treatment with Spiro was able to partially revert this effect in HFD + Spiro mice. Differently from what we have observed in adipose tissue, where HDF increased adipocyte MR expression, SM MR protein was down-regulated in our experimental model, suggesting a completely different role of SM MR in the regulation of glucose metabolism. To confirm this hypothesis, we investigated the effects of MR blockade on insulin signaling in a cellular model of IRin C2C12 myocytes, which were treated with or without Spiro. We confirmed MR protein downregulation in insulin-resistant myotubes. We also analyzed Akt phosphorylation upon insulin stimulation, and we did not observe any difference between palmitate- and palmitate + Spiro-treated cells. These results were confirmed by in vitro glucose uptake analysis. Taken together, our data indicate that reduced activity of SM MR does not improve insulin signaling in mouse skeletal myocytes and does not contribute to the favorable metabolic effects on glucose tolerance and IR induced by systemic pharmacological MR blockade.
Collapse
Affiliation(s)
- Alessandra Feraco
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy
- Laboratory of Cardiovascular Endocrinology, IRCCS San Raffaele, 00166 Rome, Italy
| | - Stefania Gorini
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy
- Laboratory of Cardiovascular Endocrinology, IRCCS San Raffaele, 00166 Rome, Italy
| | - Caterina Mammi
- Laboratory of Cardiovascular Endocrinology, IRCCS San Raffaele, 00166 Rome, Italy
| | - Mauro Lombardo
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy
| | - Andrea Armani
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy
- Laboratory of Cardiovascular Endocrinology, IRCCS San Raffaele, 00166 Rome, Italy
| | - Massimiliano Caprio
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy
- Laboratory of Cardiovascular Endocrinology, IRCCS San Raffaele, 00166 Rome, Italy
| |
Collapse
|
8
|
Barrea L, Verde L, Camajani E, Šojat AS, Marina L, Savastano S, Colao A, Caprio M, Muscogiuri G. Effects of very low-calorie ketogenic diet on hypothalamic-pituitary-adrenal axis and renin-angiotensin-aldosterone system. J Endocrinol Invest 2023:10.1007/s40618-023-02068-6. [PMID: 37017918 DOI: 10.1007/s40618-023-02068-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 03/10/2023] [Indexed: 04/06/2023]
Abstract
BACKGROUND The hypothalamic-pituitary-adrenal (HPA) axis is a neuroendocrine system involved in controlling stress responses in humans under physiological and pathological conditions; cortisol is the main hormone produced by the HPA axis. It is known that calorie restriction acts as a stressor and can lead to an increase in cortisol production. Renin-angiotensin-aldosterone system (RAAS) is a complex endocrine network regulating blood pressure and hydrosaline metabolism, whose final hormonal effector is aldosterone. RAAS activation is linked to cardiometabolic diseases, such as heart failure and obesity. Obesity has become a leading worldwide pandemic, associated with serious health outcomes. Calorie restriction represents a pivotal strategy to tackle obesity. On the other hand, it is well known that an increased activity of the HPA may favour visceral adipose tissue expansion, which may jeopardize a successful diet-induced weight loss. Very low-calorie ketogenic diet (VLCKD) is a normoprotein diet with a drastic reduction of the carbohydrate content and total calorie intake. Thanks to its sustained protein content, VLCKD is extremely effective to reduce adipose tissue while preserving lean body mass and resting metabolic rate. PURPOSE The purpose of this narrative review is to gain more insights on the effects of VLCKD on the HPA axis and RAAS, in different phases of weight loss and in different clinical settings.
Collapse
Affiliation(s)
- L Barrea
- Dipartimento di Scienze Umanistiche, Università Telematica Pegaso, Via Porzio, Centro Direzionale, Isola F2, 80143, Naples, Italy
- Department of Clinical Medicine and Surgery, Endocrinology Unit, Centro Italiano per la cura e il Benessere del Paziente con Obesità (C.I.B.O), University Medical School of Naples, Via Sergio Pansini 5, 80131, Naples, Italy
| | - L Verde
- Department of Clinical Medicine and Surgery, Endocrinology Unit, Centro Italiano per la cura e il Benessere del Paziente con Obesità (C.I.B.O), University Medical School of Naples, Via Sergio Pansini 5, 80131, Naples, Italy
- Department of Public Health, Federico II University, Naples, Italy
| | - E Camajani
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, 00166, Rome, Italy
| | - A S Šojat
- Department for Obesity, Metabolic and Reproductive Disorders, Clinic for Endocrinology, Diabetes and Metabolic Diseases, University Clinical Centre of Serbia, Belgrade, Serbia
| | - L Marina
- Department for Obesity, Metabolic and Reproductive Disorders, Clinic for Endocrinology, Diabetes and Metabolic Diseases, University Clinical Centre of Serbia, Belgrade, Serbia
| | - S Savastano
- Department of Clinical Medicine and Surgery, Endocrinology Unit, Centro Italiano per la cura e il Benessere del Paziente con Obesità (C.I.B.O), University Medical School of Naples, Via Sergio Pansini 5, 80131, Naples, Italy
- Dipartimento di Medicina Clinica e Chirurgia, Diabetologia ed Andrologia, Unità di Endocrinologia, Università Federico II, Via Sergio Pansini 5, 80131, Naples, Italy
| | - A Colao
- Department of Clinical Medicine and Surgery, Endocrinology Unit, Centro Italiano per la cura e il Benessere del Paziente con Obesità (C.I.B.O), University Medical School of Naples, Via Sergio Pansini 5, 80131, Naples, Italy
- Dipartimento di Medicina Clinica e Chirurgia, Diabetologia ed Andrologia, Unità di Endocrinologia, Università Federico II, Via Sergio Pansini 5, 80131, Naples, Italy
- Cattedra Unesco "Educazione Alla Salute E Allo Sviluppo Sostenibile", University Federico II, Naples, Italy
| | - M Caprio
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, 00166, Rome, Italy
- Laboratory of Cardiovascular Endocrinology, IRCCS San Raffaele Roma, 00166, Rome, Italy
| | - G Muscogiuri
- Department of Clinical Medicine and Surgery, Endocrinology Unit, Centro Italiano per la cura e il Benessere del Paziente con Obesità (C.I.B.O), University Medical School of Naples, Via Sergio Pansini 5, 80131, Naples, Italy.
- Dipartimento di Medicina Clinica e Chirurgia, Diabetologia ed Andrologia, Unità di Endocrinologia, Università Federico II, Via Sergio Pansini 5, 80131, Naples, Italy.
