1
|
Thakham N, Huang PH, Li KY, Lin SC. Effect of delignification on the adsorption of loofah sponge-based immobilized metal affinity chromatography adsorbent for His-tagged trehalose synthase. J Biosci Bioeng 2024; 138:445-451. [PMID: 39227278 DOI: 10.1016/j.jbiosc.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 08/01/2024] [Accepted: 08/01/2024] [Indexed: 09/05/2024]
Abstract
The effect of delignification on the adsorption capacity of loofah sponge-based immobilized metal affinity chromatography adsorbents was investigated with recombinant His-tagged trehalose synthase as the model protein. Pretreatments with [EMIM][Ac] ionic liquid at 80 °C for 5 h and with sodium chlorite/acetic acid at 80 °C for 2 h were found effective for the removal of lignin, leading to a loss in biomass of 15.7% and 25.2%, respectively. Upon delignification, the metal chelating capacities of the loofah sponge-based adsorbents prepared with 5-h ionic liquid pretreatment (712 ± 82 μmole Cu(II)/g) and with 2-h sodium chlorite/acetic acid pretreatment (1012 ± 18 μmole Cu(II)/g) were 38% and 97% higher than that of the control (514 ± 55 μmole Cu(II)/g), adsorbent prepared with untreated loofah sponge, respectively. Results of protein adsorption study indicated that the Co(II)-loaded adsorbent prepared with 2-h sodium chlorite/acetic acid pretreatment exhibited the highest adsorption capacity and selectivity for the recombinant His-tagged trehalose synthase, giving a purification product with a specific activity of 7.62 U/mg protein. The predicted maximum adsorption capacity of the delignified loofah sponge-based adsorbent, 2.04 ± 0.14 mg/g, was 73% higher than that of the control.
Collapse
Affiliation(s)
- Nattapong Thakham
- Department of Chemical Engineering, National Chung Hsing University, 145 Xinda Road, South District, Taichung 402, Taiwan
| | - Po-Hang Huang
- Department of Chemical Engineering, National Chung Hsing University, 145 Xinda Road, South District, Taichung 402, Taiwan
| | - Kai-Yuan Li
- Department of Chemical Engineering, National Chung Hsing University, 145 Xinda Road, South District, Taichung 402, Taiwan
| | - Sung-Chyr Lin
- Department of Chemical Engineering, National Chung Hsing University, 145 Xinda Road, South District, Taichung 402, Taiwan.
| |
Collapse
|
2
|
Qi S, Zhang T, Zhang C, Jiang B, Huang C, Yong Q, Jin Y. Sucrose-derived porous carbon catalyzed lignin depolymerization to obtain a product with application in type 2 diabetes mellitus. Int J Biol Macromol 2024; 279:135170. [PMID: 39214225 DOI: 10.1016/j.ijbiomac.2024.135170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/13/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
As the most important phenolic biopolymer in nature, lignin shows promising application potentialities in various bioactivities in vivo and in vitro, mainly including antioxidant, anti-inflammatory, hypolipidemic, and antidiabetic control. In this work, several carbon-based solid acids were synthesized to catalyze the fragmentation of organosolv lignin (OL). The generated lignin fragments, with controllable molecular weight and functional groups, were further evaluated for their application in the prevention and treatment of type 2 diabetes mellitus (T2DM). The results suggested that the urea-doped catalyst (SUPC) showed a more excellent catalytic performance in producing diethyl ether insoluble lignin (DEIL) and diethyl ether soluble lignin (DESL). In addition, the lignin fragments have a good therapeutic effect on the cell model of T2DM. Compared with the insulin resistance model, DEIL obtained by catalytic depolymerization of OL with SUPC could improve the glucose consumption of insulin-resistant cells. Moreover, low-concentration samples (50 μg/mL) can promote glucose consumption (19.7 mM) more than the traditional drug rosiglitazone (17.5 mM). This work demonstrates the prospect of depolymerized lignin for the prevention and treatment of T2DM and provides a new application field for lignin degradation products.
