1
|
Takegawa S, Hamaguchi K, Hosono E, Sato S, Watanabe G, Uchida J, Kato T. Lithium-ion batteries with fluorinated mesogen-based liquid-crystalline electrolytes: molecular design towards enhancing oxidation stability. NANOSCALE 2024. [PMID: 39466412 DOI: 10.1039/d4nr03559c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Two-dimensional (2D) nanostructured liquid crystals containing fluorinated cyclohexylphenyl and cyclic carbonate moieties have been developed as quasi-solid-state self-organized electrolytes for safe lithium-ion batteries. We have designed lithium ion-conductive liquid-crystalline (LC) materials with fluorine substituents on mesogens for improved oxidation stability. Computational studies suggest that the fluorination of mesogens lowers the highest occupied molecular orbital (HOMO) level of LC molecules and improves their oxidation resistance as electrolytes. The LC molecule complexed with lithium bis(trifluoromethanesulfonyl)imide exhibits smectic A LC phases with 2D ion transport pathways over wide temperature ranges. Cyclic voltammetry measurements of the fluorinated mesogen-based LC electrolytes indicate that they are electrochemically stable above 4.0 V vs. Li/Li+. Lithium half-cells composed of fluorinated LC electrolytes show higher discharge capacity and coulombic efficiency than those containing non-fluorinated analogous LC molecules. Combining molecular dynamics simulations with the experimental results, it is revealed that the fluorination of the mesogen effectively enhances the electrochemical stability of the LC electrolytes without significantly disrupting ionic conductivities and the LC order.
Collapse
Affiliation(s)
- Shingo Takegawa
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - Kazuma Hamaguchi
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - Eiji Hosono
- Global Zero Emission Research Center, National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan
| | - Shunsuke Sato
- Department of Physics, School of Science, Kitasato University, 1-15-1 Kitazato, Minami-ku, Sagamihara, Kanagawa 252-0373, Japan
| | - Go Watanabe
- Department of Physics, School of Science, Kitasato University, 1-15-1 Kitazato, Minami-ku, Sagamihara, Kanagawa 252-0373, Japan
- Department of Data Science, School of Frontier Engineering, Kitasato University, 1-15-1 Kitazato, Minami-ku, Sagamihara, Kanagawa 252-0373, Japan
- Kanagawa Institute of Industrial Science and Technology (KISTEC), 705-1 Shimoimaizumi, Ebina, Kanagawa 242-0435, Japan
| | - Junya Uchida
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - Takashi Kato
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
- Institute for Aqua Regeneration, Shinshu University, 4-17-1 Wakasato, Nagano 380-8553, Japan
| |
Collapse
|
2
|
Chen S, Taing H, Ahmida M, He HY, Carr A, Muchall HM, Eichhorn SH. Core charge of imidazolium annulated triphenylene derivatives induces discotic columnar mesomorphism. SOFT MATTER 2024; 20:7854-7864. [PMID: 39315415 DOI: 10.1039/d4sm00753k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Thermotropic ionic liquid crystals have remained a relatively little studied group of materials despite their many potential applications as anisotropic ionic liquids and charge (ion and electron/hole) transporting materials. Particularly rare are core charged discotic liquid crystals because their synthesis is usually more involved, and their molecular design is less established. Presented here is a straightforward and versatile synthetic approach to imidazolium annulated triphenylene derivatives. Their neutral imidazole precursors are not liquid crystalline while the imidazolium salts display hexagonal discotic columnar mesophases over a wide range of temperatures and as low as 47 °C. Computational studies at the DFT and PM6 levels of theory confirmed much higher stacking energies for the imidazolium salts compared to the neutral imidazole precursors. They also predicted the anions of columnar stacks of imidazolium salts to be positioned in the bay-positions next to the imidazolium unit and in-plane with the polyaromatic system. The anions were stabilized in the bay position by multiple interactions with partially positively charged H atoms and do not interfere with π-π stacking.
Collapse
Affiliation(s)
- Shuai Chen
- Department of Chemistry and Biochemistry, 401 Sunset Ave, Ontario N9B 3P4, Canada.
| | - Hi Taing
- Department of Chemistry and Biochemistry, 401 Sunset Ave, Ontario N9B 3P4, Canada.
| | - Mohamed Ahmida
- Department of Chemistry and Biochemistry, 401 Sunset Ave, Ontario N9B 3P4, Canada.
| | - Hong Yi He
- Department of Chemistry and Biochemistry, 401 Sunset Ave, Ontario N9B 3P4, Canada.
| | - Aiden Carr
- Department of Chemistry and Biochemistry, 401 Sunset Ave, Ontario N9B 3P4, Canada.
| | - Heidi M Muchall
- Department of Chemistry and Biochemistry, and Centre for Research in Molecular Modeling (CERMM) Concordia University, 7141 Sherbrooke St. West, Montreal Quebec H4B 1R6, Canada.
| | - S Holger Eichhorn
- Department of Chemistry and Biochemistry, 401 Sunset Ave, Ontario N9B 3P4, Canada.
| |
Collapse
|
3
|
Marín I, Castillo-Vallés M, Merino RI, Folcia CL, Barberá J, Ros MB, Serrano JL. Ionic Bent-Core Pillar[ n]arenes: From Liquid Crystals to Nanoaggregates and Functional Applications. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2024; 36:9793-9805. [PMID: 39398374 PMCID: PMC11468781 DOI: 10.1021/acs.chemmater.4c01952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/20/2024] [Accepted: 09/23/2024] [Indexed: 10/15/2024]
Abstract
Herein, we report the first examples of supramolecular systems from bent-core-based pillar[n]arenes through ionic bonds. These ionic materials have been prepared by the interaction of an amino-ended pillar[5]arene (P5N10) and three different carboxylic acids, including bent-core moieties. The bent-core units are based on ester, biphenyl, and azobenzene structures bearing two different flexible spacers between the carboxyl group and the central bent-core aromatic units. The ionic pairs segregate the molecular blocks, leading to columnar liquid crystal organizations. These ionic supramolecular compounds exhibit interesting results as proton-conductive materials. Furthermore, the introduction of azobenzene units in the bent-core structure has provided a photoresponse to the proton conduction materials. Interestingly, the amphiphilic character generated by the ionic pairs and the hydrophobic bent-core structures allows their molecular self-assembly in water solution, resulting in aggregates of appealing morphologies. The structural modifications of the bent-core units (i.e., connecting bonds at the lateral structure and spacer lengths) provide an attractive analysis on the relationship between the chemical structure and the morphology of the aggregates (fibers, chiral ribbons, nanotubes...). Additionally, the self-assembly process and evolution of the aggregates from fibers to nanotubes have been studied with several techniques.
Collapse
Affiliation(s)
- Iván Marín
- Instituto
de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain
- Departamento
de Química Orgánica, Facultad de Ciencias, Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Martín Castillo-Vallés
- Instituto
de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain
- Departamento
de Química Orgánica, Facultad de Ciencias, Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Rosa I. Merino
- Instituto
de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain
- Departamento
de Física de la Materia Condensada, Facultad de Ciencias, CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - César L. Folcia
- Departamento
de Física, Facultad de Ciencia y Tecnología, Universidad del País Vasco, E-48080 Bilbao, Spain
| | - Joaquín Barberá
- Instituto
de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain
- Departamento
de Química Orgánica, Facultad de Ciencias, Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - M. Blanca Ros
- Instituto
de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain
- Departamento
de Química Orgánica, Facultad de Ciencias, Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - José L. Serrano
- Instituto
de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain
- Departamento
de Química Orgánica, Facultad de Ciencias, Universidad de Zaragoza, 50009 Zaragoza, Spain
| |
Collapse
|
4
|
Ichikawa T, Obara S, Yamaguchi S, Tang Y, Kato T, Zeng X. Design of V-shaped ionic liquid crystals: atropisomerisation ability and formation of double-gyroid molecular assemblies. Chem Commun (Camb) 2024; 60:11279-11282. [PMID: 39196639 DOI: 10.1039/d4cc03002h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
We designed V-shaped ionic liquid crystals with two sterically congested ionic parts at the vertex. Depending on the degree of steric hindrance, atropisomerisation occurred in solution. All compounds formed bicontinuous cubic phases with double-gyroid structures in the bulk state, partially owing to the co-existence of atropisomers with opposite chirality.