- Cattedra Unesco "Educazione Alla Salute E Allo Sviluppo Sostenibile", University Federico II, Naples, Italy.
| |
Collapse
|
9
|
Armani A, Feraco A, Camajani E, Gorini S, Lombardo M, Caprio M. Nutraceuticals in Brown Adipose Tissue Activation. Cells 2022; 11:cells11243996. [PMID: 36552762 PMCID: PMC9776638 DOI: 10.3390/cells11243996] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/03/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Obesity and its associated comorbidities have become pandemic, and challenge the global healthcare system. Lifestyle changes, nutritional interventions and phamaceuticals should be differently combined in a personalized strategy to tackle such a public health burden. Altered brown adipose tissue (BAT) function contributes to the pathophysiology of obesity and glucose metabolism dysfunctions. BAT thermogenic activity burns glucose and fatty acids to produce heat through uncoupled respiration, and can dissipate the excessive calorie intake, reduce glycemia and circulate fatty acids released from white adipose tissue. Thus, BAT activity is expected to contribute to whole body energy homeostasis and protect against obesity, diabetes and alterations in lipid profile. To date, pharmacological therapies aimed at activating brown fat have failed in clinical trials, due to cardiovascular side effects or scarce efficacy. On the other hand, several studies have identified plant-derived chemical compounds capable of stimulating BAT thermogenesis in animal models, suggesting the translational applications of dietary supplements to fight adipose tissue dysfunctions. This review describes several nutraceuticals with thermogenic properties and provides indications, at a molecular level, of the regulation of the adipocyte thermogenesis by the mentioned phytochemicals.
Collapse
Affiliation(s)
- Andrea Armani
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy
- Laboratory of Cardiovascular Endocrinology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele, 00166 Rome, Italy
- Correspondence:
| | - Alessandra Feraco
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy
- Laboratory of Cardiovascular Endocrinology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele, 00166 Rome, Italy
| | - Elisabetta Camajani
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Stefania Gorini
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy
- Laboratory of Cardiovascular Endocrinology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele, 00166 Rome, Italy
| | - Mauro Lombardo
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy
| | - Massimiliano Caprio
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy
- Laboratory of Cardiovascular Endocrinology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele, 00166 Rome, Italy
| |
Collapse
|
10
|
Burns DM, He C, Li YL, Zhuo J, Qian DQ, Chen L, Jalluri R, Diamond S, Covington MB, Li Y, Wynn R, Scherle P, Yeleswaram S, Hollis G, Friedman S, Metcalf B, Yao W. Discovery of a novel 2-spiroproline steroid mimetic scaffold for the potent inhibition of 11β-HSD1. Bioorg Med Chem Lett 2022; 73:128884. [PMID: 35835377 DOI: 10.1016/j.bmcl.2022.128884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 07/01/2022] [Accepted: 07/05/2022] [Indexed: 11/30/2022]
Abstract
11β-hydroxysteroid dehydrogenase 1 (11β-HSD1) has been identified as the primary enzyme responsible for the activation of hepatic cortisone to cortisol in specific peripheral tissues, resulting in the concomitant antagonism of insulin action within these tissues. Dysregulation of 11β-HSD1, particularly in adipose tissues, has been associated with a variety of ailments including metabolic syndrome and type 2 diabetes mellitus. Therefore, inhibition of 11β-HSD1 with a small nonsteroidal molecule is therapeutically desirable. Implementation of a scaffold-hopping approach revealed a 3-point pharmacophore for 11β-HSD1 that was utilized to design a 2-spiroproline derivative as a steroid mimetic scaffold. Reiterative optimization provided valuable insight into the bioactive conformation of our novel scaffold and led to the discovery of several leads, such as compounds 39 and 51. Importantly, deleterious hERG inhibition and pregnane X receptor induction were mitigated by the introduction of a 4-hydroxyl group to the proline ring system.
Collapse
Affiliation(s)
- David M Burns
- Incyte Research Institute, 1801 Augustine Cut-off, Wilmington, DE 19880, USA.
| | - Chunhong He
- Incyte Research Institute, 1801 Augustine Cut-off, Wilmington, DE 19880, USA
| | | | - Jincong Zhuo
- Prelude Therapeutics, 200 Powder Mill Road, Wilmington, DE 19803, USA
| | - Ding-Quan Qian
- Incyte Research Institute, 1801 Augustine Cut-off, Wilmington, DE 19880, USA
| | | | | | - Sharon Diamond
- Incyte Research Institute, 1801 Augustine Cut-off, Wilmington, DE 19880, USA
| | | | - Yanlong Li
- Incyte Research Institute, 1801 Augustine Cut-off, Wilmington, DE 19880, USA
| | | | - Peggy Scherle
- Prelude Therapeutics, 200 Powder Mill Road, Wilmington, DE 19803, USA
| | - Swamy Yeleswaram
- Incyte Research Institute, 1801 Augustine Cut-off, Wilmington, DE 19880, USA
| | | | | | | | | |
Collapse
|
11
|
de Kloet ER. Brain mineralocorticoid and glucocorticoid receptor balance in neuroendocrine regulation and stress-related psychiatric etiopathologies. CURRENT OPINION IN ENDOCRINE AND METABOLIC RESEARCH 2022; 24:100352. [PMID: 38037568 PMCID: PMC10687720 DOI: 10.1016/j.coemr.2022.100352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Cortisol and corticosterone (CORT) coordinate circadian events and manage the stress response by differential activation of two complementary brain receptor systems, i.e., the mineralocorticoid receptor (MR) and the glucocorticoid receptor (GR), which mediate rapid non-genomic and slow genomic actions. Several recent discoveries are highlighted from molecular fine-tuning of the MR/GR balance by FKBP5 to CORTs role in neural network regulation underlying stress adaptation in emotional, cognitive, and social domains of behavior. The data suggest that MR mediates CORT action on risk assessment, social interaction, and response selection, while GR activation promotes memory consolidation and behavioral adaptation; there are also sex differences in CORT action. New evidence suggests that targeting the MR/GR balance resets a dysregulated stress response system and promotes resilience.
Collapse
Affiliation(s)
- Edo Ronald de Kloet
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, University of Leiden, Leiden, the Netherlands
| |
Collapse
|
12
|
Paul SN, Wingenfeld K, Otte C, Meijer OC. Brain Mineralocorticoid receptor in health and disease: from molecular signaling to cognitive and emotional function. Br J Pharmacol 2022; 179:3205-3219. [PMID: 35297038 PMCID: PMC9323486 DOI: 10.1111/bph.15835] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 02/22/2022] [Accepted: 03/08/2022] [Indexed: 11/27/2022] Open
Abstract
Brain mineralocorticoid receptors (MR) mediate effects of glucocorticoid hormones in stress adaptation, as well as the effects of aldosterone itself in relation to salt homeostasis. Brain stem MRs respond to aldosterone, whereas forebrain MRs mediate rapid and delayed glucocorticoid effects in conjunction with the glucocorticoid receptor (GR). MR‐mediated effects depend on age, gender, genetic variations, and environmental influences. Disturbed MR activity through chronic stress, certain (endocrine) diseases or during glucocorticoid therapy can cause deleterious effects on affective state, cognitive and behavioural function in susceptible individuals. Considering the important role MR plays in cognition and emotional function in health and disease, MR modulation by pharmacological intervention could relieve stress‐ and endocrine‐related symptoms. Here, we discuss recent pharmacological interventions in the clinic and genetic developments in the molecular underpinnings of MR signalling. Further understanding of MR‐dependent pathways may help to improve psychiatric symptoms in a diversity of settings.
