1
|
Attapong J, Kaset C, Nakkam N, Tassaneeyakul W, Wichukchinda N, Chomean S. Dual approaches in pharmacogenetics: Developing PCR-SSP and RT-PCR methods for HLA-B*13:01 screening to prevent dapsone and Co-trimoxazole SCARs. Heliyon 2024; 10:e34977. [PMID: 39144953 PMCID: PMC11320476 DOI: 10.1016/j.heliyon.2024.e34977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 07/18/2024] [Accepted: 07/19/2024] [Indexed: 08/16/2024] Open
Abstract
Dapsone and co-trimoxazole are potent antibiotics for treating various infections and inflammations. However, several studies reported the strongly association between severe cutaneous adverse drug reactions (SCARs) to both drugs and the HLA-B*13:01 allele. Rapid and reliable screening for the HLA-B*13:01 allele can mitigate the risk of dapsone-induced SCARs. We developed two methods, multiplex sequence-specific primer PCR (PCR-SSP) and real-time PCR (RT-PCR), tailored for different clinical settings. These methods were optimized to minimize false positives among the Thai population. Clinical validation demonstrated excellent reproducibility, with both methods showing 100 % concordance in repeated tests. PCR-SSP achieved a limit of detection as low as 100 pg of genomic DNA, while RT-PCR reached 1 pg. Overall statistical accuracy was 100.00 % (95 % CI: 98.18 %-100.00 %). Screening for drug-related HLA alleles is crucial for reducing mortality from severe cutaneous adverse drug reactions, especially dapsone hypersensitivity syndrome (DHS) and dapsone-induced hypersensitivity reactions (DIHRs). Our screening approach for dapsone can also be extended to co-trimoxazole, representing a significant advancement in personalized medicine and preemptive pharmacogenetic testing for tailored patient care and safety, albeit further validation in diverse ethnic populations is warranted to ensure universal applicability.
Collapse
Affiliation(s)
- Jirapat Attapong
- Graduate Program in Biomedical Sciences, Faculty of Allied Health Sciences, Thammasat University, Pathumthani, Thailand
- Thammasat University Research Unit in Medical Technology and Precision Medicine Innovation, Thailand
| | - Chollanot Kaset
- Department of Medical Technology, Faculty of Allied Health Sciences, Thammasat University, Pathumthani, Thailand
- Thammasat University Research Unit in Medical Technology and Precision Medicine Innovation, Thailand
| | - Nontaya Nakkam
- Department of Pharmacology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | | | | | - Sirinart Chomean
- Department of Medical Technology, Faculty of Allied Health Sciences, Thammasat University, Pathumthani, Thailand
- Thammasat University Research Unit in Medical Technology and Precision Medicine Innovation, Thailand
| |
Collapse
|
2
|
Lu Y, Zhou L, Zou Y, Wei H, Zhou Y, Guo X, Li Q, Ye Y, Zhang L. Antibiotic-induced severe cutaneous adverse reactions: a single-center retrospective study over ten years. Front Immunol 2024; 15:1415830. [PMID: 39091503 PMCID: PMC11291224 DOI: 10.3389/fimmu.2024.1415830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 06/24/2024] [Indexed: 08/04/2024] Open
Abstract
Objective Severe cutaneous adverse reactions (SCARs) are rare but life-threatening, with antibiotics being the main cause. This retrospective study from a single center was designed to analyze the culprit drugs, clinical features and treatment outcomes of antibiotic-induced SCARs. Methods We analyzed cases of antibiotic-induced SCARs in a tertiary hospital in China between January 2013 and January 2024, including Steven-Johnson syndrome (SJS) or Stevens-Johnson syndrome-toxic epidermal necrolysis (SJS-TEN) overlap, toxic epidermal necrolysis (TEN), drug reaction with eosinophilia and systemic symptoms (DRESS) and acute generalized exanthematous pustulosis (AGEP). Descriptive analysis of the demographic characteristics, clinical manifestations, treatment and prognosis were carried out. Results Among 354 cases of SCARs, 63 validated antibiotic-related cases were included. Cephalosporins (31.7%), penicillins (25.4%), and quinolones (19.0%) were the most common triggers for SCARs. Overall, liver (50.8%), lungs (31.7%), and kidneys (23.8%) were the most frequently affected organ in SCARs cases. Eight patients (28.6%) in the SJS/SJS-TEN overlap group and 8 patients (80.0%) in the TEN group received combination therapy of corticosteroids and IVIG. Patients with SCARs caused by penicillins or cephalosporins could receive alternative treatments such as lincomamides, quinolones, and tetracyclines. The mortality rate in the TEN group was the highest at 20.0%, followed by the SJS/SJS-TEN overlap group (7.1%), and no deaths were observed in the DRESS and AGEP groups. Conclusion The identification of the culprit antibiotics and the application of alternative antibiotic therapies are crucial for the management of antibiotic-induced SCARs. If complicated underlying conditions and complications like advanced age, cancer and pneumonia coexist with SCARs, patients might be more at risk for mortality.
Collapse
Affiliation(s)
- Yun Lu
- Department of Pharmacy, Chengdu Second People’s Hospital, Chengdu, Sichuan, China
| | - Lu Zhou
- Department of Pharmacy, Chengdu Second People’s Hospital, Chengdu, Sichuan, China
| | - Ya Zou
- Department of Pharmacy, Chengdu Second People’s Hospital, Chengdu, Sichuan, China
| | - Hua Wei
- Department of Pharmacy, Chengdu Second People’s Hospital, Chengdu, Sichuan, China
| | - Yan Zhou
- Department of Pharmacy, Chengdu Second People’s Hospital, Chengdu, Sichuan, China
| | - Xirui Guo
- Department of Pharmacy, Chengdu Second People’s Hospital, Chengdu, Sichuan, China
| | - Qinchuan Li
- Department of Pharmacy, Chengdu Second People’s Hospital, Chengdu, Sichuan, China
| | - Yongqin Ye
- Department of Pharmacy, Chengdu Second People’s Hospital, Chengdu, Sichuan, China
| | - Liwen Zhang
- Department of Dermatovenereology, Chengdu Second People’s Hospital, Chengdu, Sichuan, China
| |
Collapse
|
3
|
Wei BM, Fox LP, Kaffenberger BH, Korman AM, Micheletti RG, Mostaghimi A, Noe MH, Rosenbach M, Shinkai K, Kwah JH, Phillips EJ, Bolognia JL, Damsky W, Nelson CA. Drug-induced hypersensitivity syndrome/drug reaction with eosinophilia and systemic symptoms. Part I. Epidemiology, pathogenesis, clinicopathological features, and prognosis. J Am Acad Dermatol 2024; 90:885-908. [PMID: 37516359 DOI: 10.1016/j.jaad.2023.02.072] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 02/11/2023] [Accepted: 02/26/2023] [Indexed: 07/31/2023]
Abstract
Drug-induced hypersensitivity syndrome (DiHS), also known as drug reaction with eosinophilia and systemic symptoms (DRESS), is a severe cutaneous adverse reaction (SCAR) characterized by an exanthem, fever, and hematologic and visceral organ involvement. Anticonvulsants, antibiotics, and allopurinol are the most common triggers. The pathogenesis involves a complex interplay between drugs, viruses, and the immune system primarily mediated by T-cells. DiHS/DRESS typically presents with a morbilliform eruption 2-6 weeks after drug exposure, and is associated with significant morbidity, mortality, and risk of relapse. Long-term sequelae primarily relate to organ dysfunction and autoimmune diseases. Part I of this continuing medical education activity on DiHS/DRESS provides an update on epidemiology, novel insights into pathogenesis, and a description of clinicopathological features and prognosis.
Collapse
Affiliation(s)
- Brian M Wei
- Department of Dermatology, Yale School of Medicine, New Haven, Connecticut
| | - Lindy P Fox
- Department of Dermatology, University of California, San Francisco, California
| | | | - Abraham M Korman
- Department of Dermatology, The Ohio State University, Columbus, Ohio
| | - Robert G Micheletti
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Arash Mostaghimi
- Department of Dermatology, Brigham & Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Megan H Noe
- Department of Dermatology, Brigham & Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Misha Rosenbach
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Kanade Shinkai
- Department of Dermatology, University of California, San Francisco, California
| | - Jason H Kwah
- Department of Medicine, Section of Rheumatology, Allergy and Immunology, Yale School of Medicine, New Haven, Connecticut
| | - Elizabeth J Phillips
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Jean L Bolognia
- Department of Dermatology, Yale School of Medicine, New Haven, Connecticut
| | - William Damsky
- Department of Dermatology, Yale School of Medicine, New Haven, Connecticut; Department of Pathology, Yale School of Medicine, New Haven, Connecticut
| | - Caroline A Nelson
- Department of Dermatology, Yale School of Medicine, New Haven, Connecticut.
| |
Collapse
|
4
|
Pinyopornpanish K, Chungcharoenpanich A, Teepapan P, Thadanipon K, Ruangwattanachok C, Lamrahong P, Thongdee N, Dechapaphapitak N, Sukasem C, Pongphaew C, Jantararoungtong T, Koomdee N, Laisuan W. Risk factors for sulfamethoxazole/trimethoprim-induced severe cutaneous adverse reactions. Clin Exp Allergy 2024; 54:366-368. [PMID: 38462790 DOI: 10.1111/cea.14470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 02/07/2024] [Accepted: 02/25/2024] [Indexed: 03/12/2024]
Affiliation(s)
- Kanokkarn Pinyopornpanish
- Division of Allergy, Immunology and Rheumatology, Department of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
- Division of Allergy Clinical Immunology, Department of Medicine, Chiangmai University Hospital, Chiangmai, Thailand
| | - Apinya Chungcharoenpanich
- Division of Allergy, Immunology and Rheumatology, Department of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Putthapon Teepapan
- Division of Allergy, Immunology and Rheumatology, Department of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Kunlawat Thadanipon
- Department of Clinical Epidemiology and Biostatistics, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
- Division of Dermatology, Department of Medicine, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Chulapha Ruangwattanachok
- Clinical Pharmacy Section, Pharmacy Division, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Pansa Lamrahong
- Clinical Pharmacy Section, Pharmacy Division, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Nattakirana Thongdee
- Division of Allergy, Immunology and Rheumatology, Department of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Nizchapa Dechapaphapitak
- Division of Allergy, Immunology and Rheumatology, Department of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Chonlaphat Sukasem
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine, Ramathibodi Hospital, Bangkok, Thailand
- Laboratory for Pharmacogenomics, Clinical Pathology, Somdetch Phra Debharatana Medical Centre, Ramathibodi Hospital, Bangkok, Thailand
- Pharmacogenomics Clinic, Bumrungrad Genomic Medicine Institute, Bumrungrad International Hospital, Bangkok, Thailand
- Research and Development Laboratory, Bumrungrad International Hospital, Bangkok, Thailand
- Faculty of Pharmaceutical Sciences, Burapha University, Chonburi, Thailand
- Department of Pharmacology and Therapeutics, MRC Centre for Drug Safety Science, Institute of Systems, Molecular, and Integrative Biology, University of Liverpool, Liverpool, UK
| | | | - Thawinee Jantararoungtong
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine, Ramathibodi Hospital, Bangkok, Thailand
- Laboratory for Pharmacogenomics, Clinical Pathology, Somdetch Phra Debharatana Medical Centre, Ramathibodi Hospital, Bangkok, Thailand
| | - Napatrupron Koomdee
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine, Ramathibodi Hospital, Bangkok, Thailand
- Laboratory for Pharmacogenomics, Clinical Pathology, Somdetch Phra Debharatana Medical Centre, Ramathibodi Hospital, Bangkok, Thailand
| | - Wannada Laisuan
- Division of Allergy, Immunology and Rheumatology, Department of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
5
|
Nguyen TK, Vu GM, Duong VC, Pham TL, Nguyen NT, Tran TTH, Tran MH, Nguyen DT, Vo NS, Phung HT, Hoang TH. The therapeutic landscape for COVID-19 and post-COVID-19 medications from genetic profiling of the Vietnamese population and a predictive model of drug-drug interaction for comorbid COVID-19 patients. Heliyon 2024; 10:e27043. [PMID: 38509882 PMCID: PMC10950508 DOI: 10.1016/j.heliyon.2024.e27043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 12/13/2023] [Accepted: 02/22/2024] [Indexed: 03/22/2024] Open
Abstract
Despite the raised awareness of the role of pharmacogenomic (PGx) in personalized medicines for COVID-19, data for COVID-19 drugs is extremely scarce and not even a publication on this topic for post-COVID-19 medications to date. In the current study, we investigated the genetic variations associated with COVID-19 and post-COVID-19 therapies by using whole genome sequencing data of the 1000 Vietnamese Genomes Project (1KVG) in comparison with other populations retrieved from the 1000 Genomes Project Phase 3 (1KGP3) and the Genome Aggregation Database (gnomAD). Moreover, we also evaluated the risk of drug interactions in comorbid COVID-19 and post-COVID-19 patients based on pharmacogenomic profiles of drugs using a computational approach. For COVID-19 therapies, variants related to the response of two causal treatment agents (tolicizumab and ritonavir) and antithrombotic drugs are common in the Vietnamese cohort. Regarding post-COVID-19, drugs for mental manipulations possess the highest number of clinical annotated variants carried by Vietnamese individuals. Among the superpopulations, East Asian populations shared the most similar genetic structure with the Vietnamese population, whereas the African population showed the most difference. Comorbid patients are at an increased drug-drug interaction (DDI) risk when suffering from COVID-19 and after recovering as well due to a large number of potential DDIs which have been identified. Our results presented the population-specific understanding of the pharmacogenomic aspect of COVID-19 and post-COVID-19 therapy to optimize therapeutic outcomes and promote personalized medicine strategy. We also partly clarified the higher risk in COVID-19 patients with underlying conditions by assessing the potential drug interactions.