Collapse
Affiliation(s)
- Takahiro Ichikawa
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Tokyo 184-8588, Japan.
| | - Soki Obara
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Tokyo 184-8588, Japan.
| | - Saori Yamaguchi
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Tokyo 184-8588, Japan.
| | - Yumin Tang
- Department of Materials Science and Engineering, University of Sheffield, Sheffield S1 3JD, UK
| | - Toshiyo Kato
- Smart-Core-Facility Promotion Organization, Tokyo University of Agriculture and Technology, Tokyo 184-8588, Japan
| | - Xiangbing Zeng
- Department of Materials Science and Engineering, University of Sheffield, Sheffield S1 3JD, UK
| |
Collapse
|
5
|
Bendaoud U, Bhowmik PK, Chen SL, Han H, Cox SL, Liebsch J, Ros MB, Selvi Velayutham T, Aripin NFK, Martinez-Felipe A. Modulating the Conductivity of Light-Responsive Ionic Liquid Crystals. Molecules 2024; 29:4459. [PMID: 39339454 PMCID: PMC11434579 DOI: 10.3390/molecules29184459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/14/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024] Open
Abstract
In this work, we describe the phase behaviour and the dielectric and conductivity response of new light-responsive ionic liquid crystals, ILCs, which can be applied as controllable electrolytes. The materials include two different dicationic viologens, the asymmetric 6BP18 and the symmetric EV2ON(Tf)2, containing bistriflimide as the counterions, mixed with 5% and 50% molar, respectively, of one new photoresponsive mesogen called CNAzO14. These mixtures exhibit liquid crystal behaviour, light responsiveness through the E-Z photoisomerisation of the azobenzene groups in CNAzO14, and strong dielectric responses. The 5%-CNAzO14/Ev2ON(Tf)2 mixture displays direct current conductivities in the 10-7 S·cm-1 range, which can be increased by a two-fold factor upon the irradiation of UV light at 365 nm. Our findings set the grounds for designing new smart ionic soft materials with nanostructures that can be tuned and used for energy conversion and storage applications.
Collapse
Affiliation(s)
- Umama Bendaoud
- Chemical Processes and Materials Research Group, Just Transition Lab, Centre for Energy Transition, School of Engineering, University of Aberdeen, King’s College, Aberdeen AB24 3UE, UK; (U.B.); (J.L.)
| | - Pradip K. Bhowmik
- Department of Chemistry and Biochemistry, University of Nevada Las Vegas, 4505 S. Maryland Parkway, Box 454003, Las Vegas, NV 89154, USA; (P.K.B.); (S.L.C.); (H.H.); (S.L.C.)
| | - Si L. Chen
- Department of Chemistry and Biochemistry, University of Nevada Las Vegas, 4505 S. Maryland Parkway, Box 454003, Las Vegas, NV 89154, USA; (P.K.B.); (S.L.C.); (H.H.); (S.L.C.)
| | - Haesook Han
- Department of Chemistry and Biochemistry, University of Nevada Las Vegas, 4505 S. Maryland Parkway, Box 454003, Las Vegas, NV 89154, USA; (P.K.B.); (S.L.C.); (H.H.); (S.L.C.)
| | - Seonghyeok L. Cox
- Department of Chemistry and Biochemistry, University of Nevada Las Vegas, 4505 S. Maryland Parkway, Box 454003, Las Vegas, NV 89154, USA; (P.K.B.); (S.L.C.); (H.H.); (S.L.C.)
| | - Jasmin Liebsch
- Chemical Processes and Materials Research Group, Just Transition Lab, Centre for Energy Transition, School of Engineering, University of Aberdeen, King’s College, Aberdeen AB24 3UE, UK; (U.B.); (J.L.)
- Department of Chemistry, University of Aberdeen, King’s College, Aberdeen AB24 3UE, UK
| | - M. Blanca Ros
- Instituto de Nanociencia y Materiales de Aragón, Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Zaragoza-CSIC, Campus San Francisco, E-50009 Zaragoza, Spain;
| | - Thamil Selvi Velayutham
- Low Dimensional Materials Research Center, Department of Physics, Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia;
| | - Nurul Fadhilah Kamalul Aripin
- School of Chemical Engineering, College of Engineering, Universiti Teknologi MARA, Shah Alam 40450, Malaysia;
- Department of Chemistry, School of Natural and Computing Sciences, University of Aberdeen, King’s College, Aberdeen AB24 3UE, UK
| | - Alfonso Martinez-Felipe
- Chemical Processes and Materials Research Group, Just Transition Lab, Centre for Energy Transition, School of Engineering, University of Aberdeen, King’s College, Aberdeen AB24 3UE, UK; (U.B.); (J.L.)
| |
Collapse
|
6
|
Santos AFM, Figueirinhas JL, Dionísio M, Godinho MH, Branco LC. Ionic Liquid Crystals as Chromogenic Materials. MATERIALS (BASEL, SWITZERLAND) 2024; 17:4563. [PMID: 39336305 PMCID: PMC11432927 DOI: 10.3390/ma17184563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 09/30/2024]
Abstract
Ionic liquid crystals (ILCs), a class of soft matter materials whose properties can be tuned by the wise pairing of the cation and anion, have recently emerged as promising candidates for different applications, combining the characteristics of ionic liquids and liquid crystals. Among those potential uses, this review aims to cover chromogenic ILCs. In this context, examples of photo-, electro- and thermochromism based on ILCs are provided. Furthermore, thermotropic and lyotropic ionic liquid crystals are also summarised, including the most common chemical and phase structures, as well as the advantages of confining these materials. This manuscript also comprises the following main experimental techniques used to characterise ILCs: Differential Scanning Calorimetry (DSC), Polarised Optical Microscopy (POM) and X-Ray Powder Diffraction (XRD). Chromogenic ILCs can be interesting smart materials for energy and health purposes.
Collapse
Affiliation(s)
- Andreia F M Santos
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal
| | - João L Figueirinhas
- CeFEMA and Department of Physics, Instituto Superior Técnico, University of Lisbon, 1049-001 Lisbon, Portugal
| | - Madalena Dionísio
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal
| | - Maria H Godinho
- i3N/CENIMAT, Department of Materials Science, NOVA School of Science and Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal
| | - Luis C Branco
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal
| |
Collapse
|
7
|
Kugizaki R, Haketa Y, Kamada K, Maeda H. Ion-Pairing Assemblies of Anion-Responsive π-Electronic Systems That Have Noncovalently Assisted Expanded Planar Region. Chemistry 2024; 30:e202401932. [PMID: 38837549 DOI: 10.1002/chem.202401932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/01/2024] [Accepted: 06/04/2024] [Indexed: 06/07/2024]
Abstract
Arylethynyl-substituted dipyrrolyldiketone BF2 complexes as anion-responsive π-electronic molecules exhibited characteristic electronic properties derived from conformation changes upon anion binding, which caused an increase in UV/vis absorption and associated two-photon absorption. The anion complexes showed expanded planar regions assisted by intramolecular interactions, resulting in charge-by-charge ion-pairing assemblies in the solid state.