Collapse
Affiliation(s)
- Susana N Paul
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands.,Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Katja Wingenfeld
- Klinik für Psychiatrie und Psychotherapie, Charité Universitätsmedizin Campus Benjamin Franklin, Berlin, Germany
| | - Christian Otte
- Klinik für Psychiatrie und Psychotherapie, Charité Universitätsmedizin Campus Benjamin Franklin, Berlin, Germany.,NeuroCure Cluster of Excellence, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Onno C Meijer
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands.,Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
13
|
Lin W, Zhao J, Yan M, Li X, Yang K, Wei W, Zhang L, Chen J. SESN3 Inhibited SMAD3 to Relieve Its Suppression for MiR-124, Thus Regulating Pre-Adipocyte Adipogenesis. Genes (Basel) 2021; 12:genes12121852. [PMID: 34946801 PMCID: PMC8701261 DOI: 10.3390/genes12121852] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 11/20/2021] [Accepted: 11/22/2021] [Indexed: 12/29/2022] Open
Abstract
Sestrin-3, together with the other two members Sestrin-1 and Sestrin-2, belongs to the Sestrin family. The Sestrin protein family has been demonstrated to be involved in antioxidative, metabolic homeostasis, and even the development of nonalcoholic steatohepatitis (NASH). However, the adipogenic regulatory role of SESN3 in adipogenesis still needs to be further explored. In this study, we demonstrated SESN3 inhibited porcine pre-adipocyte proliferation, thus suppressing its adipogenesis. Meanwhile, SESN3 has been demonstrated to inhibit Smad3 thus protecting against NASH. Further, for our previous study, we found mmu-miR-124 involved in 3T3-L1 cell adipogenesis regulation. In this study, we also identified that ssc-miR-124 inhibited porcine pre-adipocyte proliferation, thus suppressing its adipogenesis, and the SMAD3 was an inhibitor of ssc-miR-124 by binding to its promoter. Furthermore, the ssc-miR-124 targeted porcine C/EBPα and GR and thus inhibited pre-adipocyte adipogenesis. In conclusion, SESN3 inhibited SMAD3, thus improving ssc-miR124, and then suppressed C/EBPα and GR to regulate pre-adipocytes adipogenesis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jie Chen
- Correspondence: ; Tel.: +86-18759141669
| |
Collapse
|
14
|
Osadcha YV, Sakhatsky MI, Kulibaba RO. Serum clinical biochemical markers of Hy-Line W-36 laying hens under the influence of increased stocking densities in cages of multilevel batteries. REGULATORY MECHANISMS IN BIOSYSTEMS 2021. [DOI: 10.15421/022158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Today, the organism of hens is constantly exposed to numerous technological stressors in the conditions of industrial poultry farming, the least studied of which are long-term, which can cause the development of chronic stress. One of such stressors is the increased stocking density of hens, which is also a way of saving resources in egg poultry and is often used by producers to obtain more eggs per 1 m2 of poultry area. The aim of this study was to examine the effect of overcrowding, as a factor of chronic stress development, on the body of hens of a modern high-performance cross, which is necessary to select the best ways to keep them. Four groups of hens were formed for this purpose, which were kept at different stocking densities, according to European standards, Ukrainian standards and with increasing overcrowding. In this way, the gradually increasing intensity of the technological stressor was modeled. Long-term keeping of laying hens at high stocking density did not affect the content in the serum of total protein, albumin, urea and cholesterol, which were within the physiological norm. It was found that the increase in the stocking density of hens to Ukrainian standards, compared to the European, was accompanied by an increase in the activity of lactate dehydrogenase in the serum of their blood. With an increase in stocking density above European and Ukrainian standards, namely to 25.3 birds/m2, there was an increase in the activity of three enzymes – lactate dehydrogenase, aspartate aminotransferase and gamma-glutamyltransferase. It is proved that further overcompaction of hens to 26.7 birds/m2 is accompanied by an increase in serum glucose, creatinine, as well as a decrease in the ratio of calcium and phosphorus, which was confirmed by an increase in alkaline phosphatase activity. Also, increased activity of aspartate aminotransferase, lactate dehydrogenase and gamma-glutamyltransferase was observed. Thus, the main effects of chronic stress caused by prolonged keeping of hens at high stocking densities are reflected in the biochemical parameters of their serum, namely in the increase of glucose, creatinine, enzyme activity, as well as the violation of the ratio of calcium and phosphorus.
Collapse
|
15
|
Bacillus subtilis-Based Probiotic Improves Skeletal Health and Immunity in Broiler Chickens Exposed to Heat Stress. Animals (Basel) 2021; 11:ani11061494. [PMID: 34064126 PMCID: PMC8224346 DOI: 10.3390/ani11061494] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/06/2021] [Accepted: 05/11/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary High ambient temperature is a major environmental stressor affecting the physiological and behavioral status of animals, increasing stress susceptibility and immunosuppression, and consequently increasing intestinal permeability (leaky gut) and related neuroinflammation. Probiotics, as well as prebiotics and synbiotics, have been used to prevent or decrease stress-associated detrimental effects on physiological and behavioral homeostasis in humans and various animals. The current data indicate that a dietary probiotic supplement, Bacillus subtilis, reduces heat stress-induced abnormal behaviors and negative effects on skeletal health in broilers through a variety of cellular responses, regulating the functioning of the microbiota–gut–brain axis and/or microbiota-modulated immunity during bone remodeling under thermoneutral and heat-stressed conditions. Abstract The elevation of ambient temperature beyond the thermoneutral zone leads to heat stress, which is a growing health and welfare issue for homeothermic animals aiming to maintain relatively constant reproducibility and survivability. Particularly, global warming over the past decades has resulted in more hot days with more intense, frequent, and long-lasting heat waves, resulting in a global surge in animals suffering from heat stress. Heat stress causes pathophysiological changes in animals, increasing stress sensitivity and immunosuppression, consequently leading to increased intestinal permeability (leaky gut) and related neuroinflammation. Probiotics, as well as prebiotics and synbiotics, have been used to prevent or reduce stress-induced negative effects on physiological and behavioral homeostasis in humans and various animals. The current data indicate dietary supplementation with a Bacillus subtilis-based probiotic has similar functions in poultry. This review highlights the recent findings on the effects of the probiotic Bacillus subtilis on skeletal health of broiler chickens exposed to heat stress. It provides insights to aid in the development of practical strategies for improving health and performance in poultry.
