1
|
Prasad B, Al-Majdoub ZM, Wegler C, Rostami-Hodjegan A, Achour B. Quantitative Proteomics for Translational Pharmacology and Precision Medicine: State of The Art and Future Outlook. Drug Metab Dispos 2024; 52:1208-1216. [PMID: 38821856 DOI: 10.1124/dmd.124.001600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/02/2024] [Accepted: 05/22/2024] [Indexed: 06/02/2024] Open
Abstract
Over the past 20 years, quantitative proteomics has contributed a wealth of protein expression data, which are currently used for a variety of systems pharmacology applications, as a complement or a surrogate for activity of the corresponding proteins. A symposium at the 25th North American International Society for the Study of Xenobiotics meeting, in Boston, in September 2023, was held to explore current and emerging applications of quantitative proteomics in translational pharmacology and strategies for improved integration into model-informed drug development based on practical experience of each of the presenters. A summary of the talks and discussions is presented in this perspective alongside future outlook that was outlined for future meetings. SIGNIFICANCE STATEMENT: This perspective explores current and emerging applications of quantitative proteomics in translational pharmacology and precision medicine and outlines the outlook for improved integration into model-informed drug development.
Collapse
Affiliation(s)
- Bhagwat Prasad
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (B.P.); Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester, United Kingdom (Z.M.A.-M., A.R.-H.); Department of Plant Physiology, Umeå University, Umeå, Sweden (C.W.); Certara UK, Sheffield, United Kingdom (A.R.-H.); and Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, the University of Rhode Island, Kingston, Rhode Island (B.A.)
| | - Zubida M Al-Majdoub
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (B.P.); Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester, United Kingdom (Z.M.A.-M., A.R.-H.); Department of Plant Physiology, Umeå University, Umeå, Sweden (C.W.); Certara UK, Sheffield, United Kingdom (A.R.-H.); and Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, the University of Rhode Island, Kingston, Rhode Island (B.A.)
| | - Christine Wegler
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (B.P.); Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester, United Kingdom (Z.M.A.-M., A.R.-H.); Department of Plant Physiology, Umeå University, Umeå, Sweden (C.W.); Certara UK, Sheffield, United Kingdom (A.R.-H.); and Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, the University of Rhode Island, Kingston, Rhode Island (B.A.)
| | - Amin Rostami-Hodjegan
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (B.P.); Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester, United Kingdom (Z.M.A.-M., A.R.-H.); Department of Plant Physiology, Umeå University, Umeå, Sweden (C.W.); Certara UK, Sheffield, United Kingdom (A.R.-H.); and Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, the University of Rhode Island, Kingston, Rhode Island (B.A.)
| | - Brahim Achour
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (B.P.); Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester, United Kingdom (Z.M.A.-M., A.R.-H.); Department of Plant Physiology, Umeå University, Umeå, Sweden (C.W.); Certara UK, Sheffield, United Kingdom (A.R.-H.); and Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, the University of Rhode Island, Kingston, Rhode Island (B.A.)
| |
Collapse
|
2
|
Streekstra EJ, Keuper-Navis M, van den Heuvel JJMW, van den Broek P, Stommel MWJ, de Boode W, Botden S, Bervoets S, O’Gorman L, Greupink R, Russel FGM, van de Steeg E, de Wildt SN. Enteroids to Study Pediatric Intestinal Drug Transport. Mol Pharm 2024; 21:4983-4994. [PMID: 39279643 PMCID: PMC11462498 DOI: 10.1021/acs.molpharmaceut.4c00339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 08/30/2024] [Accepted: 08/30/2024] [Indexed: 09/18/2024]
Abstract
Intestinal maturational changes after birth affect the pharmacokinetics (PK) of drugs, having major implications for drug safety and efficacy. However, little is known about ontogeny-related PK patterns in the intestine. To explore the accuracy of human enteroid monolayers for studying drug transport in the pediatric intestine, we compared the drug transporter functionality and expression in enteroid monolayers and tissue from pediatrics and adults. Enteroid monolayers were cultured of 14 pediatric [median (range) age: 44 weeks (2 days-13 years)] and 5 adult donors, in which bidirectional drug transport experiments were performed. In parallel, we performed similar experiments with tissue explants in Ussing chamber using 11 pediatric [median (range) age: 54 weeks (15 weeks-10 years)] and 6 adult tissues. Enalaprilat, propranolol, talinolol, and rosuvastatin were used to test paracellular, transcellular, and transporter-mediated efflux by P-gp and breast cancer resistance protein (BCRP), respectively. In addition, we compared the expression patterns of ADME-related genes in pediatric and adult enteroid monolayers with tissues using RNA sequencing. Efflux transport by P-gp and BCRP was comparable between the enteroids and tissue. Efflux ratios (ERs) of talinolol and rosuvastatin by P-gp and BCRP, respectively, were higher in enteroid monolayers compared to Ussing chamber, likely caused by experimental differences in model setup and cellular layers present. Explorative statistics on the correlation with age showed trends of increasing ER with age for P-gp in enteroid monolayers; however, it was not significant. In the Ussing chamber setup, lower enalaprilat and propranolol transport was observed with age. Importantly, the RNA sequencing pathway analysis revealed that age-related variation in drug metabolism between neonates and adults was present in both enteroids and intestinal tissue. Age-related differences between 0 and 6 months old and adults were observed in tissue as well as in enteroid monolayers, although to a lesser extent. This study provides the first data for the further development of pediatric enteroids as an in vitro model to study age-related variation in drug transport. Overall, drug transport in enteroids was in line with data obtained from ex vivo tissue (using chamber) experiments. Additionally, pathway analysis showed similar PK-related differences between neonates and adults in both tissue and enteroid monolayers. Given the challenge to elucidate the effect of developmental changes in the pediatric age range in human tissue, intestinal enteroids derived from pediatric patients could provide a versatile experimental platform to study pediatric phenotypes.
Collapse
Affiliation(s)
- Eva J. Streekstra
- Division
of Pharmacology and Toxicology, Department of Pharmacy, Radboud University Medical Center, Nijmegen 6525GA, The Netherlands
- Department
of Metabolic Health Research, Netherlands
Organization for Applied Scientific Research (TNO), Leiden 2333BE, The Netherlands
| | - Marit Keuper-Navis
- Department
of Metabolic Health Research, Netherlands
Organization for Applied Scientific Research (TNO), Leiden 2333BE, The Netherlands
- Division
of Pharmacology, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Utrecht 3584 CS, The Netherlands
| | - Jeroen J. M. W. van den Heuvel
- Division
of Pharmacology and Toxicology, Department of Pharmacy, Radboud University Medical Center, Nijmegen 6525GA, The Netherlands
| | - Petra van den Broek
- Division
of Pharmacology and Toxicology, Department of Pharmacy, Radboud University Medical Center, Nijmegen 6525GA, The Netherlands
| | - Martijn W. J. Stommel
- Department
of Surgery, Radboud University Medical Center, Nijmegen 6525GA, The Netherlands
| | - Willem de Boode
- Department
of Pediatrics, Division of Neonatology, Radboud University Medical Center, Amalia Children’s Hospital, Nijmegen 6525GA, The Netherlands
| | - Sanne Botden
- Department
of Surgery, Amalia Children’s Hospital, Radboud University Medical Center, Nijmegen 6525GA, The Netherlands
| | - Sander Bervoets
- Radboudumc
Technology Center for Bioinformatics, Department of Medical BioSciences, Radboud University Medical Center, Nijmegen 6525GA, The Netherlands
| | - Luke O’Gorman
- Radboudumc
Technology Center for Bioinformatics, Department of Medical BioSciences, Radboud University Medical Center, Nijmegen 6525GA, The Netherlands
| | - Rick Greupink
- Division
of Pharmacology and Toxicology, Department of Pharmacy, Radboud University Medical Center, Nijmegen 6525GA, The Netherlands
| | - Frans G. M. Russel
- Division
of Pharmacology and Toxicology, Department of Pharmacy, Radboud University Medical Center, Nijmegen 6525GA, The Netherlands
| | - Evita van de Steeg
- Department
of Metabolic Health Research, Netherlands
Organization for Applied Scientific Research (TNO), Leiden 2333BE, The Netherlands
| | - Saskia N. de Wildt
- Division
of Pharmacology and Toxicology, Department of Pharmacy, Radboud University Medical Center, Nijmegen 6525GA, The Netherlands
- Department
of Intensive Care, Radboud University Medical
Center, Nijmegen 6525GA, The Netherlands
- Department
of Neonatal and Pediatric Intensive Care, Erasmus MC Sophia Children’s Hospital, Rotterdam 3015 GD, The Netherlands
| |
Collapse
|
3
|
Pernecker M, Ciarimboli G. Regulation of renal organic cation transporters. FEBS Lett 2024; 598:2328-2347. [PMID: 38831380 DOI: 10.1002/1873-3468.14943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/30/2024] [Accepted: 05/21/2024] [Indexed: 06/05/2024]
Abstract
Transporters for organic cations (OCs) facilitate exchange of positively charged molecules through the plasma membrane. Substrates for these transporters encompass neurotransmitters, metabolic byproducts, drugs, and xenobiotics. Consequently, these transporters actively contribute to the regulation of neurotransmission, cellular penetration and elimination process for metabolic products, drugs, and xenobiotics. Therefore, these transporters have significant physiological, pharmacological, and toxicological implications. In cells of renal proximal tubules, the vectorial secretion pathways for OCs involve expression of organic cation transporters (OCTs) and multidrug and toxin extrusion proteins (MATEs) on basolateral and apical membrane domains, respectively. This review provides an overview of documented regulatory mechanisms governing OCTs and MATEs. Additionally, regulation of these transporters under various pathological conditions is summarized. The expression and functionality of OCTs and MATEs are subject to diverse pre- and post-translational modifications, providing insights into their regulation in various pathological conditions. Typically, in diseases, downregulation of transporter expression is observed, probably as a protective mechanism to prevent additional damage to kidney tissue. This regulation may be attributed to the intricate network of modifications these transporters undergo, shedding light on their dynamic responses in pathological contexts.
Collapse
Affiliation(s)
- Moritz Pernecker
- Experimental Nephrology, Department of Internal Medicine D, University Hospital Münster, Germany
| | - Giuliano Ciarimboli
- Experimental Nephrology, Department of Internal Medicine D, University Hospital Münster, Germany
| |
Collapse
|
4
|
Li Q, Guan Y, Xia C, Wu L, Zhang H, Wang Y. Physiologically-Based Pharmacokinetic Modeling and Dosing Optimization of Cefotaxime in Preterm and Term Neonates. J Pharm Sci 2024; 113:2605-2615. [PMID: 38460573 DOI: 10.1016/j.xphs.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 03/02/2024] [Accepted: 03/02/2024] [Indexed: 03/11/2024]
Abstract
BACKGROUND Cefotaxime is commonly used in treating bacterial infections in neonates. To characterize the pharmacokinetic process in neonates and evaluate different recommended dosing schedules of cefotaxime, a physiologically-based pharmacokinetic (PBPK) model of cefotaxime was established in adults and scaled to neonates. METHODS A whole-body PBPK model was built in PK-SIM® software. Three elimination pathways are composed of enzymatic metabolism in the liver, passive filtration through glomerulus, and active tubular secretion mediated by renal transporters. The ontogeny information was applied to account for age-related changes in cefotaxime pharmacokinetics. The established models were verified with realistic clinical data in adults and pediatric populations. Simulations in neonates were conducted and 100 % of the dosing interval where the unbound concentration in plasma was above the minimum inhibitory concentration (fT>MIC) was selected as the target index for dosing regimen evaluation. RESULTS The developed PBPK models successfully described the pharmacokinetic process of cefotaxime in adults and were scaled to the pediatric population. Good verification results were achieved in both adults' and neonates' PBPK models, indicating a good predictive performance. The optimal dosage regimen of cefotaxime was proposed according to the postnatal age (PNA) and gestational age (GA) of neonates. For preterm neonates (GA < 36 weeks), dosages of 25 mg/kg every 8 h in PNA 0-6 days and 25 mg/kg every 6 h in PNA 7-28 days were suggested. For term neonates (GA ≥ 36 weeks), dosages of 33 mg/kg every 8 h in PNA 0-6 days and 33 mg/kg every 6 h in PNA 7-28 days were recommended. CONCLUSIONS Our study may provide useful experience in practicing PBPK model-informed precision dosing in the pediatric population.
Collapse
Affiliation(s)
- Qiaoxi Li
- Department of pharmacy, the first people's hospital of Foshan, Foshan, China
| | - Yanping Guan
- Institute of clinical pharmacology, school of pharmaceutical sciences, Sun Yat-sen University, Guangzhou, China
| | - Chen Xia
- Department of pharmacy, the first people's hospital of Foshan, Foshan, China
| | - Lili Wu
- Department of pharmacy, the first people's hospital of Foshan, Foshan, China
| | - Hongyu Zhang
- Department of pharmacy, the first people's hospital of Foshan, Foshan, China
| | - Yan Wang
- Department of pharmacy, the first people's hospital of Foshan, Foshan, China.
| |
Collapse
|
5
|
Zhou X, Azimi M, Handin N, Riselli A, Vora B, Chun E, Yee SW, Artursson P, Giacomini KM. Proteomic Profiling Reveals Age-Related Changes in Transporter Proteins in the Human Blood-Brain Barrier. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.26.604313. [PMID: 39091855 PMCID: PMC11291171 DOI: 10.1101/2024.07.26.604313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
The Blood-Brain Barrier (BBB) is a crucial, selective barrier that regulates the entry of molecules including nutrients, environmental toxins, and therapeutic medications into the brain. This function relies heavily on brain endothelial cell proteins, particularly transporters and tight junction proteins. The BBB continues to develop postnatally, adapting its selective barrier function across different developmental phases, and alters with aging and disease. Here we present a global proteomics analysis focused on the ontogeny and aging of proteins in human brain microvessels (BMVs), predominantly composed of brain endothelial cells. Our proteomic profiling quantified 6,223 proteins and revealed possible age-related alteration in BBB permeability due to basement membrane component changes through the early developmental stage and age-dependent changes in transporter expression. Notable changes in expression levels were observed with development and age in nutrient transporters and transporters that play critical roles in drug disposition. This research 1) provides important information on the mechanisms that drive changes in the metabolic content of the brain with age and 2) enables the creation of physiologically based pharmacokinetic models for CNS drug distribution across different life stages.
Collapse
Affiliation(s)
- Xujia Zhou
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California, United States
| | - Mina Azimi
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California, United States
| | - Niklas Handin
- Department of Pharmacy, Uppsala University, Uppsala, Sweden
| | - Andrew Riselli
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California, United States
| | - Bianca Vora
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California, United States
| | - Eden Chun
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California, United States
| | - Sook Wah Yee
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California, United States
| | - Per Artursson
- Department of Pharmacy, Uppsala University, Uppsala, Sweden
| | - Kathleen M Giacomini
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California, United States
| |
Collapse
|
6
|
Alsmadi MM, Abudaqqa AA, Idkaidek N, Qinna NA, Al-Ghazawi A. The Effect of Inflammatory Bowel Disease and Irritable Bowel Syndrome on Pravastatin Oral Bioavailability: In vivo and in silico evaluation using bottom-up wbPBPK modeling. AAPS PharmSciTech 2024; 25:86. [PMID: 38605192 DOI: 10.1208/s12249-024-02803-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 04/01/2024] [Indexed: 04/13/2024] Open
Abstract
The common disorders irritable bowel syndrome (IBS) and inflammatory bowel disease (IBD) can modify the drugs' pharmacokinetics via their induced pathophysiological changes. This work aimed to investigate the impact of these two diseases on pravastatin oral bioavailability. Rat models for IBS and IBD were used to experimentally test the effects of IBS and IBD on pravastatin pharmacokinetics. Then, the observations made in rats were extrapolated to humans using a mechanistic whole-body physiologically-based pharmacokinetic (wbPBPK) model. The rat in vivo studies done herein showed that IBS and IBD decreased serum albumin (> 11% for both), decreased PRV binding in plasma, and increased pravastatin absolute oral bioavailability (0.17 and 0.53 compared to 0.01) which increased plasma, muscle, and liver exposure. However, the wbPBPK model predicted muscle concentration was much lower than the pravastatin toxicity thresholds for myotoxicity and rhabdomyolysis. Overall, IBS and IBD can significantly increase pravastatin oral bioavailability which can be due to a combination of increased pravastatin intestinal permeability and decreased pravastatin gastric degradation resulting in higher exposure. This is the first study in the literature investigating the effects of IBS and IBD on pravastatin pharmacokinetics. The high interpatient variability in pravastatin concentrations as induced by IBD and IBS can be reduced by oral administration of pravastatin using enteric-coated tablets. Such disease (IBS and IBD)-drug interaction can have more drastic consequences for narrow therapeutic index drugs prone to gastric degradation, especially for drugs with low intestinal permeability.