Collapse
Affiliation(s)
- Shuang Qi
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Tingwei Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China; International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China.
| | - Chaofeng Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Bo Jiang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China; International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Caoxing Huang
- College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Qiang Yong
- College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yongcan Jin
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China; International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
3
|
Karnitski A, Natarajan L, Lee YJ, Kim SS. Controlled chemical transformation of lignin by nitric acid treatment and carbonization. Int J Biol Macromol 2024; 281:136408. [PMID: 39395519 DOI: 10.1016/j.ijbiomac.2024.136408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/24/2024] [Accepted: 10/06/2024] [Indexed: 10/14/2024]
Abstract
This study focuses on understanding the chemical reactions and results of Kraft lignin transformation through nitric acid treatment and subsequent carbonization. With its rich carbon content, lignin stands out as a promising candidate for the manufacturing of high-value carbon materials. The lignin underwent effective nitration, depolymerization, and oxidation under ambient conditions and at 40 °C, while a slight increase in reaction temperature significantly reduced the reaction time. The molecular weight Mw was effectively reduced from 4371 g/mol to 767 g/mol. The acid-treated lignin samples with incorporated nitro groups were further carbonized to create nitrogen-doped carbon structures. The resulting materials show stable nitrogen content (about at 5 wt%) even after carbonization due to the transformation of nitro groups into thermally stable pyridinic moieties, thereby exhibiting enhanced electrocatalytic properties compared to nitrogen-free carbon materials derived from Kraft lignin. The nitric acid-assisted treatment of lignin obviates the need for catalysts, and additional extraction or purification steps for preparing bio-derived carbon precursors, rendering it facile, fast, and cost-efficient.
Collapse
Affiliation(s)
- Aliaksandr Karnitski
- Institute of Advanced Composite Materials, Korea Institute of Science and Technology, 92 Chudong-ro, Bongdong-eup, Wanju-gun, Jeonbuk-do 55324, Republic of Korea
| | - Logeshwaran Natarajan
- Institute of Advanced Composite Materials, Korea Institute of Science and Technology, 92 Chudong-ro, Bongdong-eup, Wanju-gun, Jeonbuk-do 55324, Republic of Korea
| | - Young Jun Lee
- Institute of Advanced Composite Materials, Korea Institute of Science and Technology, 92 Chudong-ro, Bongdong-eup, Wanju-gun, Jeonbuk-do 55324, Republic of Korea
| | - Sung-Soo Kim
- Institute of Advanced Composite Materials, Korea Institute of Science and Technology, 92 Chudong-ro, Bongdong-eup, Wanju-gun, Jeonbuk-do 55324, Republic of Korea.
| |
Collapse
|
4
|
Zheng S, Zhang Z, He S, Yang H, Atia H, Abdel-Mageed AM, Wohlrab S, Baráth E, Tin S, Heeres HJ, Deuss PJ, de Vries JG. Benzenoid Aromatics from Renewable Resources. Chem Rev 2024; 124:10701-10876. [PMID: 39288258 PMCID: PMC11467972 DOI: 10.1021/acs.chemrev.4c00087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 06/25/2024] [Accepted: 08/12/2024] [Indexed: 09/19/2024]
Abstract
In this Review, all known chemical methods for the conversion of renewable resources into benzenoid aromatics are summarized. The raw materials that were taken into consideration are CO2; lignocellulose and its constituents cellulose, hemicellulose, and lignin; carbohydrates, mostly glucose, fructose, and xylose; chitin; fats and oils; terpenes; and materials that are easily obtained via fermentation, such as biogas, bioethanol, acetone, and many more. There are roughly two directions. One much used method is catalytic fast pyrolysis carried out at high temperatures (between 300 and 700 °C depending on the raw material), which leads to the formation of biochar; gases, such as CO, CO2, H2, and CH4; and an oil which is a mixture of hydrocarbons, mostly aromatics. The carbon selectivities of this method can be reasonably high when defined small molecules such as methanol or hexane are used but are rather low when highly oxygenated compounds such as lignocellulose are used. The other direction is largely based on the multistep conversion of platform chemicals obtained from lignocellulose, cellulose, or sugars and a limited number of fats and terpenes. Much research has focused on furan compounds such as furfural, 5-hydroxymethylfurfural, and 5-chloromethylfurfural. The conversion of lignocellulose to xylene via 5-chloromethylfurfural and dimethylfuran has led to the construction of two large-scale plants, one of which has been operational since 2023.