Collapse
Affiliation(s)
| | - Giang Minh Vu
- Center for Biomedical Informatics, Vingroup Big Data Institute, Hanoi, Viet Nam
- GeneStory JSC, Hanoi, Viet Nam
| | - Vinh Chi Duong
- Center for Biomedical Informatics, Vingroup Big Data Institute, Hanoi, Viet Nam
- GeneStory JSC, Hanoi, Viet Nam
| | | | | | - Trang Thi Ha Tran
- Center for Biomedical Informatics, Vingroup Big Data Institute, Hanoi, Viet Nam
- GeneStory JSC, Hanoi, Viet Nam
| | - Mai Hoang Tran
- Center for Biomedical Informatics, Vingroup Big Data Institute, Hanoi, Viet Nam
- GeneStory JSC, Hanoi, Viet Nam
| | - Duong Thuy Nguyen
- Center for Biomedical Informatics, Vingroup Big Data Institute, Hanoi, Viet Nam
- GeneStory JSC, Hanoi, Viet Nam
| | - Nam S. Vo
- Center for Biomedical Informatics, Vingroup Big Data Institute, Hanoi, Viet Nam
- GeneStory JSC, Hanoi, Viet Nam
| | - Huong Thanh Phung
- Faculty of Biotechnology, Hanoi University of Pharmacy, Hanoi, Viet Nam
| | - Tham Hong Hoang
- Center for Biomedical Informatics, Vingroup Big Data Institute, Hanoi, Viet Nam
- GeneStory JSC, Hanoi, Viet Nam
| |
Collapse
|
6
|
Iamsumang W, Chanprapaph K, Sukasem C, Satapornpong P, Thadanipon K, Suchonwanit P, Jantararoungtong T, Anuntrangsee T. Genotypic and Phenotypic Characteristics of Co-Trimoxazole-Induced Cutaneous Adverse Reactions. Dermatology 2023; 239:966-975. [PMID: 37793359 DOI: 10.1159/000534342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 09/25/2023] [Indexed: 10/06/2023] Open
Abstract
BACKGROUND Co-trimoxazole has been reported as a common culprit drug for various cutaneous adverse drug reactions (CADRs). However, information on genotypic and phenotypic characteristics is still limited. We aimed to study clinical characteristics, genetic suitability, laboratory findings, and treatment outcomes in patients with co-trimoxazole-induced CADR and determine variables associated with severe cutaneous adverse reactions (SCARs). METHODS The medical records of all patients diagnosed with co-trimoxazole-induced CADR during October 2015 and October 2021 were reviewed. Clinical characteristics and laboratory investigation with an emphasis on human leukocyte antigen (HLA) class I and HLA-DRB1 results linked to subtypes of cutaneous adverse reactions were evaluated. RESULTS Seventy-two patients diagnosed with co-trimoxazole-induced CADR were included in the study. Mean age at diagnosis was 38.0 ± 14.6 years old, and 72% were female. Subtypes of reactions included maculopapular eruption (MPE; 56.9%), drug reaction with eosinophilia and systemic symptoms (DRESS; 23.6%), Stevens-Johnson syndrome (SJS; 12.5%), fixed drug eruption (4.2%), and urticaria (2.8%). Characteristics that were significantly associated with SCARs included male gender (OR = 3.01, 95% CI: 1.04-8.75), HIV infection (OR = 3.48, 95% CI: 1.13-10.75), prophylactic use of co-trimoxazole (OR = 4.89, 95% CI: 1.54-15.57), and co-trimoxazole administration longer than 10 days (OR = 7.65, 95% CI: 2.57-22.78). HLA-B*38:02 was associated with co-trimoxazole-induced SJS, while HLA-A*11:01, HLA-B*13:01, and HLA-DRB1*12:01 were associated with co-trimoxazole-induced DRESS. HLA-B*52:01 was associated with co-trimoxazole-induced MPE. CONCLUSIONS Co-trimoxazole could induce various phenotypes of CADRs. Genotypic and phenotypic factors that may potentially predict co-trimoxazole-induced SCARs include male gender, HIV infection, prophylactic and prolonged drug use, as well as the presence of HLA-A*11:01, HLA-B*13:01, HLA-B*38:02, or HLA-DRB1*12:01 alleles.
Collapse
Affiliation(s)
- Wimolsiri Iamsumang
- Division of Dermatology, Department of Internal Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Kumutnart Chanprapaph
- Division of Dermatology, Department of Internal Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Chonlaphat Sukasem
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Patompong Satapornpong
- Division of General Pharmacy Practice, Department of Pharmaceutical Care, College of Pharmacy, Rangsit University, Lak Hok, Thailand
- Excellence Pharmacogenomics and Precision Medicine Centre, College of Pharmacy, Rangsit University, Lak Hok, Thailand
| | - Kunlawat Thadanipon
- Division of Dermatology, Department of Internal Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Poonkiat Suchonwanit
- Division of Dermatology, Department of Internal Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Thawinee Jantararoungtong
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Tanaporn Anuntrangsee
- Division of Dermatology, Department of Internal Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
7
|
Wattanachai P, Amornpinyo W, Konyoung P, Purimart D, Khunarkornsiri U, Pattanacheewapull O, Tassaneeyakul W, Nakkam N. Association between HLA alleles and beta-lactam antibiotics-related severe cutaneous adverse reactions. Front Pharmacol 2023; 14:1248386. [PMID: 37795024 PMCID: PMC10546186 DOI: 10.3389/fphar.2023.1248386] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 08/31/2023] [Indexed: 10/06/2023] Open
Abstract
Introduction: Beta-lactam antibiotics are one of the most common causes of antibiotics-related severe cutaneous adverse reactions (SCARs) including Stevens-Johnson syndrome (SJS), toxic epidermal necrolysis (TEN), drug reactions with eosinophilia and systemic symptoms (DRESS), and acute generalized exanthematous pustulosis (AGEP). Recent evidence demonstrated that the human leukocyte antigen (HLA) polymorphisms play important roles in the development of drug-related SCARs. This study aimed to extensively characterize the associations between HLA genetic polymorphisms and several phenotypes of SCARs related to beta-lactam antibiotics. Methods: Thirty-one Thai patients with beta-lactam antibiotics-related SCARs were enrolled in the study. A total of 183 unrelated native Thai subjects without any evidence of drug allergy were recruited as the control group. Genotyping of HLA class I and class II alleles was performed. Results: Six HLA alleles including HLA-A*01:01, HLA-B*50:01, HLA-C*06:02, HLA-DRB1*15:01, HLA-DQA1*03:01, and HLA-DQB1*03:02, were significantly associated with beta-lactam antibiotics-related SCARs. The highest risk of SCARs was observed in patients with the HLA-B*50:01 allele (OR = 12.6, 95% CI = 1.1-142.9, p = 0.042), followed by the HLA-DQB1*03:02 allele (OR = 5.8, 95% CI = 1.5-22.0, p = 0.012) and the HLA-C*06:02 allele (OR = 5.7, 95% CI = 1.6-19.9, p = 0.011). According to the phenotypes of SCARs related to beta-lactam antibiotics, the higher risk of SJS/TEN was observed in patients with HLA-A*03:02, HLA-B*46:02 (OR = 17.5, 95% CI = 1.5-201.6, p = 0.033), HLA-A*02:06, HLA-B*57:01 (OR = 9.5, 95% CI = 1.3-71.5, p = 0.028), HLA-DQB1*03:02 (OR = 7.5, 95% CI = 1.8-30.9, p = 0.008), or HLA-C*06:02 (OR = 4.9, 95% CI = 1.1-21.4, p = 0.008). While eight HLA alleles including HLA-A*02:05, HLA-A*02:11, HLA-B*37:01, HLA-B*38:01, HLA-B*50:01, HLA-C*06:02, HLA-C*03:09, and HLA-DRB1*15:01 were associated with AGEP, the highest risk of AGEP was observed in patients with the HLA-B*50:01 allele (OR = 60.7, 95% CI = 4.8-765.00, p = 0.005). Among the four HLA alleles associated with DRESS including HLA-C*04:06, HLA-DRB1*04:05, HLA-DRB1*11:01, and HLA-DQB1*04:01, the HLA-C*04:06 allele had the highest risk of beta-lactam antibiotics-related DRESS (OR = 60.0, 95% CI = 3.0-1202.1, p = 0.043). However, these associations did not achieve statistical significance after Bonferroni's correction. Apart from the HLA risk alleles, the HLA-A*02:07 allele appeared to be a protective factor against beta-lactam antibiotic-related SCARs (OR = 0.1, 95% CI = 0.0-0.5, p = 3.7 × 10-4, Pc = 0.012). Conclusion: This study demonstrated the candidate HLA alleles that are significantly associated with several phenotypes of beta-lactam antibiotics-related SCARs. However, whether the HLA alleles observed in this study can be used as valid genetic markers for SCARs related to beta-lactam antibiotics needs to be further explored in other ethnicities and larger cohort studies.