Collapse
Affiliation(s)
- Motasem M Alsmadi
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan.
- Nanotechnology Institute, Jordan University of Science and Technology, Irbid, Jordan.
| | - Alla A Abudaqqa
- Faculty of Pharmacy and Biomedical Sciences, University of Petra, Amman, Jordan
| | - Nasir Idkaidek
- Faculty of Pharmacy and Biomedical Sciences, University of Petra, Amman, Jordan
| | - Nidal A Qinna
- Faculty of Pharmacy and Biomedical Sciences, University of Petra, Amman, Jordan
- University of Petra Pharmaceutical Center (UPPC), University of Petra, Amman, Jordan
| | | |
Collapse
|
7
|
Hermans E, Meersschaut J, Van Herteryck I, Devreese M, Walle JV, De Paepe P, De Cock PA. Have We Neglected to Study Target-Site Drug Exposure in Children? A Systematic Review of the Literature. Clin Pharmacokinet 2024; 63:439-468. [PMID: 38551787 DOI: 10.1007/s40262-024-01364-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/15/2024] [Indexed: 05/04/2024]
Abstract
BACKGROUND AND OBJECTIVE Drug dosing should ideally be based on the drug concentrations at the target site, which, for most drugs, corresponds to the tissue. The exact influence of growth and development on drug tissue distribution is unclear. This systematic review compiles the current knowledge on the tissue distribution of systemically applied drugs in children, with the aim to identify priorities in tissue pharmacokinetic (PK) research in this population. METHODS A systematic literature search was performed in the MEDLINE and Embase databases. RESULTS Forty-two relevant articles were identified, of which 71% investigated antibiotics, while drug classes from the other studies were anticancer drugs, antifungals, anthelmintics, sedatives, thyreostatics, immunomodulators, antiarrhythmics, and exon skipping therapy. The majority of studies (83%) applied tissue biopsy as the sampling technique. Tonsil and/or adenoid tissue was most frequently examined (70% of all included patients). The majority of studies had a small sample size (median 9, range 1-93), did not include the youngest age categories (neonates and infants), and were of low reporting quality. Due to the heterogeneous data from different study compounds, dosing schedules, populations, and target tissues, the possibility for comparison of PK data between studies was limited. CONCLUSION The influence of growth and development on drug tissue distribution continues to be a knowledge gap, due to the paucity of tissue PK data in children, especially in the younger age categories. Future research in this field should be encouraged as techniques to safely investigate drug tissue disposition in children are available.
Collapse
Affiliation(s)
- Eline Hermans
- Department of Basic and Applied Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, C. Heymanslaan 10, 9000, Ghent, Belgium.
- Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium.
- Department of Pediatrics, Ghent University Hospital, C. Heymanslaan 10, 9000, Ghent, Belgium.
| | - Jozefien Meersschaut
- Department of Basic and Applied Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, C. Heymanslaan 10, 9000, Ghent, Belgium
| | - Isis Van Herteryck
- Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| | - Mathias Devreese
- Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| | - Johan Vande Walle
- Department of Internal Medicine and Pediatrics, Faculty of Medicine and Health Sciences, Ghent University, C. Heymanslaan 10, 9000, Ghent, Belgium
- Department of Pediatric Nephrology, SafePeDrug, Erknet Center, Ghent University Hospital, C. Heymanslaan 10, 9000, Ghent, Belgium
| | - Peter De Paepe
- Department of Basic and Applied Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, C. Heymanslaan 10, 9000, Ghent, Belgium
- Department of Emergency Medicine, Ghent University Hospital, C. Heymanslaan 10, 9000, Ghent, Belgium
| | - Pieter A De Cock
- Department of Basic and Applied Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, C. Heymanslaan 10, 9000, Ghent, Belgium.
- Department of Pharmacy, Ghent University Hospital, C. Heymanslaan 10, 9000, Ghent, Belgium.
- Department of Pediatric Intensive Care, Ghent University Hospital, C. Heymanslaan 10, 9000, Ghent, Belgium.
| |
Collapse
|
8
|
Hunt JP, Dubinsky S, McKnite AM, Cheung KWK, van Groen BD, Giacomini KM, de Wildt SN, Edginton AN, Watt KM. Maximum likelihood estimation of renal transporter ontogeny profiles for pediatric PBPK modeling. CPT Pharmacometrics Syst Pharmacol 2024; 13:576-588. [PMID: 38156758 PMCID: PMC11015082 DOI: 10.1002/psp4.13102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 12/01/2023] [Accepted: 12/14/2023] [Indexed: 01/03/2024] Open
Abstract
Optimal treatment of infants with many renally cleared drugs must account for maturational differences in renal transporter (RT) activity. Pediatric physiologically-based pharmacokinetic (PBPK) models may incorporate RT activity, but this requires ontogeny profiles for RT activity in children, especially neonates, to predict drug disposition. Therefore, RT expression measurements from human kidney postmortem cortical tissue samples were normalized to represent a fraction of mature RT activity. Using these data, maximum likelihood estimated the distributions of RT activity across the pediatric age spectrum, including preterm and term neonates. PBPK models of four RT substrates (acyclovir, ciprofloxacin, furosemide, and meropenem) were evaluated with and without ontogeny profiles using average fold error (AFE), absolute average fold error (AAFE), and proportion of observations within the 5-95% prediction interval. Novel maximum likelihood profiles estimated ontogeny distributions for the following RT: OAT1, OAT3, OCT2, P-gp, URAT1, BCRP, MATE1, MRP2, MRP4, and MATE-2 K. Profiles for OAT3, P-gp, and MATE1 improved infant furosemide and neonate meropenem PBPK model AFE from 0.08 to 0.70 and 0.53 to 1.34 and model AAFE from 12.08 to 1.44 and 2.09 to 1.36, respectively, and improved the percent of data within the 5-95% prediction interval from 48% to 98% for neonatal ciprofloxacin simulations, respectively. Even after accounting for other critical population-specific maturational differences, novel RT ontogeny profiles substantially improved neonatal PBPK model performance, providing validated estimates of maturational differences in RT activity for optimal dosing in children.
Collapse
Affiliation(s)
| | | | | | | | - Bianca D. van Groen
- Roche Pharma and Early Development (pRED), Roche Innovation Center BaselBaselSwitzerland
| | | | - Saskia N. de Wildt
- Erasmus MCRotterdamThe Netherlands
- Radboud UniversityNijmegenThe Netherlands
| | | | | |
Collapse
|
9
|
Zhang W, Zhang Q, Cao Z, Zheng L, Hu W. Physiologically Based Pharmacokinetic Modeling in Neonates: Current Status and Future Perspectives. Pharmaceutics 2023; 15:2765. [PMID: 38140105 PMCID: PMC10747965 DOI: 10.3390/pharmaceutics15122765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/07/2023] [Accepted: 12/09/2023] [Indexed: 12/24/2023] Open
Abstract
Rational drug use in special populations is a clinical problem that doctors and pharma-cists must consider seriously. Neonates are the most physiologically immature and vulnerable to drug dosing. There is a pronounced difference in the anatomical and physiological profiles be-tween neonates and older people, affecting the absorption, distribution, metabolism, and excretion of drugs in vivo, ultimately leading to changes in drug concentration. Thus, dose adjustments in neonates are necessary to achieve adequate therapeutic concentrations and avoid drug toxicity. Over the past few decades, modeling and simulation techniques, especially physiologically based pharmacokinetic (PBPK) modeling, have been increasingly used in pediatric drug development and clinical therapy. This rigorously designed and verified model can effectively compensate for the deficiencies of clinical trials in neonates, provide a valuable reference for clinical research design, and even replace some clinical trials to predict drug plasma concentrations in newborns. This review introduces previous findings regarding age-dependent physiological changes and pathological factors affecting neonatal pharmacokinetics, along with their research means. The application of PBPK modeling in neonatal pharmacokinetic studies of various medications is also reviewed. Based on this, we propose future perspectives on neonatal PBPK modeling and hope for its broader application.
Collapse
Affiliation(s)
| | | | | | - Liang Zheng
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; (W.Z.); (Q.Z.); (Z.C.)
| | - Wei Hu
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; (W.Z.); (Q.Z.); (Z.C.)
| |
Collapse
|
10
|
Thakur A, Saradhi Mettu V, Singh DK, Prasad B. Effect of probenecid on blood levels and renal elimination of furosemide and endogenous compounds in rats: Discovery of putative organic anion transporter biomarkers. Biochem Pharmacol 2023; 218:115867. [PMID: 37866801 PMCID: PMC10900896 DOI: 10.1016/j.bcp.2023.115867] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/10/2023] [Accepted: 10/17/2023] [Indexed: 10/24/2023]
Abstract
Transporter-mediated drug-drug interactions (DDIs) are assessed using probe drugs and in vitro and in vivo models during drug development. The utility of endogenous metabolites as transporter biomarkers is emerging for prediction of DDIs during early phases of clinical trials. Endogenous metabolites such as pyridoxic acid and kynurenic acid have shown potential to predict DDIs mediated by organic anion transporters (OAT1 and OAT3). However, these metabolites have not been assessed in rats as potential transporter biomarkers. We carried out a rat pharmacokinetic DDI study using probenecid and furosemide as OAT inhibitor and substrate, respectively. Probenecid administration led to a 3.8-fold increase in the blood concentrations and a 3-fold decrease in renal clearance of furosemide. High inter-individual and intra-day variability in pyridoxic acid and kynurenic acid, and no or moderate effect of probenecid administration on these metabolites suggest their limited utility for prediction of Oat-mediated DDI in rats. Therefore, rat blood and urine samples were further analysed using untargeted metabolomics. Twenty-one m/z features (out of >8000 detected features) were identified as putative biomarkers of rat Oat1 and Oat3 using a robust biomarker qualification approach. These m/z features belong to metabolic pathways such as fatty acid analogues, peptides, prostaglandin analogues, bile acid derivatives, flavonoids, phytoconstituents, and steroids, and can be used as a panel to decrease variability caused by processes other than Oats. When validated, these putative biomarkers will be useful in predicting DDIs caused by Oats in rats.
Collapse
Affiliation(s)
- Aarzoo Thakur
- College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA 99202, USA
| | - Vijaya Saradhi Mettu
- College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA 99202, USA
| | - Dilip K Singh
- College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA 99202, USA
| | - Bhagwat Prasad
- College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA 99202, USA.
| |
Collapse
|
11
|
Dinh J, Johnson TN, Grimstein M, Lewis T. Physiologically Based Pharmacokinetics Modeling in the Neonatal Population-Current Advances, Challenges, and Opportunities. Pharmaceutics 2023; 15:2579. [PMID: 38004559 PMCID: PMC10675397 DOI: 10.3390/pharmaceutics15112579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/24/2023] [Accepted: 10/29/2023] [Indexed: 11/26/2023] Open
Abstract
Physiologically based pharmacokinetic (PBPK) modeling is an approach to predicting drug pharmacokinetics, using knowledge of the human physiology involved and drug physiochemical properties. This approach is useful when predicting drug pharmacokinetics in under-studied populations, such as pediatrics. PBPK modeling is a particularly important tool for dose optimization for the neonatal population, given that clinical trials rarely include this patient population. However, important knowledge gaps exist for neonates, resulting in uncertainty with the model predictions. This review aims to outline the sources of variability that should be considered with developing a neonatal PBPK model, the data that are currently available for the neonatal ontogeny, and lastly to highlight the data gaps where further research would be needed.
Collapse
Affiliation(s)
- Jean Dinh
- Certara UK Limited, Sheffield S1 2BJ, UK; (J.D.); (T.N.J.)
| | | | - Manuela Grimstein
- Office of Clinical Pharmacology, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20903, USA
| | - Tamorah Lewis
- Pediatric Clinical Pharmacology & Toxicology, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| |
Collapse
|
12
|
Johnson TN, Abduljalil K, Pan X, Emoto C. Development and Verification of a Japanese Pediatric Physiologically Based Pharmacokinetic Model with Emphasis on Drugs Eliminated by Cytochrome P450 or Renal Excretion. J Clin Pharmacol 2023; 63:1156-1168. [PMID: 37496106 DOI: 10.1002/jcph.2317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 07/23/2023] [Indexed: 07/28/2023]
Abstract
Physiologically based pharmacokinetic (PBPK) models are useful in bridging drug exposure in different ethnic groups, and there is increasing regulatory application of this approach in adults. Reported pediatric PBPK models tend to focus on the North European population, with few examples in other ethnic groups. This study describes the development and verification of a Japanese pediatric PBPK population. The development of the model was based on the existing North European pediatric population. Japanese systems and clinical data were collated from public databases and the literature, and the underlying demographics and equations were optimized so that physiological outputs represented the Japanese pediatric population. The model was tested using 14 different small molecule drugs, eliminated by a variety of pathways, including cytochrome P450 3A4 (CYP3A4) metabolism and renal excretion. Given the limitations of the clinical data, the overall performance of the model was good, with 44/62 predictions for PK parameters (area under the plasma drug concentration-time curve, AUC; maximum serum concentration, Cmax ; clearance, CL) being within 0.8- to 1.25-fold, 56/62 within 0.67- to 1.5-fold, and 61/62 within 0.5- to 2.0-fold of the observed values. Specific results for the 5 CYP3A4 substrates showed 20/31 cases were predicted within 0.8- to 1.25-fold, 27/31 within 0.67- to 1.5-fold, and all were within 0.5- to 2.0-fold of the observed values. Given the increased regulatory use of pediatric PBPK in drug development, expanding these models to other ethnic groups are important. Considering qualifying these models based on the context of use, there is a need to expand on the current research to include a larger range of drugs with different elimination pathways. Collaboration among academic, industry, model providers, and regulators will facilitate further development.
Collapse
Affiliation(s)
| | | | - Xian Pan
- Simcyp Division, Certara UK Limited, Sheffield, UK
| | - Chie Emoto
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Tokyo, Japan
- Translational Research Division, Chugai Pharmaceutical Co., Ltd, Tokyo, Japan
| |
Collapse
|
13
|
Hau RK, Wright SH, Cherrington NJ. In Vitro and In Vivo Models for Drug Transport Across the Blood-Testis Barrier. Drug Metab Dispos 2023; 51:1157-1168. [PMID: 37258305 PMCID: PMC10449102 DOI: 10.1124/dmd.123.001288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/10/2023] [Accepted: 05/25/2023] [Indexed: 06/02/2023] Open
Abstract
The blood-testis barrier (BTB) is a selectively permeable membrane barrier formed by adjacent Sertoli cells (SCs) in the seminiferous tubules of the testes that develops intercellular junctional complexes to protect developing germ cells from external pressures. However, due to this inherent defense mechanism, the seminiferous tubule lumen can act as a pharmacological sanctuary site for latent viruses (e.g., Ebola, Zika) and cancers (e.g., leukemia). Therefore, it is critical to identify and evaluate BTB carrier-mediated drug delivery pathways to successfully treat these viruses and cancers. Many drugs are unable to effectively cross cell membranes without assistance from carrier proteins like transporters because they are large, polar, and often carry a charge at physiologic pH. SCs express transporters that selectively permit endogenous compounds, such as carnitine or nucleosides, across the BTB to support normal physiologic activity, although reproductive toxicants can also use these pathways, thereby circumventing the BTB. Certain xenobiotics, including select cancer therapeutics, antivirals, contraceptives, and environmental toxicants, are known to accumulate within the male genital tract and cause testicular toxicity; however, the transport pathways by which these compounds circumvent the BTB are largely unknown. Consequently, there is a need to identify the clinically relevant BTB transport pathways in in vitro and in vivo BTB models that recapitulate human pharmacokinetics and pharmacodynamics for these xenobiotics. This review summarizes the various in vitro and in vivo models of the BTB reported in the literature and highlights the strengths and weaknesses of certain models for drug disposition studies. SIGNIFICANCE STATEMENT: Drug disposition to the testes is influenced by the physical, physiological, and immunological components of the blood-testis barrier (BTB). But many compounds are known to cross the BTB by transporters, resulting in pharmacological and/or toxicological effects in the testes. Therefore, models that assess drug transport across the human BTB must adequately account for these confounding factors. This review identifies and discusses the benefits and limitations of various in vitro and in vivo BTB models for preclinical drug disposition studies.