Collapse
Affiliation(s)
- Shasha Zheng
- Leibniz
Institut für Katalyse e.V., Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
| | - Zhenlei Zhang
- State
Key Laboratory of Heavy Oil Processing, College of Chemical Engineering
and Environment, China University of Petroleum
(Beijing), 102249 Beijing, China
| | - Songbo He
- Joint International
Research Laboratory of Circular Carbon, Nanjing Tech University, Nanjing 211816, PR China
| | - Huaizhou Yang
- Green
Chemical Reaction Engineering, Engineering and Technology Institute
Groningen, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Hanan Atia
- Leibniz
Institut für Katalyse e.V., Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
| | - Ali M. Abdel-Mageed
- Leibniz
Institut für Katalyse e.V., Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
| | - Sebastian Wohlrab
- Leibniz
Institut für Katalyse e.V., Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
| | - Eszter Baráth
- Leibniz
Institut für Katalyse e.V., Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
| | - Sergey Tin
- Leibniz
Institut für Katalyse e.V., Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
| | - Hero J. Heeres
- Green
Chemical Reaction Engineering, Engineering and Technology Institute
Groningen, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Peter J. Deuss
- Green
Chemical Reaction Engineering, Engineering and Technology Institute
Groningen, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Johannes G. de Vries
- Leibniz
Institut für Katalyse e.V., Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
| |
Collapse
|
5
|
Jana NC, Herchel R, Bagh B. Cu(II) Coordination Polymers for the Selective Oxidation of Biomass-Derived Veratryl Alcohol in Green Solvents: A Sustainable Catalytic Approach. Inorg Chem 2024; 63:18615-18631. [PMID: 39325024 DOI: 10.1021/acs.inorgchem.4c02344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Four air-stable one-dimensional copper(II) coordination polymers (CP1-CP4) with azide linkers were synthesized using tridentate NNS and NNN ligands. Single-crystal X-ray diffraction (XRD) analysis confirmed the molecular structures of CP1, CP3, and CP4. In the presence of TEMPO, all four coordination polymers demonstrated effective catalytic activity for the selective aerobic oxidation of veratryl alcohol, a biomass model compound, under base-free conditions. CP4 exhibited the best catalytic efficiency. Oxidations were conducted at ambient temperature (40 °C) utilizing air as a sustainable oxidant. Selective oxidation of veratryl alcohol to veratraldehyde was also conducted in the presence of a catalytic amount of base (5 mol %), and enhanced reactivity was observed. The green solvents, acetone, and water, were used to maximize sustainability. The optimized reaction conditions were applied to broaden the substrate scope of various lignin model alcohols and substituted benzylic alcohols with wide electronic variability. CP4 exhibited high recyclability, consistently providing quantitative yields even after ten consecutive runs. The catalytic protocol demonstrated sustainability and environmental compatibility, as evidenced by a low E-factor (4.29) and a high Eco-scale score (90). Based on experimental evidence and theoretical calculations, a plausible catalytic cycle was proposed. Finally, the sustainability credentials of the different optimized reaction protocols were evaluated using the CHEM21 green metrics toolkit.