Collapse
|
16
|
Kim SH, Kim SE, Choi MH, Park MJ. Altered glucocorticoid metabolism in girls with central obesity. Mol Cell Endocrinol 2021; 527:111225. [PMID: 33640459 DOI: 10.1016/j.mce.2021.111225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 02/22/2021] [Accepted: 02/22/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Dysregulation of glucocorticoid metabolism is known to be a causative factor of obesity. However, only a few studies have evaluated the enzymatic activities involved in glucocorticoid metabolism in the pediatric population. OBJECTIVE To examine whether circulating glucocorticoid metabolites and their ratios reflecting the activities of metabolic enzyme are associated with obesity and body composition in girls. METHODS A total of 227 girls aged 7-13 years (131 control, 45 overweight, 51 obese) were enrolled in this study. Serum concentrations of glucocorticoids (11-deoxycortisol, cortisol, tetrahydrocortisol [THF], allo-THF, allo-dihydrocortisol [allo-DHF], and cortisone) were evaluated by gas chromatography-mass spectrometry. Enzyme activities corresponding to the ratios of cortisol and cortisone to their respective precursors and metabolites were also assessed. RESULTS Serum levels of allo-THF were significantly higher in obese girls compared with those in overweight and control girls (P = 0.018); however, concentrations of other cortisol metabolites were not significantly different between the groups studied. According to the severity of obesity, increasing trends in the metabolic ratios reflecting the activity of 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) [(cortisol + allo-DHF + allo-THF + THF)/cortisone], relative 5α/5β-reductase [allo-THF/THF] activity, and 3α-HSD [allo-THF/allo-DHF] activity, were noted (P-for-trend <0.05). Body fat percentage and waist-to-height ratio positively correlated with the activities of 11β-HSD1 and 3α-HSD (P < 0.05). Following covariate control, girls with central obesity demonstrated significantly higher metabolic ratios reflecting 11β-HSD1, relative 5α/5β-reductase, and 3α-HSD activities (P < 0.05). CONCLUSIONS We found an altered glucocorticoid metabolism suggesting increased production of cortisol by 11β-HSD1 and increased metabolic clearance of cortisol catalyzed by 3α-HSD in girls with central obesity.
Collapse
Affiliation(s)
- Shin-Hye Kim
- Department of Pediatrics, Inje University Sanggye Paik Hospital, Seoul, 01757, South Korea
| | - Si-Eun Kim
- Molecular Recognition Research Center, Korea Institute of Science and Technology, Seoul, 02792, South Korea
| | - Man Ho Choi
- Molecular Recognition Research Center, Korea Institute of Science and Technology, Seoul, 02792, South Korea.
| | - Mi Jung Park
- Department of Pediatrics, Inje University Sanggye Paik Hospital, Seoul, 01757, South Korea.
| |
Collapse
|
17
|
Kim HS, Lee J, Cho YK, Park JY, Lee WJ, Kim YJ, Jung CH. Differential Effect of Metabolic Health and Obesity on Incident Heart Failure: A Nationwide Population-Based Cohort Study. Front Endocrinol (Lausanne) 2021; 12:625083. [PMID: 33716978 PMCID: PMC7947792 DOI: 10.3389/fendo.2021.625083] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 01/14/2021] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Metabolically healthy obese (MHO) individuals and their association with cardiometabolic diseases have remained controversial. We aimed to explore the risk of incident heart failure (HF) based on the baseline metabolic health and obesity status as well as their transition over 2 years. METHODS The Korean National Health Insurance Service-National Health Screening Cohort data of 514,886 participants were analyzed. Obesity was defined as BMI ≥25 kg/m2 according to the Korean Centers for Disease Control and Prevention. The metabolic health and obesity status were evaluated at baseline and after two years. Study participants were followed to either the date of newly diagnosed HF or the last follow-up visit, whichever occurred first. RESULTS The MHO group comprised 9.1% of the entire population and presented a better baseline metabolic profile than the metabolically unhealthy non-obese (MUNO) and metabolicavlly unhealthy obese (MUO) groups. During the median 71.3 months of follow-up, HF developed in 5,406 (1.5%) participants. The adjusted hazard ratios [HRs (95% CI)] of HF at baseline compared with the metabolically healthy non-obese (MHNO) group were 1.29 [1.20-1.39], 1.37 [1.22-1.53], and 1.63 [1.50-1.76] for MUNO, MHO, and MUO groups, respectively. With the stable MHNO group as reference, transition into metabolically unhealthy status (MUNO and MUO) increased the risk of HF, regardless of the baseline status. Subjects who were obese at both baseline and follow-up showed an increased risk of HF, regardless of their metabolic health status. CONCLUSIONS Metabolic health and obesity status and their transition can predict the risk of incident HF. Losing metabolic health in baseline non-obese and obese individuals and remaining obese in baseline obese individuals showed a significantly increased risk of incident HF. Maintaining good metabolic health and a lean body may prevent the development of HF.
Collapse
Affiliation(s)
- Hwi Seung Kim
- Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
- Asan Diabetes Center, Asan Medical Center, Seoul, South Korea
| | - Jiwoo Lee
- Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
- Asan Diabetes Center, Asan Medical Center, Seoul, South Korea
| | - Yun Kyung Cho
- Department of Internal Medicine, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang, South Korea
| | - Joong-Yeol Park
- Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
- Asan Diabetes Center, Asan Medical Center, Seoul, South Korea
| | - Woo Je Lee
- Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
- Asan Diabetes Center, Asan Medical Center, Seoul, South Korea
| | - Ye-Jee Kim
- Department of Clinical Epidemiology and Biostatistics, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
- *Correspondence: Chang Hee Jung, ; Ye-Jee Kim,
| | - Chang Hee Jung
- Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
- Asan Diabetes Center, Asan Medical Center, Seoul, South Korea
- *Correspondence: Chang Hee Jung, ; Ye-Jee Kim,
| |
Collapse
|
18
|
Berney M, Vakilzadeh N, Maillard M, Faouzi M, Grouzmann E, Bonny O, Favre L, Wuerzner G. Bariatric Surgery Induces a Differential Effect on Plasma Aldosterone in Comparison to Dietary Advice Alone. Front Endocrinol (Lausanne) 2021; 12:745045. [PMID: 34675881 PMCID: PMC8525894 DOI: 10.3389/fendo.2021.745045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 09/13/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND AND OBJECTIVES The pathophysiological mechanisms linking weight loss to blood pressure (BP) reduction are not completely understood. The objective of this study was to compare the effect of weight loss after Roux-en-Y gastric bypass (RYGB) on BP, renin-angiotensin-aldosterone system (RAAS), and urinary electrolytes excretion to those of dietary advice. METHODS This was a case-control prospective study including obese patients referred for RYGB (cases) and obese receiving diet advice only (controls). Ambulatory BP, plasma renin activity (PRA), plasma aldosterone concentration (PAC), and urinary electrolytes were measured before (M0) and after intervention (M3: 3 months and M12: 12 months). RESULTS Twenty-five patients were included in the RYGB group and twelve patients in the control group. After 12 months, weight loss (-42 ± 11.5 vs -12.3 ± 6.3 kg in the control group, p=0.001) and decrease in PAC were more pronounced in the RYGB group (-34 ± 76 vs +14 ± 45 pg/ml in the control group, p=0.002). There was no difference in PRA between both groups (-0.08 ± 1.68 vs 0.01 ± 0.37 ng/ml/h, p=0.31). Sodium excretion was more marked in the RYGB group after 3 months only (-89 ± 14.9 vs -9.9 ± 27.9 mmol/day, p=0.009). The decrease in SBP was similar between both groups (-6.9 ± 9.9 vs -7.1 ± 11.9 mmHg in the control group, p=0.96). CONCLUSIONS Bariatric-induced weight loss induces a progressive decrease in PAC independently of PRA and sodium excretion. Whether this decrease in PAC affects target organ damage in the long term remains to be determined. CLINICAL TRIAL REGISTRATION ClinicalTrials.gov, identifier NCT02218112.