Collapse
Affiliation(s)
- Raymond K Hau
- College of Pharmacy, Department of Pharmacology & Toxicology, (R.K.H., N.J.C.) and College of Medicine, Department of Physiology, The University of Arizona, Tucson, Arizona (S.H.W.)
| | - Stephen H Wright
- College of Pharmacy, Department of Pharmacology & Toxicology, (R.K.H., N.J.C.) and College of Medicine, Department of Physiology, The University of Arizona, Tucson, Arizona (S.H.W.)
| | - Nathan J Cherrington
- College of Pharmacy, Department of Pharmacology & Toxicology, (R.K.H., N.J.C.) and College of Medicine, Department of Physiology, The University of Arizona, Tucson, Arizona (S.H.W.)
| |
Collapse
|
14
|
Quinney SK, Bies RR, Grannis SJ, Bartlett CW, Mendonca E, Rogerson CM, Backes CH, Shah DK, Tillman EM, Costantine MM, Aruldhas BW, Allam R, Grant A, Abbasi MY, Kandasamy M, Zang Y, Wang L, Shendre A, Li L. The MPRINT Hub Data, Model, Knowledge and Research Coordination Center: Bridging the gap in maternal-pediatric therapeutics research through data integration and pharmacometrics. Pharmacotherapy 2023; 43:391-402. [PMID: 36625779 PMCID: PMC10192201 DOI: 10.1002/phar.2765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 11/13/2022] [Accepted: 12/08/2022] [Indexed: 01/11/2023]
Abstract
Maternal and pediatric populations have historically been considered "therapeutic orphans" due to their limited inclusion in clinical trials. Physiologic changes during pregnancy and lactation and growth and maturation of children alter pharmacokinetics (PK) and pharmacodynamics (PD) of drugs. Precision therapy in these populations requires knowledge of these effects. Efforts to enhance maternal and pediatric participation in clinical studies have increased over the past few decades. However, studies supporting precision therapeutics in these populations are often small and, in isolation, may have limited impact. Integration of data from various studies, for example through physiologically based pharmacokinetic/pharmacodynamic (PBPK/PD) modeling or bioinformatics approaches, can augment the value of data from these studies, and help identify gaps in understanding. To catalyze research in maternal and pediatric precision therapeutics, the Obstetric and Pediatric Pharmacology and Therapeutics Branch of the Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD) established the Maternal and Pediatric Precision in Therapeutics (MPRINT) Hub. Herein, we provide an overview of the status of maternal-pediatric therapeutics research and introduce the Indiana University-Ohio State University MPRINT Hub Data, Model, Knowledge and Research Coordination Center (DMKRCC), which aims to facilitate research in maternal and pediatric precision therapeutics through the integration and assessment of existing knowledge, supporting pharmacometrics and clinical trials design, development of new real-world evidence resources, educational initiatives, and building collaborations among public and private partners, including other NICHD-funded networks. By fostering use of existing data and resources, the DMKRCC will identify critical gaps in knowledge and support efforts to overcome these gaps to enhance maternal-pediatric precision therapeutics.
Collapse
Affiliation(s)
- Sara K Quinney
- Department of Obstetrics and Gynecology, Indiana University School of Medicine, Indiana University, Indianapolis, Indiana, USA
- Division of Clinical Pharmacology, Department of Medicine, Indiana University School of Medicine, Indiana University, Indianapolis, Indiana, USA
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Robert R Bies
- Department of Pharmaceutical Sciences, University at Buffalo School of Pharmacy and Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, New York, USA
- Institute for Computational and Data Sciences, University at Buffalo, State University of New York at Buffalo, Buffalo, New York, USA
| | - Shaun J Grannis
- Department of Family Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Center for Biomedical Informatics, Regenstrief Institute, Indianapolis, Indiana, USA
- Richard M. Fairbanks School of Public Health, Indiana University, Indianapolis, Indiana, USA
| | - Christopher W Bartlett
- The Steve & Cindy Rasmussen Institute for Genomic Medicine, Battelle Center for Computational Biology, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, USA
- Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Eneida Mendonca
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department Biostatistics and Health Data Sciences, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Colin M Rogerson
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Carl H Backes
- Division of Neonatology, Nationwide Children’s Hospital; Departments of Pediatrics and Obstetrics and Gynecology, The Ohio State University College of Medicine; Center for Perinatal Research and The Ohio Perinatal Research Network, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, USA; The Heart Center at Nationwide Children’s Hospital, Columbus, Ohio, USA
| | - Dhaval K Shah
- Department of Pharmaceutical Sciences, University at Buffalo School of Pharmacy and Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, New York, USA
| | - Emma M Tillman
- Division of Clinical Pharmacology, Department of Medicine, Indiana University School of Medicine, Indiana University, Indianapolis, Indiana, USA
| | - Maged M Costantine
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, The Ohio State University, Columbus, Ohio, USA
| | - Blessed W Aruldhas
- Division of Clinical Pharmacology, Department of Medicine, Indiana University School of Medicine, Indiana University, Indianapolis, Indiana, USA
- Department of Pharmacology and Clinical Pharmacology, Christian Medical College, Vellore, India
| | - Reva Allam
- Division of Clinical Pharmacology, Department of Medicine, Indiana University School of Medicine, Indiana University, Indianapolis, Indiana, USA
| | - Amelia Grant
- Division of Clinical Pharmacology, Department of Medicine, Indiana University School of Medicine, Indiana University, Indianapolis, Indiana, USA
| | - Mohammed Yaseen Abbasi
- Division of Clinical Pharmacology, Department of Medicine, Indiana University School of Medicine, Indiana University, Indianapolis, Indiana, USA
| | - Murugesh Kandasamy
- Division of Clinical Pharmacology, Department of Medicine, Indiana University School of Medicine, Indiana University, Indianapolis, Indiana, USA
| | - Yong Zang
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department Biostatistics and Health Data Sciences, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Lei Wang
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Aditi Shendre
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Lang Li
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
15
|
Li S, Xie F. Foetal and neonatal exposure prediction and dosing evaluation for ampicillin using a physiologically-based pharmacokinetic modelling approach. Br J Clin Pharmacol 2023; 89:1402-1412. [PMID: 36357171 DOI: 10.1111/bcp.15589] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/02/2022] [Accepted: 11/05/2022] [Indexed: 11/12/2022] Open
Abstract
AIMS Ampicillin is frequently used in neonates for the treatment of sepsis and as an intrapartum prophylaxis option for Group B Streptococcus. Pharmacokinetic data to guide ampicillin dosing in neonates and during the intrapartum period are limited. The objective of this study was to build a physiologically-based pharmacokinetic (PBPK) model to characterize the disposition of ampicillin in neonates and foetuses and to inform corresponding optimal dosing regimens. METHODS An adult ampicillin PBPK model was first developed using the Simcyp® simulator. The adult model was then scaled to neonates by accounting for maturational changes in physiological parameters and age-dependent drug disposition or extended to a pregnancy model for mothers and foetuses. Models were verified using collected mean or individual-level concentration data from the literature. RESULTS The developed adult PBPK model included elimination via glomerular filtration, OAT3-mediated tubular secretion and biliary excretion as well as hepatic metabolism, and 89.8% of the observed mean concentrations in adults were within a 2-fold range of model mean predictions. Most of the observed individual-level observations in neonates (78.4%) and foetuses (about 65% in two studies) were within the 90% prediction intervals. The recommended 50 mg/kg every 8 h (q8h) ampicillin regimen achieved the 75% fraction time of total drug concentration above minimum inhibitory concentration (T > MIC) target for an MIC ≤8 mg/L in >90% virtual neonates, and 1 g ampicillin for pregnant women provided adequate foetal exposure (>0.25 mg/L) for 4 h prior to delivery. CONCLUSIONS A PBPK model was developed to characterize ampicillin's disposition in neonates, pregnant women, and foetuses, and the model supported optimal dosing evaluation in these vulnerable populations.
Collapse
Affiliation(s)
- Sanwang Li
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Feifan Xie
- Division of Biopharmaceutics and Pharmacokinetics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| |
Collapse
|
16
|
Khalid S, Rasool MF, Masood I, Imran I, Saeed H, Ahmad T, Alqahtani NS, Alshammari FA, Alqahtani F. Application of a physiologically based pharmacokinetic model in predicting captopril disposition in children with chronic kidney disease. Sci Rep 2023; 13:2697. [PMID: 36792681 PMCID: PMC9931704 DOI: 10.1038/s41598-023-29798-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 02/10/2023] [Indexed: 02/17/2023] Open
Abstract
Over the last several decades, angiotensin-converting enzyme inhibitors (ACEIs) have been a staple in the treatment of hypertension and renovascular disorders in children. One of the ACEIs, captopril, is projected to have all the benefits of traditional vasodilators. However, conducting clinical trials for determining the pharmacokinetics (PK) of a drug is challenging, particularly in pediatrics. As a result, modeling and simulation methods have been developed to identify the safe and effective dosages of drugs. The physiologically based pharmacokinetic (PBPK) modeling is a well-established method that permits extrapolation from adult to juvenile populations. By using SIMCYP simulator, as a modeling platform, a previously developed PBPK drug-disease model of captopril was scaled to renally impaired pediatrics population for predicting captopril PK. The visual predictive checks, predicted/observed ratios (ratiopred/obs), and the average fold error of PK parameters were used for model evaluation. The model predictions were comparable with the reported PK data of captopril in mild and severe chronic kidney disease (CKD) patients, as the mean ratiopred/obs Cmax and AUC0-t were 1.44 (95% CI 1.07 - 1.80) and 1.26 (95% CI 0.93 - 1.59), respectively. The successfully developed captopril-CKD pediatric model can be used in suggesting drug dosing in children diagnosed with different stages of CKD.
Collapse
Affiliation(s)
- Sundus Khalid
- grid.411501.00000 0001 0228 333XDepartment of Pharmacy Practice, Faculty of Pharmacy, Bahauddin Zakariya University, Multan, 60800 Pakistan
| | - Muhammad Fawad Rasool
- Department of Pharmacy Practice, Faculty of Pharmacy, Bahauddin Zakariya University, Multan, 60800, Pakistan.
| | - Imran Masood
- grid.412496.c0000 0004 0636 6599Department of Pharmacy Practice, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, 63100 Pakistan
| | - Imran Imran
- grid.411501.00000 0001 0228 333XDepartment of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan, 60800 Pakistan
| | - Hamid Saeed
- grid.11173.350000 0001 0670 519XSection of Pharmaceutics, University College of Pharmacy, Allama Iqbal Campus, University of the Punjab, Lahore, 54000 Pakistan
| | - Tanveer Ahmad
- grid.450307.50000 0001 0944 2786Institute for Advanced Biosciences (IAB), CNRS UMR5309, INSERM U1209, Grenoble Alpes University, 38700 La Tronche, France
| | - Nawaf Shalih Alqahtani
- grid.56302.320000 0004 1773 5396Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, 11451 Saudi Arabia
| | - Fahad Ali Alshammari
- grid.56302.320000 0004 1773 5396Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, 11451 Saudi Arabia
| | - Faleh Alqahtani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia.
| |
Collapse
|
17
|
Deng F, Sjöstedt N, Santo M, Neuvonen M, Niemi M, Kidron H. Novel inhibitors of breast cancer resistance protein (BCRP, ABCG2) among marketed drugs. Eur J Pharm Sci 2023; 181:106362. [PMID: 36529162 DOI: 10.1016/j.ejps.2022.106362] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 11/11/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
Drug-drug interactions (DDIs) are a major concern for the safe use of medications. Breast cancer resistance protein (BCRP) is a clinically relevant ATP-binding cassette (ABC) transporter for drug disposition. Inhibition of BCRP increases the plasma concentrations of BCRP substrate drugs, which potentially could lead to adverse drug reactions. The aim of the present study was to identify BCRP inhibitors amongst a library of 232 commonly used drugs and anticancer drugs approved by the United States Food and Drug Administration (FDA). BCRP inhibition studies were carried out using the vesicular transport assay. We found 75 drugs that reduced the relative transport activity of BCRP to less than 25% of the vehicle control and were categorized as strong inhibitors. The concentration required for 50% inhibition (IC50) was determined for 13 strong inhibitors that were previously poorly characterized for BCRP inhibition. The IC50 ranged from 1.1 to 11 µM, with vemurafenib, dabigatran etexilate and everolimus being the strongest inhibitors. According to the drug interaction guidance documents from the FDA and the European Medicines Agency (EMA), in vivo DDI studies are warranted if the theoretical intestinal luminal concentration of a drug exceeds its IC50 by tenfold. Here, the IC50 values for eight of the drugs were 100-fold lower than their theoretical intestinal luminal concentration. Moreover, a mechanistic static model suggested that vemurafenib, bexarotene, dabigatran etexilate, rifapentine, aprepitant, and ivacaftor could almost fully inhibit intestinal BCRP, increasing the exposure of concomitantly administered rosuvastatin over 90%. Therefore, clinical studies are warranted to investigate whether these drugs cause BCRP-mediated DDIs in humans.
Collapse
Affiliation(s)
- Feng Deng
- Department of Clinical Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland. Tukholmankatu 8 C, P.O. Box 20, 00014, Finland; Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland. Haartmaninkatu 8, P.O. Box 63, 00014, Finland
| | - Noora Sjöstedt
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland. Viikinkaari 5 E, P.O. Box 56, 00014, Finland
| | - Mariangela Santo
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland. Viikinkaari 5 E, P.O. Box 56, 00014, Finland
| | - Mikko Neuvonen
- Department of Clinical Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland. Tukholmankatu 8 C, P.O. Box 20, 00014, Finland; Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland. Haartmaninkatu 8, P.O. Box 63, 00014, Finland
| | - Mikko Niemi
- Department of Clinical Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland. Tukholmankatu 8 C, P.O. Box 20, 00014, Finland; Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland. Haartmaninkatu 8, P.O. Box 63, 00014, Finland; Department of Clinical Pharmacology, HUS Diagnostic Center, Helsinki University Hospital, Helsinki, Finland
| | - Heidi Kidron
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland. Viikinkaari 5 E, P.O. Box 56, 00014, Finland.
| |
Collapse
|
18
|
Schwartz GJ, Roem JL, Hooper SR, Furth SL, Weaver DJ, Warady BA, Schneider MF. Longitudinal changes in uric acid concentration and their relationship with chronic kidney disease progression in children and adolescents. Pediatr Nephrol 2023; 38:489-497. [PMID: 35650320 PMCID: PMC9712592 DOI: 10.1007/s00467-022-05620-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/29/2022] [Accepted: 05/04/2022] [Indexed: 01/10/2023]
Abstract
BACKGROUND Elevated serum uric acid concentration is a risk factor for CKD progression. Its change over time and association with CKD etiology and concomitant changes in estimated glomerular filtration rate (eGFR) in children and adolescents are unknown. METHODS Longitudinal study of 153 children/adolescents with glomerular (G) and 540 with non-glomerular (NG) etiology from the CKD in Children (CKiD) study. Baseline serum uric acid, change in uric acid and eGFR over time, CKD etiology, and comorbidities were monitored. Adjusted linear mixed-effects regression models quantified the relationship between within-person changes in uric acid and concurrent within-person changes in eGFR. RESULTS Participants with stable uric acid over follow-up had CKD progression which became worse for increased baseline uric acid (average annual percentage changes in eGFR were - 1.4%, - 7.7%, and - 14.7% in those with G CKD with baseline uric acid < 5.5 mg/dL, 5.5 - 7.5 mg/dL, and > 7.5 mg/dL, respectively; these changes were - 1.4%, - 4.1%, and - 8.6% in NG CKD). Each 1 mg/dL increase in uric acid over follow-up was independently associated with significant concomitant eGFR decreases of - 5.7% (95%CI - 8.4 to - 3.0%) (G) and - 5.1% (95%CI - 6.3 to - 4.0%) (NG) for those with baseline uric acid < 5.5 mg/dL and - 4.3% (95%CI - 6.8 to - 1.6%) (G) and - 3.3% (95%CI - 4.1 to - 2.6%) (NG) with baseline uric acid between 5.5 and 7.5 mg/dL. CONCLUSIONS Higher uric acid levels and increases in uric acid over time are risk factors for more severe progression of CKD in children and adolescents. A higher resolution version of the Graphical abstract is available as Supplementary information.