Collapse
Affiliation(s)
- Pansakon Wattanachai
- Department of Pharmacology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Warayuwadee Amornpinyo
- Division of Dermatology, Department of Internal Medicine, Khon Kaen Hospital, Khon Kaen, Thailand
| | | | | | | | | | | | - Nontaya Nakkam
- Department of Pharmacology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|
8
|
Chen CB, Hung WK, Wang CW, Lee CC, Hung SI, Chung WH. Advances in understanding of the pathogenesis and therapeutic implications of drug reaction with eosinophilia and systemic symptoms: an updated review. Front Med (Lausanne) 2023; 10:1187937. [PMID: 37457584 PMCID: PMC10338933 DOI: 10.3389/fmed.2023.1187937] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 06/05/2023] [Indexed: 07/18/2023] Open
Abstract
Drug reaction with eosinophilia and systemic symptoms or drug-induced hypersensitivity syndrome (DRESS/DIHS) is one type of severe cutaneous adverse reaction (SCAR). It is featured by fever, widespread skin lesions, protracted clinical course, internal organ involvement, and possibly long-term autoimmune sequelae. The presence of high-risk human leukocyte antigen (HLA) alleles, hypersensitivity reaction after culprit drug ingestion, and human herpesvirus reactivation may all contribute to its complex clinical manifestations. Some recent studies focusing on the roles of involved cytokines/chemokines and T cells co-signaling pathways in DRESS/DIHS were conducted. In addition, some predictors of disease severity and prognosis were also reported. In this review, we provided an update on the current understanding of the pathogenesis, potential biomarkers, and the relevant therapeutic rationales of DRESS/DIHS.
Collapse
Affiliation(s)
- Chun-Bing Chen
- Department of Dermatology, Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Linkou, Taiwan
- Cancer Vaccine and Immune Cell Therapy Core Laboratory, Department of Medical Research, Chang Gung Memorial Hospital, Linkou, Taiwan
- Chang Gung Immunology Consortium, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan
- Department of Dermatology, Xiamen Chang Gung Hospital, Xiamen, China
- Xiamen Chang Gung Allergology Consortium, Xiamen Chang Gung Hospital, Xiamen, China
- School of Medicine, National Tsing Hua University, Hsinchu, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Immune-Oncology Center of Excellence, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Wei-Kai Hung
- Department of Dermatology, Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Linkou, Taiwan
- Cancer Vaccine and Immune Cell Therapy Core Laboratory, Department of Medical Research, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Chuang-Wei Wang
- Department of Dermatology, Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Linkou, Taiwan
- Cancer Vaccine and Immune Cell Therapy Core Laboratory, Department of Medical Research, Chang Gung Memorial Hospital, Linkou, Taiwan
- Chang Gung Immunology Consortium, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan
- Department of Dermatology, Xiamen Chang Gung Hospital, Xiamen, China
- Xiamen Chang Gung Allergology Consortium, Xiamen Chang Gung Hospital, Xiamen, China
| | - Chih-Chun Lee
- Department of Medical Education, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Shuen-Iu Hung
- Cancer Vaccine and Immune Cell Therapy Core Laboratory, Department of Medical Research, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Wen-Hung Chung
- Department of Dermatology, Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Linkou, Taiwan
- Cancer Vaccine and Immune Cell Therapy Core Laboratory, Department of Medical Research, Chang Gung Memorial Hospital, Linkou, Taiwan
- Chang Gung Immunology Consortium, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan
- Department of Dermatology, Xiamen Chang Gung Hospital, Xiamen, China
- Xiamen Chang Gung Allergology Consortium, Xiamen Chang Gung Hospital, Xiamen, China
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Immune-Oncology Center of Excellence, Chang Gung Memorial Hospital, Linkou, Taiwan
- Whole-Genome Research Core Laboratory of Human Diseases, Chang Gung Memorial Hospital, Keelung, Taiwan
- Department of Dermatology, Beijing Tsinghua Chang Gung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
- Department of Dermatology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Genomic Medicine Core Laboratory, Chang Gung Memorial Hospital, Linkou, Taiwan
| |
Collapse
|
9
|
Wung CH, Wang CW, Lai KC, Chen CB, Chen WT, Hung SI, Chung WH. Current understanding of genetic associations with delayed hypersensitivity reactions induced by antibiotics and anti-osteoporotic drugs. Front Pharmacol 2023; 14:1183491. [PMID: 37180708 PMCID: PMC10169607 DOI: 10.3389/fphar.2023.1183491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 04/12/2023] [Indexed: 05/16/2023] Open
Abstract
Drug-induced delayed hypersensitivity reactions (DHRs) is still a clinical and healthcare burden in every country. Increasing reports of DHRs have caught our attention to explore the genetic relationship, especially life-threatening severe cutaneous adverse drug reactions (SCARs), including acute generalized exanthematous pustulosis (AGEP), drug reactions with eosinophilia and systemic symptoms (DRESS), Stevens-Johnson syndrome (SJS), and toxic epidermal necrolysis (TEN). In recent years, many studies have investigated the immune mechanism and genetic markers of DHRs. Besides, several studies have stated the associations between antibiotics-as well as anti-osteoporotic drugs (AOD)-induced SCARs and specific human leukocyte antigens (HLA) alleles. Strong associations between drugs and HLA alleles such as co-trimoxazole-induced DRESS and HLA-B*13:01 (Odds ratio (OR) = 45), dapsone-DRESS and HLA-B*13:01 (OR = 122.1), vancomycin-DRESS and HLA-A*32:01 (OR = 403), clindamycin-DHRs and HLA-B*15:27 (OR = 55.6), and strontium ranelate (SR)-SJS/TEN and HLA-A*33:03 (OR = 25.97) are listed. We summarized the immune mechanism of SCARs, update the latest knowledge of pharmacogenomics of antibiotics- and AOD-induced SCARs, and indicate the potential clinical use of these genetic markers for SCARs prevention in this mini review article.
Collapse
Affiliation(s)
| | - Chuang-Wei Wang
- Department of Dermatology, Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Taipei and Keelung, Taiwan
- Cancer Vaccine and Immune Cell Therapy Core Laboratory, Department of Medical Research, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Chang Gung Immunology Consortium, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan
- Department of Dermatology, Xiamen Chang Gung Hospital, Xiamen, China
| | - Kuo-Chu Lai
- Department of Physiology and Pharmacology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Division of Hematology and Oncology, Department of Internal Medicine, New Taipei Municipal TuCheng Hospital (Built and Operated by Chang Gung Medical Foundation), New Taipei City, Taiwan
| | - Chun-Bing Chen
- Department of Dermatology, Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Taipei and Keelung, Taiwan
- Cancer Vaccine and Immune Cell Therapy Core Laboratory, Department of Medical Research, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Chang Gung Immunology Consortium, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan
- Department of Dermatology, Xiamen Chang Gung Hospital, Xiamen, China
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Whole-Genome Research Core Laboratory of Human Diseases, Chang Gung Memorial Hospital, Keelung, Taiwan
- Immune-Oncology Center of Excellence, Chang Gung Memorial Hospital, Linkou, Taiwan
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Wei-Ti Chen
- Department of Dermatology, Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Taipei and Keelung, Taiwan
- Department of Dermatology, Xiamen Chang Gung Hospital, Xiamen, China
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Shuen-Iu Hung
- Department of Dermatology, Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Taipei and Keelung, Taiwan
- Cancer Vaccine and Immune Cell Therapy Core Laboratory, Department of Medical Research, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Institute of Pharmacology, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Wen-Hung Chung
- Department of Dermatology, Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Taipei and Keelung, Taiwan
- Cancer Vaccine and Immune Cell Therapy Core Laboratory, Department of Medical Research, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Chang Gung Immunology Consortium, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan
- Department of Dermatology, Xiamen Chang Gung Hospital, Xiamen, China
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Whole-Genome Research Core Laboratory of Human Diseases, Chang Gung Memorial Hospital, Keelung, Taiwan
- Immune-Oncology Center of Excellence, Chang Gung Memorial Hospital, Linkou, Taiwan
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Dermatology, Beijing Tsinghua Chang Gung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
- Department of Dermatology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Genomic Medicine Core Laboratory, Chang Gung Memorial Hospital, Linkou, Taiwan
| | | |
Collapse
|
10
|
Gibson A, Deshpande P, Campbell CN, Krantz MS, Mukherjee E, Mockenhaupt M, Pirmohamed M, Palubinsky AM, Phillips EJ. Updates on the immunopathology and genomics of severe cutaneous adverse drug reactions. J Allergy Clin Immunol 2023; 151:289-300.e4. [PMID: 36740326 PMCID: PMC9976545 DOI: 10.1016/j.jaci.2022.12.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 02/05/2023]
Abstract
Severe cutaneous adverse reactions (SCARs) such as Stevens-Johnson syndrome, toxic epidermal necrolysis (SJS/TEN), and drug reaction with eosinophilia and systemic symptoms (DRESS)/drug-induced hypersensitivity syndrome (DIHS) cause significant morbidity and mortality and impede new drug development. HLA class I associations with SJS/TEN and drug reaction with eosinophilia and systemic symptoms/drug-induced hypersensitivity syndrome have aided preventive efforts and provided insights into immunopathogenesis. In SJS/TEN, HLA class I-restricted oligoclonal CD8+ T-cell responses occur at the tissue level. However, specific HLA risk allele(s) and antigens driving this response have not been identified for most drugs. HLA risk alleles also have incomplete positive and negative predictive values, making truly comprehensive screening currently challenging. Although, there have been key paradigm shifts in knowledge regarding drug hypersensitivity, there are still many open and unanswered questions about SCAR immunopathogenesis, as well as genetic and environmental risk. In addition to understanding the cellular and molecular basis of SCAR at the single-cell level, identification of the MHC-restricted drug-reactive self- or viral peptides driving the hypersensitivity reaction will also be critical to advancing premarketing strategies to predict risk at an individual and drug level. This will also enable identification of biologic markers for earlier diagnosis and accurate prognosis, as well as drug causality and targeted therapeutics.
Collapse
Affiliation(s)
- Andrew Gibson
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Australia
| | - Pooja Deshpande
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Australia
| | - Chelsea N Campbell
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, Tenn
| | - Matthew S Krantz
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tenn
| | - Eric Mukherjee
- Department of Dermatology, Vanderbilt University Medical Center, Nashville; Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tenn
| | - Maja Mockenhaupt
- Dokumentationszentrum schwerer Hautreaktionen Department of Dermatologie, Medical Center and Medical Faculty, University of Freiburg, Freiberg, Germany
| | - Munir Pirmohamed
- Department of Pharmacology and Therapeutics, University of Liverpool, Liverpool, United Kingdom
| | - Amy M Palubinsky
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tenn
| | - Elizabeth J Phillips
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Australia; Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, Tenn; Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tenn; Department of Dermatology, Vanderbilt University Medical Center, Nashville; Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tenn.
| |
Collapse
|
11
|
Chu MT, Chang WC, Pao SC, Hung SI. Delayed Drug Hypersensitivity Reactions: Molecular Recognition, Genetic Susceptibility, and Immune Mediators. Biomedicines 2023; 11:biomedicines11010177. [PMID: 36672685 PMCID: PMC9855900 DOI: 10.3390/biomedicines11010177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/29/2022] [Accepted: 01/05/2023] [Indexed: 01/12/2023] Open
Abstract
Drug hypersensitivity reactions are classified into immediate and delayed types, according to the onset time. In contrast to the immediate type, delayed drug hypersensitivity mainly involves T lymphocyte recognition of the drug antigens and cell activation. The clinical presentations of such hypersensitivity are various and range from mild reactions (e.g., maculopapular exanthema (MPE) and fixed drug eruption (FDE)), to drug-induced liver injury (DILI) and severe cutaneous adverse reactions (SCARs) (e.g., Stevens-Johnson syndrome (SJS), toxic epidermal necrolysis (TEN), drug reaction with eosinophilia and systemic symptoms (DRESS), and acute generalized exanthematous pustulosis (AGEP)). The common culprits of delayed drug hypersensitivity include anti-epileptics, antibiotics, anti-gout agents, anti-viral drugs, etc. Delayed drug hypersensitivity is proposed to be initiated by different models of molecular recognition, composed of drug/metabolite antigen and endogenous peptide, HLA presentation, and T cell receptor (TCR) interaction. Increasing the genetic variants of HLA loci and drug metabolic enzymes has been identified to be responsible for delayed drug hypersensitivity. Furthermore, preferential TCR clonotypes, and the activation of cytotoxic proteins/cytokines/chemokines, are also involved in the pathogenesis of delayed drug hypersensitivity. This review provides a summary of the current understanding of the molecular recognition, genetic susceptibility, and immune mediators of delayed drug hypersensitivity.