Collapse
Affiliation(s)
- Rio Kugizaki
- Department of Applied Chemistry, College of Life Sciences, Ritsumeikan University, Kusatsu, 525-8577, Japan
| | - Yohei Haketa
- Department of Applied Chemistry, College of Life Sciences, Ritsumeikan University, Kusatsu, 525-8577, Japan
| | - Kenji Kamada
- Nanomaterials Research Institute (NMRI), National Institute of Advanced Industrial Science and Technology (AIST), Ikeda, 563-8577, Japan
| | - Hiromitsu Maeda
- Department of Applied Chemistry, College of Life Sciences, Ritsumeikan University, Kusatsu, 525-8577, Japan
| |
Collapse
|
8
|
Hotton C, Le Roux L, Goldmann C, Rouzière S, Launois P, Bizien T, Paineau E. Colloidal phase behavior of high aspect ratio clay nanotubes in symmetric and asymmetric electrolytes. J Colloid Interface Sci 2024; 664:857-867. [PMID: 38493651 DOI: 10.1016/j.jcis.2024.03.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 03/19/2024]
Abstract
HYPOTHESIS Imogolite nanotubes (INTs) are unique anisometric particles with monodisperse nanometric diameters. Aluminogermanate double-walled INTs (Ge-DWINTs) are obtained with variable aspect ratios by controlling the synthesis conditions. It thus appears as an interesting model system to investigate how aspect ratio and ionic valence influence the colloidal behavior of highly anisometric rods. EXPERIMENTS The nanotubes were synthesized by hydrothermal treatment for 5 or 20 days to modify the aspect ratio while the electrostatic interactions were investigated by comparing the colloidal stability in symmetric and asymmetric electrolytes. The phase behavior and their related microstructure were determined by optical observations and small-angle X-ray scattering measurements, coupled with interparticle distance modelling. FINDINGS We revealed that colloidal suspensions of Ge-DWINTs prepared in NaCl are guided by repulsive double layer forces, undergoing different liquid crystal phase transitions before stiffen into a glass-like state. We found that the microstructure can be rationalized by taking into account the anisometric nature of the particles. By contrast, dispersions prepared with asymmetric electrolytes are governed by strong attractive forces and thus form space-filling gels containing large nanotubes aggregates.
Collapse
Affiliation(s)
- Claire Hotton
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, Orsay 91405, France.
| | - Léna Le Roux
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, Orsay 91405, France
| | - Claire Goldmann
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, Orsay 91405, France
| | - Stéphan Rouzière
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, Orsay 91405, France
| | - Pascale Launois
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, Orsay 91405, France
| | - Thomas Bizien
- Synchrotron SOLEIL, L'Orme des Merisiers, 91192 Gif-sur-Yvette Cedex, France
| | - Erwan Paineau
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, Orsay 91405, France.
| |
Collapse
|
9
|
Li Z, Raab A, Kolmangadi MA, Busch M, Grunwald M, Demel F, Bertram F, Kityk AV, Schönhals A, Laschat S, Huber P. Self-Assembly of Ionic Superdiscs in Nanopores. ACS NANO 2024; 18:14414-14426. [PMID: 38760015 PMCID: PMC11155240 DOI: 10.1021/acsnano.4c01062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/23/2024] [Accepted: 05/01/2024] [Indexed: 05/19/2024]
Abstract
Discotic ionic liquid crystals (DILCs) consist of self-assembled superdiscs of cations and anions that spontaneously stack in linear columns with high one-dimensional ionic and electronic charge mobility, making them prominent model systems for functional soft matter. Compared to classical nonionic discotic liquid crystals, many liquid crystalline structures with a combination of electronic and ionic conductivity have been reported, which are of interest for separation membranes, artificial ion/proton conducting membranes, and optoelectronics. Unfortunately, a homogeneous alignment of the DILCs on the macroscale is often not achievable, which significantly limits the applicability of DILCs. Infiltration into nanoporous solid scaffolds can, in principle, overcome this drawback. However, due to the experimental challenges to scrutinize liquid crystalline order in extreme spatial confinement, little is known about the structures of DILCs in nanopores. Here, we present temperature-dependent high-resolution optical birefringence measurement and 3D reciprocal space mapping based on synchrotron X-ray scattering to investigate the thermotropic phase behavior of dopamine-based ionic liquid crystals confined in cylindrical channels of 180 nm diameter in macroscopic anodic aluminum oxide membranes. As a function of the membranes' hydrophilicity and thus the molecular anchoring to the pore walls (edge-on or face-on) and the variation of the hydrophilic-hydrophobic balance between the aromatic cores and the alkyl side chain motifs of the superdiscs by tailored chemical synthesis, we find a particularly rich phase behavior, which is not present in the bulk state. It is governed by a complex interplay of liquid crystalline elastic energies (bending and splay deformations), polar interactions, and pure geometric confinement and includes textural transitions between radial and axial alignment of the columns with respect to the long nanochannel axis. Furthermore, confinement-induced continuous order formation is observed in contrast to discontinuous first-order phase transitions, which can be quantitatively described by Landau-de Gennes free energy models for liquid crystalline order transitions in confinement. Our observations suggest that the infiltration of DILCs into nanoporous solids allows tailoring their nanoscale texture and ion channel formation and thus their electrical and optical functionalities over an even wider range than in the bulk state in a homogeneous manner on the centimeter scale as controlled by the monolithic nanoporous scaffolds.
Collapse
Affiliation(s)
- Zhuoqing Li
- Institute
for Materials and X-ray Physics, Hamburg
University of Technology, Denickestr. 15, 21073 Hamburg, Germany
- Centre
for X-ray and Nano Science CXNS, Deutsches
Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Aileen Raab
- Institut
für Organische Chemie, Universität
Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Mohamed Aejaz Kolmangadi
- Bundesanstalt
für Materialforschung und -prüfung (BAM), Unter den Eichen 87, 12205 Berlin, Germany
| | - Mark Busch
- Institute
for Materials and X-ray Physics, Hamburg
University of Technology, Denickestr. 15, 21073 Hamburg, Germany
- Centre
for X-ray and Nano Science CXNS, Deutsches
Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Marco Grunwald
- Institut
für Organische Chemie, Universität
Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Felix Demel
- Institut
für Organische Chemie, Universität
Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Florian Bertram
- Deutsches
Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Andriy V. Kityk
- Faculty of
Electrical Engineering, Czestochowa University
of Technology, Al. Armii
Krajowej 17, 42-200 Czestochowa, Poland
| | - Andreas Schönhals
- Bundesanstalt
für Materialforschung und -prüfung (BAM), Unter den Eichen 87, 12205 Berlin, Germany
- Institut
für Chemie, Technische Universität
Berlin, Straße des
17. Juni 135, 10623 Berlin, Germany
| | - Sabine Laschat
- Institut
für Organische Chemie, Universität
Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Patrick Huber
- Institute
for Materials and X-ray Physics, Hamburg
University of Technology, Denickestr. 15, 21073 Hamburg, Germany
- Centre
for X-ray and Nano Science CXNS, Deutsches
Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| |
Collapse
|
10
|
Dupont J, Leal BC, Lozano P, Monteiro AL, Migowski P, Scholten JD. Ionic Liquids in Metal, Photo-, Electro-, and (Bio) Catalysis. Chem Rev 2024; 124:5227-5420. [PMID: 38661578 DOI: 10.1021/acs.chemrev.3c00379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Ionic liquids (ILs) have unique physicochemical properties that make them advantageous for catalysis, such as low vapor pressure, non-flammability, high thermal and chemical stabilities, and the ability to enhance the activity and stability of (bio)catalysts. ILs can improve the efficiency, selectivity, and sustainability of bio(transformations) by acting as activators of enzymes, selectively dissolving substrates and products, and reducing toxicity. They can also be recycled and reused multiple times without losing their effectiveness. ILs based on imidazolium cation are preferred for structural organization aspects, with a semiorganized layer surrounding the catalyst. ILs act as a container, providing a confined space that allows modulation of electronic and geometric effects, miscibility of reactants and products, and residence time of species. ILs can stabilize ionic and radical species and control the catalytic activity of dynamic processes. Supported IL phase (SILP) derivatives and polymeric ILs (PILs) are good options for molecular engineering of greener catalytic processes. The major factors governing metal, photo-, electro-, and biocatalysts in ILs are discussed in detail based on the vast literature available over the past two and a half decades. Catalytic reactions, ranging from hydrogenation and cross-coupling to oxidations, promoted by homogeneous and heterogeneous catalysts in both single and multiphase conditions, are extensively reviewed and discussed considering the knowledge accumulated until now.