Collapse
Affiliation(s)
- George J Schwartz
- Pediatrics, University of Rochester Medical Center, 601 Elmwood Avenue Box 777, Rochester, NY, USA.
| | - Jennifer L Roem
- Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Stephen R Hooper
- Allied Health Sciences, University of North Carolina-Chapel Hill, Chapel Hill, NC, USA
| | - Susan L Furth
- Pediatrics, University of Pennsylvania, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Donald J Weaver
- Pediatrics, Atrium Health Levine Hospital, Charlotte, NC, USA
| | - Bradley A Warady
- Pediatrics, University of Missouri-Kansas City School of Medicine, Children's Mercy Hospital, Kansas City, MO, USA
| | - Michael F Schneider
- Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| |
Collapse
|
19
|
Smits A, Annaert P, Cavallaro G, De Cock PAJG, de Wildt SN, Kindblom JM, Lagler FB, Moreno C, Pokorna P, Schreuder MF, Standing JF, Turner MA, Vitiello B, Zhao W, Weingberg AM, Willmann R, van den Anker J, Allegaert K. Current knowledge, challenges and innovations in developmental pharmacology: A combined conect4children Expert Group and European Society for Developmental, Perinatal and Paediatric Pharmacology White Paper. Br J Clin Pharmacol 2022; 88:4965-4984. [PMID: 34180088 PMCID: PMC9787161 DOI: 10.1111/bcp.14958] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 05/22/2021] [Accepted: 05/30/2021] [Indexed: 12/30/2022] Open
Abstract
Developmental pharmacology describes the impact of maturation on drug disposition (pharmacokinetics, PK) and drug effects (pharmacodynamics, PD) throughout the paediatric age range. This paper, written by a multidisciplinary group of experts, summarizes current knowledge, and provides suggestions to pharmaceutical companies, regulatory agencies and academicians on how to incorporate the latest knowledge regarding developmental pharmacology and innovative techniques into neonatal and paediatric drug development. Biological aspects of drug absorption, distribution, metabolism and excretion throughout development are summarized. Although this area made enormous progress during the last two decades, remaining knowledge gaps were identified. Minimal risk and burden designs allow for optimally informative but minimally invasive PK sampling, while concomitant profiling of drug metabolites may provide additional insight in the unique PK behaviour in children. Furthermore, developmental PD needs to be considered during drug development, which is illustrated by disease- and/or target organ-specific examples. Identifying and testing PD targets and effects in special populations, and application of age- and/or population-specific assessment tools are discussed. Drug development plans also need to incorporate innovative techniques such as preclinical models to study therapeutic strategies, and shift from sequential enrolment of subgroups, to more rational designs. To stimulate appropriate research plans, illustrations of specific PK/PD-related as well as drug safety-related challenges during drug development are provided. The suggestions made in this joint paper of the Innovative Medicines Initiative conect4children Expert group on Developmental Pharmacology and the European Society for Developmental, Perinatal and Paediatric Pharmacology, should facilitate all those involved in drug development.
Collapse
Affiliation(s)
- Anne Smits
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium.,Neonatal intensive Care unit, University Hospitals Leuven, Leuven, Belgium
| | - Pieter Annaert
- Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Giacomo Cavallaro
- Neonatal intensive care unit, Fondazione IRCCS Ca' Grande Ospedale Maggiore Policlinico, Milan, Italy
| | - Pieter A J G De Cock
- Department of Pediatric Intensive Care, Ghent University Hospital, Ghent, Belgium.,Heymans Institute of Pharmacology, Ghent University, Ghent, Belgium.,Department of Pharmacy, Ghent University Hospital, Ghent, Belgium
| | - Saskia N de Wildt
- Intensive Care and Pediatric Surgery, Erasmus MC-Sophia Children's Hospital, Rotterdam, the Netherlands.,Department of Pharmacology and Toxicology, Radboud Institute Health Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Jenny M Kindblom
- Pediatric Clinical Research Center, Queen Silvia Children's Hospital, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Florian B Lagler
- Institute for Inherited Metabolic Diseases and Department of Pediatrics, Paracelsus Medical University, Clinical Research Center Salzburg, Salzburg, Austria
| | - Carmen Moreno
- Institute of Psychiatry and Mental Health, Child and Adolescent Psychiatry Department, Hospital General Universitario Gregorio Marañón, School of Medicine, Universidad Complutense, IiSGM, CIBERSAM, Madrid, Spain
| | - Paula Pokorna
- Intensive Care and Pediatric Surgery, Erasmus MC-Sophia Children's Hospital, Rotterdam, the Netherlands.,Department of Pharmacology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic.,Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic.,Department of Physiology and Pharmacology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Michiel F Schreuder
- Department of Pediatric Nephrology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Amalia Children's Hospital, Nijmegen, the Netherlands
| | - Joseph F Standing
- UCL Great Ormond Street Institute of Child Health, London, UK.,Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK.,Institute for Infection and Immunity, St George's, University of London, London, UK
| | - Mark A Turner
- Department of Women's and Children's Health, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool Health Partners, Liverpool, UK
| | - Benedetto Vitiello
- Division of Child and Adolescent Neuropsychiatry, Department of Public Health and Pediatrics, University of Torino, Torino, Italy
| | - Wei Zhao
- Department of Clinical Pharmacy, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, China.,Department of Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China.,Clinical Research Centre, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | | | | | - John van den Anker
- Intensive Care and Pediatric Surgery, Erasmus MC-Sophia Children's Hospital, Rotterdam, the Netherlands.,Paediatric Pharmacology and Pharmacometrics, University Children's Hospital Basel (UKBB), University of Basel, Basel, Switzerland.,Division of Clinical Pharmacology, Children's National Hospital, Washington, DC, USA
| | - Karel Allegaert
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium.,Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium.,Department of Hospital Pharmacy, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| |
Collapse
|
20
|
van der Heijden JEM, Freriksen JJM, de Hoop-Sommen MA, van Bussel LPM, Driessen SHP, Orlebeke AEM, Verscheijden LFM, Greupink R, de Wildt SN. Feasibility of a Pragmatic PBPK Modeling Approach: Towards Model-Informed Dosing in Pediatric Clinical Care. Clin Pharmacokinet 2022; 61:1705-1717. [PMID: 36369327 PMCID: PMC9651907 DOI: 10.1007/s40262-022-01181-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/03/2022] [Indexed: 11/13/2022]
Abstract
BACKGROUND AND OBJECTIVE More than half of all drugs are still prescribed off-label to children. Pharmacokinetic (PK) data are needed to support off-label dosing, however for many drugs such data are either sparse or not representative. Physiologically-based pharmacokinetic (PBPK) models are increasingly used to study PK and guide dosing decisions. Building compound models to study PK requires expertise and is time-consuming. Therefore, in this paper, we studied the feasibility of predicting pediatric exposure by pragmatically combining existing compound models, developed e.g. for studies in adults, with a pediatric and preterm physiology model. METHODS Seven drugs, with various PK characteristics, were selected (meropenem, ceftazidime, azithromycin, propofol, midazolam, lorazepam, and caffeine) as a proof of concept. Simcyp® v20 was used to predict exposure in adults, children, and (pre)term neonates, by combining an existing compound model with relevant virtual physiology models. Predictive performance was evaluated by calculating the ratios of predicted-to-observed PK parameter values (0.5- to 2-fold acceptance range) and by visual predictive checks with prediction error values. RESULTS Overall, model predicted PK in infants, children and adolescents capture clinical data. Confidence in PBPK model performance was therefore considered high. Predictive performance tends to decrease when predicting PK in the (pre)term neonatal population. CONCLUSION Pragmatic PBPK modeling in pediatrics, based on compound models verified with adult data, is feasible. A thorough understanding of the model assumptions and limitations is required, before model-informed doses can be recommended for clinical use.
Collapse
Affiliation(s)
- Joyce E M van der Heijden
- Department of Pharmacology and Toxicology, Radboud Institute for Health Sciences, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA, Nijmegen, The Netherlands.
| | - Jolien J M Freriksen
- Department of Pharmacology and Toxicology, Radboud Institute for Health Sciences, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA, Nijmegen, The Netherlands
| | - Marika A de Hoop-Sommen
- Department of Pharmacology and Toxicology, Radboud Institute for Health Sciences, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA, Nijmegen, The Netherlands
- Royal Dutch Pharmacist Association, The Hague, The Netherlands
| | - Lianne P M van Bussel
- Department of Pharmacology and Toxicology, Radboud Institute for Health Sciences, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA, Nijmegen, The Netherlands
| | - Sander H P Driessen
- Department of Pharmacology and Toxicology, Radboud Institute for Health Sciences, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA, Nijmegen, The Netherlands
| | - Anne E M Orlebeke
- Department of Pharmacology and Toxicology, Radboud Institute for Health Sciences, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA, Nijmegen, The Netherlands
| | - Laurens F M Verscheijden
- Department of Pharmacology and Toxicology, Radboud Institute for Health Sciences, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA, Nijmegen, The Netherlands
| | - Rick Greupink
- Department of Pharmacology and Toxicology, Radboud Institute for Health Sciences, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA, Nijmegen, The Netherlands
| | - Saskia N de Wildt
- Department of Pharmacology and Toxicology, Radboud Institute for Health Sciences, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA, Nijmegen, The Netherlands
- Intensive Care and Department of Paediatric Surgery, Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands
| |
Collapse
|
21
|
Streekstra EJ, Kiss M, van den Heuvel J, Nicolaï J, van den Broek P, Botden SMBI, Stommel MWJ, van Rijssel L, Ungell A, van de Steeg E, Russel FGM, de Wildt SN. A proof of concept using the Ussing chamber methodology to study pediatric intestinal drug transport and age-dependent differences in absorption. Clin Transl Sci 2022; 15:2392-2402. [PMID: 35962572 PMCID: PMC9579398 DOI: 10.1111/cts.13368] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/30/2022] [Accepted: 07/01/2022] [Indexed: 01/25/2023] Open
Abstract
Little is known about the impact of age on the processes governing human intestinal drug absorption. The Ussing chamber is a system to study drug transport across tissue barriers, but it has not been used to study drug absorption processes in children. This study aimed to explore the feasibility of the Ussing chamber methodology to assess pediatric intestinal drug absorption. Furthermore, differences between intestinal drug transport processes of children and adults were explored as well as the possible impact of age. Fresh terminal ileal leftover tissues from both children and adults were collected during surgery and prepared for Ussing chamber experiments. Paracellular (enalaprilat), transcellular (propranolol), and carrier-mediated drug transport by MDR1 (talinolol) and BCRP (rosuvastatin) were determined with the Ussing chamber methodology. We calculated apparent permeability coefficients and efflux ratios and explored their relationship with postnatal age. The success rate for the Ussing chamber experiments, as determined by electrophysiological measurements, was similar between children (58%, N = 15, median age: 44 weeks; range 8 weeks to 17 years) and adults (67%, N = 13). Mean serosal to mucosal transport of talinolol by MDR1 and rosuvastatin by BCRP was higher in adult than in pediatric tissues (p = 0.0005 and p = 0.0091). In contrast, within our pediatric cohort, there was no clear correlation for efflux transport across different ages. In conclusion, the Ussing chamber is a suitable model to explore pediatric intestinal drug absorption and can be used to further elucidate ontogeny of individual intestinal pharmacokinetic processes like drug metabolism and transport.
Collapse
Affiliation(s)
- Eva J. Streekstra
- Department of Pharmacology and ToxicologyRadboud University Medical CenterNijmegenThe Netherlands,Department of Metabolic Health ResearchTNOZeistThe Netherlands
| | - Márton Kiss
- Department of Pharmacology and ToxicologyRadboud University Medical CenterNijmegenThe Netherlands
| | - Jeroen van den Heuvel
- Department of Pharmacology and ToxicologyRadboud University Medical CenterNijmegenThe Netherlands
| | - Johan Nicolaï
- Development ScienceUCB Biopharma SRLBraine‐l'AlleudBelgium
| | - Petra van den Broek
- Department of Pharmacology and ToxicologyRadboud University Medical CenterNijmegenThe Netherlands
| | - Sanne M. B. I. Botden
- Department of Pediatric SurgeryRadboudumc‐Amalia Children's HospitalNijmegenThe Netherlands
| | | | - Lara van Rijssel
- Department of Pharmacology and ToxicologyRadboud University Medical CenterNijmegenThe Netherlands
| | | | | | - Frans G. M. Russel
- Department of Pharmacology and ToxicologyRadboud University Medical CenterNijmegenThe Netherlands
| | - Saskia N. de Wildt
- Department of Pharmacology and ToxicologyRadboud University Medical CenterNijmegenThe Netherlands,Intensive Care and Department of Pediatric SurgeryErasmus MC‐Sophia Children's HospitalRotterdamThe Netherlands
| |
Collapse
|
22
|
Kamath A, Srinivasamurthy SK, Chowta MN, Ullal SD, Daali Y, Chakradhara Rao US. Role of Drug Transporters in Elucidating Inter-Individual Variability in Pediatric Chemotherapy-Related Toxicities and Response. Pharmaceuticals (Basel) 2022; 15:990. [PMID: 36015138 PMCID: PMC9415926 DOI: 10.3390/ph15080990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/01/2022] [Accepted: 08/04/2022] [Indexed: 11/16/2022] Open
Abstract
Pediatric cancer treatment has evolved significantly in recent decades. The implementation of risk stratification strategies and the selection of evidence-based chemotherapy combinations have improved survival outcomes. However, there is large interindividual variability in terms of chemotherapy-related toxicities and, sometimes, the response among this population. This variability is partly attributed to the functional variability of drug-metabolizing enzymes (DME) and drug transporters (DTS) involved in the process of absorption, distribution, metabolism and excretion (ADME). The DTS, being ubiquitous, affects drug disposition across membranes and has relevance in determining chemotherapy response in pediatric cancer patients. Among the factors affecting DTS function, ontogeny or maturation is important in the pediatric population. In this narrative review, we describe the role of drug uptake/efflux transporters in defining pediatric chemotherapy-treatment-related toxicities and responses. Developmental differences in DTS and the consequent implications are also briefly discussed for the most commonly used chemotherapeutic drugs in the pediatric population.
Collapse
Affiliation(s)
- Ashwin Kamath
- Department of Pharmacology, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal 575001, India
| | - Suresh Kumar Srinivasamurthy
- Department of Pharmacology, Ras Al Khaimah College of Medical Sciences, Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah P.O. Box 11172, United Arab Emirates
| | - Mukta N Chowta
- Department of Pharmacology, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal 575001, India
| | - Sheetal D Ullal
- Department of Pharmacology, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal 575001, India
| | - Youssef Daali
- Department of Anaesthesiology, Pharmacology, Intensive Care and Emergency Medicine, Division of Clinical Pharmacology and Toxicology, Geneva University Hospitals, 1205 Geneva, Switzerland
| | - Uppugunduri S Chakradhara Rao
- Department of Pharmacology, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal 575001, India
- CANSEARCH Research Platform in Pediatric Oncology and Hematology, Department of Pediatrics, Gynecology and Obstetrics, University of Geneva, 1205 Geneva, Switzerland
| |
Collapse
|
23
|
Ahire D, Kruger L, Sharma S, Mettu VS, Basit A, Prasad B. Quantitative Proteomics in Translational Absorption, Distribution, Metabolism, and Excretion and Precision Medicine. Pharmacol Rev 2022; 74:769-796. [PMID: 35738681 DOI: 10.1124/pharmrev.121.000449] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A reliable translation of in vitro and preclinical data on drug absorption, distribution, metabolism, and excretion (ADME) to humans is important for safe and effective drug development. Precision medicine that is expected to provide the right clinical dose for the right patient at the right time requires a comprehensive understanding of population factors affecting drug disposition and response. Characterization of drug-metabolizing enzymes and transporters for the protein abundance and their interindividual as well as differential tissue and cross-species variabilities is important for translational ADME and precision medicine. This review first provides a brief overview of quantitative proteomics principles including liquid chromatography-tandem mass spectrometry tools, data acquisition approaches, proteomics sample preparation techniques, and quality controls for ensuring rigor and reproducibility in protein quantification data. Then, potential applications of quantitative proteomics in the translation of in vitro and preclinical data as well as prediction of interindividual variability are discussed in detail with tabulated examples. The applications of quantitative proteomics data in physiologically based pharmacokinetic modeling for ADME prediction are discussed with representative case examples. Finally, various considerations for reliable quantitative proteomics analysis for translational ADME and precision medicine and the future directions are discussed. SIGNIFICANCE STATEMENT: Quantitative proteomics analysis of drug-metabolizing enzymes and transporters in humans and preclinical species provides key physiological information that assists in the translation of in vitro and preclinical data to humans. This review provides the principles and applications of quantitative proteomics in characterizing in vitro, ex vivo, and preclinical models for translational research and interindividual variability prediction. Integration of these data into physiologically based pharmacokinetic modeling is proving to be critical for safe, effective, timely, and cost-effective drug development.
Collapse
Affiliation(s)
- Deepak Ahire
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington
| | - Laken Kruger
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington
| | - Sheena Sharma
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington
| | - Vijaya Saradhi Mettu
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington
| | - Abdul Basit
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington
| | - Bhagwat Prasad
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington
| |
Collapse
|
24
|
Salem F, Small BG, Johnson TN. Development and application of a pediatric mechanistic kidney model. CPT Pharmacometrics Syst Pharmacol 2022; 11:854-866. [PMID: 35506351 PMCID: PMC9286721 DOI: 10.1002/psp4.12798] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/25/2022] [Accepted: 03/28/2022] [Indexed: 11/19/2022] Open
Abstract
Pediatric physiologically‐based pharmacokinetic (P‐PBPK) models have been used to predict age related changes in the pharmacokinetics (PKs) of renally cleared drugs mainly in relation to changes in glomerular filtration rate. With emerging data on ontogeny of renal transporters, mechanistic models of renal clearance accounting for the role of active and passive secretion should be developed and evaluated. Data on age‐related physiological changes and ontogeny of renal transporters were applied into a mechanistic kidney within a P‐PBPK model. Plasma concentration–time profile and PK parameters of cimetidine, ciprofloxacin, metformin, tenofovir, and zidovudine were predicted in subjects aged 1 day to 18 years. The predicted and observed plasma concentration–time profiles and PK parameters were compared. The predicted concentration–time profile means and 5th and 95th percent intervals generally captured the observed data and variability in various studies. Overall, based on drugs and age bands, predicted to observed clearance were all within two‐fold and in 11 of 16 cases within 1.5‐fold. Predicted to observed area under the curve (AUC) and maximum plasma concentration (Cmax) were within two‐fold in 12 of 14 and 12 of 15 cases, respectively. Predictions in neonates and early infants (up to 14 weeks postnatal age) were reasonable with 15–20 predicted PK parameters within two‐fold of the observed. ciprofloxacin but not zidovudine PK predictions were sensitive to basal kidney uptake transporter ontogeny. The results indicate that a mechanistic kidney model accounting for physiology and ontogeny of renal processes and transporters can predict the PK of renally excreted drugs in children. Further data especially in neonates are required to verify the model and ontogeny profiles.