Collapse
Affiliation(s)
- Mu-Tzu Chu
- Cancer Vaccine & Immune Cell Therapy Core Lab, Department of Medical Research, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 333, Taiwan
| | - Wan-Chun Chang
- Division of Translational Therapeutics, Department of Paediatrics, Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Shih-Cheng Pao
- Cancer Vaccine & Immune Cell Therapy Core Lab, Department of Medical Research, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 333, Taiwan
- Institute of Pharmacology, School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Shuen-Iu Hung
- Cancer Vaccine & Immune Cell Therapy Core Lab, Department of Medical Research, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 333, Taiwan
- Institute of Pharmacology, School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Drug Hypersensitivity Clinical and Research Center, Department of Dermatology, Chang Gung Memorial Hospital, Linkou 333, Taiwan
- Correspondence: or ; Tel.: +886-3-3281200 (ext. 7806)
| |
Collapse
|
12
|
Kategeaw W, Nakkam N, Kiertiburanakul S, Sukasem C, Tassaneeyakul W, Chaiyakunapruk N. Cost-effectiveness analysis of HLA-B*13:01 screening for the prevention of co-trimoxazole-induced severe cutaneous adverse reactions among HIV-infected patients in Thailand. J Med Econ 2023; 26:1330-1341. [PMID: 37830976 DOI: 10.1080/13696998.2023.2270868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/11/2023] [Indexed: 10/14/2023]
Abstract
Studies found a strong association between HLA-B*13:01 allele and co-trimoxazole-induced severe cutaneous adverse reactions (SCARs). Genetic screening before initiation of co-trimoxazole may decrease the incidence of co-trimoxazole-induced SCARs. This study aims to evaluate the cost-effectiveness of HLA-B*13:01 screening before co-trimoxazole initiation in HIV-infected patients in Thailand. A combination of a decision tree model and a Markov model was used to estimate lifetime costs and outcomes of two strategies including 1) HLA-B*13:01 screening before co-trimoxazole initiation and 2) usual practice from a societal perspective. Alternative drugs are not considered because dapsone (the second-line drug) also presents a genetic risk. Input parameters were obtained from literature, government documents, and part of the TREAT Asia HIV Observational Database (TAHOD). One-way sensitivity analyses and probabilistic analyses were performed to determine robustness of the findings. HLA-B*13:01 screening resulted in 0.0061 quality-adjusted life years (QALYs) loss with an additional cost of 370 THB ($11.84). At the cost-effectiveness threshold of 160,000 THB ($5,112.85), the probability of the genetic screening strategy being cost-effective is 9.54%. This analysis demonstrated that HLA-B*13:01 allele screening before initiation of co-trimoxazole among HIV-infected patients is unlikely to be cost-effective in Thailand. Our findings will help policymakers make an evidence-informed decision making.
Collapse
Affiliation(s)
- Warittakorn Kategeaw
- Department of Pharmacotherapy, College of Pharmacy, University of Utah, Salt Lake City, UT, USA
| | - Nontaya Nakkam
- Department of Pharmacology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Sasisopin Kiertiburanakul
- Division of Infectious Diseases, Department of Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Chonlaphat Sukasem
- Division of Pharmacogenomics and Personalized Medicine, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
- Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center (SDMC), Ramathibodi Hospital, Bangkok, Thailand
- The Thai Severe Cutaneous Adverse Drug Reaction (THAI-SCAR) Research Group, Bangkok, Thailand
| | | | - Nathorn Chaiyakunapruk
- Department of Pharmacotherapy, College of Pharmacy, University of Utah, Salt Lake City, UT, USA
- IDEAS Center, Veterans Affairs Salt Lake City Healthcare System, Salt Lake City, UT, USA
| |
Collapse
|
13
|
Nakkam N, Saksit N, Konyoung P, Amornpinyo W, Khunarkornsiri U, Purimart D, Pattanacheewapull O, Naewla T, Wattanachai P, Khaeso K, Chumworathayi P, Tassaneeyakul W. Associations of HLA and drug-metabolizing enzyme genes in co-trimoxazole-induced severe cutaneous adverse reactions. Drug Metab Pharmacokinet 2022; 47:100480. [DOI: 10.1016/j.dmpk.2022.100480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 10/07/2022] [Accepted: 10/13/2022] [Indexed: 11/03/2022]
|
14
|
Turongkaravee S, Praditsitthikorn N, Ngamprasertchai T, Jittikoon J, Mahasirimongkol S, Sukasem C, Udomsinprasert W, Wu O, Chaikledkaew U. Economic Evaluation of Multiple-Pharmacogenes Testing for the Prevention of Adverse Drug Reactions in People Living with HIV. CLINICOECONOMICS AND OUTCOMES RESEARCH 2022; 14:447-463. [PMID: 35832304 PMCID: PMC9272846 DOI: 10.2147/ceor.s366906] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 06/28/2022] [Indexed: 11/25/2022] Open
Abstract
Purpose Pharmacogenetics (PGx) testing is one of the methods for determining whether individuals are at risk of adverse drug reactions (ADRs). It has been reported that multiple-PGx testing, a sequencing technology, has a higher predictive value than single-PGx testing. Therefore, this study aimed to determine the most cost-effective PGx testing strategies for preventing drug-induced serious ADRs in human immunodeficiency virus (HIV)-infected patients. Patients and Methods Potential strategies, including 1) single-PGx esting (ie, HLA-B*57:01 testing before prescribing abacavir, HLA-B*13:01 testing before prescribing co-trimoxazole and dapsone, and NAT2 testing before prescribing isoniazid) and 2) multiple-PGx testing as a combination of four single-gene PGx tests in one panel, were all compared to no PGx testing (current practice). To evaluate total cost in Thai baht (THB) and quality-adjusted life years (QALYs) for each strategy-based approach to a societal perspective, a hybrid decision tree and Markov model was constructed. Incremental cost-effectiveness ratios (ICERs) were estimated. Uncertainty, threshold, and scenario analyses were all performed. Results Before prescribing HIV therapy, providing single or multiple-PGx testing might save roughly 68 serious ADRs per year, and the number needed to screen (NNS) to avoid one serious ADR was 40. Consequently, approximately 35% and 40% of the cost of ADR treatment could be avoided by the implementation of single- and multiple-PGx testing, respectively. Compared with no PGx testing strategy, the ICERs were 146,319 THB/QALY gained for single-PGx testing and 152,014 THB/QALY gained for multiple-PGx testing. Moreover, the probability of multiple-PGx testing being cost-effective was 45% at the Thai willingness to pay threshold of 160,000 THB per QALY. Threshold analyses showed that multiple-PGx testing remained cost-effective under the range of cost, sensitivity at 0.95–1.00 and specificity at 0.98–1.00. Conclusion Single and multiple-PGx testing might be cost-effective options for reducing the incidence of drug-induced serious ADRs in people living with HIV.
Collapse
Affiliation(s)
- Saowalak Turongkaravee
- Social, Economic and Administrative Pharmacy (SEAP) Graduate Program, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand
| | | | - Thundon Ngamprasertchai
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine; Mahidol University, Bangkok, Thailand
| | - Jiraphun Jittikoon
- Department of Biochemistry, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand
| | - Surakameth Mahasirimongkol
- Department of Medical Sciences, Medical Genetics Center, Medical Life Sciences Institute, Ministry of Public Health, Nonthaburi, Thailand
| | - Chonlaphat Sukasem
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand.,Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center (SDMC), Ramathibodi Hospital, Bangkok, Thailand.,Pharmacogenomics and Precision Medicine, The Preventive Genomics & Family Check-Up Services Center, Bumrungrad International Hospital, Bangkok, Thailand.,MRC Centre for Drug Safety Science, Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 3GL, UK
| | | | - Olivia Wu
- Health Economics and Health Technology Assessment (HEHTA), Institute of Health and Wellbeing, University of Glasgow, Glasgow, UK
| | - Usa Chaikledkaew
- Social and Administrative Pharmacy Division, Department of Pharmacy, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand.,Mahidol University Health Technology Assessment (MUHTA) Graduate Program, Mahidol University, Bangkok, Thailand
| |
Collapse
|
15
|
Elzagallaai AA, Rieder MJ. Genetic markers of drug hypersensitivity in pediatrics: current state and promise. Expert Rev Clin Pharmacol 2022; 15:715-728. [DOI: 10.1080/17512433.2022.2100345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Abdelbaset A Elzagallaai
- Department of Paediatrics Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
- Department of Physiology and Pharmacology Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Michael J Rieder
- Department of Physiology and Pharmacology Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Robarts Research Institute, Western University, London, Ontario, Canada
| |
Collapse
|
16
|
Tiwattanon K, John S, Koomdee N, Jinda P, Rachanakul J, Jantararoungtong T, Nuntharadthanaphong N, Kloypan C, Biswas M, Boongird A, Sukasem C. Implementation of HLA-B*15:02 Genotyping as Standard-of-Care for Reducing Carbamazepine/Oxcarbazepine Induced Cutaneous Adverse Drug Reactions in Thailand. Front Pharmacol 2022; 13:867490. [PMID: 35865943 PMCID: PMC9294359 DOI: 10.3389/fphar.2022.867490] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 06/02/2022] [Indexed: 11/13/2022] Open
Abstract
Objective: This study aimed to investigate the clinical impact of HLA-B*15:02 pharmacogenomics (PGx) testing before carbamazepine (CBZ)/oxcarbazepine (OXC) prescriptions and to determine whether this PGx testing was associated with the reduction of CBZ/OXC-induced cutaneous adverse drug reactions (CADRs) in Thailand.Methods: This retrospective observational cohort study was conducted by obtaining relevant HLA-B*15:02 PGx-testing and clinical data from electronic medical records during 2011–2020. 384 patient data were included in this study to investigate the clinical decision on CBZ/OXC usage before and after the HLA-B*15:02 PGx testing, and 1,539 patient data were included in this study to demonstrate the incidence of CBZ/OXC-induced SCARs and SJS between HLA-B*15:02 tested and non-tested patients. To analyze and summarize the results, descriptive statistics were employed, and Fisher exact test was used to compare the clinical difference between the HLA-B*15:02 positive and negative groups and to compare the differences of SCARs incidence.Results: 384 patients were included in this study as per the inclusion criteria. Of these, 70 patients carried HLA-B*15:02, of which 63 and 65 patients were not prescribed with CBZ/OXC before and after the availability of genotyping results, respectively. In the remaining HLA-B*15:02 non-carriers, 48, and 189 patients were prescribed CBZ/OXC before and after genotyping results were available, respectively. The findings of this study showed that the incidence of SCARs of CBZ/OXC was significantly lower (p < 0.001) in the HLA-B*15:02 screening arm than in the non-screening arm.Conclusion:HLA-B pharmacogenetics testing influenced the selection of appropriate AEDs. The presence of mild rash in the HLA-B*15:02 negative group indicates that other genetic biomarker (HLA-A*31:01) and/or non-genetic variables are involved in CBZ/OXC-induced CADRs, emphasizing that CBZ/OXC prescriptions necessitate CADR monitoring. The hospital policy and clinical decision support (CDS) alert system is essential to overcome the barriers associated with the utilization of PGx guidelines into clinical practice.