Collapse
Affiliation(s)
- Maxime Berney
- Service of Nephrology and Hypertension, Department of Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Nima Vakilzadeh
- Service of Nephrology and Hypertension, Department of Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Marc Maillard
- Service of Nephrology and Hypertension, Department of Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Mohamed Faouzi
- Département de Formation, Recherche et Innovation, Unisanté, University of Lausanne, Lausanne, Switzerland
| | - Eric Grouzmann
- Laboratoire des Catécholamines et Peptides, Service de Biomédecine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Olivier Bonny
- Service of Nephrology and Hypertension, Department of Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Lucie Favre
- Service of Endocrinology, Diabetes and Metabolism, Lausanne University Hospital, Lausanne, Switzerland
| | - Grégoire Wuerzner
- Service of Nephrology and Hypertension, Department of Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- *Correspondence: Grégoire Wuerzner, ; orcid.org/0000-0002-6424-7630
| |
Collapse
|
19
|
Lizcano F, Arroyave F. Control of Adipose Cell Browning and Its Therapeutic Potential. Metabolites 2020; 10:metabo10110471. [PMID: 33227979 PMCID: PMC7699191 DOI: 10.3390/metabo10110471] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/20/2020] [Accepted: 11/02/2020] [Indexed: 12/20/2022] Open
Abstract
Adipose tissue is the largest endocrine organ in humans and has an important influence on many physiological processes throughout life. An increasing number of studies have described the different phenotypic characteristics of fat cells in adults. Perhaps one of the most important properties of fat cells is their ability to adapt to different environmental and nutritional conditions. Hypothalamic neural circuits receive peripheral signals from temperature, physical activity or nutrients and stimulate the metabolism of white fat cells. During this process, changes in lipid inclusion occur, and the number of mitochondria increases, giving these cells functional properties similar to those of brown fat cells. Recently, beige fat cells have been studied for their potential role in the regulation of obesity and insulin resistance. In this context, it is important to understand the embryonic origin of beige adipocytes, the response of adipocyte to environmental changes or modifications within the body and their ability to transdifferentiate to elucidate the roles of these cells for their potential use in therapeutic strategies for obesity and metabolic diseases. In this review, we discuss the origins of the different fat cells and the possible therapeutic properties of beige fat cells.
Collapse
Affiliation(s)
- Fernando Lizcano
- Center of Biomedical Investigation, (CIBUS), Universidad de La Sabana, 250008 Chia, Colombia
- Correspondence:
| | - Felipe Arroyave
- Doctoral Program in Biociencias, Universidad de La Sabana, 250008 Chia, Colombia
| |
Collapse
|
20
|
Feraco A, Marzolla V, Scuteri A, Armani A, Caprio M. Mineralocorticoid Receptors in Metabolic Syndrome: From Physiology to Disease. Trends Endocrinol Metab 2020; 31:205-217. [PMID: 31843490 DOI: 10.1016/j.tem.2019.11.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 11/07/2019] [Accepted: 11/12/2019] [Indexed: 01/28/2023]
Abstract
Over the past decade, several studies have shown that activity of extra-renal mineralocorticoid receptors (MR) regulates vascular tone, adipogenesis, adipose tissue function, and cardiomyocyte contraction. In mice, abnormal activation of MR in the vasculature and in adipose tissue favors the occurrence of several components of the metabolic syndrome (MetS), such as hypertension, obesity, and glucose intolerance. Accordingly, high levels of aldosterone are associated with obesity and MetS in humans, suggesting that altered activation of aldosterone-MR system in extra-renal tissues leads to profound metabolic dysfunctions. In this context, in addition to the classical indications for heart failure and hypertension, MR antagonists (MRAs) nowadays represent a promising approach to tackle cardiovascular and metabolic disorders occurring in the MetS.
Collapse
Affiliation(s)
- Alessandra Feraco
- Laboratory of Cardiovascular Endocrinology, IRCCS San Raffaele Pisana, Rome, Italy
| | - Vincenzo Marzolla
- Laboratory of Cardiovascular Endocrinology, IRCCS San Raffaele Pisana, Rome, Italy
| | - Angelo Scuteri
- Department of Medical, Surgical, and Experimental Science, University of Sassari, Sassari, Italy
| | - Andrea Armani
- Laboratory of Cardiovascular Endocrinology, IRCCS San Raffaele Pisana, Rome, Italy
| | - Massimiliano Caprio
- Laboratory of Cardiovascular Endocrinology, IRCCS San Raffaele Pisana, Rome, Italy; Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, Rome, Italy.
| |
Collapse
|
21
|
Vecchiola A, Fuentes CA, Solar I, Lagos CF, Opazo MC, Muñoz-Durango N, Riedel CA, Owen GI, Kalergis AM, Fardella CE. Eplerenone Implantation Improved Adipose Dysfunction Averting RAAS Activation and Cell Division. Front Endocrinol (Lausanne) 2020; 11:223. [PMID: 32373073 PMCID: PMC7186315 DOI: 10.3389/fendo.2020.00223] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 03/27/2020] [Indexed: 12/25/2022] Open
Abstract
Introduction: Mineralocorticoid receptor (MR) activation within adipose tissue, triggers inflammation and metabolic syndrome development. The pharmacological blockade of MR provides beneficial effects for adipose tissue. Our study evaluates the impact of eplerenone implantation upon obesity. Experimental approach: A group of mice with implanted placebo pellets were fed using two types of diet, a normal (ND) or a high fat (HFD) diet. Additionally, a group of mice fed HFD were implanted with an eplerenone pellet. Metabolic and biochemical parameters were assessed in each animal group. Adipocyte size and lipid accumulation were investigated in the liver and adipose tissue. We evaluated the components of renin-angiotensin-aldosterone system (RAAS) locally in adipose tissue. Key results: Eplerenone reduced HFD-induced body weight gain, fasting glucose levels, fat accumulation, HFD-induced adipocyte size and liver lipid accumulation and improved glucose tolerance. In the adipose tissue, HFD significantly increased the mRNA levels of the RAAS molecules relative to the ND group. Eplerenone lowered RAAS mRNA levels, components of lipid metabolism and markers of inflammation in HFD-fed animals. Conclusion: MR antagonism with eplerenone diminishes insulin resistance that is related to obesity partly via a reduction of RAAS activation, inflammatory progression and cytokines induction. This suggests that eplerenone should be further studied as a therapeutic option for obesity and overweight.
