1
|
Kondo N, Mimori-Kiyosue Y, Tokuhiro K, Pezzotti G, Kinashi T. The autophagy component LC3 regulates lymphocyte adhesion via LFA1 transport in response to outside-in signaling. Nat Commun 2025; 16:1343. [PMID: 39905041 PMCID: PMC11794545 DOI: 10.1038/s41467-025-56631-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 01/23/2025] [Indexed: 02/06/2025] Open
Abstract
The leukocyte integrin LFA1 is indispensable for immune responses, orchestrating lymphocyte trafficking and adhesion. While LFA1 activation induces LFA1 clustering at the cell contact surface via outside-in signaling, the regulatory mechanisms remain unclear. Here, we uncovered a previously hidden function of the autophagosome component LC3 beyond its role in autophagy by bridging two seemingly unrelated pathways: LFA1 transport and autophagosome transport. LFA1 clusters co-trafficked with LC3, facilitating LFA1 accumulation at the contact surface. LC3b knockout decreased lymphocyte adhesiveness. LFA1 activation did not induce autophagy, whereas it increased mTOR and AMPK activity. LFA1-dependent AMPK activation enhances LFA1 and LC3 clustering and adhesion. Inhibiting Mst1 kinase-mediated LC3 phosphorylation promoted LC3-mediated LFA1 recruitment to the contact surface through direct interaction with RAPL, uncovering an unprecedented integrin recruitment route. These findings uncover a function of LC3 and expand our understanding of lymphocyte regulation via LFA1.
Collapse
Affiliation(s)
- Naoyuki Kondo
- Department of Molecular Genetics, Institute of Biomedical Science, Kansai Medical University, Osaka, Japan.
| | - Yuko Mimori-Kiyosue
- Department of Molecular Genetics, Institute of Biomedical Science, Kansai Medical University, Osaka, Japan
| | - Keizo Tokuhiro
- Department of Genome Editing, Institute of Biomedical Science, Kansai Medical University, Osaka, Japan
| | - Giuseppe Pezzotti
- Biomedical Engineering Center, Kansai Medical University, Osaka, Japan
| | - Tatsuo Kinashi
- Department of Molecular Genetics, Institute of Biomedical Science, Kansai Medical University, Osaka, Japan
| |
Collapse
|
2
|
Waggoner S, Cox A, Canaday L, Katko A, Feldman H, Warrick K, Tselikova A, Seelamneni H, Roskin K. KLF2 determines the susceptibility of T cells to immunoregulatory NK cells. RESEARCH SQUARE 2024:rs.3.rs-4921081. [PMID: 39257976 PMCID: PMC11384801 DOI: 10.21203/rs.3.rs-4921081/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Natural killer (NK) cells suppress cellular and humoral immune responses via killing of T cells, resulting in diminished vaccine responses in mice and humans. Efforts to overcome this roadblock and achieve optimal immunity require an improved understanding of the molecular mediators facilitating NK cell-targeting of discrete subsets of CD4 T cells. We employed single-cell forensic victimology and CRISPR-Cas9 editing to delineate a transcriptional program uniquely responsible for the susceptibility of a subpopulation of CD4 T cells to perforin-dependent immunoregulation by NK cells. The unique vulnerability of these CD4 T cells relative to other subsets of CD4 T cells was not associated with a pattern of NK-cell-receptor ligand expression that would favor activation of NK cells. Instead, susceptible CD4 T cells were skewed toward follicular helper T cell (Tfh) differentiation and exhibited intermediate expression of Klf2 and a related suite of KLF2-target genes (e.g. S1pr1) involved in cell migration and spatial positioning. NK-cell dependent suppression of the subset of Tfh exhibiting intermediate expression of KLF2 and S1PR1 was confirmed with single-cell proteomics. CRISPR targeting of KLF2 in CD4 T cells prevented suppression by NK cells. Thus, KLF2 regulation of spatial positioning of T cells is a key determinant of NK-cell immunoregulatory function and a possible target for strategies to enhance vaccine efficacy.