Collapse
Affiliation(s)
- Kanyawan Tiwattanon
- Division of Neurology, Department of Medicine, Faculty of Medicine Ramathibodi Hospital Mahidol University, Bangkok, Thailand
| | - Shobana John
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
- Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center (SDMC), Ramathibodi Hospital, Bangkok, Thailand
| | - Napatrupron Koomdee
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
- Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center (SDMC), Ramathibodi Hospital, Bangkok, Thailand
- *Correspondence: Napatrupron Koomdee, ; Apisit Boongird,
| | - Pimonpan Jinda
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
- Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center (SDMC), Ramathibodi Hospital, Bangkok, Thailand
| | - Jiratha Rachanakul
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
- Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center (SDMC), Ramathibodi Hospital, Bangkok, Thailand
| | - Thawinee Jantararoungtong
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
- Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center (SDMC), Ramathibodi Hospital, Bangkok, Thailand
| | - Nutthan Nuntharadthanaphong
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
- Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center (SDMC), Ramathibodi Hospital, Bangkok, Thailand
| | - Chiraphat Kloypan
- Unit of Excellence in Integrative Molecular Biomedicine, School of Allied Health Sciences, University of Phayao, Phayao, Thailand
- Division of Clinical Immunology and Transfusion Science, Department of Medical Technology, School of Allied Health Sciences, University of Phayao, Phayao, Thailand
| | - Mohitosh Biswas
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
- Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center (SDMC), Ramathibodi Hospital, Bangkok, Thailand
- Department of Pharmacy, University of Rajshahi, Rajshahi, Bangladesh
| | - Apisit Boongird
- Division of Neurology, Department of Medicine, Faculty of Medicine Ramathibodi Hospital Mahidol University, Bangkok, Thailand
- Ramathibodi Multidisciplinary Center (RMEC), Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
- *Correspondence: Napatrupron Koomdee, ; Apisit Boongird,
| | - Chonlaphat Sukasem
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
- Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center (SDMC), Ramathibodi Hospital, Bangkok, Thailand
- Ramathibodi Multidisciplinary Center (RMEC), Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
- Pharmacogenomics and Precision Medicine Clinic, The Preventive Genomics and Family Check-up Services Center, Bumrungrad International Hospital, Bangkok, Thailand
- MRC Centre for Drug Safety Science, Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
17
|
Deshpande P, Li Y, Thorne M, Palubinsky AM, Phillips EJ, Gibson A. Practical Implementation of Genetics: New Concepts in Immunogenomics to Predict, Prevent, and Diagnose Drug Hypersensitivity. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2022; 10:1689-1700. [PMID: 35526777 PMCID: PMC9948495 DOI: 10.1016/j.jaip.2022.04.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 04/26/2022] [Accepted: 04/26/2022] [Indexed: 02/05/2023]
Abstract
Delayed drug hypersensitivities are CD8+ T cell-mediated reactions associated with up to 50% mortality. Human leukocyte antigen (HLA) alleles are known to predispose disease and are specific to drug, reaction, and patient ethnicity. Pretreatment screening is recommended for a handful of the strongest associations to identify and prevent drug use in high-risk patients. However, an incomplete predictive value implicates other HLA-imposed risk factors, and low carriage of many identified HLA-risk alleles combined with the high cost of sequence-based typing has limited economic viability for similar recommendation of screening across drugs and health care systems. For mitigation, an expanding armory of low-cost polymerase chain reaction-based screens is being developed, and HLA-imposed risk factors are being discovered. These include (1) polymorphic variants of metabolic and endoplasmic reticulum aminopeptidase enzymes toward multiallelic screening with increased predictivity; (2) regulation by immune checkpoint inhibitors, enabling detolerized animal models of human disease; and (3) immunodominant T cell receptors (TCR) on clonally expanded CD8+ T cells. For the latter, HLA risk-restricted TCR provides immunogenomic strategies and samples from a single patient to identify novel HLA-risk associations in underserved minority populations, tissue-relevant effector biomarkers toward earlier diagnosis and treatment, and HLA-TCR-presented immunogenic structures to aid future drug development.
Collapse
Affiliation(s)
- Pooja Deshpande
- Institute for Immunology and Infectious Disease (IIID), Murdoch University, Perth, WA, Australia
| | - Yueran Li
- Institute for Immunology and Infectious Disease (IIID), Murdoch University, Perth, WA, Australia
| | - Michael Thorne
- Institute for Immunology and Infectious Disease (IIID), Murdoch University, Perth, WA, Australia
| | | | - Elizabeth J Phillips
- Institute for Immunology and Infectious Disease (IIID), Murdoch University, Perth, WA, Australia,Vanderbilt University Medical Centre (VUMC), Nashville, TN, USA
| | - Andrew Gibson
- Institute for Immunology and Infectious Disease, Murdoch University, Perth, Western Australia, Australia.
| |
Collapse
|
18
|
Wang CW, Preclaro IAC, Lin WH, Chung WH. An Updated Review of Genetic Associations With Severe Adverse Drug Reactions: Translation and Implementation of Pharmacogenomic Testing in Clinical Practice. Front Pharmacol 2022; 13:886377. [PMID: 35548363 PMCID: PMC9081981 DOI: 10.3389/fphar.2022.886377] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/08/2022] [Indexed: 12/18/2022] Open
Abstract
Adverse drug reactions (ADR) remain the major problems in healthcare. Most severe ADR are unpredictable, dose-independent and termed as type B idiosyncratic reactions. Recent pharmacogenomic studies have demonstrated the strong associations between severe ADR and genetic markers, including specific HLA alleles (e.g., HLA-B*15:02/HLA-B*57:01/HLA-A*31:01 for carbamazepine-induced severe cutaneous adverse drug reactions [SCAR], HLA-B*58:01 for allopurinol-SCAR, HLA-B*57:01 for abacavir-hypersensitivity, HLA-B*13:01 for dapsone/co-trimoxazole-induced SCAR, and HLA-A*33:01 for terbinafine-induced liver injury), drug metabolism enzymes (such as CYP2C9*3 for phenytoin-induced SCAR and missense variant of TPMT/NUDT15 for thiopurine-induced leukopenia), drug transporters (e.g., SLCO1B1 polymorphism for statin-induced myopathy), and T cell receptors (Sulfanilamide binding into the CDR3/Vα of the TCR 1.3). This mini review article aims to summarize the current knowledge of pharmacogenomics of severe ADR, and the potentially clinical use of these genetic markers for avoidance of ADR.
Collapse
Affiliation(s)
- Chuang-Wei Wang
- Department of Dermatology, Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Taipei and Keelung, Taiwan.,Cancer Vaccine and Immune Cell Therapy Core Laboratory, Chang Gung Memorial Hospital, Linkou, Taiwan.,Chang Gung Immunology Consortium, Chang Gung Memorial Cital and Chang Gung University, Taoyuan, Taiwan.,Department of Dermatology, Xiamen Chang Gung Hospital, Xiamen, China
| | - Ivan Arni C Preclaro
- Department of Dermatology, Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Taipei and Keelung, Taiwan
| | - Wei-Hsiang Lin
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Wen-Hung Chung
- Department of Dermatology, Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Taipei and Keelung, Taiwan.,Cancer Vaccine and Immune Cell Therapy Core Laboratory, Chang Gung Memorial Hospital, Linkou, Taiwan.,Chang Gung Immunology Consortium, Chang Gung Memorial Cital and Chang Gung University, Taoyuan, Taiwan.,Department of Dermatology, Xiamen Chang Gung Hospital, Xiamen, China.,Whole-Genome Research Core Laboratory of Human Diseases, Chang Gung Memorial Hospital, Keelung, Taiwan.,Department of Dermatology, Beijing Tsinghua Chang Gung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China.,Department of Dermatology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Genomic Medicine Core Laboratory, Chang Gung Memorial Hospital, Linkou, Taiwan
| |
Collapse
|
19
|
Tempark T, John S, Rerknimitr P, Satapornpong P, Sukasem C. Drug-Induced Severe Cutaneous Adverse Reactions: Insights Into Clinical Presentation, Immunopathogenesis, Diagnostic Methods, Treatment, and Pharmacogenomics. Front Pharmacol 2022; 13:832048. [PMID: 35517811 PMCID: PMC9065683 DOI: 10.3389/fphar.2022.832048] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 03/01/2022] [Indexed: 12/19/2022] Open
Abstract
SCARs are rare and life-threatening hypersensitivity reactions. In general, the increased duration of hospital stays and the associated cost burden are common issues, and in the worst-case scenario, they can result in mortality. SCARs are delayed T cell-mediated hypersensitivity reactions. Recovery can take from 2 weeks to many months after dechallenging the culprit drugs. Genetic polymorphism of the HLA genes may change the selection and presentation of antigens, allowing toxic drug metabolites to initiate immunological reactions. However, each SCARs has a different onset latency period, clinical features, or morphological pattern. This explains that, other than HLA mutations, other immuno-pathogenesis may be involved in drug-induced severe cutaneous reactions. This review will discuss the clinical morphology of various SCARs, various immune pathogenesis models, diagnostic criteria, treatments, the association of various drug-induced reactions and susceptible alleles in different populations, and the successful implementation of pharmacogenomics in Thailand for the prevention of SCARs.