Collapse
Affiliation(s)
- Narayan Ch Jana
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, PO Bhimpur-Padanpur, Via Jatni, Khurda, Bhubaneswar 752050, Odisha, India
| | - Radovan Herchel
- Department of Inorganic Chemistry, Faculty of Science, Palacký University, 17. listopadu 12, 77146 Olomouc, Czech Republic
| | - Bidraha Bagh
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, PO Bhimpur-Padanpur, Via Jatni, Khurda, Bhubaneswar 752050, Odisha, India
| |
Collapse
|
6
|
Jiang Z, He J, Li H, Liu Y, Pang J, Li C, Jiang G. Straw Tar Epoxy Resin for Carbon Fiber-Reinforced Plastic: A Review. Polymers (Basel) 2024; 16:2433. [PMID: 39274066 PMCID: PMC11397865 DOI: 10.3390/polym16172433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/30/2024] [Accepted: 08/04/2024] [Indexed: 09/16/2024] Open
Abstract
The massive consumption of fossil fuels has led to the serious accumulation of carbon dioxide gas in the atmosphere and global warming. Bioconversion technologies that utilize biomass resources to produce chemical products are becoming widely accepted and highly recognized. The world is heavily dependent on petroleum-based products, which may raise serious concerns about future environmental security. Most commercially available epoxy resins (EPs) are synthesized by the condensation of bisphenol A (BPA), which not only affects the human endocrine system and metabolism, but is also costly to produce and environmentally polluting. In some cases, straw tar-based epoxy resins have been recognized as potential alternatives to bisphenol A-based epoxy resins, and are receiving increasing attention due to their important role in overcoming the above problems. Using straw tar and lignin as the main raw materials, phenol derivatives were extracted from the middle tar instead of bisphenol A. Bio-based epoxy resins were prepared by replacing epichlorohydrin with epoxylated lignin to press carbon fiber sheets, which is a kind of bio-based fine chemical product. This paper reviews the research progress of bio-based materials such as lignin modification, straw pyrolysis, lignin epoxidation, phenol derivative extraction, and synthesis of epoxy resin. It improves the performance of carbon fiber-reinforced plastic (CFRP) while taking into account the ecological and environmental protection, so that the epoxy resin is developed in the direction of non-toxic, harmless and high-performance characteristics, and it also provides a new idea for the development of bio-based carbon fibers.
Collapse
Affiliation(s)
- Zhanpeng Jiang
- Key Laboratory of Wood Materials Science and Engineering, Beihua University, Jilin 132013, China
| | - Jingyi He
- Key Laboratory of Wood Materials Science and Engineering, Beihua University, Jilin 132013, China
| | - Huijie Li
- Key Laboratory of Wood Materials Science and Engineering, Beihua University, Jilin 132013, China
| | - Yiming Liu
- Key Laboratory of Wood Materials Science and Engineering, Beihua University, Jilin 132013, China
| | - Jiuyin Pang
- Key Laboratory of Wood Materials Science and Engineering, Beihua University, Jilin 132013, China
| | - Chuanpeng Li
- Key Laboratory of Wood Materials Science and Engineering, Beihua University, Jilin 132013, China
| | - Guiquan Jiang
- Key Laboratory of Wood Materials Science and Engineering, Beihua University, Jilin 132013, China
| |
Collapse
|
7
|
Saha R, Hembram BC, Panda S, Jana NC, Bagh B. Iron- and base-catalyzed C(α)-alkylation and one-pot sequential alkylation-hydroxylation of oxindoles with secondary alcohols. Org Biomol Chem 2024; 22:6321-6330. [PMID: 39039931 DOI: 10.1039/d4ob00957f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
The utilization of economical and environmentally benign transition metals in crucial catalytic processes is pivotal for sustainable advancement in synthetic organic chemistry. Iron, as the most abundant transition metal in the Earth's crust, has gained significant attention for this purpose. A combination of FeCl2 (5 mol%) in the presence of phenanthroline (10 mol%) and NaOtBu (1.5 equivalent) proved effective for the C(α)-alkylation of oxindole, employing challenging secondary alcohol as a non-hazardous alkylating agent. The C(α)-alkylation of oxindole was optimized in green solvent or under neat conditions. The substrate scope encompasses a broad array of substituted oxindoles with various secondary alcohols. Further post-functionalization of the C(α)-alkylated oxindole products demonstrated the practical utility of this catalytic alkylation. One-pot C-H hydroxylation of alkylated oxindoles yielded 3-alkyl-3-hydroxy-2-oxindoles using air as the most sustainable oxidant. Low E-factors (3.61 to 4.19) and good Eco-scale scores (74 to 76) of these sustainable catalytic protocols for the alkylation and one-pot sequential alkylation-hydroxylation of oxindoles demonstrated minimum waste generation. Plausible catalytic paths are proposed on the basis of past reports and control experiments, which suggested that a borrowing hydrogen pathway is involved in this alkylation.