Collapse
Affiliation(s)
| | - Andrew Cox
- Cincinnati Children's Hospital Medical Center
| | | | | | | | | | | | | | | |
Collapse
|
3
|
Gurrola TE, Effah SN, Sariyer IK, Dampier W, Nonnemacher MR, Wigdahl B. Delivering CRISPR to the HIV-1 reservoirs. Front Microbiol 2024; 15:1393974. [PMID: 38812680 PMCID: PMC11133543 DOI: 10.3389/fmicb.2024.1393974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 04/22/2024] [Indexed: 05/31/2024] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) infection is well known as one of the most complex and difficult viral infections to cure. The difficulty in developing curative strategies arises in large part from the development of latent viral reservoirs (LVRs) within anatomical and cellular compartments of a host. The clustered regularly interspaced short palindromic repeats/ CRISPR-associated protein 9 (CRISPR/Cas9) system shows remarkable potential for the inactivation and/or elimination of integrated proviral DNA within host cells, however, delivery of the CRISPR/Cas9 system to infected cells is still a challenge. In this review, the main factors impacting delivery, the challenges for delivery to each of the LVRs, and the current successes for delivery to each reservoir will be discussed.
Collapse
Affiliation(s)
- Theodore E. Gurrola
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States
- Center for Molecular Virology and Gene Therapy, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Samuel N. Effah
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States
- Center for Molecular Virology and Gene Therapy, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Ilker K. Sariyer
- Department of Microbiology, Immunology, and Inflammation and Center for Neurovirology and Gene Editing, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Will Dampier
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States
- Center for Molecular Virology and Gene Therapy, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Michael R. Nonnemacher
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States
- Center for Molecular Virology and Gene Therapy, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, United States
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, United States
| | - Brian Wigdahl
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States
- Center for Molecular Virology and Gene Therapy, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, United States
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, United States
| |
Collapse
|
4
|
Pei Y, Cui X, Wang Y. Regulation of IL-10 expression and function by JAK-STAT in CD8 + T cells. Int Immunopharmacol 2024; 128:111563. [PMID: 38246002 DOI: 10.1016/j.intimp.2024.111563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/16/2024] [Accepted: 01/16/2024] [Indexed: 01/23/2024]
Abstract
IL-10 is a pleiotropic cytokine that plays a significant role in antiviral and antitumor immunity. Potent CD8+ T cells express IL-10 after stimulation by strong TCR signaling, which promotes the killing effect of CD8+ T cells. However, the regulation of IL-10 expression in CD8+ T cells and its signaling pathway to enhance CD8+ T cell function are largely unknown. In this study, we investigated the JAK-STAT signaling molecules that regulate IL-10 expression in CD8+ T cells and the JAK-STAT signaling pathway that IL-10 enhances the function of CD8+ T cells through its receptor, using small molecule inhibitors and CRISPR-Cas9 gene editing. Our findings provide new insights and a theoretical basis for the immunotherapy of tumors.
Collapse
Affiliation(s)
- Yu Pei
- Life Science Institute, Jinzhou Medical University, Jinzhou, China; Department of Clinical Laboratory, Lequn Branch, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Xiuping Cui
- Life Science Institute, Jinzhou Medical University, Jinzhou, China
| | - Yu Wang
- Life Science Institute, Jinzhou Medical University, Jinzhou, China.