Collapse
Affiliation(s)
- Therdpong Tempark
- Division of Dermatology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- The Pediatrics-Thai Severe Cutaneous Adverse Drug Reaction (Ped-Thai-SCAR) Research Group, Bangkok, Thailand
| | - Shobana John
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
- Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center (SDMC), Ramathibodi Hospital, Bangkok, Thailand
| | - Pawinee Rerknimitr
- The Thai Severe Cutaneous Adverse Drug Reaction (Thai-SCAR) Research Group, Bangkok, Thailand
- Division of Dermatology, Department of Medicine, Faculty of Medicine, Skin, and Allergy Research Unit, Chulalongkorn University, Bangkok, Thailand
| | - Patompong Satapornpong
- Division of General Pharmacy Practice, Department of Pharmaceutical Care, College of Pharmacy, Rangsit University, Pathum Thani, Thailand
- Excellence Pharmacogenomics and Precision Medicine Centre, College of Pharmacy, Rangsit University, Pathum Thani, Thailand
| | - Chonlaphat Sukasem
- The Pediatrics-Thai Severe Cutaneous Adverse Drug Reaction (Ped-Thai-SCAR) Research Group, Bangkok, Thailand
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
- Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center (SDMC), Ramathibodi Hospital, Bangkok, Thailand
- The Thai Severe Cutaneous Adverse Drug Reaction (Thai-SCAR) Research Group, Bangkok, Thailand
- Pharmacogenomics and Precision Medicine, The Preventive Genomics & Family Check-up Services Center, Bumrungrad International Hospital, Bangkok, Thailand
- MRC Centre for Drug Safety Science, Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
20
|
Mortazavi H, Rostami A, Firooz A, Esmaili N, Ghiasi M, Lajevardi V, Amirzargar AA, Sheykhi I, Khamesipour A, Akhdar M. Association between human leukocyte antigens and cutaneous adverse drug reactions to antiepileptics and antibiotics in the Iranian population. Dermatol Ther 2022; 35:e15393. [PMID: 35187767 DOI: 10.1111/dth.15393] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 10/13/2021] [Accepted: 02/07/2022] [Indexed: 11/26/2022]
Abstract
In this case-control study, class І and ІІ HLA alleles in Iranian patients with benign and severe cutaneous adverse drug reactions (CADRs) due to aromatic anticonvulsants and antibiotics were evaluated. Patients diagnosed with CADRs (based on clinical and laboratory findings) with a Naranjo score of ≥4 underwent blood sampling and HLA-DNA typing. The control group comprised 90 healthy Iranian adults. Alleles with a frequency of more than two were reported. Deviations from Hardy-Weinberg equilibrium were not observed. Eighty patients with CADRs including 54 females and 26 males with a mean age of 41.49±16.08 years were enrolled in this study. The culprit drugs included anticonvulsants (lamotrigine, carbamazepine, and phenytoin) and antibiotics (ciprofloxacin and co-trimoxazole). The comparison of allele frequencies in the Iranian healthy control group and the group with benign CADRs revealed that HLA-Cw*04, and HLA-A*24 were significantly associated with lamotrigine-induced maculopapular CADRs. Furthermore, HLA-B*51 showed a significant correlation with carbamazepine-induced maculopapular CADRs. Significant associations were also detected between ciprofloxacin-induced urticarial CADRs with HLA-B*40, and HLA-DRB1*14. In the severe group, HLA-B*38 and HLA-DRB1*13 were significantly associated with lamotrigine-induced Stevens-Johnson syndrome/toxic epidermal necrolysis (SJS/TEN). Moreover, HLA-A*31 and HLA-Cw*04 were significantly correlated with carbamazepine-induced drug reactions with eosinophilia and systemic symptoms (DRESS). HLA-B*08 also showed a significant correlation with ciprofloxacin-induced acute generalized exanthematous pustulosis (AGEP). In conclusion, Lamotrigine-induced MPE was significantly correlated with HLA-Cw*04, and HLA-A*24. Similarly, lamotrigine-induced SJS/TEN was significantly associated with HLA-B*38 and HLA-DRB1*13. Additionally, HLA-A*31 was associated with DRESS caused by carbamazepine. The most frequent CADR-inducing drugs were anticonvulsants. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Hossein Mortazavi
- Department of dermatology Tehran University of Medical Sciences, Razi Hospital, Vahdat Eslami Square, Tehran, Iran
| | - Anahita Rostami
- Department of dermatology Tehran University of Medical Sciences, Razi Hospital, Vahdat Eslami Square, Tehran, Iran
| | - Alireza Firooz
- Center for Research & Training in Skin Diseases & Leprosy, Tehran University of Medical Sciences, Tehran, Iran
| | - Nafiseh Esmaili
- Department of dermatology Tehran University of Medical Sciences, Razi Hospital, Vahdat Eslami Square, Tehran, Iran.,Autoimmune bullous diseases research center, Tehran University of Medical Sciences, Razi Hospital, Vahdat Eslami Square, Tehran, Iran
| | - Maryam Ghiasi
- Department of dermatology Tehran University of Medical Sciences, Razi Hospital, Vahdat Eslami Square, Tehran, Iran
| | - Vahideh Lajevardi
- Department of dermatology Tehran University of Medical Sciences, Razi Hospital, Vahdat Eslami Square, Tehran, Iran
| | - Ali Akbar Amirzargar
- Molecular Immunology Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Immunogenetic Laboratory, Department of Immunology, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Iman Sheykhi
- MSc. Sharif University of Technology, Tehran, Iran
| | - Ali Khamesipour
- Center for Research & Training in Skin Diseases & Leprosy, Tehran University of Medical Sciences, Tehran, Iran
| | - Marwa Akhdar
- Department of dermatology Tehran University of Medical Sciences, Razi Hospital, Vahdat Eslami Square, Tehran, Iran
| |
Collapse
|
21
|
Biswas M, Sawajan N, Rungrotmongkol T, Sanachai K, Ershadian M, Sukasem C. Pharmacogenetics and Precision Medicine Approaches for the Improvement of COVID-19 Therapies. Front Pharmacol 2022; 13:835136. [PMID: 35250581 PMCID: PMC8894812 DOI: 10.3389/fphar.2022.835136] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 01/24/2022] [Indexed: 01/18/2023] Open
Abstract
Many drugs are being administered to tackle coronavirus disease 2019 (COVID-19) pandemic situations without establishing clinical effectiveness or tailoring safety. A repurposing strategy might be more effective and successful if pharmacogenetic interventions are being considered in future clinical studies/trials. Although it is very unlikely that there are almost no pharmacogenetic data for COVID-19 drugs, however, from inferring the pharmacokinetic (PK)/pharmacodynamic(PD) properties and some pharmacogenetic evidence in other diseases/clinical conditions, it is highly likely that pharmacogenetic associations are also feasible in at least some COVID-19 drugs. We strongly mandate to undertake a pharmacogenetic assessment for at least these drug-gene pairs (atazanavir-UGT1A1, ABCB1, SLCO1B1, APOA5; efavirenz-CYP2B6; nevirapine-HLA, CYP2B6, ABCB1; lopinavir-SLCO1B3, ABCC2; ribavirin-SLC28A2; tocilizumab-FCGR3A; ivermectin-ABCB1; oseltamivir-CES1, ABCB1; clopidogrel-CYP2C19, ABCB1, warfarin-CYP2C9, VKORC1; non-steroidal anti-inflammatory drugs (NSAIDs)-CYP2C9) in COVID-19 patients for advancing precision medicine. Molecular docking and computational studies are promising to achieve new therapeutics against SARS-CoV-2 infection. The current situation in the discovery of anti-SARS-CoV-2 agents at four important targets from in silico studies has been described and summarized in this review. Although natural occurring compounds from different herbs against SARS-CoV-2 infection are favorable, however, accurate experimental investigation of these compounds is warranted to provide insightful information. Moreover, clinical considerations of drug-drug interactions (DDIs) and drug-herb interactions (DHIs) of the existing repurposed drugs along with pharmacogenetic (e.g., efavirenz and CYP2B6) and herbogenetic (e.g., andrographolide and CYP2C9) interventions, collectively called multifactorial drug-gene interactions (DGIs), may further accelerate the development of precision COVID-19 therapies in the real-world clinical settings.
Collapse
Affiliation(s)
- Mohitosh Biswas
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
- Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center (SDMC), Ramathibodi Hospital, Bangkok, Thailand
- Department of Pharmacy, University of Rajshahi, Rajshahi, Bangladesh
| | - Nares Sawajan
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
- Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center (SDMC), Ramathibodi Hospital, Bangkok, Thailand
- Department of Pathology, School of Medicine, Mae Fah Luang University, Chiang Rai, Thailand
| | - Thanyada Rungrotmongkol
- Structural and Computational Biology Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- Program in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University, Bangkok, Thailand
| | - Kamonpan Sanachai
- Structural and Computational Biology Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Maliheh Ershadian
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
- Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center (SDMC), Ramathibodi Hospital, Bangkok, Thailand
| | - Chonlaphat Sukasem
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
- Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center (SDMC), Ramathibodi Hospital, Bangkok, Thailand
- Pharmacogenomics and Precision Medicine, The Preventive Genomics and Family Check-up Services Center, Bumrungrad International Hospital, Bangkok, Thailand
- MRC Centre for Drug Safety Science, Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
22
|
Kloypan C, Koomdee N, Satapornpong P, Tempark T, Biswas M, Sukasem C. A Comprehensive Review of HLA and Severe Cutaneous Adverse Drug Reactions: Implication for Clinical Pharmacogenomics and Precision Medicine. Pharmaceuticals (Basel) 2021; 14:1077. [PMID: 34832859 PMCID: PMC8622011 DOI: 10.3390/ph14111077] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/13/2021] [Accepted: 10/18/2021] [Indexed: 12/19/2022] Open
Abstract
Human leukocyte antigen (HLA) encoded by the HLA gene is an important modulator for immune responses and drug hypersensitivity reactions as well. Genetic polymorphisms of HLA vary widely at population level and are responsible for developing severe cutaneous adverse drug reactions (SCARs) such as Stevens-Johnson syndrome (SJS), toxic epidermal necrolysis (TEN), drug reaction with eosinophilia and systemic symptoms (DRESS), maculopapular exanthema (MPE). The associations of different HLA alleles with the risk of drug induced SJS/TEN, DRESS and MPE are strongly supportive for clinical considerations. Prescribing guidelines generated by different national and international working groups for translation of HLA pharmacogenetics into clinical practice are underway and functional in many countries, including Thailand. Cutting edge genomic technologies may accelerate wider adoption of HLA screening in routine clinical settings. There are great opportunities and several challenges as well for effective implementation of HLA genotyping globally in routine clinical practice for the prevention of drug induced SCARs substantially, enforcing precision medicine initiatives.
Collapse
Affiliation(s)
- Chiraphat Kloypan
- Unit of Excellence in Integrative Molecular Biomedicine, School of Allied Health Sciences, University of Phayao, Phayao 56000, Thailand;
- Division of Clinical Immunology and Transfusion Science, Department of Medical Technology, School of Allied Health Sciences, University of Phayao, Phayao 56000, Thailand
| | - Napatrupron Koomdee
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand; (N.K.); (M.B.)
- Laboratory for Pharmacogenomics, Ramathibodi Hospital, Somdech Phra Debaratana Medical Center SDMC, Bangkok 10400, Thailand
| | - Patompong Satapornpong
- Division of General Pharmacy Practice, Department of Pharmaceutical Care, College of Pharmacy, Rangsit University, Pathum Thani 12000, Thailand;
- Excellence Pharmacogenomics and Precision Medicine Centre, College of Pharmacy, Rangsit University, Pathum Thani 12000, Thailand
| | - Therdpong Tempark
- Division of Dermatology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Mohitosh Biswas
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand; (N.K.); (M.B.)
- Laboratory for Pharmacogenomics, Ramathibodi Hospital, Somdech Phra Debaratana Medical Center SDMC, Bangkok 10400, Thailand
- Department of Pharmacy, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Chonlaphat Sukasem
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand; (N.K.); (M.B.)
- Laboratory for Pharmacogenomics, Ramathibodi Hospital, Somdech Phra Debaratana Medical Center SDMC, Bangkok 10400, Thailand
- The Thai Severe Cutaneous Adverse Drug Reaction THAI-SCAR Research-Genomics Thailand, Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
- The Preventive Genomics & Family Check-Up Services Center, Bumrungrad International Hospital, Pharmacogenomics and Precision Medicine Clinic, Bangkok 10110, Thailand
- MRC Centre for Drug Safety Science, Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3GL, UK
| |
Collapse
|
23
|
Jaruthamsophon K, Thomson PJ, Sukasem C, Naisbitt DJ, Pirmohamed M. HLA Allele-Restricted Immune-Mediated Adverse Drug Reactions: Framework for Genetic Prediction. Annu Rev Pharmacol Toxicol 2021; 62:509-529. [PMID: 34516290 DOI: 10.1146/annurev-pharmtox-052120-014115] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Human leukocyte antigen (HLA) is a hallmark genetic marker for the prediction of certain immune-mediated adverse drug reactions (ADRs). Numerous basic and clinical research studies have provided the evidence base to push forward the clinical implementation of HLA testing for the prevention of such ADRs in susceptible patients. This review explores current translational progress in using HLA as a key susceptibility factor for immune ADRs and highlights gaps in our knowledge. Furthermore, relevant findings of HLA-mediated drug-specific T cell activation are covered, focusing on cellular approaches to link genetic associations to drug-HLA binding as a complementary approach to understand disease pathogenesis. Expected final online publication date for the Annual Review of Pharmacology and Toxicology, Volume 62 is January 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Kanoot Jaruthamsophon
- MRC Centre for Drug Safety Science, Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3GL, United Kingdom; .,Department of Pathology, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
| | - Paul J Thomson
- MRC Centre for Drug Safety Science, Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3GL, United Kingdom;
| | - Chonlaphat Sukasem
- MRC Centre for Drug Safety Science, Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3GL, United Kingdom; .,Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine, and Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center (SDMC), Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
| | - Dean J Naisbitt
- MRC Centre for Drug Safety Science, Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3GL, United Kingdom;
| | - Munir Pirmohamed
- MRC Centre for Drug Safety Science, Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3GL, United Kingdom;
| |
Collapse
|
24
|
Jeiziner C, Wernli U, Suter K, Hersberger KE, Meyer zu Schwabedissen HE. HLA-associated adverse drug reactions - scoping review. Clin Transl Sci 2021; 14:1648-1658. [PMID: 34105877 PMCID: PMC8504845 DOI: 10.1111/cts.13062] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/14/2021] [Accepted: 04/16/2021] [Indexed: 01/18/2023] Open
Abstract
Alleles of the human leukocyte antigen (HLA) system have been associated with the occurrence of idiosyncratic adverse drug reactions (ADRs). Accordingly, it is assumed that pre-emptive testing for the presence of certain HLA alleles (HLA-typing) could prevent these ADRs in carriers. In order to perceive the current evidence for HLA-associated ADRs, we conducted a scoping review according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). The literature search on PubMed and on Embase was carried out on the July 8 and 9, 2020, respectively. To be included in the scoping review, the studies had to investigate an association of any HLA-associated ADR with any small molecule approved and available on the Swiss market. We considered English and German primary literature published since 2002. A total of 149 studies were included, whereof most were retrospective, whereas one was a prospective randomized controlled trial. The majority of the studies (n = 33) described the association of HLA-B*15:02 with carbamazepine. It was not possible to directly compare the studies, as they were too heterogeneous in terms of the ADR definition, the HLA alleles, the number of participants, and the study types. Therefore, we summarized the results in a descriptive manner. Even if an interpretation of the outcomes remains open, the descriptive overview revealed the prevailing complexity and uncertainty in the field. For the future, consistent definitions on the different phenotypes need to be established and applied and the reporting of association studies should follow a harmonized structure.