Collapse
Affiliation(s)
- Jairton Dupont
- Institute of Chemistry - Universidade Federal do Rio Grande do Sul - UFRGS, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970 RS, Brasil
- Departamento de Bioquímica y Biología Molecular B e Inmunología, Facultad de Química, Universidad de Murcia, P.O. Box 4021, E-30100 Murcia, Spain
| | - Bárbara C Leal
- Institute of Chemistry - Universidade Federal do Rio Grande do Sul - UFRGS, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970 RS, Brasil
| | - Pedro Lozano
- Departamento de Bioquímica y Biología Molecular B e Inmunología, Facultad de Química, Universidad de Murcia, P.O. Box 4021, E-30100 Murcia, Spain
| | - Adriano L Monteiro
- Institute of Chemistry - Universidade Federal do Rio Grande do Sul - UFRGS, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970 RS, Brasil
| | - Pedro Migowski
- Institute of Chemistry - Universidade Federal do Rio Grande do Sul - UFRGS, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970 RS, Brasil
| | - Jackson D Scholten
- Institute of Chemistry - Universidade Federal do Rio Grande do Sul - UFRGS, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970 RS, Brasil
| |
Collapse
|
11
|
Ebert M, Lange A, Müller M, Wuckert E, Gießelmann F, Klamroth T, Zens A, Taubert A, Laschat S. Counterion effects on the mesomorphic and electrochemical properties of guanidinium salts. Phys Chem Chem Phys 2024; 26:11988-12002. [PMID: 38573315 DOI: 10.1039/d4cp00356j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
Ionic liquid crystals (ILCs) combine the ion mobility of ionic liquids with the order and self-assembly of thermotropic mesophases. To understand the role of the anion in ILCs, wedge-shaped arylguanidinium salts with tetradecyloxy side chains were chosen as benchmark systems and their liquid crystalline self-assembly in the bulk phase as well as their electrochemical behavior in solution were studied depending on the anion. Differential scanning calorimetry (DSC), polarizing optical microscopy (POM) and X-ray diffraction (WAXS, SAXS) experiments revealed that for spherical anions, the phase width of the hexagonal columnar mesophase increased with the anion size, while for non-spherical anions, the trends were less clear cut. Depending on the anion, the ILCs showed different stability towards electrochemical oxidation and reduction with the most stable being the PF6 based compound. Cyclic voltammetry (CV) and density functional theory (DFT) calculations suggest a possible contribution of the guanidinium cation to the oxidation processes.
Collapse
Affiliation(s)
- Max Ebert
- Institut für Organische Chemie, Universität Stuttgart, Pfaffenwaldring 55, Stuttgart 70569, Germany.
| | - Alyna Lange
- Institut für Chemie, Universität Potsdam, Institut für Chemie, Karl-Liebknecht-Str. 24-25, Golm 14476, Germany.
| | - Michael Müller
- Institut für Organische Chemie, Universität Stuttgart, Pfaffenwaldring 55, Stuttgart 70569, Germany.
| | - Eugen Wuckert
- Institut für Organische Chemie, Universität Stuttgart, Pfaffenwaldring 55, Stuttgart 70569, Germany.
| | - Frank Gießelmann
- Institut für Physikalische Chemie, Universität Stuttgart, Pfaffenwaldring 55, Stuttgart 70569, Germany.
| | - Tillmann Klamroth
- Institut für Chemie, Universität Potsdam, Institut für Chemie, Karl-Liebknecht-Str. 24-25, Golm 14476, Germany.
| | - Anna Zens
- Institut für Organische Chemie, Universität Stuttgart, Pfaffenwaldring 55, Stuttgart 70569, Germany.
| | - Andreas Taubert
- Institut für Chemie, Universität Potsdam, Institut für Chemie, Karl-Liebknecht-Str. 24-25, Golm 14476, Germany.
| | - Sabine Laschat
- Institut für Organische Chemie, Universität Stuttgart, Pfaffenwaldring 55, Stuttgart 70569, Germany.
| |
Collapse
|
12
|
Del Giudice N, Voegeli G, Strub JM, Heinrich B, Douce L. Ionic Liquid Crystals Based on Loop-Shaped Copper(I) Complexes. Inorg Chem 2024; 63:6103-6110. [PMID: 38497643 DOI: 10.1021/acs.inorgchem.4c00728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
This paper describes the synthesis and characterization of liquid crystals based on loop-shaped cationic copper(I) complexes of a multidentate ligand. Their synthesis involves the one-pot reaction of an alkyloxy-decorated pyridine-aldehyde unit with a diamine (2,2'-(ethylenedioxy)bis(ethylamine)) spacer to form in situ a pyridine-imine quadridentate-N4-donor ligand, L, which is able to chelate a copper(I) center associated with various noncoordinating anions. All of these compounds were characterized by NMR, IR, and electronic absorption spectroscopy, and more particularly by X-ray diffraction and mass spectroscopy, enabling unambiguous assignment of the [ML]+ mononuclear nature of the cationic components. The presence of six flexible alkyloxy chains at each end of the ligand associated with the rigidity of the core complex causes induction of a liquid crystal state with a columnar self-organized architecture, where the columns are packed in a hexagonal two-dimensional network.
Collapse
Affiliation(s)
- Nicolas Del Giudice
- Département des Matériaux Organiques, Institut de Physique et de Chimie des Matériaux de Strasbourg (UMR 7504), Université de Strasbourg/CNRS, 23 Rue du Loess, F-67000 Strasbourg, France
| | - Guillaume Voegeli
- Département des Matériaux Organiques, Institut de Physique et de Chimie des Matériaux de Strasbourg (UMR 7504), Université de Strasbourg/CNRS, 23 Rue du Loess, F-67000 Strasbourg, France
| | - Jean-Marc Strub
- LSMBO, Institut Pluridisciplinaire Hubert Curien, CNRS UMR7178, Université de Strasbourg, 67000 Strasbourg, France
| | - Benoît Heinrich
- Département des Matériaux Organiques, Institut de Physique et de Chimie des Matériaux de Strasbourg (UMR 7504), Université de Strasbourg/CNRS, 23 Rue du Loess, F-67000 Strasbourg, France
| | - Laurent Douce
- Département des Matériaux Organiques, Institut de Physique et de Chimie des Matériaux de Strasbourg (UMR 7504), Université de Strasbourg/CNRS, 23 Rue du Loess, F-67000 Strasbourg, France
| |
Collapse
|
13
|
Su L, Lu F, Li Y, Wang Y, Li X, Zheng L, Gao X. Gyroid Liquid Crystals as Quasi-Solid-State Electrolytes Toward Ultrastable Zinc Batteries. ACS NANO 2024; 18:7633-7643. [PMID: 38411092 DOI: 10.1021/acsnano.4c00593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
The potential for optimizing ion transport through triply periodic minimal surface (TPMS) structures renders promising electrochemical applications. In this study, as a proof-of-concept, we extend the inherent efficiency and mathematical beauty of TPMS structures to fabricate liquid-crystalline electrolytes with high ionic conductivity and superior structural stability for aqueous rechargeable zinc-ion batteries. The specific topological configuration of the liquid-crystalline electrolytes, featuring a Gyroid geometry, enables the formation of a continuous ion conduction pathway enriched with confined water. This, in turn, promotes the smooth transport of charge carriers and contributes to high ionic conductivity. Meanwhile, the quasi-solid hydrophobic phase assembled by hydrophobic alkyl chains exhibits notable rigidity and toughness, enabling uniform and compact dendrite-free Zn deposition. These merits synergistically enhance the overall performance of the corresponding full batteries. This work highlights the distinctive role of TPMS structures in developing high-performance, liquid-crystalline electrolytes, which can provide a viable route for the rational design of next-generation quasi-solid-state electrolytes.