| |
Collapse
|
5
|
Johansen KH, Golec DP, Huang B, Park C, Thomsen JH, Preite S, Cannons JL, Garçon F, Schrom EC, Courrèges CJF, Veres TZ, Harrison J, Nus M, Phelan JD, Bergmeier W, Kehrl JH, Okkenhaug K, Schwartzberg PL. A CRISPR screen targeting PI3K effectors identifies RASA3 as a negative regulator of LFA-1-mediated adhesion in T cells. Sci Signal 2022; 15:eabl9169. [PMID: 35857633 PMCID: PMC9637254 DOI: 10.1126/scisignal.abl9169] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The integrin lymphocyte function-associated antigen 1 (LFA-1) helps to coordinate the migration, adhesion, and activation of T cells through interactions with intercellular adhesion molecule 1 (ICAM-1) and ICAM-2. LFA-1 is activated during the engagement of chemokine receptors and the T cell receptor (TCR) through inside-out signaling, a process that is partially mediated by phosphoinositide 3-kinase (PI3K) and its product phosphatidylinositol 3,4,5-trisphosphate (PIP3). To evaluate potential roles of PI3K in LFA-1 activation, we designed a library of CRISPR/single guide RNAs targeting known and potential PIP3-binding proteins and screened for effects on the ability of primary mouse T cells to bind to ICAM-1. We identified multiple proteins that regulated the binding of LFA-1 to ICAM-1, including the Rap1 and Ras GTPase-activating protein RASA3. We found that RASA3 suppressed LFA-1 activation in T cells, that its expression was rapidly reduced upon T cell activation, and that its activity was inhibited by PI3K. Loss of RASA3 in T cells led to increased Rap1 activation, defective lymph node entry and egress, and impaired responses to T-dependent immunization in mice. Our results reveal a critical role for RASA3 in T cell migration, homeostasis, and function.
Collapse
Affiliation(s)
- Kristoffer H Johansen
- Cell Signaling and Immunity Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.,Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK.,National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA.,Section of Experimental and Translational Immunology, Department of Health Technology, Technical University of Denmark, Kongens Lyngby DK-2800, Denmark
| | - Dominic P Golec
- Cell Signaling and Immunity Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Bonnie Huang
- Cell Signaling and Immunity Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.,National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Chung Park
- B-Cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Julie H Thomsen
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| | - Silvia Preite
- Cell Signaling and Immunity Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.,National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jennifer L Cannons
- Cell Signaling and Immunity Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.,National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Fabien Garçon
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| | - Edward C Schrom
- Lymphocyte Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | - Tibor Z Veres
- Lymphocyte Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - James Harrison
- Cardiovascular Division, Department of Medicine, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Meritxell Nus
- Cardiovascular Division, Department of Medicine, University of Cambridge, Cambridge CB2 0QQ, UK
| | - James D Phelan
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Wolfgang Bergmeier
- Biochemistry and Biophysics, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | - John H Kehrl
- B-Cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Klaus Okkenhaug
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| | - Pamela L Schwartzberg
- Cell Signaling and Immunity Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.,National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
6
|
Wang MS, Hu Y, Sanchez EE, Xie X, Roy NH, de Jesus M, Winer BY, Zale EA, Jin W, Sachar C, Lee JH, Hong Y, Kim M, Kam LC, Salaita K, Huse M. Mechanically active integrins target lytic secretion at the immune synapse to facilitate cellular cytotoxicity. Nat Commun 2022; 13:3222. [PMID: 35680882 PMCID: PMC9184626 DOI: 10.1038/s41467-022-30809-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 05/19/2022] [Indexed: 01/25/2023] Open
Abstract
Cytotoxic lymphocytes fight pathogens and cancer by forming immune synapses with infected or transformed target cells and then secreting cytotoxic perforin and granzyme into the synaptic space, with potent and specific killing achieved by this focused delivery. The mechanisms that establish the precise location of secretory events, however, remain poorly understood. Here we use single cell biophysical measurements, micropatterning, and functional assays to demonstrate that localized mechanotransduction helps define the position of secretory events within the synapse. Ligand-bound integrins, predominantly the αLβ2 isoform LFA-1, function as spatial cues to attract lytic granules containing perforin and granzyme and induce their fusion with the plasma membrane for content release. LFA-1 is subjected to pulling forces within secretory domains, and disruption of these forces via depletion of the adaptor molecule talin abrogates cytotoxicity. We thus conclude that lymphocytes employ an integrin-dependent mechanical checkpoint to enhance their cytotoxic power and fidelity.