Collapse
Affiliation(s)
- Ratnakar Saha
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, Bhubaneswar, Jatni, Khurda, Odisha, PIN 752050, India.
| | - Bhairab Chand Hembram
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, Bhubaneswar, Jatni, Khurda, Odisha, PIN 752050, India.
| | - Surajit Panda
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, Bhubaneswar, Jatni, Khurda, Odisha, PIN 752050, India.
| | - Narayan Ch Jana
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, Bhubaneswar, Jatni, Khurda, Odisha, PIN 752050, India.
| | - Bidraha Bagh
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, Bhubaneswar, Jatni, Khurda, Odisha, PIN 752050, India.
| |
Collapse
|
8
|
Chen X, Liu Z, Zhou Z, Li R, Li L, Cao Y. The Synergetic Reduction of the Condensation Degree of Dissolved Lignin (DL) during the Refining Process of Wheat Straw Biomass Based on the MA/O 3 System. Molecules 2024; 29:3228. [PMID: 38999180 PMCID: PMC11243111 DOI: 10.3390/molecules29133228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/30/2024] [Accepted: 07/05/2024] [Indexed: 07/14/2024] Open
Abstract
Lignin, a natural pol2ymer with a complex structure that is difficult to separate, is prone to C-C bond condensation during the separation process. To reduce the condensation of lignin, here, a novel method is proposed for separating the components by using a combination of maleic acid (MA)/ozone (O3) to co-treat wheat straw. The removal of lignin, glucan, and xylan was 38.07 ± 0.2%, 31.44 ± 0.1%, and 71.98 ± 0.1%, respectively, under the conditions of ball-milling of wheat straw for 6 h, reaction temperature of 60 °C, and O3 holding time of 9 min. Lignin-rich solutions were collected to extract the dissolved lignin (DL) after washing the treated samples. The DL obtained under MA/O3 conditions had a carboxyl group (-COOH) content of 2.96 mmol/g. The carboxyl group of MA underwent esterification with the hydroxyl group (-OH) at the γ position of lignin and O3 reacted on the positions of the lignin side chain or the phenolic ring, resulting in a break in the side chain and the opening of the phenolic ring to introduce the carboxyl group. The 2D-HSQC-NMR results revealed that the phenolic ring-opening reaction of lignin in the presence of O3 was essentially free of β-β and β-5 condensation bonds.
Collapse
Affiliation(s)
- Xiuguang Chen
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab Pulp & Paper Science and Technology, Nanjing Forestry University, Nanjing 210037, China; (X.C.); (R.L.)
| | - Zhulan Liu
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab Pulp & Paper Science and Technology, Nanjing Forestry University, Nanjing 210037, China; (X.C.); (R.L.)
- Zhejiang Kan New Materials Co., Ltd., Lishui 323300, China; (Z.Z.); (L.L.)
| | - Zhenyu Zhou
- Zhejiang Kan New Materials Co., Ltd., Lishui 323300, China; (Z.Z.); (L.L.)
| | - Renai Li
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab Pulp & Paper Science and Technology, Nanjing Forestry University, Nanjing 210037, China; (X.C.); (R.L.)
| | - Lizi Li
- Zhejiang Kan New Materials Co., Ltd., Lishui 323300, China; (Z.Z.); (L.L.)
| | - Yunfeng Cao
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab Pulp & Paper Science and Technology, Nanjing Forestry University, Nanjing 210037, China; (X.C.); (R.L.)