Collapse
Affiliation(s)
- Long Su
- Key Laboratory of Colloid and Interface Chemistry, Shandong University, Ministry of Education, Jinan 250100, P. R. China
| | - Fei Lu
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, School of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, P. R. China
| | - Yanrui Li
- Key Laboratory of Colloid and Interface Chemistry, Shandong University, Ministry of Education, Jinan 250100, P. R. China
| | - Yuanqi Wang
- Key Laboratory of Colloid and Interface Chemistry, Shandong University, Ministry of Education, Jinan 250100, P. R. China
| | - Xia Li
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, School of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, P. R. China
| | - Liqiang Zheng
- Key Laboratory of Colloid and Interface Chemistry, Shandong University, Ministry of Education, Jinan 250100, P. R. China
| | - Xinpei Gao
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, School of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, P. R. China
| |
Collapse
|
14
|
Cao Y, Scholte A, Prehm M, Anders C, Chen C, Song J, Zhang L, He G, Tschierske C, Liu F. Understanding the Role of Trapezoids in Honeycomb Self-Assembly-Pathways between a Columnar Liquid Quasicrystal and its Liquid-Crystalline Approximants. Angew Chem Int Ed Engl 2024; 63:e202314454. [PMID: 38009676 DOI: 10.1002/anie.202314454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/21/2023] [Accepted: 11/23/2023] [Indexed: 11/29/2023]
Abstract
Quasiperiodic patterns and crystals-having long range order without translational symmetry-have fascinated researchers since their discovery. In this study, we report on new p-terphenyl-based T-shaped facial polyphiles with two alkyl end chains and a glycerol-based hydrogen-bonded side group that self-assemble into an aperiodic columnar liquid quasicrystal with 12-fold symmetry and its periodic liquid-crystalline approximants with complex superstructures. All represent honeycombs formed by the self-assembly of the p-terphenyls, dividing space into prismatic cells with polygonal cross-sections. In the perspective of tiling patterns, the presence of unique trapezoidal tiles, consisting of three rigid sides formed by the p-terphenyls and one shorter, incommensurate, and adjustable side by the alkyl end chains, plays a crucial role for these phases. A delicate temperature-dependent balance between conformational, entropic and space-filling effects determines the role of the alkyl chains, either as network nodes or trapezoid walls, thus resulting in the order-disorder transitions associated with emergence of quasiperiodicity. In-depth analysis suggests a change from a quasiperiodic tiling involving trapezoids to a modified one with a contribution of trapezoid pair fusion. This work paves the way for understanding quasiperiodicity emergence and develops fundamental concepts for its generation by chemical design of non-spherical molecules, aggregates, and frameworks based on dynamic reticular chemistry.
Collapse
Affiliation(s)
- Yu Cao
- Shaanxi International Research Center for Soft Matter, State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Alexander Scholte
- Institute of Chemistry, Martin Luther University Halle-Wittenberg, Kurt Mothes Str. 2, 06120, Halle/Saale, Germany
| | - Marko Prehm
- Institute of Chemistry, Martin Luther University Halle-Wittenberg, Kurt Mothes Str. 2, 06120, Halle/Saale, Germany
| | - Christian Anders
- Institute of Chemistry, Martin Luther University Halle-Wittenberg, Kurt Mothes Str. 2, 06120, Halle/Saale, Germany
| | - Changlong Chen
- Shaanxi International Research Center for Soft Matter, State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Jiangxuan Song
- Shaanxi International Research Center for Soft Matter, State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Lei Zhang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Gang He
- Frontier Institute for Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Carsten Tschierske
- Institute of Chemistry, Martin Luther University Halle-Wittenberg, Kurt Mothes Str. 2, 06120, Halle/Saale, Germany
| | - Feng Liu
- Shaanxi International Research Center for Soft Matter, State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| |
Collapse
|
15
|
Hamaguchi K, Sakamoto T, Kurahashi N, Harada Y, Kato T. Hydrogen-Bonded Structures of Water Molecules in Hydroxy-Functionalized Nanochannels of Columnar Liquid Crystalline Nanostructured Membranes Studied by Soft X-ray Emission Spectroscopy. J Phys Chem Lett 2024; 15:454-460. [PMID: 38189793 PMCID: PMC10801685 DOI: 10.1021/acs.jpclett.3c03027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/31/2023] [Accepted: 01/03/2024] [Indexed: 01/09/2024]
Abstract
Here, we report a synchrotron-based high-resolution soft X-ray emission spectroscopy study on hydrogen-bonded structures of water molecules in the self-organized, hydroxy-group-functionalized one-dimensional nanochannels of liquid crystalline nanostructured membranes. The water molecules confined in the uncharged hydroxy-functionalized nanochannels (which have a diameter of about 1.5 nm) exhibit hydrogen-bonded structures close to those of bulk liquid water, even directly interacting with diol groups. These hydrogen-bonded structures contrast with the more distorted hydrogen bonding of water molecules confined in self-organized channels with a diameter of 0.6 nm formed by an analogous nanostructured membrane with a cationic moiety, which was explained by the ability of the channel functional groups to donate and accept hydrogen bonds in a confined space and the nanochannel diameter.
Collapse
Affiliation(s)
- Kazuma Hamaguchi
- Department
of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Takeshi Sakamoto
- Department
of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Naoya Kurahashi
- Institute
for Solid State Physics (ISSP), The University
of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8581, Japan
| | - Yoshihisa Harada
- Institute
for Solid State Physics (ISSP), The University
of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8581, Japan
- Synchrotron
Radiation Collaborative Research Organization, The University of Tokyo, 468-1 Aoba, Aramaki, Aoba-ku, Sendai-shi, Miyagi 980-8572, Japan
| | - Takashi Kato
- Department
of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Research
Initiative for Supra-Materials Shinshu University, 4-17-1 Wakasato, Nagano 380-8553, Japan
| |
Collapse
|
16
|
Anokhin D, Maryasevskaya A, Abukaev A, Ozkose UU, Buglakov A, Ivanov DA, Améduri B. Synthesis of Calamitic Fluorinated Mesogens with Complex Crystallization Behavior. Molecules 2023; 28:8002. [PMID: 38138492 PMCID: PMC10745429 DOI: 10.3390/molecules28248002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/01/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
This work presents the synthesis and self-organization of the calamitic fluorinated mesogen, 1,1,2,2-tetrafluoro-2-(1,1,2,2-tetrafluoro-4-iodobutoxy)ethanesulfonic acid, a potential model for perfluorosulfonic acid membranes (PFSA). The compound is derived in three steps from 1,1,2,2-tetrafluoro-2-(1,1,2,2-tetrafluoro-2-iodoethoxy)ethanesulfonyl fluoride, achieving a 78% overall yield. The resulting compound exhibits intricate thermal behavior. At 150 °C, a crystal-to-crystal transition is observed due to the partial disordering of calamitic molecules, which is followed by isotropization at 218 °C. Upon cooling, sample ordering occurs through the formation of large smectic liquid crystalline phase domains. This thermotropic state transforms into a layered crystal phase at lower temperatures, characterized by alternating hydrophilic and hydrophobic layers. Using X-ray diffraction, crystalline unit cell models at both room temperature and 170 °C were proposed. Computer simulations of the molecule across varying temperatures support the idea that thermal transitions correlate with a loss of molecular orientation. Importantly, the study underscores the pivotal role of precursor self-organization in aligning channels during membrane fabrication, ensuring controlled and oriented positioning.
Collapse
Affiliation(s)
- Denis Anokhin
- Faculty of Chemistry, Lomonosov Moscow State University, GSP-1, 1-3 Leninskiye Gory, 119991 Moscow, Russia (A.A.); (A.B.); (D.A.I.)
- Scientific Center for Genetics and Life Sciences, Sirius University of Science and Technology, 1 Olympic Ave., 354340 Sochi, Russia
| | - Alina Maryasevskaya
- Faculty of Chemistry, Lomonosov Moscow State University, GSP-1, 1-3 Leninskiye Gory, 119991 Moscow, Russia (A.A.); (A.B.); (D.A.I.)
| | - Ainur Abukaev
- Faculty of Chemistry, Lomonosov Moscow State University, GSP-1, 1-3 Leninskiye Gory, 119991 Moscow, Russia (A.A.); (A.B.); (D.A.I.)
| | - Umut Ugur Ozkose
- Institut Charles Gerhardt, CNRS, University of Montpellier, Ecole Nationale Supérieure de Chimie de Montpellier, 34000 Montpellier, France;
- Department of Chemistry, Faculty of Science and Letters, Piri Reis University, Tuzla, Istanbul 34940, Turkey
| | - Alexander Buglakov
- Faculty of Chemistry, Lomonosov Moscow State University, GSP-1, 1-3 Leninskiye Gory, 119991 Moscow, Russia (A.A.); (A.B.); (D.A.I.)