Collapse
Affiliation(s)
- Chiara Jeiziner
- Pharmaceutical Care Research GroupDepartment of Pharmaceutical SciencesUniversity of BaselBaselSwitzerland
| | - Ursina Wernli
- Pharmaceutical Care Research GroupDepartment of Pharmaceutical SciencesUniversity of BaselBaselSwitzerland
| | - Katja Suter
- European Center of Pharmaceutical MedicineFaculty of MedicineUniversity of BaselBaselSwitzerland
| | - Kurt E. Hersberger
- Pharmaceutical Care Research GroupDepartment of Pharmaceutical SciencesUniversity of BaselBaselSwitzerland
| | | |
Collapse
|
25
|
Hertzman RJ, Deshpande P, Gibson A, Phillips EJ. Role of pharmacogenomics in T-cell hypersensitivity drug reactions. Curr Opin Allergy Clin Immunol 2021; 21:327-334. [PMID: 34039850 PMCID: PMC8243836 DOI: 10.1097/aci.0000000000000754] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PURPOSE OF REVIEW An update of the pharmacogenetic risk factors associated with T-cell-mediated delayed hypersensitivity reactions. RECENT FINDINGS Recent HLA associations relevant to our understanding of immunopathogenesis and clinical practice include HLA-B∗13:01 with co-trimoxazole-induced SCAR, and HLA-A∗32:01 with vancomycin-DRESS, for which an extended HLA class II haplotype is implicated in glycopeptide antibiotic cross-reactivity. Hypoactive variants of ERAP1, an enzyme-trimming peptide prior to HLA loading, are now associated with protection from abacavir-hypersensitivity in HLA-B∗57:01+ patients, and single-cell sequencing has defined the skin-restricted expansion of a single, public and drug-reactive dominant TCR across patients with HLA-B∗15:02-restricted carbamazepine-induced SJS/TEN. More recent strategies for the use of HLA and other risk factors may include risk-stratification, early diagnosis, and diagnosis in addition to screening. SUMMARY HLA is necessary but insufficient as a risk factor for the development of most T-cell-mediated reactions. Newly emerged genetic and ecological risk factors, combined with HLA-restricted response, align with underlying immunopathogenesis and drive towards enhanced strategies to improve positive-predictive and negative-predictive values. With large population-matched cohorts, genetic studies typically focus on populations that have been readily accessible to research studies, but it is now imperative to address similar risk in globally relevant and understudied populations.
Collapse
Affiliation(s)
- Rebecca J Hertzman
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Western Australia, Australia
| | - Pooja Deshpande
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Western Australia, Australia
| | - Andrew Gibson
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Western Australia, Australia
| | - Elizabeth J Phillips
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Western Australia, Australia
- Department of Medicine, Vanderbilt University Medical Centre, Nashville, Tennessee, USA
| |
Collapse
|
26
|
Jantararoungtong T, Tempark T, Koomdee N, Medhasi S, Sukasem C. Genotyping HLA alleles to predict the development of Severe cutaneous adverse drug reactions (SCARs): state-of-the-art. Expert Opin Drug Metab Toxicol 2021; 17:1049-1064. [PMID: 34148467 DOI: 10.1080/17425255.2021.1946514] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Introduction: Pharmacogenomics has great potential in reducing drug-induced severe cutaneous adverse drug reactions (SCARs). Pharmacogenomic studies have revealed an association between HLA genes and SCARs including acute generalized exanthematous pustulosis (AGEP), drug reaction with eosinophilia and systemic symptoms (DRESS), Stevens-Johnson syndrome (SJS), and toxic epidermal necrolysis (TEN).Areas covered: Pharmacogenomics-guided therapy could prevent severe drug hypersensitivity reactions. The US Food and Drug Administration (FDA), Clinical Pharmacogenetics Implementation Consortium (CPIC), and Dutch Pharmacogenetics Working Group (DPWG) provided guidelines in the translation of clinically relevant and evidence-based SCARs pharmacogenomics research into clinical practice. In this review, we intended to summarize the significant HLA alleles associated with SCARs induced by different drugs in different populations. We also summarize the SCARs associated with genetic and non-genetic factors and the cost-effectiveness of screening tests.Expert opinion: The effectiveness of HLA screening on a wider scale in clinical practice requires significant resources, including state-of-the-art laboratory; multidisciplinary team approach and health care provider education and engagement; clinical decision support alert system via electronic medical record (EMR); laboratory standards and quality assurance; evidence of cost-effectiveness; and cost of pharmacogenomics tests and reimbursement.
Collapse
Affiliation(s)
- Thawinee Jantararoungtong
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand.,Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center (SDMC), Ramathibodi Hospital, Bangkok, Thailand
| | - Therdpong Tempark
- Division of Dermatology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Napatrupron Koomdee
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand.,Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center (SDMC), Ramathibodi Hospital, Bangkok, Thailand
| | - Sadeep Medhasi
- Center of Medical Genomics, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Chonlaphat Sukasem
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand.,Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center (SDMC), Ramathibodi Hospital, Bangkok, Thailand.,Preventive Genomics and Family Check-up Services Center, Bumrungrad International Hospital, Bangkok, Thailand
| |
Collapse
|
27
|
Ahmed AF, Sukasem C, Sabbah MA, Musa NF, Mohamed Noor DA, Daud NAA. Genetic Determinants in HLA and Cytochrome P450 Genes in the Risk of Aromatic Antiepileptic-Induced Severe Cutaneous Adverse Reactions. J Pers Med 2021; 11:383. [PMID: 34067134 PMCID: PMC8150699 DOI: 10.3390/jpm11050383] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/20/2021] [Accepted: 04/28/2021] [Indexed: 12/19/2022] Open
Abstract
Adverse drug reaction (ADR) is a pressing health problem, and one of the main reasons for treatment failure with antiepileptic drugs. This has become apparent in the event of severe cutaneous adverse reactions (SCARs), which can be life-threatening. In this review, four hypotheses were identified to describe how the immune system is triggered in the development of SCARs, which predominantly involve the human leukocyte antigen (HLA) proteins. Several genetic variations in HLA genes have been shown to be strongly associated with the susceptibility to developing SCARs when prescribed carbamazepine or phenytoin. These genetic variations were also shown to be prevalent in certain populations. Apart from the HLA genes, other genes proposed to affect the risk of SCARs are genes encoding for CYP450 drug-metabolising enzymes, which are involved in the pharmacokinetics of offending drugs. Genetic variants in CYP2C9 and CYPC19 enzymes were also suggested to modulate the risk of SCARs in some populations. This review summarizes the literature on the manifestation and aetiology of antiepileptic-induced SCARs, updates on pharmacogenetic markers associated with this reaction and the implementation of pre-emptive testing as a preventive strategy for SCARs.
Collapse
Affiliation(s)
- Ali Fadhel Ahmed
- Discipline of Clinical Pharmacy, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Pulau Pinang 11800, Malaysia or (A.F.A.); (D.A.M.N.)
| | - Chonlaphat Sukasem
- Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand;
- Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center (SDMC), Ramathibodi Hospital, Bangkok 10400, Thailand
- The Thai Severe Cutaneous Adverse Drug Reaction (THAI-SCAR) Research Group, Chulalongkorn University, Bangkok 10330, Thailand
- Advanced Research and Development Laboratory, Bumrungrad International Hospital, Bangkok 10110, Thailand
| | - Majeed Arsheed Sabbah
- Forensic DNA for Research and Training Centre, Alnahrain University, Baghdad 64074, Iraq;
| | - Nur Fadhlina Musa
- Human Genome Center, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kota Bharu 16150, Malaysia;
| | - Dzul Azri Mohamed Noor
- Discipline of Clinical Pharmacy, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Pulau Pinang 11800, Malaysia or (A.F.A.); (D.A.M.N.)
| | - Nur Aizati Athirah Daud
- Discipline of Clinical Pharmacy, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Pulau Pinang 11800, Malaysia or (A.F.A.); (D.A.M.N.)
- Human Genome Center, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kota Bharu 16150, Malaysia;
| |
Collapse
|
28
|
Sukasem C, Jantararoungtong T, Koomdee N. Pharmacogenomics research and its clinical implementation in Thailand: Lessons learned from the resource-limited settings. Drug Metab Pharmacokinet 2021; 39:100399. [PMID: 34098253 DOI: 10.1016/j.dmpk.2021.100399] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 03/31/2021] [Accepted: 04/07/2021] [Indexed: 02/07/2023]
Abstract
Several barriers present challenges to implementing pharmacogenomics into practice. This review will provide an overview of the current pharmacogenomics practices and research in Thailand, address the challenges and lessons learned from delivering clinical pharmacogenomic services in Thailand, emphasize the pharmacogenomics implementation issues that must be overcome, and identify current pharmacogenomic initiatives and plans to facilitate clinical implementation of pharmacogenomics in Thailand. Ever since the pharmacogenomics research began in 2004 in Thailand, a multitude of pharmacogenomics variants associated with drug responses have been identified in the Thai population, such as HLA-B∗15:02 for carbamazepine and oxcarbazepine, HLA-B∗58:01 for allopurinol, HLA-B∗13:01 for dapsone and cotrimoxazole, CYP2B6 variants for efavirenz, CYP2C9∗3 for phenytoin and warfarin, CYP3A5∗3 for tacrolimus, and UGT1A1∗6 and UGT1A1∗28 for irinotecan, etc. The future of pharmacogenomics guided therapy in clinical settings across Thailand appears promising because of the availability of evidence of clinical validity of the pharmacogenomics testing and support for reimbursement of pharmacogenomics testing.