| |
Collapse
|
9
|
Andriani F, Lawoko M. Oxidative Carboxylation of Lignin: Exploring Reactivity of Different Lignin Types. Biomacromolecules 2024; 25:4246-4254. [PMID: 38868864 PMCID: PMC11238328 DOI: 10.1021/acs.biomac.4c00326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
The increased interest in the utilization of lignin in biobased applications is evident from the rise in lignin valorization studies. The present study explores the responsiveness of lignin toward oxidative valorization using acetic acid and hydrogen peroxide. The pristine lignins and their oxidized equivalents were analyzed comprehensively using NMR and SEC. The study revealed ring opening of phenolic rings yielding muconic acid- and ester-end groups and side-chain oxidations of the benzylic hydroxyls. Syringyl units were more responsive to these reactions than guaiacyl units. The high selectivity of the reaction yielded oligomeric oxidation products with a narrower dispersity than pristine lignins. Mild alkaline hydrolysis of methyl esters enhanced the carboxylic acid content of oxidized lignin, presenting the potential to adjust the carboxylic acid content of lignin. While oxidation reactions in lignin valorization are well documented, this study showed the feasibility of employing optimized oxidation conditions to engineer tailored lignin-based material precursors.
Collapse
Affiliation(s)
- Fika Andriani
- Division of Wood Chemistry and Pulp Technology, Department of Fiber and Polymer Technology, School of Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Martin Lawoko
- Division of Wood Chemistry and Pulp Technology, Department of Fiber and Polymer Technology, School of Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
- Wallenberg Wood Science Center, Department of Fiber and Polymer Technology, School of Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| |
Collapse
|
10
|
Moeller F, Klein J, Waldvogel SR. Selective Degradation of Technically Relevant Lignin to Vanillic Acid and Protocatechuic Acid. CHEMSUSCHEM 2024:e202400759. [PMID: 38818644 DOI: 10.1002/cssc.202400759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/01/2024]
Abstract
A new and practical method for the thermal degradation of technically relevant bio-based lignin is presented. By heating a solution of lignin in highly concentrated caustic potash, vanillic acid is almost exclusively obtained in yields up to 10.6 wt %. By altering the reaction parameters, the selectivity of the reaction can be shifted towards the demethylation product, protocatechuic acid, which is obtained in a yield of 6.9 wt %. Furthermore, the procedure was applicable to different types of Kraft and organosolv lignin. To create an economically feasible process, ion exchange resins were used for the work-up of the highly caustic reaction media without neutralizing the complete mixture. By the selective removal of the desired vanillic acid from the caustic potash, this alkaline media could directly be reused for at least 5 further lignin degradations without significant loss of yield.
Collapse
Affiliation(s)
- Finn Moeller
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
- Max-Planck-Institute for Chemical Energy Conversion, Stiftstraße 34-36, 45470, Mülheim an der Ruhr, Germany
| | - Jana Klein
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Siegfried R Waldvogel
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
- Karlsruher Institut für Technologie, Institute of Biological and Chemical Systems - Functional Molecular Systems (IBCS FMS)a, Kaiserstraße 12, 76131, Karlsruhe, Germany
- Max-Planck-Institute for Chemical Energy Conversion, Stiftstraße 34-36, 45470, Mülheim an der Ruhr, Germany
| |
Collapse
|
11
|
Rutkauskaite R, Zhang X, Woodward AW, Liu Y, Herrera G, Purkis J, Woodall SD, Sarsfield M, Schreckenbach G, Natrajan LS, Arnold PL. The effect of ancillary ligands on hydrocarbon C-H bond functionalization by uranyl photocatalysts. Chem Sci 2024; 15:6965-6978. [PMID: 38725516 PMCID: PMC11077554 DOI: 10.1039/d4sc01310g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 03/21/2024] [Indexed: 05/12/2024] Open
Abstract
The aqueous uranyl dication has long been known to facilitate the UV light-induced decomposition of aqueous VOCs (volatile organic compounds), via the long-lived highly efficient, uranyl excited state. The lower-energy visible light excited uranyl ion is also able to cleave unactivated hydrocarbon C-H bonds, yet the development of this reactivity into controlled and catalytic C-H bond functionalization is still in its infancy, with almost all studies still focused on uranyl nitrate as the precatalyst. Here, hydrocarbon-soluble uranyl nitrate and chloride complexes supported by substituted phenanthroline (Ph2phen) ligands are compared to each other, and to the parent salts, as photocatalysts for the functionalization of cyclooctane by H atom abstraction. Analysis of the absorption and emission spectra, and emission lifetimes of Ph2phen-coordinated uranyl complexes demonstrate the utility of the ligand in light absorption in the photocatalysis, which is related to the energy and kinetic decay profile of the uranyl photoexcited state. Density functional theory computational analysis of the C-H activation steps in the reaction show how a set of dispersion forces between the hydrocarbon substrate and the Ph2phen ligand provide control over the H atom abstraction, and provide predictions of selectivity of H atom abstraction by the uranyl oxo of the ring C-H over the ethyl C-H in an ethylcyclohexane substrate.