- A. N. Nesmeyanov Institute of Organoelement Compounds RAS, Vavilova ul., 28, 119334 Moscow, Russia
| | - Dimitri A. Ivanov
- Faculty of Chemistry, Lomonosov Moscow State University, GSP-1, 1-3 Leninskiye Gory, 119991 Moscow, Russia (A.A.); (A.B.); (D.A.I.)
- Scientific Center for Genetics and Life Sciences, Sirius University of Science and Technology, 1 Olympic Ave., 354340 Sochi, Russia
- Institut de Sciences des Matériaux de Mulhouse-IS2M, CNRS UMR 7361, Jean Starcky 15, 68057 Mulhouse, France
| | - Bruno Améduri
- Faculty of Chemistry, Lomonosov Moscow State University, GSP-1, 1-3 Leninskiye Gory, 119991 Moscow, Russia (A.A.); (A.B.); (D.A.I.)
- Institut Charles Gerhardt, CNRS, University of Montpellier, Ecole Nationale Supérieure de Chimie de Montpellier, 34000 Montpellier, France;
| |
Collapse
|
17
|
Olorunnisola D, Olorunnisola CG, Otitoju OB, Okoli CP, Rawel HM, Taubert A, Easun TL, Unuabonah EI. Cellulose-based adsorbents for solid phase extraction and recovery of pharmaceutical residues from water. Carbohydr Polym 2023; 318:121097. [PMID: 37479430 DOI: 10.1016/j.carbpol.2023.121097] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 05/23/2023] [Accepted: 06/05/2023] [Indexed: 07/23/2023]
Abstract
Cellulose has attracted interest from researchers both in academic and industrial sectors due to its unique structural and physicochemical properties. The ease of surface modification of cellulose by the integration of nanomaterials, magnetic components, metal organic frameworks and polymers has made them a promising adsorbent for solid phase extraction of emerging contaminants, including pharmaceutical residues. This review summarizes, compares, and contrasts different types of cellulose-based adsorbents along with their applications in adsorption, extraction and pre-concentration of pharmaceutical residues in water for subsequent analysis. In addition, a comparison in efficiency of cellulose-based adsorbents and other types of adsorbents that have been used for the extraction of pharmaceuticals in water is presented. From our observation, cellulose-based materials have principally been investigated for the adsorption of pharmaceuticals in water. However, this review aims to shift the focus of researchers to the application of these adsorbents in the effective pre-concentration of pharmaceutical pollutants from water at trace concentrations, for quantification. At the end of the review, the challenges and future perspectives regarding cellulose-based adsorbents are discussed, thus providing an in-depth overview of the current state of the art in cellulose hybrid adsorbents for extraction of pharmaceuticals from water. This is expected to inspire the development of solid phase exraction materials that are efficient, relatively cheap, and prepared in a sustainable way.
Collapse
Affiliation(s)
- Damilare Olorunnisola
- African Centre of Excellence for Water and Environmental Research (ACEWATER), Redeemer's University, PMB 230, Ede, Osun State, Nigeria; Department of Chemical Sciences, Redeemer's University, PMB 230, Ede, Osun State, Nigeria; University of Potsdam, Institute of Nutritional Science, 14558 Nuthetal (Ortsteil Bergholz-Rehbrücke), Arthur-Scheunert-Allee 114-116, Germany; Institute of Chemistry, University of Potsdam, D-14476 Potsdam, Germany
| | - Chidinma G Olorunnisola
- African Centre of Excellence for Water and Environmental Research (ACEWATER), Redeemer's University, PMB 230, Ede, Osun State, Nigeria; Institute of Chemistry, University of Potsdam, D-14476 Potsdam, Germany
| | - Oluwaferanmi B Otitoju
- African Centre of Excellence for Water and Environmental Research (ACEWATER), Redeemer's University, PMB 230, Ede, Osun State, Nigeria; Department of Chemical Sciences, Redeemer's University, PMB 230, Ede, Osun State, Nigeria
| | - Chukwunonso P Okoli
- African Centre of Excellence for Water and Environmental Research (ACEWATER), Redeemer's University, PMB 230, Ede, Osun State, Nigeria; Department of Chemistry, Alex Ekwueme Federal University Ndufu-Alike, Ikwo, Ebonyi State, Nigeria
| | - Harshadrai M Rawel
- University of Potsdam, Institute of Nutritional Science, 14558 Nuthetal (Ortsteil Bergholz-Rehbrücke), Arthur-Scheunert-Allee 114-116, Germany
| | - Andreas Taubert
- Institute of Chemistry, University of Potsdam, D-14476 Potsdam, Germany
| | - Timothy L Easun
- School of Chemistry, Haworth Building, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Emmanuel I Unuabonah
- African Centre of Excellence for Water and Environmental Research (ACEWATER), Redeemer's University, PMB 230, Ede, Osun State, Nigeria; Department of Chemical Sciences, Redeemer's University, PMB 230, Ede, Osun State, Nigeria.
| |
Collapse
|
18
|
Grunwald MA, Hagenlocher SE, Turkanovic L, Bauch SM, Wachsmann SB, Altevogt LA, Ebert M, Knöller JA, Raab AR, Schulz F, Kolmangadi MA, Zens A, Huber P, Schönhals A, Bilitiewski U, Laschat S. Does thermotropic liquid crystalline self-assembly control biological activity in amphiphilic amino acids? - tyrosine ILCs as a case study. Phys Chem Chem Phys 2023. [PMID: 37366119 DOI: 10.1039/d3cp00485f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Amphiphilic amino acids represent promising scaffolds for biologically active soft matter. In order to understand the bulk self-assembly of amphiphilic amino acids into thermotropic liquid crystalline phases and their biological properties a series of tyrosine ionic liquid crystals (ILCs) was synthesized, carrying a benzoate unit with 0-3 alkoxy chains at the tyrosine unit and a cationic guanidinium head group. Investigation of the mesomorphic properties by polarizing optical microscopy (POM), differential scanning calorimetry (DSC) and X-ray diffraction (WAXS, SAXS) revealed smectic A bilayers (SmAd) for ILCs with 4-alkoxy- and 3,4-dialkoxybenzoates, whereas ILCs with 3,4,5-trisalkoxybenzoates showed hexagonal columnar mesophases (Colh), while different counterions had only a minor influence. Dielectric measurements revealed a slightly higher dipole moment of non-mesomorphic tyrosine-benzoates as compared to their mesomorphic counterparts. The absence of lipophilic side chains on the benzoate unit was important for the biological activity. Thus, non-mesomorphic tyrosine benzoates and crown ether benzoates devoid of additional side chains at the benzoate unit displayed the highest cytotoxicities (against L929 mouse fibroblast cell line) and antimicrobial activity (against Escherichia coli ΔTolC and Staphylococcus aureus) and promising selectivity ratio in favour of antimicrobial activity.