Collapse
Affiliation(s)
- Mitchell S Wang
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Pharmacology Program, Weill-Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - Yuesong Hu
- Department of Chemistry, Emory University, Atlanta, GA, USA
| | - Elisa E Sanchez
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Biochemistry and Molecular Biology Program, Weill-Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - Xihe Xie
- Neuroscience Program, Weill-Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - Nathan H Roy
- Department of Microbiology and Immunology, State University of New York Upstate Medical University, Syracuse, NY, USA
| | - Miguel de Jesus
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Benjamin Y Winer
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Elizabeth A Zale
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Weiyang Jin
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Chirag Sachar
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Joanne H Lee
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Yeonsun Hong
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, USA
| | - Minsoo Kim
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, USA
| | - Lance C Kam
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Khalid Salaita
- Department of Chemistry, Emory University, Atlanta, GA, USA
| | - Morgan Huse
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
7
|
Erdogmus S, Concepcion AR, Yamashita M, Sidhu I, Tao AY, Li W, Rocha PP, Huang B, Garippa R, Lee B, Lee A, Hell JW, Lewis RS, Prakriya M, Feske S. Cavβ1 regulates T cell expansion and apoptosis independently of voltage-gated Ca 2+ channel function. Nat Commun 2022; 13:2033. [PMID: 35440113 PMCID: PMC9018955 DOI: 10.1038/s41467-022-29725-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 03/22/2022] [Indexed: 12/11/2022] Open
Abstract
TCR stimulation triggers Ca2+ signals that are critical for T cell function and immunity. Several pore-forming α and auxiliary β subunits of voltage-gated Ca2+ channels (VGCC) were reported in T cells, but their mechanism of activation remains elusive and their contribution to Ca2+ signaling in T cells is controversial. We here identify CaVβ1, encoded by Cacnb1, as a regulator of T cell function. Cacnb1 deletion enhances apoptosis and impairs the clonal expansion of T cells after lymphocytic choriomeningitis virus (LCMV) infection. By contrast, Cacnb1 is dispensable for T cell proliferation, cytokine production and Ca2+ signaling. Using patch clamp electrophysiology and Ca2+ recordings, we are unable to detect voltage-gated Ca2+ currents or Ca2+ influx in human and mouse T cells upon depolarization with or without prior TCR stimulation. mRNAs of several VGCC α1 subunits are detectable in human (CaV3.3, CaV3.2) and mouse (CaV2.1) T cells, but they lack transcription of many 5' exons, likely resulting in N-terminally truncated and non-functional proteins. Our findings demonstrate that although CaVβ1 regulates T cell function, these effects are independent of VGCC channel activity.
Collapse
Affiliation(s)
- Serap Erdogmus
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA
| | - Axel R Concepcion
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA
| | - Megumi Yamashita
- Department of Pharmacology, Northwestern University, Chicago, IL, USA
| | - Ikjot Sidhu
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA
| | - Anthony Y Tao
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA
| | - Wenyi Li
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA
| | - Pedro P Rocha
- Unit on Genome Structure and Regulation, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
- National Cancer Institute, NIH, Bethesda, MD, USA
| | - Bonnie Huang
- National Institute of Allergy and Infectious Disease, Bethesda, MD, USA
- National Human Genome Research Institute, Bethesda, MD, USA
| | - Ralph Garippa
- Department of Cancer Biology & Genetics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Boram Lee
- Department of Pharmacology, University of California, Davis, CA, USA
| | - Amy Lee
- Department of Neuroscience, University of Texas-Austin, Austin, TX, USA
| | - Johannes W Hell
- Department of Pharmacology, University of California, Davis, CA, USA
| | - Richard S Lewis
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA
| | - Murali Prakriya
- Department of Pharmacology, Northwestern University, Chicago, IL, USA.
| | - Stefan Feske
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
8
|
STAT3 Role in T-Cell Memory Formation. Int J Mol Sci 2022; 23:ijms23052878. [PMID: 35270020 PMCID: PMC8910982 DOI: 10.3390/ijms23052878] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 02/28/2022] [Accepted: 03/03/2022] [Indexed: 12/12/2022] Open
Abstract
Along with the clinical success of immuno-oncology drugs and cellular therapies, T-cell biology has attracted considerable attention in the immunology community. Long-term immunity, traditionally analyzed in the context of infection, is increasingly studied in cancer. Many signaling pathways, transcription factors, and metabolic regulators have been shown to participate in the formation of memory T cells. There is increasing evidence that the signal transducer and activator of transcription-3 (STAT3) signaling pathway is crucial for the formation of long-term T-cell immunity capable of efficient recall responses. In this review, we summarize what is currently known about STAT3 role in the context of memory T-cell formation and antitumor immunity.