Collapse
Affiliation(s)
- Andrea Vecchiola
- Department of Endocrinology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy IMII, Santiago, Chile
| | - Cristóbal A. Fuentes
- Department of Endocrinology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Isidora Solar
- Department of Endocrinology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Carlos F. Lagos
- Chemical Biology and Drug Discovery Lab, Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Maria Cecilia Opazo
- Millennium Institute on Immunology and Immunotherapy IMII, Santiago, Chile
- Laboratorio de Endocrinología-Inmunología, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Natalia Muñoz-Durango
- Millennium Institute on Immunology and Immunotherapy IMII, Santiago, Chile
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Claudia A. Riedel
- Millennium Institute on Immunology and Immunotherapy IMII, Santiago, Chile
- Laboratorio de Endocrinología-Inmunología, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Gareth I. Owen
- Millennium Institute on Immunology and Immunotherapy IMII, Santiago, Chile
- Department of Physiology, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alexis M. Kalergis
- Department of Endocrinology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy IMII, Santiago, Chile
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Carlos E. Fardella
- Department of Endocrinology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy IMII, Santiago, Chile
- Center of Translational Endocrinology (CETREN), Department of Endocrinology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- *Correspondence: Carlos E. Fardella
| |
Collapse
|
22
|
Marcondes-de-Mello MLDF, Serafim-Costa MC, Alves-E-Silva MM, Oliveira NR, Bertolucci-Caldo NV, Ferraz RK, Chaves VE. Effect of glucocorticoids on glyceroneogenesis in adipose tissue: A systematic review. Biochimie 2019; 168:210-219. [PMID: 31759936 DOI: 10.1016/j.biochi.2019.11.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 11/14/2019] [Indexed: 01/23/2023]
Abstract
Glyceroneogenesis is important for the maintenance of fat content in white adipose tissue (WAT). An increase in WAT, and especially the pattern of fat distribution, specifically in visceral depots, potentially contributes to cardiovascular and metabolic diseases, such as type 2 diabetes mellitus, myocardial infarction and hypertension. Recent studies have shown important differences in glyceroneogenesis of different fat sites under the administration of glucocorticoids (GCs). Such differences need to be analysed with criteria evidencing the parameter studied, the type of corticoid, the form of administration and also the tissue studied. PubMed, Scopus and Virtual Health Library were used to search for articles that analysed the effect of GCs on glyceroneogenesis in different sites of adipose tissue in mammals and primary cultures. GCs decrease the glyceroneogenesis in epididymal WAT (EWAT) and also decrease the expression of the mRNA, content and activity of phosphoenolpyruvate carboxykinase (PEPCK-C), key enzyme of glyceroneogenesis. However, in retroperitoneal WAT (RWAT), although there is no consensus about the effect of GCs on PEPCK mRNA, GCs increase PEPCK-C activity and glyceroneogenesis flux. In inguinal WAT (IWAT) an in vitro study showed an increase in the PEPCK mRNA induced by dexamethasone. However, prednisolone does not change glyceroneogenesis flux. In interscapular brown adipose tissue (IBAT) prednisolone or dexamethasone does not change PEPCK-C activity in control diet-fed rats but led to a decrease in PEPCK-C activity in fasted- or high-fat/low-carbohydrate diet-fed rats, as well as in suckling rats. Despite that fact that GCs have different potencies, the same dose of dexamethasone reduces PEPCK-C activity in EWAT, but not in RWAT and IBAT from control-diet fed rats. In summary, the data presented in this article show that GCs differentially regulate glyceroneogenesis in different sites of adipose tissue. Further experiments are needed to firmly establish our hypothesis and clarify the mechanisms involved.
Collapse
Affiliation(s)
| | | | | | | | | | - Ruan Krubniki Ferraz
- Laboratory of Physiology, Federal University of São João Del-Rei, Divinópolis, Minas Gerais, Brazil
| | - Valéria Ernestânia Chaves
- Laboratory of Physiology, Federal University of São João Del-Rei, Divinópolis, Minas Gerais, Brazil.