Collapse
Affiliation(s)
- Marco André Grunwald
- Institut für Organische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany.
| | - Selina Emilie Hagenlocher
- Institut für Organische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany.
| | - Larissa Turkanovic
- Institut für Organische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany.
| | - Soeren Magnus Bauch
- Institut für Organische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany.
| | | | - Luca Alexa Altevogt
- Institut für Organische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany.
| | - Max Ebert
- Institut für Organische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany.
| | - Julius Agamemnon Knöller
- Institut für Organische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany.
| | - Aileen Rebecca Raab
- Institut für Organische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany.
| | - Finn Schulz
- Institut für Organische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany.
| | | | - Anna Zens
- Institut für Organische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany.
| | - Patrick Huber
- Institute for Materials and X-Ray Physics, Hamburg University of Technology, D-21073 Hamburg, Germany
- Centre for X-ray and Nano Science CXNS, Deutsches Elektronen-Synchrotron DESY, D-22605 Hamburg, Germany
- Centre for Hybrid Nanostructures ChyN, University Hamburg, D-21073 Hamburg, Germany.
| | - Andreas Schönhals
- Bundesanstalt für Materialforschung und-prüfung (BAM), D-12205 Berlin, Germany.
| | - Ursula Bilitiewski
- AG Compound Profiling and Screening, Helmholtz Zentrum für Infektionsforschung, Inhoffenstr. 7, D-38124 Braunschweig, Germany.
| | - Sabine Laschat
- Institut für Organische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany.
| |
Collapse
|
19
|
Mazzilli V, Satoh K, Saielli G. Phase behaviour of mixtures of charged soft disks and spheres. SOFT MATTER 2023; 19:3311-3324. [PMID: 37093590 DOI: 10.1039/d3sm00223c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
We have investigated the phase behaviour of mixtures of soft disks (Gay-Berne oblate ellipsoids, GB) and soft spheres (Lennard-Jones, LJ) with opposite charge as a model of ionic liquid crystals and colloidal suspensions. We have used constant volume Molecular Dynamics simulations and fixed the stoichiometry of the mixture in order to have electroneutrality; three systems have been selected GB : LJ = 1 : 2, GB : LJ = 1 : 1 and GB : LJ = 2 : 1. For each system we have selected three values of the scaled point charge q* of the GB particles, namely 0.5, 1.0 and 2.0 (and a corresponding negative scaled charge of the LJ particles that depends on the stoichiometric ratio). We have found a very rich mesomorphism with the formation, as a function of the scaled temperature, of the isotropic phase, the discotic nematic phase, the hexagonal columnar phase and crystal phases. While the structure of the high temperature phases was similar in all systems, the hexagonal columnar phases exhibited a highly variable morphology depending on the scaled charge and stoichiometry. On the one hand, GB : LJ = 1 : 2 systems form lamellar structures, akin to smectic phases, with an alternation of layers of disks (exhibiting an hexagonal columnar phase) and layers of LJ particles (in the isotropic phase). On the other hand, for the 2 : 1 stoichiometry we observe the formation of a frustrated hexagonal columnar phase with an alternating tilt direction of the molecular axis. We rationalize these findings based on the structure of the neutral ion pair dominating the behaviour at low temperature and high charge.
Collapse
Affiliation(s)
- Valerio Mazzilli
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy.
- CNR-ITM, Institute on Membrane Technology, Padova Unit, Via Marzolo, 1, 35131 Padova, Italy
| | - Katsuhiko Satoh
- Department of Chemistry, Osaka Sangyo University, Daito, Osaka, 574-8530, Japan.
| | - Giacomo Saielli
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy.
- CNR-ITM, Institute on Membrane Technology, Padova Unit, Via Marzolo, 1, 35131 Padova, Italy
| |
Collapse
|
20
|
Santos AF, Figueirinhas JL, Dias CM, Godinho MH, Branco LC, Dionísio M. Study of the Mesomorphic Properties and Conductivity of N-Alkyl-2-Picolinium Ionic Liquid Crystals. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
|
21
|
Hamaguchi K, Lu H, Okamura S, Kajiyama S, Uchida J, Sato S, Watanabe G, Ishii Y, Washizu H, Ungar G, Kato T. Reentrant 2D Nanostructured Liquid Crystals by Competition between Molecular Packing and Conformation: Potential Design for Multistep Switching of Ionic Conductivity. Chemphyschem 2023; 24:e202200927. [PMID: 36594677 DOI: 10.1002/cphc.202200927] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 12/25/2022] [Accepted: 01/02/2023] [Indexed: 01/04/2023]
Abstract
Reentrant phenomena in soft matter and biosystems have attracted considerable attention because their properties are closely related to high functionality. Here, we report a combined experimental and computational study on the self-assembly and reentrant behavior of a single-component thermotropic smectic liquid crystal toward the realization of dynamically functional materials. We have designed and synthesized a mesogenic molecule consisting of an alicyclic trans,trans-bicyclohexyl mesogen and a polar cyclic carbonate group connected by a flexible tetra(oxyethylene) spacer. The molecule exhibits an unprecedented sequence of layered smectic phases, in the order: smectic A-smectic B-reentrant smectic A. Electron density profiles and large-scale molecular dynamics simulations indicate that competition between the stacking of bicyclohexyl mesogens and the conformational flexibility of tetra(oxyethylene) chains induces this unusual reentrant behavior. Ion-conductive reentrant liquid-crystalline materials have been developed, which undergo the multistep conductivity changes in response to temperature. The reentrant liquid crystals have potential as new mesogenic materials exhibiting switching functions.
Collapse
Affiliation(s)
- Kazuma Hamaguchi
- Department of Chemistry and Biotechnology School of Engineering, The University of Tokyo Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Huanjun Lu
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Shota Okamura
- Department of Chemistry and Biotechnology School of Engineering, The University of Tokyo Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Satoshi Kajiyama
- Department of Chemistry and Biotechnology School of Engineering, The University of Tokyo Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Junya Uchida
- Department of Chemistry and Biotechnology School of Engineering, The University of Tokyo Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Shunsuke Sato
- Department of Physics, School of Science, Kitasato University Kitasato, Minami-ku, Sagamihara, Kanagawa, 252-0373, Japan
| | - Go Watanabe
- Department of Physics, School of Science, Kitasato University Kitasato, Minami-ku, Sagamihara, Kanagawa, 252-0373, Japan
| | - Yoshiki Ishii
- Graduate School of Information Science, University of Hyogo Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan
| | - Hitoshi Washizu
- Graduate School of Information Science, University of Hyogo Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan
| | - Goran Ungar
- State Key Laboratory for Mechanical Behavior of Materials Shaanxi International Research Center for Soft Matter, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Takashi Kato
- Department of Chemistry and Biotechnology School of Engineering, The University of Tokyo Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan.,Research Initiative for Supra-Materials, Shinshu University Wakasato, Nagano, 380-8553, Japan
| |
Collapse
|
22
|
Wachsmann SB, Bauhof J, Raab AR, Zens A, Sottmann T, Laschat S. N-Alkylimidazolium carboxylates as a new type of catanionic surface active ionic liquid: synthesis, thermotropic behavior and micellization in water. SOFT MATTER 2022; 18:7773-7781. [PMID: 36177986 DOI: 10.1039/d2sm00854h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Aiming at a new type of salt-free CASAIL (Catanionic Surface Active IL) for electrochemical applications or emulsifiers, dispersants, and foaming or antifoaming agents, we combined mesogenic anions (carboxylate) and cations (imidazolium) of similar shape and size to synthesize a series of congruent ion pairs of 1-alkyl-3-methylimidazolium alkylcarboxylates [Cnmim][Cm-1COO] (n = 10-16, m = 10-16). With particular focus on alkyl chain length varieties in both, imidazolium cations and carboxylate anions (n/m), the self-assembly in the bulk phase and in solution was investigated by differential scanning calorimetry (DSC), polarized optical microscopy (POM), X-ray diffraction (XRD) experiments and surface tension measurements. Our results revealed that the presence of long alkyl chains on both the cation n and anion m leads to improved thermal stability of the bulk material while maintaining broad lamellar (SmA) mesophases. In water, we observed a strong and linear decrease of log(cmc) for increasing both the carboxylate anion and imidazolium cation chain length due to the increasing hydrophobic effect. Surprisingly, for both thermotropic behavior and micellization, the chain length of the carboxylate anion had a stronger impact than the chain length of the imidazolium cation, indicating its greater surface activity and tendency to form micelles.