Collapse
|
9
|
In vivo CRISPR screens reveal a HIF-1α-mTOR-network regulates T follicular helper versus Th1 cells. Nat Commun 2022; 13:805. [PMID: 35145086 PMCID: PMC8831505 DOI: 10.1038/s41467-022-28378-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 01/20/2022] [Indexed: 12/26/2022] Open
Abstract
T follicular helper (Tfh) cells provide signals to initiate and maintain the germinal center (GC) reaction and are crucial for the generation of robust, long-lived antibody responses, but how the GC microenvironment affects Tfh cells is not well understood. Here we develop an in vivo T cell-intrinsic CRISPR-knockout screen to evaluate Tfh and Th1 cells in an acute viral infection model to identify regulators of Tfh cells in their physiological setting. Using a screen of druggable-targets, alongside genetic, transcriptomic and cellular analyses, we identify a function of HIF-1α in suppressing mTORC1-mediated and Myc-related pathways, and provide evidence that VHL-mediated degradation of HIF-1α is required for Tfh development; an expanded in vivo CRISPR screen reveals multiple components of these pathways that regulate Tfh versus Th1 cells, including signaling molecules, cell-cycle regulators, nutrient transporters, metabolic enzymes and autophagy mediators. Collectively, our data serve as a resource for studying Tfh versus Th1 decisions, and implicate the VHL-HIF-1α axis in fine-tuning Tfh generation. T follicular helper (Tfh) and T help type 1 (Th1) cells both arise from naïve CD4 T cells, but detailed knowledge of their differentiation remains incomplete. Here the authors pursue an in vivo CRISPR screen to identify genes, focusing on druggable targets, regulating Tfh versus Th1 to provide a resource for related studies, while also implicating HIF-1α and VHL in this regulation.
Collapse
|
10
|
The volume-regulated anion channel LRRC8C suppresses T cell function by regulating cyclic dinucleotide transport and STING-p53 signaling. Nat Immunol 2022; 23:287-302. [PMID: 35105987 DOI: 10.1038/s41590-021-01105-x] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 12/01/2021] [Indexed: 12/20/2022]
Abstract
The volume-regulated anion channel (VRAC) is formed by LRRC8 proteins and is responsible for the regulatory volume decrease (RVD) after hypotonic cell swelling. Besides chloride, VRAC transports other molecules, for example, immunomodulatory cyclic dinucleotides (CDNs) including 2'3'cGAMP. Here, we identify LRRC8C as a critical component of VRAC in T cells, where its deletion abolishes VRAC currents and RVD. T cells of Lrrc8c-/- mice have increased cell cycle progression, proliferation, survival, Ca2+ influx and cytokine production-a phenotype associated with downmodulation of p53 signaling. Mechanistically, LRRC8C mediates the transport of 2'3'cGAMP in T cells, resulting in STING and p53 activation. Inhibition of STING recapitulates the phenotype of LRRC8C-deficient T cells, whereas overexpression of p53 inhibits their enhanced T cell function. Lrrc8c-/- mice have exacerbated T cell-dependent immune responses, including immunity to influenza A virus infection and experimental autoimmune encephalomyelitis. Our results identify cGAMP uptake through LRRC8C and STING-p53 signaling as a new inhibitory signaling pathway in T cells and adaptive immunity.