Collapse
Affiliation(s)
- Ryte Rutkauskaite
- Department of Chemistry, University of California Berkeley California 94720 USA
- Lawrence Berkeley National Laboratory California 94720 USA
| | - Xiaobin Zhang
- Department of Chemistry, University of Manitoba Winnipeg Manitoba R3T 2N2 Canada
| | - Adam W Woodward
- Department of Chemistry, University of Manchester Manchester M13 9PL UK
| | - Yanlin Liu
- Department of Chemistry, University of California Berkeley California 94720 USA
| | - Gabriel Herrera
- Department of Chemistry, University of California Berkeley California 94720 USA
| | - Jamie Purkis
- Atkins (part of SNC-Lavalin Group) The Hub 500 Park Avenue, Aztec West Bristol BS32 4RZ UK
| | - Sean D Woodall
- UK National Nuclear Laboratory Central Laboratory, Sellafield, Seascale Cumbria CA20 1PG UK
| | - Mark Sarsfield
- UK National Nuclear Laboratory Central Laboratory, Sellafield, Seascale Cumbria CA20 1PG UK
| | - Georg Schreckenbach
- Department of Chemistry, University of Manitoba Winnipeg Manitoba R3T 2N2 Canada
| | - Louise S Natrajan
- Department of Chemistry, University of Manchester Manchester M13 9PL UK
| | - Polly L Arnold
- Department of Chemistry, University of California Berkeley California 94720 USA
- Lawrence Berkeley National Laboratory California 94720 USA
| |
Collapse
|
12
|
Biswas B, Sakhakarmy M, Rahman T, Jahromi H, Adhikari S, Krishna BB, Bhaskar T, Baltrusaitis J, Eisa M, Kouzehkanan SMT, Oh TS. Selective production of phenolic monomer via catalytic depolymerization of lignin over cobalt-nickel-zirconium dioxide catalyst. BIORESOURCE TECHNOLOGY 2024; 398:130517. [PMID: 38437961 DOI: 10.1016/j.biortech.2024.130517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 03/06/2024]
Abstract
The utilization of lignin, an abundant and renewable bio-aromatic source, is of significant importance. In this study, lignin oxidation was examined at different temperatures with zirconium oxide (ZrO2)-supported nickel (Ni), cobalt (Co) and bimetallic Ni-Co metal catalysts under different solvents and oxygen pressure. Non-catalytic oxidation reaction produced maximum bio-oil (35.3 wt%), while catalytic oxidation significantly increased the bio-oil yield. The bimetallic catalyst Ni-Co/ZrO2 produced the highest bio-oil yield (67.4 wt%) compared to the monometallic catalyst Ni/ZrO2 (59.3 wt%) and Co/ZrO2 (54.0 wt%). The selectively higher percentage of vanillin, 2-methoxy phenol, acetovanillone, acetosyringone and vanillic acid compounds are found in the catalytic bio-oil. Moreover, it has been observed that the bimetallic Co-Ni/ZrO2 produced a higher amount of vanillin (43.7% and 13.30 wt%) compound. These results demonstrate that the bimetallic Ni-Co/ZrO2 catalyst promotes the selective cleavage of the ether β-O-4 bond in lignin, leading to a higher yield of phenolic monomer compounds.