Collapse
Affiliation(s)
- Chonlaphat Sukasem
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand; Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center (SDMC), Ramathibodi Hospital, Bangkok, 10400, Thailand; Bumrungrad International Hospital, Thailand.
| | - Thawinee Jantararoungtong
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand; Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center (SDMC), Ramathibodi Hospital, Bangkok, 10400, Thailand
| | - Napatrupron Koomdee
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand; Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center (SDMC), Ramathibodi Hospital, Bangkok, 10400, Thailand
| |
Collapse
|
29
|
Pratoomwun J, Thomson P, Jaruthamsophon K, Tiyasirichokchai R, Jinda P, Rerkpattanapipat T, Tassaneeyakul W, Nakkam N, Rerknimitr P, Klaewsongkram J, Srinoulprasert Y, Pirmohamed M, Naisbitt DJ, Sukasem C. Characterization of T-Cell Responses to SMX and SMX-NO in Co-Trimoxazole Hypersensitivity Patients Expressing HLA-B*13:01. Front Immunol 2021; 12:658593. [PMID: 33995375 PMCID: PMC8117787 DOI: 10.3389/fimmu.2021.658593] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 04/07/2021] [Indexed: 12/19/2022] Open
Abstract
HLA-B*13:01-positive patients in Thailand can develop frequent co-trimoxazole hypersensitivity reactions. This study aimed to characterize drug-specific T cells from three co-trimoxazole hypersensitive patients presenting with either Stevens-Johnson syndrome or drug reaction with eosinophilia and systemic symptoms. Two of the patients carried the HLA allele of interest, namely HLA-B*13:01. Sulfamethoxazole and nitroso sulfamethoxazole specific T cell clones were generated from T cell lines of co-trimoxazole hypersensitive HLA-B*13:01-positive patients. Clones were characterized for antigen specificity and cross-reactivity with structurally related compounds by measuring proliferation and cytokine release. Surface marker expression was characterized via flow cytometry. Mechanistic studies were conducted to assess pathways of T cell activation in response to antigen stimulation. Peripheral blood mononuclear cells from all patients were stimulated to proliferate and secrete IFN-γ with nitroso sulfamethoxazole. All sulfamethoxazole and nitroso sulfamethoxazole specific T cell clones expressed the CD4+ phenotype and strongly secreted IL-13 as well as IFN-γ, granzyme B and IL-22. No secretion of IL-17 was observed. A number of nitroso sulfamethoxazole-specific clones cross-reacted with nitroso dapsone but not sulfamethoxazole whereas sulfamethoxazole specific clones cross-reacted with nitroso sulfamethoxazole only. The nitroso sulfamethoxazole specific clones were activated in both antigen processing-dependent and -independent manner, while sulfamethoxazole activated T cell responses via direct HLA binding. Furthermore, activation of nitroso sulfamethoxazole-specific, but not sulfamethoxazole-specific, clones was blocked with glutathione. Sulfamethoxazole and nitroso sulfamethoxazole specific T cell clones from hypersensitive patients were CD4+ which suggests that HLA-B*13:01 is not directly involved in the iatrogenic disease observed in co-trimoxazole hypersensitivity patients.
Collapse
Affiliation(s)
- Jirawat Pratoomwun
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
- Department of Clinical Chemistry, Faculty of Medical Technology, Huachiew Chalermprakiet University, Samut Prakan, Thailand
| | - Paul Thomson
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, United Kingdom
| | - Kanoot Jaruthamsophon
- Division of Human Genetics, Department of Pathology, Faculty of Medicine, Prince of Songkla University, Hat Yai, Thailand
| | - Rawiporn Tiyasirichokchai
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Pimonpan Jinda
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Ticha Rerkpattanapipat
- Division of Allergy Immunology and Rheumatology, Department of Medicine, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | | | - Nontaya Nakkam
- Department of Pharmacology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Pawinee Rerknimitr
- Division of Dermatology, Department of Medicine, Faculty of Medicine, Skin and Allergy Research Unit, Chulalongkorn University, Bangkok, Thailand
| | - Jettanong Klaewsongkram
- Skin and Allergy Research Unit, Division of Allergy and Clinical Immunology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Yuttana Srinoulprasert
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Munir Pirmohamed
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, United Kingdom
| | - Dean J. Naisbitt
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, United Kingdom
| | - Chonlaphat Sukasem
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
30
|
Cheng L. Current Pharmacogenetic Perspective on Stevens-Johnson Syndrome and Toxic Epidermal Necrolysis. Front Pharmacol 2021; 12:588063. [PMID: 33981213 PMCID: PMC8107822 DOI: 10.3389/fphar.2021.588063] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 01/22/2021] [Indexed: 12/19/2022] Open
Abstract
Adverse drug reactions are a public health issue that draws widespread attention, especially for Stevens-Johnson syndrome (SJS) and toxic epidermal necrolysis (TEN) which have high mortality and lack of efficacious treatment. Though T-cell-mediated HLA-interacted immune response has been extensively studied, our understanding of the mechanism is far from satisfactory. This review summarizes infection (virus, bacterial, and mycoplasma infection), an environmental risk factor, as a trigger for SJS/TEN. The mutations or polymorphisms of drug metabolic enzymes, transporters, receptors, the immune system genes, and T-cell-mediated apoptosis signaling pathways that contribute to SJS/TEN are discussed and summarized. Epigenetics, metabolites, and mobilization of regulatory T cells and tolerogenic myeloid precursors are emerged directions to study SJS/TEN. Ex vivo lymphocyte transformation test has been exploited to aid in identifying the causative drugs. Critical questions on the pathogenesis of SJS/TEN underlying gene polymorphisms and T cell cytotoxicity remain: why some of the patients carrying the risky genes tolerate the drug and do not develop SJS/TEN? What makes the skin and mucous membrane so special to be targeted? Do they relate to skin/mucous expression of transporters? What is the common machinery underlying different HLA-B alleles associated with SJS/TEN and common metabolites?
Collapse
Affiliation(s)
- Lin Cheng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China.,School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
31
|
Li Y, Deshpande P, Hertzman RJ, Palubinsky AM, Gibson A, Phillips EJ. Genomic Risk Factors Driving Immune-Mediated Delayed Drug Hypersensitivity Reactions. Front Genet 2021; 12:641905. [PMID: 33936169 PMCID: PMC8085493 DOI: 10.3389/fgene.2021.641905] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/08/2021] [Indexed: 12/19/2022] Open
Abstract
Adverse drug reactions (ADRs) remain associated with significant mortality. Delayed hypersensitivity reactions (DHRs) that occur greater than 6 h following drug administration are T-cell mediated with many severe DHRs now associated with human leukocyte antigen (HLA) risk alleles, opening pathways for clinical prediction and prevention. However, incomplete negative predictive value (NPV), low positive predictive value (PPV), and a large number needed to test (NNT) to prevent one case have practically prevented large-scale and cost-effective screening implementation. Additional factors outside of HLA contributing to risk of severe T-cell-mediated DHRs include variation in drug metabolism, T-cell receptor (TCR) specificity, and, most recently, HLA-presented immunopeptidome-processing efficiencies via endoplasmic reticulum aminopeptidase (ERAP). Active research continues toward identification of other highly polymorphic factors likely to impose risk. These include those previously associated with T-cell-mediated HLA-associated infectious or auto-immune disease such as Killer cell immunoglobulin-like receptors (KIR), epistatically linked with HLA class I to regulate NK- and T-cell-mediated cytotoxic degranulation, and co-inhibitory signaling pathways for which therapeutic blockade in cancer immunotherapy is now associated with an increased incidence of DHRs. As such, the field now recognizes that susceptibility is not simply a static product of genetics but that individuals may experience dynamic risk, skewed toward immune activation through therapeutic interventions and epigenetic modifications driven by ecological exposures. This review provides an updated overview of current and proposed genetic factors thought to predispose risk for severe T-cell-mediated DHRs.
Collapse
Affiliation(s)
- Yueran Li
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, WA, Australia
| | - Pooja Deshpande
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, WA, Australia
| | - Rebecca J. Hertzman
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, WA, Australia
| | - Amy M. Palubinsky
- Department of Medicine, Vanderbilt University Medical Centre, Nashville, TN, United States
| | - Andrew Gibson
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, WA, Australia
| | - Elizabeth J. Phillips
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, WA, Australia
- Department of Medicine, Vanderbilt University Medical Centre, Nashville, TN, United States
| |
Collapse
|
32
|
Tsukagoshi E, Tanaka Y, Saito Y. Implementation of Pharmacogenomic Information on Stevens-Johnson Syndrome and Toxic Epidermal Necrolysis. Front Med (Lausanne) 2021; 8:644154. [PMID: 33842507 PMCID: PMC8024462 DOI: 10.3389/fmed.2021.644154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 02/18/2021] [Indexed: 11/13/2022] Open
Abstract
Drug-related Stevens-Johnson syndrome and toxic epidermal necrolysis (SJS/TEN) are rare but severe adverse drug reactions, termed as idiosyncratic reactions; however, predicting their onset remains challenging. Pharmacogenomic information associated with SJS/TEN has accumulated on several drugs in the last 15 years, with clinically useful information now included on drug labels in several countries/regions or guidelines of the Clinical Pharmacogenetics Implementation Consortium (CPIC) for implementation. However, label information might be different among countries. This mini-review summarizes pharmacogenomic information on drug labels of five drugs in six countries and compared descriptions of drug labels and CPIC guidelines. Finally, we discuss future perspectives of this issue. Pharmacogenomic information on drug labels is not well-harmonized across countries/regions, but CPIC guidelines are a scientifically sound goal for future pharmacogenomic implementation.
Collapse
Affiliation(s)
- Eri Tsukagoshi
- Division of Medicinal Safety Science, National Institute of Health Sciences, Kawasaki, Japan
| | - Yoichi Tanaka
- Division of Medicinal Safety Science, National Institute of Health Sciences, Kawasaki, Japan
| | - Yoshiro Saito
- Division of Medicinal Safety Science, National Institute of Health Sciences, Kawasaki, Japan
| |
Collapse
|
33
|
Fan X, Luo Y, Lu J, Xu J, Chen Q, Guo H, Jin P. Erythema Multiforme Major Associated With Community-Acquired Pneumonia: Lessons From a Case Report. Front Pediatr 2021; 9:698261. [PMID: 34395342 PMCID: PMC8358431 DOI: 10.3389/fped.2021.698261] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 07/05/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Erythema multiforme (EM) is an acute immune-mediated inflammatory mucinous skin disorder. The etiology of pediatric EM involves infections, medications, autoimmune diseases, and genetic factors. Case Report: An 8-year-old girl with Mycoplasma pneumoniae (MP) associated community-acquired pneumonia developed erythema target-like symptoms 1 week after azithromycin administration. The erythema quickly spread throughout the body involving the oral and ocular mucous membranes, the trunk, and the extremities, and eventually developed into erythema multiform major (EMM). Through drug withdrawal and specific treatment including systemic corticosteroids and supportive care, her clinical symptoms were improved. After 31 days, most of the mucocutaneous symptoms were relieved, except pigmentation. Human leukocyte antigen (HLA) gene sequencing was performed and 20 HLA genotypes were identified. The patient follow-up lasted for 18 months. Rashes appeared on her trunk when receiving azithromycin orally after discharge and then disappeared after azithromycin withdrawal. Conclusions: Pediatric EM is a rare disease and recognition of its etiology is important for EM management. In this case, azithromycin and HLA-DQB1 * 03:01 genotype may contribute to EMM. Lesson: For drug-induced EM, rapid identification and withdrawal of the causative drugs is critical. Re-exposure to the same drug or exposure to drugs with similar chemical structures should also be avoided. Patient education and rational use of medicines are essential for pediatric patients.
Collapse
Affiliation(s)
- Xiaomei Fan
- Shenzhen Baoan Women's and Children's Hospital, Jinan University, Shenzhen, China
| | - Yong Luo
- Shenzhen Baoan Women's and Children's Hospital, Jinan University, Shenzhen, China
| | - Jieluan Lu
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Jinji Xu
- Shenzhen Baoan Women's and Children's Hospital, Jinan University, Shenzhen, China
| | - Qing Chen
- Shenzhen Baoan Women's and Children's Hospital, Jinan University, Shenzhen, China
| | - Huijuan Guo
- Shenzhen Baoan Women's and Children's Hospital, Jinan University, Shenzhen, China
| | - Ping Jin
- Shenzhen Baoan Women's and Children's Hospital, Jinan University, Shenzhen, China
| |
Collapse
|
34
|
|