Collapse
Affiliation(s)
- Farzaneh Salem
- Drug Metabolism and Pharmacokinetics GlaxoSmithKline R&D Ware UK
| | | | | |
Collapse
|
25
|
Zhang L, Liu Q, Huang SM, Lionberger R. Transporters in Regulatory Science: Notable Contributions from Dr. Giacomini in the Past Two Decades. Drug Metab Dispos 2022; 50:DMD-MR-2021-000706. [PMID: 35768075 PMCID: PMC9488972 DOI: 10.1124/dmd.121.000706] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 05/15/2022] [Accepted: 05/23/2022] [Indexed: 11/22/2022] Open
Abstract
Transporters govern the access of molecules to cells or their exit from cells, thereby controlling the overall distribution of drugs to their intracellular site of action. Clinically relevant drug-drug interactions mediated by transporters are of increasing interest in drug development. Drug transporters, acting alone or in concert with drug metabolizing enzymes, can play an important role in modulating drug absorption, distribution, metabolism, and excretion, thus affecting the pharmacokinetics and/or pharmacodynamics of a drug. Dr. Kathy Giacomini from the University of California, San Francisco is one of the world leaders in transporters and pharmacogenetics with key contributions to transporter science. Her contributions to transporter science are noteworthy. This review paper will summarize Dr. Giacomini's key contributions and influence on transporters in regulatory science in the past two decades. Regulatory science research highlighted in this review covers various aspects of transporter science including understanding the effect of renal impairment on transporters, transporter ontogeny, biomarkers for transporters, and interactions of excipients with transporters affecting drug absorption. Significance Statement This review paper highlights Dr. Giacomini's key contributions and influence on transporters in regulatory science in the past two decades. She has been at the cutting edge of science pertaining to drug transport, drug disposition, and regulatory science, leading to new era of translational sciences pertaining to drug disposition and transporter biology. Her research has and will continue to bring enormous impact on gaining new knowledge in guiding drug development and inspire scientists from all sectors in the field.
Collapse
Affiliation(s)
- Lei Zhang
- Office of Research and Standards, Office of Generic Drugs, FDA, United States
| | - Qi Liu
- Office of Clinical Pharmacology, Office of Translational Sciences, FDA, United States
| | - Shiew-Mei Huang
- Office of Clinical Pharmacology, Office of Translational Sciences, FDA, United States
| | - Robert Lionberger
- Office of Research and Standards, Office of Generic Drugs, FDA, United States
| |
Collapse
|
26
|
Tan SPF, Scotcher D, Rostami-Hodjegan A, Galetin A. Effect of Chronic Kidney Disease on the Renal Secretion via Organic Anion Transporters 1/3: Implications for Physiologically-Based Pharmacokinetic Modeling and Dose Adjustment. Clin Pharmacol Ther 2022; 112:643-652. [PMID: 35569107 PMCID: PMC9540491 DOI: 10.1002/cpt.2642] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 05/07/2022] [Indexed: 12/14/2022]
Abstract
There is growing evidence that active tubular secretory clearance (CLs) may not decline proportionally with the glomerular filtration rate (GFR) in chronic kidney disease (CKD), leading to the overestimation of renal clearance (CLr) when using solely GFR to approximate disease effect on renal elimination. The clinical pharmacokinetic data of 33 renally secreted OAT1/3 substrates were collated to investigate the impact of mild, moderate, and severe CKD on CLr, tubular secretion and protein binding (fu,p). The fu,p of the collated substrates ranged from 0.0026 to 1.0 in healthy populations; observed CKD‐related increase in the fu,p (up to 2.7‐fold) of 8 highly bound substrates (fu,p ≤ 0.2) was accounted for in the analysis. Use of prediction equation based on disease‐related changes in albumin resulted in underprediction of the CKD‐related increase in fu,p of highly bound substrates, highlighting the necessity to measure protein binding in severe CKD. The critical analysis of clinical data for 33 OAT1/3 probes established that decrease in OAT1/3 activity proportional to the changes in GFR was insufficient to recapitulate effects of severe CKD on unbound tubular secretion clearance. OAT1/3‐mediated CLs was estimated to decline by an additional 50% relative to the GFR decline in severe CKD, whereas change in active secretion in mild and moderate CKD was proportional to GFR. Consideration of this additional 50% decline in OAT1/3‐mediated CLs is recommended for physiologically‐based pharmacokinetic models and dose adjustment of OAT1/3 substrates in severe CKD, especially for substrates with high contribution of the active secretion to CLr.
Collapse
Affiliation(s)
- Shawn Pei Feng Tan
- Centre for Applied Pharmacokinetic Research, School of Health Sciences, University of Manchester, Manchester, UK
| | - Daniel Scotcher
- Centre for Applied Pharmacokinetic Research, School of Health Sciences, University of Manchester, Manchester, UK
| | - Amin Rostami-Hodjegan
- Centre for Applied Pharmacokinetic Research, School of Health Sciences, University of Manchester, Manchester, UK.,Certara UK (Simcyp Division), Sheffield, UK
| | - Aleksandra Galetin
- Centre for Applied Pharmacokinetic Research, School of Health Sciences, University of Manchester, Manchester, UK
| |
Collapse
|
27
|
Chu X, Prasad B, Neuhoff S, Yoshida K, Leeder JS, Mukherjee D, Taskar K, Varma MVS, Zhang X, Yang X, Galetin A. Clinical Implications of Altered Drug Transporter Abundance/Function and PBPK Modeling in Specific Populations: An ITC Perspective. Clin Pharmacol Ther 2022; 112:501-526. [PMID: 35561140 DOI: 10.1002/cpt.2643] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 05/09/2022] [Indexed: 12/13/2022]
Abstract
The role of membrane transporters on pharmacokinetics (PKs), drug-drug interactions (DDIs), pharmacodynamics (PDs), and toxicity of drugs has been broadly recognized. However, our knowledge of modulation of transporter expression and/or function in the diseased patient population or specific populations, such as pediatrics or pregnancy, is still emerging. This white paper highlights recent advances in studying the changes in transporter expression and activity in various diseases (i.e., renal and hepatic impairment and cancer) and some specific populations (i.e., pediatrics and pregnancy) with the focus on clinical implications. Proposed alterations in transporter abundance and/or activity in diseased and specific populations are based on (i) quantitative transporter proteomic data and relative abundance in specific populations vs. healthy adults, (ii) clinical PKs, and emerging transporter biomarker and/or pharmacogenomic data, and (iii) physiologically-based pharmacokinetic modeling and simulation. The potential for altered PK, PD, and toxicity in these populations needs to be considered for drugs and their active metabolites in which transporter-mediated uptake/efflux is a major contributor to their absorption, distribution, and elimination pathways and/or associated DDI risk. In addition to best practices, this white paper discusses current challenges and knowledge gaps to study and quantitatively predict the effects of modulation in transporter activity in these populations, together with the perspectives from the International Transporter Consortium (ITC) on future directions.
Collapse
Affiliation(s)
- Xiaoyan Chu
- Department of ADME and Discovery Toxicology, Merck & Co., Inc., Kenilworth, New Jersey, USA
| | - Bhagwat Prasad
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington, USA
| | | | - Kenta Yoshida
- Clinical Pharmacology, Genentech Research and Early Development, South San Francisco, California, USA
| | - James Steven Leeder
- Division of Clinical Pharmacology, Toxicology and Therapeutic Innovation, Children's Mercy Kansas City, Kansas City, Missouri, USA
| | - Dwaipayan Mukherjee
- Clinical Pharmacology & Pharmacometrics, Research & Development, AbbVie, Inc., North Chicago, Illinois, USA
| | | | - Manthena V S Varma
- Pharmacokinetics, Dynamics and Metabolism, Medicine Design, Worldwide R&D, Pfizer Inc, Groton, Connecticut, USA
| | - Xinyuan Zhang
- Office of Clinical Pharmacology, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, USA
| | - Xinning Yang
- Office of Clinical Pharmacology, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, USA
| | - Aleksandra Galetin
- Centre for Applied Pharmacokinetic Research, School of Health Sciences, The University of Manchester, Manchester, UK
| |
Collapse
|
28
|
Hermann R, Krajcsi P, Fluck M, Seithel-Keuth A, Bytyqi A, Galazka A, Munafo A. Cladribine as a Potential Object of Nucleoside Transporter-Based Drug Interactions. Clin Pharmacokinet 2022; 61:167-187. [PMID: 34894346 PMCID: PMC8813788 DOI: 10.1007/s40262-021-01089-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/07/2021] [Indexed: 12/15/2022]
Abstract
Cladribine is a nucleoside analog that is phosphorylated in its target cells (B and T-lymphocytes) to its active triphosphate form (2-chlorodeoxyadenosine triphosphate). Cladribine tablets 10 mg (Mavenclad®), administered for up to 10 days per year in 2 consecutive years (3.5-mg/kg cumulative dose over 2 years), are used to treat patients with relapsing multiple sclerosis. Cladribine has been shown to be a substrate of various nucleoside transporters (NTs). Intestinal absorption and distribution of cladribine throughout the body appear to be essentially mediated by equilibrative NTs (ENTs) and concentrative NTs (CNTs), specifically by ENT1, ENT2, ENT4, CNT2 (low affinity), and CNT3. Other efficient transporters of cladribine are the ABC efflux transporters, specifically breast cancer resistance protein, which likely modulates the oral absorption and renal excretion of cladribine. A key transporter for the intracellular uptake of cladribine into B and T-lymphocytes is ENT1 with ancillary contributions of ENT2 and CNT2. Transporter-based drug interactions affecting absorption and target cellular uptake of a prodrug such as cladribine are likely to reduce systemic bioavailability and target cell exposure, thereby possibly hampering clinical efficacy. In order to manage optimized therapy, i.e., to ensure uncompromised target cell uptake to preserve the full therapeutic potential of cladribine, it is important that clinicians are aware of the existence of NT-inhibiting medicinal products, various lifestyle drugs, and food components. This article reviews the existing knowledge on inhibitors of NT, which may alter cladribine absorption, distribution, and uptake into target cells, thereby summarizing the existing knowledge on optimized methods of administration and concomitant drugs that should be avoided during cladribine treatment.
Collapse
Affiliation(s)
- Robert Hermann
- Clinical Research Appliance (cr.appliance), Heinrich-Vingerhut-Weg 3, 63571, Gelnhausen, Germany.
| | | | | | | | | | - Andrew Galazka
- An Affiliate of Merck KGaA, Ares Trading SA, Eysins, Switzerland
| | - Alain Munafo
- An Affiliate of Merck KGaA, Merck Institute of Pharmacometrics, Lausanne, Switzerland
| |
Collapse
|
29
|
Järvinen E, Deng F, Kiander W, Sinokki A, Kidron H, Sjöstedt N. The Role of Uptake and Efflux Transporters in the Disposition of Glucuronide and Sulfate Conjugates. Front Pharmacol 2022; 12:802539. [PMID: 35095509 PMCID: PMC8793843 DOI: 10.3389/fphar.2021.802539] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 12/06/2021] [Indexed: 12/11/2022] Open
Abstract
Glucuronidation and sulfation are the most typical phase II metabolic reactions of drugs. The resulting glucuronide and sulfate conjugates are generally considered inactive and safe. They may, however, be the most prominent drug-related material in the circulation and excreta of humans. The glucuronide and sulfate metabolites of drugs typically have limited cell membrane permeability and subsequently, their distribution and excretion from the human body requires transport proteins. Uptake transporters, such as organic anion transporters (OATs and OATPs), mediate the uptake of conjugates into the liver and kidney, while efflux transporters, such as multidrug resistance proteins (MRPs) and breast cancer resistance protein (BCRP), mediate expulsion of conjugates into bile, urine and the intestinal lumen. Understanding the active transport of conjugated drug metabolites is important for predicting the fate of a drug in the body and its safety and efficacy. The aim of this review is to compile the understanding of transporter-mediated disposition of phase II conjugates. We review the literature on hepatic, intestinal and renal uptake transporters participating in the transport of glucuronide and sulfate metabolites of drugs, other xenobiotics and endobiotics. In addition, we provide an update on the involvement of efflux transporters in the disposition of glucuronide and sulfate metabolites. Finally, we discuss the interplay between uptake and efflux transport in the intestine, liver and kidneys as well as the role of transporters in glucuronide and sulfate conjugate toxicity, drug interactions, pharmacogenetics and species differences.
Collapse
Affiliation(s)
- Erkka Järvinen
- Clinical Pharmacology, Pharmacy, and Environmental Medicine, Department of Public Health, University of Southern Denmark, Odense, Denmark
| | - Feng Deng
- Department of Clinical Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Wilma Kiander
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Alli Sinokki
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Heidi Kidron
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Noora Sjöstedt
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| |
Collapse
|
30
|
Affiliation(s)
| | - William Hope
- Antimicrobial Pharmacodynamics and Therapeutics, University of Liverpool, Liverpool, UK
| |
Collapse
|
31
|
Weyrich A, Frericks M, Eichenlaub M, Schneider S, Hofmann T, Van Cruchten S, van Ravenzwaay B. Ontogeny of renal, hepatic, and placental expression of ATP-binding cassette and solute carrier transporters in the rat and the rabbit. Reprod Toxicol 2022; 107:1-9. [PMID: 34757165 DOI: 10.1016/j.reprotox.2021.10.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 09/14/2021] [Accepted: 10/07/2021] [Indexed: 02/08/2023]
Abstract
Species differences in developmental toxicity can be due to varying expression of xenobiotic transporters. Hence, knowledge on the ontogeny of these transporters, especially in human, rat and rabbit, is pivotal. Two superfamilies of transporters, the ATP-binding cassette (ABC) and the solute carrier (SLC) transporters, are well known for their role in the absorption, distribution and/or elimination of xenobiotics and endogenous substances. The aim of this study was to compare the expression levels of these xenobiotic transporters in liver, kidney and placenta of man, Wistar rat and New Zealand White rabbit during pre- and postnatal development. For this purpose, qPCR experiments were performed for rat and rabbit tissues and the gene expression profiles were compared with literature data from man, rat and rabbit. Data analysis showed large differences in transporter expression in development and between species. These results can be used to better understand developmental toxicity findings in non-clinical species and their relevance for man.