Collapse
|
11
|
Johansen KH. How CRISPR/Cas9 Gene Editing Is Revolutionizing T Cell Research. DNA Cell Biol 2022; 41:53-57. [PMID: 34939826 PMCID: PMC8787706 DOI: 10.1089/dna.2021.0579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 09/05/2021] [Accepted: 09/19/2021] [Indexed: 11/12/2022] Open
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 allows for precise gene targeting in mammalian cells, including T cells, allowing scientists to disrupt or edit specific genes of interest. This has enabled immunologists to investigate T cell functions as well as opened the path for novel therapeutics involving gene editing of T cells ex vivo before transferring these back to patients to increase T cell efficacy. This review outlines how CRISPR/Cas9 has transformed T cell research allowing immunologists to rapidly probe the roles of genes in T cells thus paving the way for novel therapeutics. Furthermore, this review describes how these tools reduce the requirement for genetic mouse models, while increasing the translational potential of T cell research.
Collapse
Affiliation(s)
- Kristoffer Haurum Johansen
- Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
12
|
Alberti D, Guarniero M, Maciola AK, Dotta E, Pasqual G. Engineering Ligand and Receptor Pairs with LIPSTIC to Track Cell-Cell Interactions. Curr Protoc 2021; 1:e311. [PMID: 34870906 PMCID: PMC7613713 DOI: 10.1002/cpz1.311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Interactions between different cell types are critical for a plethora of biological processes, such as the immune response. We recently developed a novel technology, called LIPSTIC (labeling of immune partnership by SorTagging intercellular contacts), that allows for identifying cells undergoing specific interactions thanks to an enzymatic labeling reaction. Our work demonstrated the use of this technology to monitor interactions between immune cells, both in vitro and in vivo, by the genetic engineering of CD40 and CD40L, an essential costimulatory axis between antigen-presenting cells and T cells. Here we describe protocols to design novel LIPSTIC-engineered ligand and receptor pairs, clone constructs into retroviral expression vector, perform their initial validation, and use them to measure interactions ex vivo. This information will be useful to investigators interested in exploiting the LIPSTIC technology to track their favorite immune interaction. © 2021 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Design of LIPSTIC-engineered ligand and receptor pairs Basic Protocol 2: Cloning of LIPSTIC-engineered ligand and receptor pairs Basic Protocol 3: Validation of LIPSTIC-engineered ligand and receptor pairs in 293T cells Basic Protocol 4: Measuring interaction with LIPSTIC in immune cells ex vivo.
Collapse
Affiliation(s)
- Dafne Alberti
- Laboratory of Synthetic Immunology, Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy
| | - Michelle Guarniero
- Laboratory of Synthetic Immunology, Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy
| | - Agnieszka K. Maciola
- Laboratory of Synthetic Immunology, Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy
| | - Enrico Dotta
- Laboratory of Synthetic Immunology, Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy
| | - Giulia Pasqual
- Laboratory of Synthetic Immunology, Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy
- Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| |
Collapse
|
13
|
Majumder S, Jugovic I, Saul D, Bell L, Hundhausen N, Seal R, Beilhack A, Rosenwald A, Mougiakakos D, Berberich-Siebelt F. Rapid and Efficient Gene Editing for Direct Transplantation of Naive Murine Cas9 + T Cells. Front Immunol 2021; 12:683631. [PMID: 34367143 PMCID: PMC8335400 DOI: 10.3389/fimmu.2021.683631] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 07/06/2021] [Indexed: 01/10/2023] Open
Abstract
Gene editing of primary T cells is a difficult task. However, it is important for research and especially for clinical T-cell transfers. CRISPR/Cas9 is the most powerful gene-editing technique. It has to be applied to cells by either retroviral transduction or electroporation of ribonucleoprotein complexes. Only the latter is possible with resting T cells. Here, we make use of Cas9 transgenic mice and demonstrate nucleofection of pre-stimulated and, importantly, of naive CD3+ T cells with guideRNA only. This proved to be rapid and efficient with no need of further selection. In the mixture of Cas9+CD3+ T cells, CD4+ and CD8+ conventional as well as regulatory T cells were targeted concurrently. IL-7 supported survival and naivety in vitro, but T cells were also transplantable immediately after nucleofection and elicited their function like unprocessed T cells. Accordingly, metabolic reprogramming reached normal levels within days. In a major mismatch model of GvHD, not only ablation of NFATc1 and/or NFATc2, but also of the NFAT-target gene IRF4 in naïve primary murine Cas9+CD3+ T cells by gRNA-only nucleofection ameliorated GvHD. However, pre-activated murine T cells could not achieve long-term protection from GvHD upon single NFATc1 or NFATc2 knockout. This emphasizes the necessity of gene-editing and transferring unstimulated human T cells during allogenic hematopoietic stem cell transplantation.