| |
Collapse
|
23
|
Mazurina NV, Ershova EV, Troshina EA, Senyushkina ES, Tyulpakov AN, Ioutsi VA. Fat tissue and adrenal function: mechanisms of mutual influence. MEDICAL COUNCIL 2019:70-77. [DOI: 10.21518/2079-701x-2019-4-70-77] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Affiliation(s)
- N. V. Mazurina
- Federal State Budgetary Institution National Medical Research Center of Endocrinology of the Ministry of Health of the Russian Federation
| | - E. V. Ershova
- Federal State Budgetary Institution National Medical Research Center of Endocrinology of the Ministry of Health of the Russian Federation
| | - E. A. Troshina
- Federal State Budgetary Institution National Medical Research Center of Endocrinology of the Ministry of Health of the Russian Federation
| | - E. S. Senyushkina
- Federal State Budgetary Institution National Medical Research Center of Endocrinology of the Ministry of Health of the Russian Federation
| | - A. N. Tyulpakov
- Federal State Budgetary Institution National Medical Research Center of Endocrinology of the Ministry of Health of the Russian Federation
| | - V. A. Ioutsi
- Federal State Budgetary Institution National Medical Research Center of Endocrinology of the Ministry of Health of the Russian Federation
| |
Collapse
|
24
|
Armani A, Infante M, Fabbri A, Caprio M. Comment on "mineralocorticoid antagonism enhances brown adipose tissue function in humans: A randomized placebo-controlled cross-over study". Diabetes Obes Metab 2019; 21:2024-2026. [PMID: 31050122 DOI: 10.1111/dom.13756] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 04/19/2019] [Accepted: 04/30/2019] [Indexed: 11/28/2022]
Affiliation(s)
- Andrea Armani
- Laboratory of Cardiovascular Endocrinology, IRCCS San Raffaele Pisana, Rome, Italy
| | - Marco Infante
- Diabetes Research Institute (DRI) and Clinical Cell Transplant Program, University of Miami Miller School of Medicine, Miami, Florida
- Unit of Endocrinology and Metabolic Diseases, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Andrea Fabbri
- Unit of Endocrinology and Metabolic Diseases, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Massimiliano Caprio
- Laboratory of Cardiovascular Endocrinology, IRCCS San Raffaele Pisana, Rome, Italy
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, Rome, Italy
| |
Collapse
|
25
|
Wingenfeld K, Otte C. Mineralocorticoid receptor function and cognition in health and disease. Psychoneuroendocrinology 2019; 105:25-35. [PMID: 30243757 DOI: 10.1016/j.psyneuen.2018.09.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 09/06/2018] [Accepted: 09/10/2018] [Indexed: 02/04/2023]
Abstract
The steroid hormone cortisol is released in response to stress and exerts its effects in the brain via two different receptors: the mineralocorticoid receptor (MR) and the glucocorticoid receptor (GR). This review - dedicated to Dirk Hellhammer - focusses on the role of MR on cognitive and emotional function in healthy individuals and in stress-associated disorders such as major depressive disorder (MDD) or borderline personality disorder (BPD). Animal data and studies from healthy individuals converge such that MR play an important role in the appraisal of new situations and the following response selection. Decision-making and empathy are important determinants of this response selection and both are affected by MR function. Furthermore, MR are crucially involved in visuospatial navigation and memory in young and elderly healthy individuals whereas the exact physiological role of MR in verbal learning and verbal memory needs to be further characterized. In contrast to studies in healthy participants, age played a moderating role on the effects of MR stimulation on cognition in depressed patients. In young depressed patients, MR stimulation exerted beneficial effects on verbal memory and executive function, whereas in elderly depressed patients MR stimulation led to impaired verbal learning and visuospatial memory. Similar to healthy controls, BPD patients showed enhanced emotional empathy but not cognitive empathy after MR stimulation. Accordingly, this make MR an interesting target for potential pharmacological augmentation of psychotherapy in BPD. Given the important role MR play in cognitive and emotional function in health and disease, further studies should examine whether MR modulation can alleviate cognitive and emotional problems in patients with stress-associated disorders.
Collapse
Affiliation(s)
- Katja Wingenfeld
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Klinik für Psychiatrie und Psychotherapie, Campus Benjamin Franklin, Berlin, Germany.
| | - Christian Otte
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Klinik für Psychiatrie und Psychotherapie, Campus Benjamin Franklin, Berlin, Germany
| |
Collapse
|
26
|
Liu K, Zhang X, Wei W, Liu X, Tian Y, Han H, Zhang L, Wu W, Chen J. Myostatin/SMAD4 signaling-mediated regulation of miR-124-3p represses glucocorticoid receptor expression and inhibits adipocyte differentiation. Am J Physiol Endocrinol Metab 2019; 316:E635-E645. [PMID: 30576242 DOI: 10.1152/ajpendo.00405.2018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The mechanism of adipocyte regulation specifically in muscle and the influence of muscle tissue on intramuscular fat deposition are unknown. Our previous studies have shown that myostatin, a myokine, is involved in inhibiting the differentiation of preadipocytes and may be a potential regulator that affects the deposition of intramuscular fat. Myostatin inhibited adipogenesis by downregulating the expression of glucocorticoid receptor (GR) in porcine preadipocytes. However, the mechanism of regulation is not yet clear. In this study, we demonstrate microRNA (miR-124-3p) mediates regulation of GR by myostatin. We found that miR-124-3p can target GR 3'-UTR and negatively regulate GR expression. We demonstrate that overexpression of miR-124-3p can reduce differentiation of 3T3-L1 cells by inhibiting GR, and vice versa. The expression of miR-124-3p was upregulated in 3T3-L1 cells treated with myostatin. Further study revealed that myostatin also promotes the expression of SMAD4 and its transfer and localization to the nucleus. The activated myostatin/SMAD4 signal promotes the expression of miR-124-3p by SMAD4 binding to the promoter region of miR-124-3p. When myostatin or SMAD4 activity is inhibited, the upregulation of miR-124-3p is also inhibited. All of these findings suggested that myostatin could inhibit adipogenic differentiation of 3T3-L1 cells by activating miR-124-3p to inhibit GR. These data may provide an explanation for how myostatin signaling affects intramuscular fat deposition in a tissue-specific manner.
Collapse
Affiliation(s)
- Kaiqing Liu
- College of Animal Science and Technology, Nanjing Agricultural University , Nanjing , China
| | - Xinbao Zhang
- College of Animal Science and Technology, Nanjing Agricultural University , Nanjing , China
| | - Wei Wei
- College of Animal Science and Technology, Nanjing Agricultural University , Nanjing , China
| | - Xin Liu
- College of Animal Science and Technology, Nanjing Agricultural University , Nanjing , China
| | - Ye Tian
- College of Animal Science and Technology, Nanjing Agricultural University , Nanjing , China
| | - Haiyin Han
- College of Animal Science and Technology, Nanjing Agricultural University , Nanjing , China
| | - Lifan Zhang
- College of Animal Science and Technology, Nanjing Agricultural University , Nanjing , China
| | - Wangjun Wu
- College of Animal Science and Technology, Nanjing Agricultural University , Nanjing , China
| | - Jie Chen
- College of Animal Science and Technology, Nanjing Agricultural University , Nanjing , China
| |
Collapse
|
27
|
|
28
|
Lefebvre H, Duparc C, Naccache A, Lopez AG, Castanet M, Louiset E. Paracrine Regulation of Aldosterone Secretion in Physiological and Pathophysiological Conditions. VITAMINS AND HORMONES 2018; 109:303-339. [PMID: 30678861 DOI: 10.1016/bs.vh.2018.10.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Aldosterone secretion by the zona glomerulosa of the adrenal cortex is controlled by circulating factors including the renin angiotensin system (RAS) and potassium. Mineralocorticoid production is also regulated through an autocrine/paracrine mechanism by a wide variety of bioactive signals released in the vicinity of adrenocortical cells by chromaffin cells, nerve endings, cells of the immune system, endothelial cells and adipocytes. These regulatory factors include conventional neurotransmitters and neuropeptides. Their physiological role in the control of aldosterone secretion is not fully understood, but it is likely that they participate in the RAS-independent regulation of zona glomerulosa cells. Interestingly, recent observations indicate that autocrine/paracrine processes are involved in the pathophysiology of primary aldosteronism. The intraadrenal regulatory systems observed in aldosterone-producing adenomas (APA), although globally similar to those occurring in the normal adrenal gland, harbor alterations at different levels, which tend to strengthen the potency of paracrine signals to activate aldosterone secretion. Enhancement of paracrine stimulatory tone may participate to APA expansion and aldosterone hypersecretion together with somatic mutations of driver genes which activate the calcium signaling pathway and subsequently aldosterone synthase expression. Intraadrenal regulatory mechanisms represent thus promising pharmacological targets for the treatment of primary aldosteronism.