Collapse
Affiliation(s)
- Anastasia Weyrich
- Experimental Toxicology and Ecology, BASF SE, Carl-Bosch-Straße 38, 67056, Ludwigshafen, Germany.
| | - Markus Frericks
- Experimental Toxicology and Ecology, BASF SE, Carl-Bosch-Straße 38, 67056, Ludwigshafen, Germany
| | - Michael Eichenlaub
- Bioscience Research, BASF SE, Carl-Bosch-Straße 38, 67056, Ludwigshafen, Germany
| | - Steffen Schneider
- Experimental Toxicology and Ecology, BASF SE, Carl-Bosch-Straße 38, 67056, Ludwigshafen, Germany
| | - Thomas Hofmann
- Experimental Toxicology and Ecology, BASF SE, Carl-Bosch-Straße 38, 67056, Ludwigshafen, Germany
| | - Steven Van Cruchten
- Department of Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Bennard van Ravenzwaay
- Experimental Toxicology and Ecology, BASF SE, Carl-Bosch-Straße 38, 67056, Ludwigshafen, Germany
| |
Collapse
|
32
|
Hartman SJF, Upadhyay PJ, Mathôt RAA, van der Flier M, Schreuder MF, Brüggemann RJ, Knibbe CA, de Wildt SN. OUP accepted manuscript. J Antimicrob Chemother 2022; 77:1725-1732. [PMID: 35383374 PMCID: PMC9155601 DOI: 10.1093/jac/dkac095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 03/03/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Stan J. F. Hartman
- Department of Pharmacology and Toxicology, Radboud Institute of Health Sciences, Radboudumc, Nijmegen, The Netherlands
| | - Parth J. Upadhyay
- Systems Biomedicine and Pharmacology, Leiden Academic Center for Drug Research, Leiden University, Leiden, The Netherlands
| | - Ron A. A. Mathôt
- Department of Clinical Pharmacology and Hospital Pharmacy - Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Michiel van der Flier
- Pediatric Infectious Diseases and Immunology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands
- Pediatric Infectious Diseases and Immunology, Amalia Children's Hospital, and Section Pediatric Infectious Diseases, Radboudumc, Nijmegen, The Netherlands
| | - Michiel F. Schreuder
- Department of Pediatrics, Division of Pediatric Nephrology, Amalia Children’s Hospital, Radboud Institute of Molecular Life Sciences, Radboudumc, Nijmegen, The Netherlands
| | | | - Catherijne A. Knibbe
- Systems Biomedicine and Pharmacology, Leiden Academic Center for Drug Research, Leiden University, Leiden, The Netherlands
- Department of Clinical Pharmacy, St. Antonius Hospital, Nieuwegein, The Netherlands
| | - Saskia N. de Wildt
- Department of Pharmacology and Toxicology, Radboud Institute of Health Sciences, Radboudumc, Nijmegen, The Netherlands
- Intensive Care and Department of Pediatric Surgery, Erasmus MC-Sophia Children’s Hospital, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Intensive Care Medicine, Radboud Institute of Health Sciences, Radboudumc, Nijmegen, The Netherlands
- Corresponding author. E-mail:
| |
Collapse
|
33
|
Yee SW, Giacomini KM. Emerging Roles of the Human Solute Carrier 22 Family. Drug Metab Dispos 2021; 50:DMD-MR-2021-000702. [PMID: 34921098 PMCID: PMC9488978 DOI: 10.1124/dmd.121.000702] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/22/2021] [Accepted: 12/08/2021] [Indexed: 11/22/2022] Open
Abstract
The human Solute Carrier 22 family (SLC22), also termed the organic ion transporter family, consists of 28 distinct multi-membrane spanning proteins, which phylogenetically cluster together according to their charge specificity for organic cations (OCTs), organic anions (OATs) and organic zwitterion/cations (OCTNs). Some SLC22 family members are well characterized in terms of their substrates, transport mechanisms and expression patterns, as well as their roles in human physiology and pharmacology, whereas others remain orphans with no known ligands. Pharmacologically, SLC22 family members play major roles as determinants of the absorption and disposition of many prescription drugs, and several including the renal transporters, OCT2, OAT1 and OAT3 are targets for many clinically important drug-drug interactions. In addition, mutations in some of these transporters (SLC22A5 (OCTN2) and SLC22A12 (URAT1) lead to rare monogenic disorders. Genetic polymorphisms in SLC22 transporters have been associated with common human disease, drug response and various phenotypic traits. Three members in this family were deorphaned in very recently: SLC22A14, SLC22A15 and SLC22A24, and found to transport specific compounds such as riboflavin (SLC22A14), anti-oxidant zwitterions (SLC22A15) and steroid conjugates (SLC22A24). Their physiologic and pharmacological roles need further investigation. This review aims to summarize the substrates, expression patterns and transporter mechanisms of individual SLC22 family members and their roles in human disease and drug disposition and response. Gaps in our understanding of SLC22 family members are described. Significance Statement In recent years, three members of the SLC22 family of transporters have been deorphaned and found to play important roles in the transport of diverse solutes. New research has furthered our understanding of the mechanisms, pharmacological roles, and clinical impact of SLC22 transporters. This minireview provides overview of SLC22 family members of their physiologic and pharmacologic roles, the impact of genetic variants in the SLC22 family on disease and drug response, and summary of recent studies deorphaning SLC22 family members.
Collapse
Affiliation(s)
- Sook Wah Yee
- Bioengineering and Therapeutic Sciences, Univerity of California, San Francisco, United States
| | - Kathleen M Giacomini
- Bioengineering and Therapeutic Sciences, Univerity of California, San Francisco, United States
| |
Collapse
|
34
|
Neuhoff S, Harwood MD, Rostami-Hodjegan A, Achour B. Application of proteomic data in the translation of in vitro observations to associated clinical outcomes. DRUG DISCOVERY TODAY. TECHNOLOGIES 2021; 39:13-22. [PMID: 34906322 DOI: 10.1016/j.ddtec.2021.06.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 04/20/2021] [Accepted: 06/11/2021] [Indexed: 12/12/2022]
Abstract
Translation of information on drug exposure and effect is facilitated by in silico models that enable extrapolation of in vitro measurements to in vivo clinical outcomes. These models integrate drug-specific data with information describing physiological processes and pathological changes, including alterations to proteins involved in drug absorption, distribution and elimination. Over the past 15 years, quantitative proteomics has contributed a wealth of protein expression data, which are currently used for a variety of systems pharmacology applications, as a complement or a surrogate for activity of the corresponding proteins. In this review, we explore current and emerging applications of targeted and global (untargeted) proteomics in translational pharmacology as well as strategies for improved integration into model-based drug development.
Collapse
Affiliation(s)
- Sibylle Neuhoff
- Certara UK Limited, Simcyp Division, 1 Concourse Way, Sheffield, S1 2BJ, UK
| | - Matthew D Harwood
- Certara UK Limited, Simcyp Division, 1 Concourse Way, Sheffield, S1 2BJ, UK
| | - Amin Rostami-Hodjegan
- Certara UK Limited, Simcyp Division, 1 Concourse Way, Sheffield, S1 2BJ, UK; Centre for Applied Pharmacokinetic Research (CAPKR), School of Health Sciences, University of Manchester, Stopford Building, Oxford Road, Manchester, M13 9PT, UK
| | - Brahim Achour
- Centre for Applied Pharmacokinetic Research (CAPKR), School of Health Sciences, University of Manchester, Stopford Building, Oxford Road, Manchester, M13 9PT, UK.
| |
Collapse
|
35
|
Streekstra EJ, Russel FGM, van de Steeg E, de Wildt SN. Application of proteomics to understand maturation of drug metabolizing enzymes and transporters for the optimization of pediatric drug therapy. DRUG DISCOVERY TODAY. TECHNOLOGIES 2021; 39:31-48. [PMID: 34906324 DOI: 10.1016/j.ddtec.2021.06.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 04/22/2021] [Accepted: 06/21/2021] [Indexed: 12/23/2022]
Abstract
Drug disposition in children is different compared to adults. Growth and developmental change the processes involved in drug disposition and efficacy, including membrane transporters and drug metabolizing enzymes, but for many of these proteins, the exact changes have not been fully elucidated to date. Quantitative proteomics offers a solution to analyze many DME and DT proteins at once and can be performed with very small tissue samples, overcoming many of the challenges previously limiting research in this pediatric field. Liquid chromatography tandem mass spectrometry (LC-MS/MS) based methods for quantification of (membrane) proteins has evolved as a golden standard for proteomic analysis. The last years, big steps have been made in maturation studies of hepatic and renal drug transporters and drug metabolizing enzymes using this method. Protein and organ specific maturation patterns have been identified for the human liver and kidney, which aids pharmacological modelling and predicting drug dosing in the pediatric population. Further research should focus on other organs, like intestine and brain, as well as on innovative methods in which proteomics can be used to further overcome the limited access to pediatric tissues, including liquid biopsies and organoids. In this review there is aimed to provide an overview of available human pediatric proteomics data, discuss its challenges and provide guidance for future research.
Collapse
Affiliation(s)
- Eva J Streekstra
- Department of Pharmacology and Toxicology, Radboud Institute for Health Sciences, Radboud University Medical Center, Geert Grooteplein 21, Nijmegen 6525 EZ, The Netherlands
| | - Frans G M Russel
- Department of Pharmacology and Toxicology, Radboud Institute for Health Sciences, Radboud University Medical Center, Geert Grooteplein 21, Nijmegen 6525 EZ, The Netherlands
| | | | - Saskia N de Wildt
- Department of Pharmacology and Toxicology, Radboud Institute for Health Sciences, Radboud University Medical Center, Geert Grooteplein 21, Nijmegen 6525 EZ, The Netherlands; Intensive Care and Department of Pediatric Surgery, Erasmus MC Sophia Children Hospital, Wytemaweg 50, 3011 CN Rotterdam, The Netherlands.
| |
Collapse
|
36
|
Ganguly S, Edginton AN, Gerhart JG, Cohen-Wolkowiez M, Greenberg RG, Gonzalez D. Physiologically Based Pharmacokinetic Modeling of Meropenem in Preterm and Term Infants. Clin Pharmacokinet 2021; 60:1591-1604. [PMID: 34155614 PMCID: PMC8616812 DOI: 10.1007/s40262-021-01046-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/01/2021] [Indexed: 12/18/2022]
Abstract
BACKGROUND Meropenem is a broad-spectrum carbapenem antibiotic approved by the US Food and Drug Administration for use in pediatric patients, including treating complicated intra-abdominal infections in infants < 3 months of age. The impact of maturation in glomerular filtration rate and tubular secretion by renal transporters on meropenem pharmacokinetics, and the effect on meropenem dosing, remains unknown. We applied physiologically based pharmacokinetic (PBPK) modeling to characterize the disposition of meropenem in preterm and term infants. METHODS An adult meropenem PBPK model was developed in PK-Sim® (Version 8) and scaled to infants accounting for renal transporter ontogeny and glomerular filtration rate maturation. The PBPK model was evaluated using 645 plasma concentrations from 181 infants (gestational age 23-40 weeks; postnatal age 1-95 days). The PBPK model-based simulations were performed to evaluate meropenem dosing in the product label for infants < 3 months of age treated for complicated intra-abdominal infections. RESULTS Our model predicted plasma concentrations in infants in agreement with the observed data (average fold error of 0.90). The PBPK model-predicted clearance in a virtual infant population was successfully able to capture the post hoc estimated clearance of meropenem in this population, estimated by a previously published model. For 90% of virtual infants, a 4-mg/L target plasma concentration was achieved for > 50% of the dosing interval following product label-recommended dosing. CONCLUSIONS Our PBPK model supports the meropenem dosing regimens recommended in the product label for infants <3 months of age.
Collapse
Affiliation(s)
- Samit Ganguly
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, 301 Pharmacy Lane, Campus Box #7569, Chapel Hill, NC, 27599-7569, USA
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY, USA
| | | | - Jacqueline G Gerhart
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, 301 Pharmacy Lane, Campus Box #7569, Chapel Hill, NC, 27599-7569, USA
| | - Michael Cohen-Wolkowiez
- Duke Clinical Research Institute, Durham, NC, USA
- Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA
| | - Rachel G Greenberg
- Duke Clinical Research Institute, Durham, NC, USA
- Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA
| | - Daniel Gonzalez
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, 301 Pharmacy Lane, Campus Box #7569, Chapel Hill, NC, 27599-7569, USA.
| |
Collapse
|
37
|
Cheong EJY, Ng DZW, Chin SY, Wang Z, Chan ECY. Application of a PBPK Model of Rivaroxaban to Prospective Simulations of Drug-Drug-Disease Interactions with Protein Kinase Inhibitors in CA-VTE. Br J Clin Pharmacol 2021; 88:2267-2283. [PMID: 34837258 DOI: 10.1111/bcp.15158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 10/24/2021] [Accepted: 11/08/2021] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND AND PURPOSE Rivaroxaban is a viable anticoagulant for the management of cancer associated venous thromboembolism (CA-VTE). A previously verified physiologically-based pharmacokinetic (PBPK) model of rivaroxaban established how its multiple pathways of elimination via both CYP3A4/2J2-mediated hepatic metabolism and organic anion transporter 3 (OAT3)/P-glycoprotein-mediated renal secretion predisposes rivaroxaban to drug-drug-disease interactions (DDDIs) with clinically relevant protein kinase inhibitors (PKIs). We proposed the application of PBPK modelling to prospectively interrogate clinically significant DDIs between rivaroxaban and PKIs (erlotinib and nilotinib) for dose adjustments in CA-VTE. EXPERIMENTAL APPROACH The inhibitory potencies of the PKIs on CYP3A4/2J2-mediated metabolism of rivaroxaban were characterized. Using prototypical OAT3 inhibitor ketoconazole, in vitro OAT3 inhibition assays were optimized to ascertain the in vivo relevance of derived transport inhibitory constants (Ki ). Untested DDDIs between rivaroxaban and erlotinib or nilotinib were simulated. KEY RESULTS Mechanism-based inactivation (MBI) of CYP3A4-mediated rivaroxaban metabolism by both PKIs and MBI of CYP2J2 by erlotinib were established. The importance of substrate specificity and nonspecific binding to derive OAT3-inhibitory Ki values of ketoconazole and nilotinib for the accurate prediction of interactions was illustrated. When simulated rivaroxaban exposure variations with concomitant erlotinib and nilotinib therapy were evaluated using published dose-exposure equivalence metrics and bleeding risk analyses, dose reductions from 20 mg to 15 mg and 10 mg in normal and mild renal dysfunction, respectively, were warranted. CONCLUSION AND IMPLICATIONS We established a PBPK-DDDI model to prospectively evaluate clinically relevant interactions between rivaroxaban and PKIs for the safe and efficacious management of CA-VTE.
Collapse
Affiliation(s)
- Eleanor Jing Yi Cheong
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Daniel Zhi Wei Ng
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Sheng Yuan Chin
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Ziteng Wang
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Eric Chun Yong Chan
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore, Singapore
| |
Collapse
|
38
|
Pharmacokinetic/Pharmacodynamic Modelling of Allopurinol, its Active Metabolite Oxypurinol, and Biomarkers Hypoxanthine, Xanthine and Uric Acid in Hypoxic-Ischemic Encephalopathy Neonates. Clin Pharmacokinet 2021; 61:321-333. [PMID: 34617261 PMCID: PMC8813842 DOI: 10.1007/s40262-021-01068-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/10/2021] [Indexed: 12/04/2022]
Abstract
Background Allopurinol, an xanthine oxidase (XO) inhibitor, is a promising intervention that may provide neuroprotection for neonates with hypoxic-ischemic encephalopathy (HIE). Currently, a double-blind, placebo-controlled study (ALBINO, NCT03162653) is investigating the neuroprotective effect of allopurinol in HIE neonates. Objective The aim of the current study was to establish the pharmacokinetics (PK) of allopurinol and oxypurinol, and the pharmacodynamics (PD) of both compounds on hypoxanthine, xanthine, and uric acid in HIE neonates. The dosage used and the effect of allopurinol in this population, either or not undergoing therapeutic hypothermia (TH), were evaluated. Methods Forty-six neonates from the ALBINO study and two historical clinical studies were included. All doses were administered on the first day of life. In the ALBINO study (n = 20), neonates received a first dose of allopurinol 20 mg/kg, and, in the case of TH (n = 13), a second dose of allopurinol 10 mg/kg. In the historical cohorts (n = 26), neonates (all without TH) received two doses of allopurinol 20 mg/kg in total. Allopurinol and oxypurinol population PK, and their effects on inhibiting conversions of hypoxanthine and xanthine to uric acid, were assessed using nonlinear mixed-effects modelling. Results Allopurinol and oxypurinol PK were described by two sequential one-compartment models with an autoinhibition effect on allopurinol metabolism by oxypurinol. For allopurinol, clearance (CL) was 0.83 L/h (95% confidence interval [CI] 0.62–1.09) and volume of distribution (Vd) was 2.43 L (95% CI 2.25–2.63). For metabolite oxypurinol, CL and Vd relative to a formation fraction (fm) were 0.26 L/h (95% CI 0.23–0.3) and 11 L (95% CI 9.9–12.2), respectively. No difference in allopurinol and oxypurinol CL was found between TH and non-TH patients. The effect of allopurinol and oxypurinol on XO inhibition was described by a turnover model of hypoxanthine with sequential metabolites xanthine and uric acid. The combined allopurinol and oxypurinol concentration at the half-maximal XO inhibition was 0.36 mg/L (95% CI 0.31–0.42). Conclusion The PK and PD of allopurinol, oxypurinol, hypoxanthine, xanthine, and uric acid in neonates with HIE were described. The dosing regimen applied in the ALBINO trial leads to the targeted XO inhibition in neonates treated with or without TH. Supplementary Information The online version contains supplementary material available at 10.1007/s40262-021-01068-0.