Collapse
Affiliation(s)
- Snigdha Majumder
- Institute of Pathology, University of Wuerzburg, Wuerzburg, Germany
| | - Isabelle Jugovic
- Institute of Pathology, University of Wuerzburg, Wuerzburg, Germany
| | - Domenica Saul
- Department of Internal Medicine 5, Hematology and Oncology, Friedrich-Alexander University (FAU) of Erlangen-Nuremberg, Erlangen, Wuerzburg, Germany
| | - Luisa Bell
- Institute of Pathology, University of Wuerzburg, Wuerzburg, Germany
| | | | - Rishav Seal
- Institute of Pathology, University of Wuerzburg, Wuerzburg, Germany
| | - Andreas Beilhack
- Department of Medicine II, Center for Interdisciplinary Clinical Research (IZKF), University Hospital Wuerzburg, Wuerzburg, Germany
| | - Andreas Rosenwald
- Institute of Pathology, University of Wuerzburg, Wuerzburg, Germany.,Comprehensive Cancer Centre Mainfranken, University of Wuerzburg, Wuerzburg, Germany
| | - Dimitrios Mougiakakos
- Department of Internal Medicine 5, Hematology and Oncology, Friedrich-Alexander University (FAU) of Erlangen-Nuremberg, Erlangen, Wuerzburg, Germany.,Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander University (FAU) of Erlangen-Nuremberg, Erlangen, Germany
| | | |
Collapse
|
14
|
Roy NH, Kim SHJ, Buffone A, Blumenthal D, Huang B, Agarwal S, Schwartzberg PL, Hammer DA, Burkhardt JK. LFA-1 signals to promote actin polymerization and upstream migration in T cells. J Cell Sci 2020; 133:jcs248328. [PMID: 32907931 PMCID: PMC7502589 DOI: 10.1242/jcs.248328] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 07/28/2020] [Indexed: 12/29/2022] Open
Abstract
T cell entry into inflamed tissue requires firm adhesion, cell spreading, and migration along and through the endothelial wall. These events require the T cell integrins LFA-1 and VLA-4 and their endothelial ligands ICAM-1 and VCAM-1, respectively. T cells migrate against the direction of shear flow on ICAM-1 and with the direction of shear flow on VCAM-1, suggesting that these two ligands trigger distinct cellular responses. However, the contribution of specific signaling events downstream of LFA-1 and VLA-4 has not been explored. Using primary mouse T cells, we found that engagement of LFA-1, but not VLA-4, induces cell shape changes associated with rapid 2D migration. Moreover, LFA-1 ligation results in activation of the phosphoinositide 3-kinase (PI3K) and ERK pathways, and phosphorylation of multiple kinases and adaptor proteins, whereas VLA-4 ligation triggers only a subset of these signaling events. Importantly, T cells lacking Crk adaptor proteins, key LFA-1 signaling intermediates, or the ubiquitin ligase cCbl (also known as CBL), failed to migrate against the direction of shear flow on ICAM-1. These studies identify novel signaling differences downstream of LFA-1 and VLA-4 that drive T cell migratory behavior.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Nathan H Roy
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia Research Institute, Philadelphia, PA 19104, USA
| | - Sarah Hyun Ji Kim
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Alexander Buffone
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Daniel Blumenthal
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia Research Institute, Philadelphia, PA 19104, USA
| | - Bonnie Huang
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sangya Agarwal
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Pamela L Schwartzberg
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Daniel A Hammer
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Janis K Burkhardt
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia Research Institute, Philadelphia, PA 19104, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|