Collapse
Affiliation(s)
- Hervé Lefebvre
- Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Normandie University, UNIROUEN, INSERM, Rouen, France; Department of Endocrinology, Diabetes and Metabolic Diseases, Rouen University Hospital, Rouen, France.
| | - Céline Duparc
- Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Normandie University, UNIROUEN, INSERM, Rouen, France
| | - Alexandre Naccache
- Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Normandie University, UNIROUEN, INSERM, Rouen, France; Unit of Pediatric Endocrinology, Department of Pediatrics, Rouen University Hospital, Rouen, France
| | - Antoine-Guy Lopez
- Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Normandie University, UNIROUEN, INSERM, Rouen, France; Department of Endocrinology, Diabetes and Metabolic Diseases, Rouen University Hospital, Rouen, France
| | - Mireille Castanet
- Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Normandie University, UNIROUEN, INSERM, Rouen, France; Unit of Pediatric Endocrinology, Department of Pediatrics, Rouen University Hospital, Rouen, France
| | - Estelle Louiset
- Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Normandie University, UNIROUEN, INSERM, Rouen, France
| |
Collapse
|
29
|
Gorini S, Marzolla V, Mammi C, Armani A, Caprio M. Mineralocorticoid Receptor and Aldosterone-Related Biomarkers of End-Organ Damage in Cardiometabolic Disease. Biomolecules 2018; 8:biom8030096. [PMID: 30231508 PMCID: PMC6165349 DOI: 10.3390/biom8030096] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 09/10/2018] [Accepted: 09/12/2018] [Indexed: 12/11/2022] Open
Abstract
The mineralocorticoid receptor (MR) was first identified as a blood pressure regulator, modulating renal sodium handling in response to its principal ligand aldosterone. The mineralocorticoid receptor is also expressed in many tissues other than the kidney, such as adipose tissue, heart and vasculature. Recent studies have shown that MR plays a relevant role in the control of cardiovascular and metabolic function, as well as in adipogenesis. Dysregulation of aldosterone/MR signaling represents an important cause of disease as high plasma levels of aldosterone are associated with hypertension, obesity and increased cardiovascular risk. Aldosterone displays powerful vascular effects and acts as a potent pro-fibrotic agent in cardiovascular remodeling. Mineralocorticoid receptor activation regulates genes involved in vascular and cardiac fibrosis, calcification and inflammation. This review focuses on the role of novel potential biomarkers related to aldosterone/MR system that could help identify cardiovascular and metabolic detrimental conditions, as a result of altered MR activation. Specifically, we discuss: (1) how MR signaling regulates the number and function of different subpopulations of circulating and intra-tissue immune cells; (2) the role of aldosterone/MR system in mediating cardiometabolic diseases induced by obesity; and (3) the role of several MR downstream molecules as novel potential biomarkers of cardiometabolic diseases, end-organ damage and rehabilitation outcome.
Collapse
Affiliation(s)
- Stefania Gorini
- Laboratory of Cardiovascular Endocrinology, IRCCS San Raffaele Pisana, Via di Val Cannuta 247, 00166 Rome, Italy.
| | - Vincenzo Marzolla
- Laboratory of Cardiovascular Endocrinology, IRCCS San Raffaele Pisana, Via di Val Cannuta 247, 00166 Rome, Italy.
| | - Caterina Mammi
- Laboratory of Cardiovascular Endocrinology, IRCCS San Raffaele Pisana, Via di Val Cannuta 247, 00166 Rome, Italy.
| | - Andrea Armani
- Laboratory of Cardiovascular Endocrinology, IRCCS San Raffaele Pisana, Via di Val Cannuta 247, 00166 Rome, Italy.
| | - Massimiliano Caprio
- Laboratory of Cardiovascular Endocrinology, IRCCS San Raffaele Pisana, Via di Val Cannuta 247, 00166 Rome, Italy.
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy.
| |
Collapse
|
30
|
Hannich M, Wallaschofski H, Nauck M, Reincke M, Adolf C, Völzke H, Rettig R, Hannemann A. Physiological Aldosterone Concentrations Are Associated with Alterations of Lipid Metabolism: Observations from the General Population. Int J Endocrinol 2018; 2018:4128174. [PMID: 29780416 PMCID: PMC5892232 DOI: 10.1155/2018/4128174] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 02/15/2018] [Indexed: 02/02/2023] Open
Abstract
OBJECTIVE Aldosterone and high-density lipoprotein cholesterol (HDL-C) are involved in many pathophysiological processes that contribute to the development of cardiovascular diseases. Previously, associations between the concentrations of aldosterone and certain components of the lipid metabolism in the peripheral circulation were suggested, but data from the general population is sparse. We therefore aimed to assess the associations between aldosterone and HDL-C, low-density lipoprotein cholesterol (LDL-C), total cholesterol, triglycerides, or non-HDL-C in the general adult population. METHODS Data from 793 men and 938 women aged 25-85 years who participated in the first follow-up of the Study of Health in Pomerania were obtained. The associations of aldosterone with serum lipid concentrations were assessed in multivariable linear regression models adjusted for sex, age, body mass index (BMI), estimated glomerular filtration rate (eGFR), and HbA1c. RESULTS The linear regression models showed statistically significant positive associations of aldosterone with LDL-C (β-coefficient = 0.022, standard error = 0.010, p = 0.03) and non-HDL-C (β-coefficient = 0.023, standard error = 0.009, p = 0.01) as well as an inverse association of aldosterone with HDL-C (β-coefficient = -0.022, standard error = 0.011, p = 0.04). CONCLUSIONS The present data show that plasma aldosterone is positively associated with LDL-C and non-HDL-C and inversely associated with HDL-C in the general population. Our data thus suggests that aldosterone concentrations within the physiological range may be related to alterations of lipid metabolism.
Collapse
Affiliation(s)
- M. Hannich
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald, Germany
| | - H. Wallaschofski
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald, Germany
- German Centre for Cardiovascular Research, Partner site Greifswald, Greifswald, Germany
| | - M. Nauck
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald, Germany
- German Centre for Cardiovascular Research, Partner site Greifswald, Greifswald, Germany
| | - M. Reincke
- Medical Department IV, Klinikum Innenstadt, Ludwig-Maximilian University of Munich, Munich, Germany
| | - C. Adolf
- Medical Department IV, Klinikum Innenstadt, Ludwig-Maximilian University of Munich, Munich, Germany
| | - H. Völzke
- German Centre for Cardiovascular Research, Partner site Greifswald, Greifswald, Germany
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
| | - R. Rettig
- Institute of Physiology, University Medicine Greifswald, Greifswald, Germany
| | - A. Hannemann
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald, Germany
| |
Collapse
|