Collapse
|
39
|
Kiss M, Mbasu R, Nicolaï J, Barnouin K, Kotian A, Mooij MG, Kist N, Wijnen RMH, Ungell AL, Cutler P, Russel FGM, de Wildt SN. Ontogeny of Small Intestinal Drug Transporters and Metabolizing Enzymes Based on Targeted Quantitative Proteomics. Drug Metab Dispos 2021; 49:1038-1046. [PMID: 34548392 DOI: 10.1124/dmd.121.000559] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 09/13/2021] [Indexed: 01/16/2023] Open
Abstract
Most drugs are administered to children orally. An information gap remains on the protein abundance of small intestinal drug-metabolizing enzymes (DMEs) and drug transporters (DTs) across the pediatric age range, which hinders precision dosing in children. To explore age-related differences in DMEs and DTs, surgical leftover intestinal tissues from pediatric and adult jejunum and ileum were collected and analyzed by targeted quantitative proteomics for apical sodium-bile acid transporter, breast cancer resistance protein (BCRP), monocarboxylate transporter 1 (MCT1), multidrug resistance protein 1 (MDR1), multidrug resistance-associated protein (MRP) 2, MRP3, organic anion-transporting polypeptide 2B1, organic cation transporter 1, peptide transporter 1 (PEPT1), CYP2C19, CYP3A4, CYP3A5, UDP glucuronosyltransferase (UGT) 1A1, UGT1A10, and UGT2B7. Samples from 58 children (48 ileums, 10 jejunums, age range: 8 weeks to 17 years) and 16 adults (8 ileums, 8 jejunums) were analyzed. When comparing age groups, BCRP, MDR1, PEPT1, and UGT1A1 abundance was significantly higher in adult ileum as compared with the pediatric ileum. Jejunal BCRP, MRP2, UGT1A1, and CYP3A4 abundance was higher in the adults compared with children 0-2 years of age. Examining the data on a continuous age scale showed that PEPT1 and UGT1A1 abundance was significantly higher, whereas MCT1 and UGT2B7 abundance was lower in adult ileum as compared with the pediatric ileum. Our data contribute to the deeper understanding of the ontogeny of small intestinal drug-metabolizing enzymes and drug transporters and shows DME-, DT-, and intestinal location-specific, age-related changes. SIGNIFICANCE STATEMENT: This is the first study that describes the ontogeny of small intestinal DTs and DMEs in human using liquid chromatography with tandem mass spectrometry-based targeted quantitative proteomics. The current analysis provides a detailed picture about the maturation of DT and DME abundances in the human jejunum and ileum. The presented results supply age-related DT and DME abundance data for building more accurate PBPK models that serve to support safer and more efficient drug dosing regimens for the pediatric population.
Collapse
Affiliation(s)
- Márton Kiss
- Department of Pharmacology and Toxicology, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands (M.K., F.G.M.R., S.N.d.W.); Development Science (R.M., K.B., A.K., P.C.), and Statistical Sciences and Innovation (N.K.), UCB BioPharma, Slough, United Kingdom; Development Science, UCB BioPharma SRL, Braine-l'Alleud, Belgium (J.N., A.-L.U.); Department of Pediatrics, Willem-Alexander Children's Hospital, Leiden University Medical Centre, Leiden, The Netherlands (M.G.M.); and Intensive Care and Department of Pediatric Surgery, Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands (R.M.H.W.)
| | - Richard Mbasu
- Department of Pharmacology and Toxicology, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands (M.K., F.G.M.R., S.N.d.W.); Development Science (R.M., K.B., A.K., P.C.), and Statistical Sciences and Innovation (N.K.), UCB BioPharma, Slough, United Kingdom; Development Science, UCB BioPharma SRL, Braine-l'Alleud, Belgium (J.N., A.-L.U.); Department of Pediatrics, Willem-Alexander Children's Hospital, Leiden University Medical Centre, Leiden, The Netherlands (M.G.M.); and Intensive Care and Department of Pediatric Surgery, Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands (R.M.H.W.)
| | - Johan Nicolaï
- Department of Pharmacology and Toxicology, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands (M.K., F.G.M.R., S.N.d.W.); Development Science (R.M., K.B., A.K., P.C.), and Statistical Sciences and Innovation (N.K.), UCB BioPharma, Slough, United Kingdom; Development Science, UCB BioPharma SRL, Braine-l'Alleud, Belgium (J.N., A.-L.U.); Department of Pediatrics, Willem-Alexander Children's Hospital, Leiden University Medical Centre, Leiden, The Netherlands (M.G.M.); and Intensive Care and Department of Pediatric Surgery, Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands (R.M.H.W.)
| | - Karin Barnouin
- Department of Pharmacology and Toxicology, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands (M.K., F.G.M.R., S.N.d.W.); Development Science (R.M., K.B., A.K., P.C.), and Statistical Sciences and Innovation (N.K.), UCB BioPharma, Slough, United Kingdom; Development Science, UCB BioPharma SRL, Braine-l'Alleud, Belgium (J.N., A.-L.U.); Department of Pediatrics, Willem-Alexander Children's Hospital, Leiden University Medical Centre, Leiden, The Netherlands (M.G.M.); and Intensive Care and Department of Pediatric Surgery, Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands (R.M.H.W.)
| | - Apoorva Kotian
- Department of Pharmacology and Toxicology, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands (M.K., F.G.M.R., S.N.d.W.); Development Science (R.M., K.B., A.K., P.C.), and Statistical Sciences and Innovation (N.K.), UCB BioPharma, Slough, United Kingdom; Development Science, UCB BioPharma SRL, Braine-l'Alleud, Belgium (J.N., A.-L.U.); Department of Pediatrics, Willem-Alexander Children's Hospital, Leiden University Medical Centre, Leiden, The Netherlands (M.G.M.); and Intensive Care and Department of Pediatric Surgery, Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands (R.M.H.W.)
| | - Miriam G Mooij
- Department of Pharmacology and Toxicology, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands (M.K., F.G.M.R., S.N.d.W.); Development Science (R.M., K.B., A.K., P.C.), and Statistical Sciences and Innovation (N.K.), UCB BioPharma, Slough, United Kingdom; Development Science, UCB BioPharma SRL, Braine-l'Alleud, Belgium (J.N., A.-L.U.); Department of Pediatrics, Willem-Alexander Children's Hospital, Leiden University Medical Centre, Leiden, The Netherlands (M.G.M.); and Intensive Care and Department of Pediatric Surgery, Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands (R.M.H.W.)
| | - Nico Kist
- Department of Pharmacology and Toxicology, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands (M.K., F.G.M.R., S.N.d.W.); Development Science (R.M., K.B., A.K., P.C.), and Statistical Sciences and Innovation (N.K.), UCB BioPharma, Slough, United Kingdom; Development Science, UCB BioPharma SRL, Braine-l'Alleud, Belgium (J.N., A.-L.U.); Department of Pediatrics, Willem-Alexander Children's Hospital, Leiden University Medical Centre, Leiden, The Netherlands (M.G.M.); and Intensive Care and Department of Pediatric Surgery, Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands (R.M.H.W.)
| | - Rene M H Wijnen
- Department of Pharmacology and Toxicology, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands (M.K., F.G.M.R., S.N.d.W.); Development Science (R.M., K.B., A.K., P.C.), and Statistical Sciences and Innovation (N.K.), UCB BioPharma, Slough, United Kingdom; Development Science, UCB BioPharma SRL, Braine-l'Alleud, Belgium (J.N., A.-L.U.); Department of Pediatrics, Willem-Alexander Children's Hospital, Leiden University Medical Centre, Leiden, The Netherlands (M.G.M.); and Intensive Care and Department of Pediatric Surgery, Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands (R.M.H.W.)
| | - Anna-Lena Ungell
- Department of Pharmacology and Toxicology, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands (M.K., F.G.M.R., S.N.d.W.); Development Science (R.M., K.B., A.K., P.C.), and Statistical Sciences and Innovation (N.K.), UCB BioPharma, Slough, United Kingdom; Development Science, UCB BioPharma SRL, Braine-l'Alleud, Belgium (J.N., A.-L.U.); Department of Pediatrics, Willem-Alexander Children's Hospital, Leiden University Medical Centre, Leiden, The Netherlands (M.G.M.); and Intensive Care and Department of Pediatric Surgery, Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands (R.M.H.W.)
| | - Paul Cutler
- Department of Pharmacology and Toxicology, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands (M.K., F.G.M.R., S.N.d.W.); Development Science (R.M., K.B., A.K., P.C.), and Statistical Sciences and Innovation (N.K.), UCB BioPharma, Slough, United Kingdom; Development Science, UCB BioPharma SRL, Braine-l'Alleud, Belgium (J.N., A.-L.U.); Department of Pediatrics, Willem-Alexander Children's Hospital, Leiden University Medical Centre, Leiden, The Netherlands (M.G.M.); and Intensive Care and Department of Pediatric Surgery, Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands (R.M.H.W.)
| | - Frans G M Russel
- Department of Pharmacology and Toxicology, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands (M.K., F.G.M.R., S.N.d.W.); Development Science (R.M., K.B., A.K., P.C.), and Statistical Sciences and Innovation (N.K.), UCB BioPharma, Slough, United Kingdom; Development Science, UCB BioPharma SRL, Braine-l'Alleud, Belgium (J.N., A.-L.U.); Department of Pediatrics, Willem-Alexander Children's Hospital, Leiden University Medical Centre, Leiden, The Netherlands (M.G.M.); and Intensive Care and Department of Pediatric Surgery, Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands (R.M.H.W.)
| | - Saskia N de Wildt
- Department of Pharmacology and Toxicology, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands (M.K., F.G.M.R., S.N.d.W.); Development Science (R.M., K.B., A.K., P.C.), and Statistical Sciences and Innovation (N.K.), UCB BioPharma, Slough, United Kingdom; Development Science, UCB BioPharma SRL, Braine-l'Alleud, Belgium (J.N., A.-L.U.); Department of Pediatrics, Willem-Alexander Children's Hospital, Leiden University Medical Centre, Leiden, The Netherlands (M.G.M.); and Intensive Care and Department of Pediatric Surgery, Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands (R.M.H.W.)
| |
Collapse
|
40
|
Pou Casellas C, Jansen K, Rookmaaker MB, Clevers H, Verhaar MC, Masereeuw R. Regulation of Solute Carriers OCT2 and OAT1/3 in the Kidney: A Phylogenetic, Ontogenetic and Cell Dynamic Perspective. Physiol Rev 2021; 102:993-1024. [PMID: 34486394 DOI: 10.1152/physrev.00009.2021] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Over the course of more than 500 million years, the kidneys have undergone a remarkable evolution from primitive nephric tubes to intricate filtration-reabsorption systems that maintain homeostasis and remove metabolic end products from the body. The evolutionarily conserved solute carriers Organic Cation Transporter 2 (OCT2), and Organic Anion Transporters 1 and 3 (OAT1/3) coordinate the active secretion of a broad range of endogenous and exogenous substances, many of which accumulate in the blood of patients with kidney failure despite dialysis. Harnessing OCT2 and OAT1/3 through functional preservation or regeneration could alleviate the progression of kidney disease. Additionally, it would improve current in vitro test models that lose their expression in culture. With this review, we explore OCT2 and OAT1/3 regulation using different perspectives: phylogenetic, ontogenetic and cell dynamic. Our aim is to identify possible molecular targets to both help prevent or compensate for the loss of transport activity in patients with kidney disease, and to enable endogenous OCT2 and OAT1/3 induction in vitro in order to develop better models for drug development.
Collapse
Affiliation(s)
- Carla Pou Casellas
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, Netherlands.,Hubrecht Institute - Royal Netherlands Academy of Arts and Sciences, Utrecht, The Netherlands
| | - Katja Jansen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Maarten B Rookmaaker
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, Netherlands
| | - Hans Clevers
- Hubrecht Institute - Royal Netherlands Academy of Arts and Sciences, Utrecht, The Netherlands
| | - Marianne C Verhaar
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, Netherlands
| | - Rosalinde Masereeuw
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
41
|
Hermann R, Krajcsi P, Fluck M, Seithel-Keuth A, Bytyqi A, Galazka A, Munafo A. Review of Transporter Substrate, Inhibitor, and Inducer Characteristics of Cladribine. Clin Pharmacokinet 2021; 60:1509-1535. [PMID: 34435310 PMCID: PMC8613159 DOI: 10.1007/s40262-021-01065-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/28/2021] [Indexed: 12/23/2022]
Abstract
Cladribine is a nucleoside analog that is phosphorylated in its target cells (B- and T-lymphocytes) to its active adenosine triphosphate form (2-chlorodeoxyadenosine triphosphate). Cladribine tablets 10 mg (Mavenclad®) administered for up to 10 days per year in 2 consecutive years (3.5-mg/kg cumulative dose over 2 years) are used to treat patients with relapsing multiple sclerosis. The ATP-binding cassette, solute carrier, and nucleoside transporter substrate, inhibitor, and inducer characteristics of cladribine are reviewed in this article. Available evidence suggests that the distribution of cladribine across biological membranes is facilitated by a number of uptake and efflux transporters. Among the key ATP-binding cassette efflux transporters, only breast cancer resistance protein has been shown to be an efficient transporter of cladribine, while P-glycoprotein does not transport cladribine well. Intestinal absorption, distribution throughout the body, and intracellular uptake of cladribine appear to be exclusively mediated by equilibrative and concentrative nucleoside transporters, specifically by ENT1, ENT2, ENT4, CNT2 (low affinity), and CNT3. Renal excretion of cladribine appears to be most likely driven by breast cancer resistance protein, ENT1, and P-glycoprotein. The latter may play a role despite its poor cladribine transport efficiency in view of the renal abundance of P-glycoprotein. There is no evidence that solute carrier uptake transporters such as organic anion transporting polypeptides, organic anion transporters, and organic cation transporters are involved in the transport of cladribine. Available in vitro studies examining the inhibitor characteristics of cladribine for a total of 13 major ATP-binding cassette, solute carrier, and CNT transporters indicate that in vivo inhibition of any of these transporters by cladribine is unlikely.
Collapse
Affiliation(s)
- Robert Hermann
- Clinical Research Appliance (cr.appliance), Heinrich-Vingerhut-Weg 3, 63571, Gelnhausen, Germany.
| | | | | | | | | | | | - Alain Munafo
- Institute of Pharmacometrics, an Affiliate of Merck KGaA, Lausanne, Switzerland
| |
Collapse
|
42
|
Al-Majdoub ZM, Scotcher D, Achour B, Barber J, Galetin A, Rostami-Hodjegan A. Quantitative Proteomic Map of Enzymes and Transporters in the Human Kidney: Stepping Closer to Mechanistic Kidney Models to Define Local Kinetics. Clin Pharmacol Ther 2021; 110:1389-1400. [PMID: 34390491 DOI: 10.1002/cpt.2396] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 08/03/2021] [Indexed: 12/20/2022]
Abstract
The applications of translational modeling of local drug concentrations in various organs had a sharp increase over the last decade. These are part of the model-informed drug development initiative, adopted by the pharmaceutical industry and promoted by drug regulatory agencies. With respect to the kidney, the models serve as a bridge for understanding animal vs. human observations related to renal drug disposition and any consequential adverse effects. However, quantitative data on key drug-metabolizing enzymes and transporters relevant for predicting renal drug disposition are limited. Using targeted and global quantitative proteomics, we determined the abundance of multiple enzymes and transporters in 20 human kidney cortex samples. Nine enzymes and 22 transporters were quantified (8 for the first time in the kidneys). In addition, > 4,000 proteins were identified and used to form an open database. CYP2B6, CYP3A5, and CYP4F2 showed comparable, but generally low expression, whereas UGT1A9 and UGT2B7 levels were the highest. Significant correlation between abundance and activity (measured by mycophenolic acid clearance) was observed for UGT1A9 (Rs = 0.65, P = 0.004) and UGT2B7 (Rs = 0.70, P = 0.023). Expression of P-gp ≈ MATE-1 and OATP4C1 transporters were high. Strong intercorrelations were observed between several transporters (P-gp/MRP4, MRP2/OAT3, and OAT3/OAT4); no correlation in expression was apparent for functionally related transporters (OCT2/MATEs). This study extends our knowledge of pharmacologically relevant proteins in the kidney cortex, with implications on more prudent use of mechanistic kidney models under the general framework of quantitative systems pharmacology and toxicology.
Collapse
Affiliation(s)
- Zubida M Al-Majdoub
- Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester, UK
| | - Daniel Scotcher
- Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester, UK
| | - Brahim Achour
- Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester, UK
| | - Jill Barber
- Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester, UK
| | - Aleksandra Galetin
- Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester, UK
| | - Amin Rostami-Hodjegan
- Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester, UK.,Certara UK (Simcyp Division), Sheffield, UK
| |
Collapse
|
43
|
Frazier KS. The Impact of Functional and Structural Maturation of the Kidney on Susceptibility to Drug and Chemical Toxicity in Neonatal Rodents. Toxicol Pathol 2021; 49:1377-1388. [PMID: 34338059 DOI: 10.1177/01926233211035683] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Drug responses are often unpredictable in juvenile animal toxicity studies; hence, optimizing dosages is challenging. Renal functional differences based on age of development will often result in vastly different toxicologic responses. Developmental changes in renal function can alter plasma clearance of compounds with extensive renal elimination. Absorption, distribution, metabolism, and excretion of drugs vary depending on animal age and kidney maturation. Toxicity can result in malformations or renal degeneration. Although renal morphologic development in humans generally occurs in utero, maximal levels of tubular secretion, acid-base equilibrium, concentrating ability, or glomerular filtration rate (GFR) are reached postnatally in humans and animals and subject to drug effects. Maturation of renal metabolism and transporters occurs postnatally and plays a critical role in detoxification and excretion. Maturation times must be considered when designing juvenile toxicity studies and may require cohorts of animals of specific ages to achieve optimal dosing schemes and toxicokinetics. In recent years, critical end points and windows of susceptibility have been established comparatively between species to better model pharmacokinetics and understand pediatric nephrotoxicity. There are examples of agents where toxicity is enhanced in neonates, others where it is diminished, and others where rat nephrotoxicity is expressed as juvenile toxicity, but in humans as gestational toxicity.