Collapse
Affiliation(s)
- Sebastian B Wachsmann
- Institut für Organische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569, Stuttgart, Germany.
| | - Jessica Bauhof
- Institut für Physikalische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569, Stuttgart, Germany.
| | - Aileen Rebecca Raab
- Institut für Organische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569, Stuttgart, Germany.
| | - Anna Zens
- Institut für Organische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569, Stuttgart, Germany.
| | - Thomas Sottmann
- Institut für Physikalische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569, Stuttgart, Germany.
| | - Sabine Laschat
- Institut für Organische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569, Stuttgart, Germany.
| |
Collapse
|
23
|
Majhi D, Dai J, Dvinskikh SV. Insights into cation-anion hydrogen bonding in mesogenic ionic liquids: an NMR study. Phys Chem Chem Phys 2022; 24:23532-23539. [PMID: 36129074 DOI: 10.1039/d2cp03188d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The hydrogen-bonding interaction is studied in imidazolium-based mesogenic ionic liquids in their isotropic, smectic, and solid phases and in a nanoconfined state by proton solid-state nuclear magnetic resonance (NMR). In the smectic phase, the more basic anions form stronger hydrogen bonds. A small decrease of H-bonding in the mesophase with respect to that in the isotropic phase is associated with the presence of a layered assembly with high orientational order and limited conformational freedom. Hydrogen bond strength is not sensitive to the cation structural modification as long as the aprotic nature of the material is preserved. The strong cation-anion hydrogen bonding observed in the smectic phases provides direct support for the presence of ionic sublayers which form in ionic liquid crystals regardless of the location and alignment of the charged group in the cation, particularly irrespective of whether the charged group occupies a terminal or central position in the cation structure. A comparison of the results obtained in isotropic, liquid-crystalline, and solid states shows that in the bulk materials the dynamic state of ions ranging from high reorientational and translational freedom to partial orientation and positional order to full immobilization, respectively, has no strong impact on the cation-anion hydrogen bond strength. On the other hand, nanoconfinement of ionic liquid crystals led to hydrogen bond disruption due to competing interactions of anions with a solid interface.
Collapse
Affiliation(s)
- Debashis Majhi
- KTH Royal Institute of Technology, Stockholm, Sweden. .,Stockholm University, Stockholm, Sweden
| | - Jing Dai
- KTH Royal Institute of Technology, Stockholm, Sweden.
| | | |
Collapse
|
24
|
Kanai H, Yamada K, Salikolimi K, Kodama K, Ishida Y. Supramolecular Architecture of an Amphiphilic Amino Alcohol as a Versatile Chiral Environment for Stereocontrolled Photoreaction of Various Anthracenes. Chemistry 2022; 28:e202201940. [DOI: 10.1002/chem.202201940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Hayato Kanai
- RIKEN Center for Emergent Matter Science 2-1 Hirosawa Wako Saitama 351-0198 Japan
- Department of Applied Chemistry Graduate School of Science and Engineering Saitama University 255 Shimo-Okubo, Sakura-ku Saitama 338-8570 Japan
| | - Kuniyo Yamada
- RIKEN Center for Emergent Matter Science 2-1 Hirosawa Wako Saitama 351-0198 Japan
| | | | - Koichi Kodama
- Department of Applied Chemistry Graduate School of Science and Engineering Saitama University 255 Shimo-Okubo, Sakura-ku Saitama 338-8570 Japan
| | - Yasuhiro Ishida
- RIKEN Center for Emergent Matter Science 2-1 Hirosawa Wako Saitama 351-0198 Japan
| |
Collapse
|
25
|
Evidence of Counterion Size Effect on the Stability of Columnar Phase of Ionic Liquid Crystals Based on Pyridinium Salts Derived from N-3,4,5-Tri(alkyloxy)-benzyl-4-pyridones. CRYSTALS 2022. [DOI: 10.3390/cryst12050715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The synthesis and characterization of novel ionic liquid crystals based on pyridinium salts with Br− and PF6− counterions are described in this work. These pyridinium salts were derived from 4-hydroxypyridine, both by N- and O-alkylation. The 3,4,5-tri(alkyloxy)-benzyl mesogenic unit was attached to the nitrogen atom of the pyridinium ring. Alkyl chains with a different number of carbon atoms (6, 8, 10, 12 and 14) were employed in order to show the effect on the stability of mesophase. The POM (polarizing optical microscopy) and XRD (powder X-ray diffraction) studies indicated that bromide salts with shorter chains C6, C8 and C10 do not show mesomorphic properties, while longer chain analogues with C12 and C14 exhibit two enantiotropic columnar phases. Surprisingly, the pyridinium salts with the larger size PF6− counterion do not exhibit liquid crystal properties.
Collapse
|
26
|
Knöller JA, Forschner R, Frey W, Lang J, Baro A, Zens A, Molard Y, Giesselmann F, Claasen B, Laschat S. Chasing Self-Assembly of Thioether-Substituted Flavylium Salts in Solution and Bulk State. Chemphyschem 2022; 23:e202200154. [PMID: 35446455 PMCID: PMC9400860 DOI: 10.1002/cphc.202200154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/12/2022] [Indexed: 12/05/2022]
Abstract
Two series of flavylium triflates carrying alkoxy side chains in the A‐ring (benzo unit of chromylium salt) and thioethers in the B ring (phenyl unit) (On‐Fla‐Sm) as well as thioethers at both A and B ring (Sn‐Fla‐Sm) were synthesized in order to understand the effect of thioether functionalization on their self‐assembly and electronic properties. Concentration‐dependent and diffusion ordered (DOSY) NMR experiments of O1‐iV‐Fla‐S3 indicate the formation of columnar H‐aggregates in solution with antiparallel intracolumnar stacking of the AC unit (chromylium) of the flavylium triflate, in agreement with the solid state structure of O1‐V‐Fla‐S1. Thioether substitution on the B ring changes the linear optical properties in solution, whereas it has no effect on the A ring. According to differential scanning calorimetry, polarizing optical microscopy and X‐ray diffraction bulk self‐assembly of these ionic liquid crystals (ILCs) depends on the total number of side chains, yielding SmA and LamCol phases for ILCs with 2–3 chains and Colro, Colh phases for ILCs with 3–6 chains. Thus, we demonstrated that thioethers are a useful design tool for ILCs with tailored properties.
Collapse
Affiliation(s)
- Julius A Knöller
- Universität Stuttgart: Universitat Stuttgart, Institut für Organische Chemie, GERMANY
| | - Robert Forschner
- Universität Stuttgart: Universitat Stuttgart, Institut für Organische Chemie, GERMANY
| | - Wolfgang Frey
- Universität Stuttgart: Universitat Stuttgart, Institut für Organische Chemie, GERMANY
| | - Johannes Lang
- Universität Stuttgart: Universitat Stuttgart, Institut für Organische Chemie, GERMANY
| | - Angelika Baro
- Universität Stuttgart: Universitat Stuttgart, Institut für Organische Chemie, GERMANY
| | - Anna Zens
- Universität Stuttgart: Universitat Stuttgart, Institut für Organische Chemie, GERMANY
| | - Yann Molard
- University of Rennes 1 - Health Sciences Campus Villejean: Universite de Rennes 1 - Campus Sante de Villejean, Institut of Chemical Science, GERMANY
| | - Frank Giesselmann
- Universität Stuttgart: Universitat Stuttgart, Institut für Physikalische Chemie, GERMANY
| | - Birgit Claasen
- Universität Stuttgart: Universitat Stuttgart, Institut für Organische Chemie, GERMANY
| | - Sabine Laschat
- Universität Stuttgart, Institut für Organische Chemie, Pfaffenwaldring 55, 70569, Stuttgart, GERMANY
| |
Collapse
|
27
|
Lamellar Tetragonal Symmetry of Amphiphilic Thermotropic Ionic Liquid Crystals in the Framework of Other Closely Related Highly Ordered Structures. Symmetry (Basel) 2022. [DOI: 10.3390/sym14020394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2022] Open
Abstract
An overview of the chemical compounds forming the rare smectic T phases is presented with references to the historical context. Thermodynamics (transition temperatures, enthalpies) along with the factors (stereochemical constraints, electrostatic interactions, aliphatic chain stacking, intermolecular forces) contributing to the adoption of tetragonal scaffolds are also discussed. Characteristic optical microscopy textures and X-ray diffraction patterns are presented. In parallel, a comparison of the geometrical parameters such as distances between atoms, molecular areas, volumes, and lattice parameters with the closest two-dimensional and three-dimensional organizations, is performed.
Collapse
|