Collapse
|
44
|
Wang K, Jiang K, Wei X, Li Y, Wang T, Song Y. Physiologically Based Pharmacokinetic Models Are Effective Support for Pediatric Drug Development. AAPS PharmSciTech 2021; 22:208. [PMID: 34312742 PMCID: PMC8312709 DOI: 10.1208/s12249-021-02076-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 06/16/2021] [Indexed: 12/30/2022] Open
Abstract
Pediatric drug development faces many difficulties. Traditionally, pediatric drug doses are simply calculated linearly based on the body weight, age, and body surface area of adults. Due to the ontogeny of children, this simple linear scaling may lead to drug overdose in pediatric patients. The physiologically based pharmacokinetic (PBPK) model, as a mathematical model, contributes to the research and development of pediatric drugs. An example of a PBPK model guiding drug dose selection in pediatrics has emerged and has been approved by the relevant regulatory agencies. In this review, we discuss the principle of the PBPK model, emphasize the necessity of establishing a pediatric PBPK model, introduce the absorption, distribution, metabolism, and excretion of the pediatric PBPK model, and understand the various applications and related prospects of the pediatric PBPK model.
Collapse
|
45
|
Cristea S, Krekels EHJ, Allegaert K, De Paepe P, de Jaeger A, De Cock P, Knibbe CAJ. Estimation of Ontogeny Functions for Renal Transporters Using a Combined Population Pharmacokinetic and Physiology-Based Pharmacokinetic Approach: Application to OAT1,3. AAPS JOURNAL 2021; 23:65. [PMID: 33948771 PMCID: PMC8096729 DOI: 10.1208/s12248-021-00595-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 04/13/2021] [Indexed: 11/30/2022]
Abstract
To date, information on the ontogeny of renal transporters is limited. Here, we propose to estimate the in vivo functional ontogeny of transporters using a combined population pharmacokinetic (popPK) and physiology-based pharmacokinetic (PBPK) modeling approach called popPBPK. Clavulanic acid and amoxicillin were used as probes for glomerular filtration, combined glomerular filtration, and active secretion through OAT1,3, respectively. The predictive value of the estimated OAT1,3 ontogeny function was assessed by PBPK predictions of renal clearance (CLR) of other OAT1,3 substrates: cefazolin and piperacillin. Individual CLRpost-hoc values, obtained from a published popPK model on the concomitant use of clavulanic acid and amoxicillin in critically ill children between 1 month and 15 years, were used as dependent variables in the popPBPK analysis. CLR was re-parameterized according to PBPK principles, resulting in the estimation of OAT1,3-mediated intrinsic clearance (CLint,OAT1,3,invivo) and its ontogeny. CLint,OAT1,3,invivo ontogeny was described by a sigmoidal function, reaching half of adult level around 7 months of age, comparable to findings based on renal transporter-specific protein expression data. PBPK-based CLR predictions including this ontogeny function were reasonably accurate for piperacillin in a similar age range (2.5 months–15 years) as well as for cefazolin in neonates as compared to published data (%RMSPE of 21.2 and 22.8%, respectively and %PE within ±50%). Using this novel approach, we estimated an in vivo functional ontogeny profile for CLint,OAT1,3,invivo that yields accurate CLR predictions for different OAT1,3 substrates across different ages. This approach deserves further study on functional ontogeny of other transporters.
Collapse
Affiliation(s)
- Sînziana Cristea
- Division of Systems Biomedicine and Pharmacology, Leiden Academic Center for Drug Research, Leiden University, Leiden, The Netherlands
| | - Elke H J Krekels
- Division of Systems Biomedicine and Pharmacology, Leiden Academic Center for Drug Research, Leiden University, Leiden, The Netherlands
| | - Karel Allegaert
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium.,Department of Pharmacy and Pharmaceutical Sciences, KU Leuven, Leuven, Belgium.,Department of Clinical Pharmacy, Erasmus MC, Rotterdam, The Netherlands
| | - Peter De Paepe
- Department of Pediatric Intensive Care, Ghent University Hospital, Ghent, Belgium
| | - Annick de Jaeger
- Heymans Institute of Pharmacology, Ghent University, Ghent, Belgium
| | - Pieter De Cock
- Department of Pediatric Intensive Care, Ghent University Hospital, Ghent, Belgium.,Heymans Institute of Pharmacology, Ghent University, Ghent, Belgium.,Department of Pharmacy, Ghent University Hospital, Ghent, Belgium
| | - Catherijne A J Knibbe
- Division of Systems Biomedicine and Pharmacology, Leiden Academic Center for Drug Research, Leiden University, Leiden, The Netherlands. .,Department of Clinical Pharmacy, St. Antonius Hospital, Nieuwegein, The Netherlands.
| |
Collapse
|
46
|
Wenzel C, Drozdzik M, Oswald S. Organic Cation Transporter 1 an Intestinal Uptake Transporter: Fact or Fiction? Front Pharmacol 2021; 12:648388. [PMID: 33935750 PMCID: PMC8080103 DOI: 10.3389/fphar.2021.648388] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 03/01/2021] [Indexed: 01/11/2023] Open
Abstract
Intestinal transporter proteins are known to affect the pharmacokinetics and in turn the efficacy and safety of many orally administered drugs in a clinically relevant manner. This knowledge is especially well-established for intestinal ATP-binding cassette transporters such as P-gp and BCRP. In contrast to this, information about intestinal uptake carriers is much more limited although many hydrophilic or ionic drugs are not expected to undergo passive diffusion but probably require specific uptake transporters. A transporter which is controversially discussed with respect to its expression, localization and function in the human intestine is the organic cation transporter 1 (OCT1). This review article provides an up-to-date summary on the available data from expression analysis as well as functional studies in vitro, animal findings and clinical observations. The current evidence suggests that OCT1 is expressed in the human intestine in small amounts (on gene and protein levels), while its cellular localization in the apical or basolateral membrane of the enterocytes remains to be finally defined, but functional data point to a secretory function of the transporter at the basolateral membrane. Thus, OCT1 should not be considered as a classical uptake transporter in the intestine but rather as an intestinal elimination pathway for cationic compounds from the systemic circulation.
Collapse
Affiliation(s)
- Christoph Wenzel
- Department of Pharmacology, Center of Drug Absorption and Transport, University Medicine Greifswald, Greifswald, Germany
| | - Marek Drozdzik
- Department of Experimental and Clinical Pharmacology, Pomeranian Medical University, Szczecin, Poland
| | - Stefan Oswald
- Institute of Pharmacology and Toxicology, Rostock University Medical Center, Rostock, Germany
| |
Collapse
|
47
|
Chapron BD, Chapron A, Leeder JS. Recent advances in the ontogeny of drug disposition. Br J Clin Pharmacol 2021; 88:4267-4284. [PMID: 33733546 DOI: 10.1111/bcp.14821] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 02/12/2021] [Accepted: 02/22/2021] [Indexed: 12/11/2022] Open
Abstract
Developmental changes that occur throughout childhood have long been known to impact drug disposition. However, pharmacokinetic studies in the paediatric population have historically been limited due to ethical concerns arising from incorporating children into clinical trials. As such, much of the early work in the field of developmental pharmacology was reliant on difficult-to-interpret in vitro and in vivo animal studies. Over the last 2 decades, our understanding of the mechanistic processes underlying age-related changes in drug disposition has advanced considerably. Progress has largely been driven by technological advances in mass spectrometry-based methods for quantifying proteins implicated in drug disposition, and in silico tools that leverage these data to predict age-related changes in pharmacokinetics. This review summarizes our current understanding of the impact of childhood development on drug disposition, particularly focusing on research of the past 20 years, but also highlighting select examples of earlier foundational research. Equally important to the studies reviewed herein are the areas that we cannot currently describe due to the lack of research evidence; these gaps provide a map of drug disposition pathways for which developmental trends still need to be characterized.
Collapse
Affiliation(s)
- Brian D Chapron
- Division of Clinical Pharmacology, Toxicology and Therapeutic Innovation, Department of Pediatrics, Children's Mercy Hospital, Kansas City, MO, USA
| | - Alenka Chapron
- Division of Clinical Pharmacology, Toxicology and Therapeutic Innovation, Department of Pediatrics, Children's Mercy Hospital, Kansas City, MO, USA
| | - J Steven Leeder
- Division of Clinical Pharmacology, Toxicology and Therapeutic Innovation, Department of Pediatrics, Children's Mercy Hospital, Kansas City, MO, USA.,Schools of Medicine and Pharmacy, University of Missouri-Kansas City, MO, USA
| |
Collapse
|
48
|
Naji-Talakar S, Sharma S, Martin LA, Barnhart D, Prasad B. Potential implications of DMET ontogeny on the disposition of commonly prescribed drugs in neonatal and pediatric intensive care units. Expert Opin Drug Metab Toxicol 2021; 17:273-289. [PMID: 33256492 PMCID: PMC8346204 DOI: 10.1080/17425255.2021.1858051] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 11/27/2020] [Indexed: 10/22/2022]
Abstract
Introduction: Pediatric patients, especially neonates and infants, are more susceptible to adverse drug events as compared to adults. In particular, immature small molecule drug metabolism and excretion can result in higher incidences of pediatric toxicity than adults if the pediatric dose is not adjusted.Area covered: We reviewed the top 29 small molecule drugs prescribed in neonatal and pediatric intensive care units and compiled the mechanisms of their metabolism and excretion. The ontogeny of Phase I and II drug metabolizing enzymes and transporters (DMETs), particularly relevant to these drugs, are summarized. The potential effects of DMET ontogeny on the metabolism and excretion of the top pediatric drugs were predicted. The current regulatory requirements and recommendations regarding safe and effective use of drugs in children are discussed. A few representative examples of the use of ontogeny-informed physiologically based pharmacokinetic (PBPK) models are highlighted.Expert opinion: Empirical prediction of pediatric drug dosing based on body weight or body-surface area from the adult parameters can be inaccurate because DMETs are not mature in children and the age-dependent maturation of these proteins is different. Ontogeny-informed-PBPK modeling provides a better alternative to predict the pharmacokinetics of drugs in children.
Collapse
Affiliation(s)
- Siavosh Naji-Talakar
- Department of Pharmaceutical Sciences, Washington State University, Spokane, WA, USA
| | - Sheena Sharma
- Pediatrics and Neonatology, Providence Sacred Heart Medical Center and Children’s Hospital, Spokane, WA, USA
| | - Leslie A. Martin
- Pediatrics and Neonatology, Providence Sacred Heart Medical Center and Children’s Hospital, Spokane, WA, USA
| | - Derek Barnhart
- Pediatrics and Neonatology, Providence Sacred Heart Medical Center and Children’s Hospital, Spokane, WA, USA
| | - Bhagwat Prasad
- Department of Pharmaceutical Sciences, Washington State University, Spokane, WA, USA
| |
Collapse
|
49
|
Liu XI, Momper JD, Rakhmanina NY, Green DJ, Burckart GJ, Cressey TR, Mirochnick M, Best BM, van den Anker JN, Dallmann A. Physiologically Based Pharmacokinetic Modeling Framework to Predict Neonatal Pharmacokinetics of Transplacentally Acquired Emtricitabine, Dolutegravir, and Raltegravir. Clin Pharmacokinet 2021; 60:795-809. [PMID: 33527213 DOI: 10.1007/s40262-020-00977-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/12/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND OBJECTIVE Little is understood about neonatal pharmacokinetics immediately after delivery and during the first days of life following intrauterine exposure to maternal medications. Our objective was to develop and evaluate a novel, physiologically based pharmacokinetic modeling workflow for predicting perinatal and postnatal disposition of commonly used antiretroviral drugs administered prenatally to pregnant women living with human immunodeficiency virus. METHODS Using previously published, maternal-fetal, physiologically based pharmacokinetic models for emtricitabine, dolutegravir, and raltegravir built with PK-Sim/MoBi®, placental drug transfer was predicted in late pregnancy. The total drug amount in fetal compartments at term delivery was estimated and subsequently integrated as initial conditions in different tissues of a whole-body, neonatal, physiologically based pharmacokinetic model to predict drug concentrations in the neonatal elimination phase after birth. Neonatal elimination processes were parameterized according to published data. Model performance was assessed by clinical data. RESULTS Neonatal physiologically based pharmacokinetic models generally captured the initial plasma concentrations after delivery but underestimated concentrations in the terminal phase. The mean percentage error for predicted plasma concentrations was - 71.5%, - 33.8%, and 76.7% for emtricitabine, dolutegravir, and raltegravir, respectively. A sensitivity analysis suggested that the activity of organic cation transporter 2 and uridine diphosphate glucuronosyltransferase 1A1 during the first postnatal days in term newborns is ~11% and ~30% of that in adults, respectively. CONCLUSIONS These findings demonstrate the general feasibility of applying physiologically based pharmacokinetic models to predict washout concentrations of transplacentally acquired drugs in newborns. These models can increase the understanding of pharmacokinetics during the first postnatal days and allow the prediction of drug exposure in this vulnerable population.
Collapse
Affiliation(s)
- Xiaomei I Liu
- Division of Clinical Pharmacology, Children's National Hospital, 10430 Owen Brown Road, Columbia, Maryland, 21044, USA. .,Division of Infectious Diseases, Children's National Hospital, Washington, DC, USA.
| | - Jeremiah D Momper
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, USA.,Pediatric Department, School of Medicine, Rady Children's Hospital San Diego, La Jolla, CA, USA
| | - Natella Y Rakhmanina
- Division of Infectious Diseases, Children's National Hospital, Washington, DC, USA.,Elizabeth Glaser Pediatric AIDS Foundation, Washington, DC, USA
| | - Dionna J Green
- Office of Pediatric Therapeutics, US Food and Drug Administration, Silver Spring, MD, USA
| | - Gilbert J Burckart
- Office of Clinical Pharmacology, US Food and Drug Administration, Silver Spring, MD, USA
| | - Tim R Cressey
- PHPT/IRD 174, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand.,Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, UK
| | | | - Brookie M Best
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, USA.,Pediatric Department, School of Medicine, Rady Children's Hospital San Diego, La Jolla, CA, USA
| | - John N van den Anker
- Division of Clinical Pharmacology, Children's National Hospital, 10430 Owen Brown Road, Columbia, Maryland, 21044, USA.,Division of Pediatric Pharmacology and Pharmacometrics, University Children's Hospital Basel, University of Basel, Basel, Switzerland
| | | |
Collapse
|
50
|
Chaphekar N, Dodeja P, Shaik IH, Caritis S, Venkataramanan R. Maternal-Fetal Pharmacology of Drugs: A Review of Current Status of the Application of Physiologically Based Pharmacokinetic Models. Front Pediatr 2021; 9:733823. [PMID: 34805038 PMCID: PMC8596611 DOI: 10.3389/fped.2021.733823] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/16/2021] [Indexed: 12/31/2022] Open
Abstract
Pregnancy and the postpartum period are associated with several physiological changes that can alter the pharmacokinetics (PK) and pharmacodynamics (PD) of drugs. For certain drugs, dosing changes may be required during pregnancy and postpartum to achieve drug exposures comparable to what is observed in non-pregnant subjects. There is very limited data on fetal exposure of drugs during pregnancy, and neonatal exposure through transfer of drugs via human milk during breastfeeding. Very few systematic clinical pharmacology studies have been conducted in pregnant and postpartum women due to ethical issues, concern for the fetus safety as well as potential legal ramifications. Over the past several years, there has been an increase in the application of modeling and simulation approaches such as population PK (PopPK) and physiologically based PK (PBPK) modeling to provide guidance on drug dosing in those special patient populations. Population PK models rely on measured PK data, whereas physiologically based PK models incorporate physiological, preclinical, and clinical data into the model to predict drug exposure during pregnancy. These modeling strategies offer a promising approach to identify the drugs with PK changes during pregnancy to guide dose optimization in pregnancy, when there is lack of clinical data. PBPK modeling is also utilized to predict the fetal exposure of drugs and drug transfer via human milk following maternal exposure. This review focuses on the current status of the application of PBPK modeling to predict maternal and fetal exposure of drugs and thereby guide drug therapy during pregnancy.
Collapse
Affiliation(s)
- Nupur Chaphekar
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, United States
| | - Prerna Dodeja
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, United States
| | - Imam H Shaik
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, United States
| | - Steve Caritis
- Department of Obstetrics, Gynecology and Reproductive Sciences, Magee Women's Hospital of UPMC, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Raman Venkataramanan
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Obstetrics, Gynecology and Reproductive Sciences, Magee Women's Hospital of UPMC, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|