Collapse
Affiliation(s)
- Bijoy Biswas
- Biosystems Engineering Department, 200 Corley Building, Auburn University, Auburn, AL 36849, USA
| | - Manish Sakhakarmy
- Biosystems Engineering Department, 200 Corley Building, Auburn University, Auburn, AL 36849, USA
| | - Tawsif Rahman
- Biosystems Engineering Department, 200 Corley Building, Auburn University, Auburn, AL 36849, USA
| | - Hossein Jahromi
- Biosystems Engineering Department, 200 Corley Building, Auburn University, Auburn, AL 36849, USA
| | - Sushil Adhikari
- Biosystems Engineering Department, 200 Corley Building, Auburn University, Auburn, AL 36849, USA.
| | - Bhavya B Krishna
- Material Resource Efficiency Division (MRED), CSIR-Indian Institute of Petroleum (IIP), Dehradun 248005, India
| | - Thallada Bhaskar
- Material Resource Efficiency Division (MRED), CSIR-Indian Institute of Petroleum (IIP), Dehradun 248005, India
| | - Jonas Baltrusaitis
- Department of Chemical and Biomolecular Engineering, Lehigh University, Pennsylvania 18015, USA
| | - Mohamed Eisa
- Department of Chemical and Biomolecular Engineering, Lehigh University, Pennsylvania 18015, USA
| | | | - Tae-Sik Oh
- Department of Chemical Engineering, Auburn University, Auburn, AL 36849, USA
| |
Collapse
|
13
|
Savy D, Verrillo M, Cangemi S, Cozzolino V. Lignin nanoparticles from hydrotropic fractionation of giant reed and eucalypt: Structural elucidation and antibacterial properties. Int J Biol Macromol 2024; 262:129966. [PMID: 38320639 DOI: 10.1016/j.ijbiomac.2024.129966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/03/2024] [Accepted: 02/02/2024] [Indexed: 02/08/2024]
Abstract
A hydrotropic solution of maleic acid (MA) was exploited to fractionate giant reed (AD) and eucalypt (EUC). The pre-treatment was successful for AD, while it was unsatisfactory for EUC, likely due to unoptimized reaction conditions. Interestingly, lignin nanoparticles (LNP) were produced via spontaneous aggregation following spent liquor dilution. LNP were studied by a plethora of analytical techniques, such as thermogravimetry, electron microscopy, and Nuclear Magnetic Resonance spectroscopy (NMR). Notwithstanding LNP from both AD and EUC showed similar thermal behaviour and morphology, a greater content of aliphatic hydroxyl, carboxyl, guaiacyl and p-hydroxyphenyl moieties was reported for AD-LNP, whereas EUC-LNP had a larger amount of syringyl groups and a higher S/G ratio. Also, the 1H-DOSY NMR indicated the lower size of AD-LNP. Moreover, the LNP were found to negatively impact on the development of several human or plant pathogens, and their bioactivity was related to the occurrence of guaiacyl and p-hydroxyphenyl moieties and a lower the LNP size. We therefore found that MA delignification allows both to achieve high delignification efficiency and to obtain LNP with promising antibacterial effect. Such LNP may help counteracting the antibiotics resistance and sustain the quest for finding sustainable agrochemicals.
Collapse
Affiliation(s)
- Davide Savy
- Dipartimento di Agraria, Università di Napoli Federico II, Via Università 100, 80055 Portici, Italy.
| | - Mariavittoria Verrillo
- Centro Interdipartimentale di Ricerca sulla Risonanza Magnetica Nucleare per l'Ambiente, l'Agro-Alimentare ed i Nuovi Materiali (CERMANU), Università di Napoli Federico II, Via Università 100, 80055 Portici, Italy
| | - Silvana Cangemi
- Dipartimento di Agraria, Università di Napoli Federico II, Via Università 100, 80055 Portici, Italy
| | - Vincenza Cozzolino
- Dipartimento di Agraria, Università di Napoli Federico II, Via Università 100, 80055 Portici, Italy; Centro Interdipartimentale di Ricerca sulla Risonanza Magnetica Nucleare per l'Ambiente, l'Agro-Alimentare ed i Nuovi Materiali (CERMANU), Università di Napoli Federico II, Via Università 100, 80055 Portici, Italy
| |
Collapse
|
14
|
Kang Y, Lu X, Xu J, Zhou Q, Zhang G, Xin J, Yan D, Sayed IEITEI. The ionic liquids upon perchlorate to promote the C-C/C-O bonds cleavage in alkali lignin under photothermal synergism. Int J Biol Macromol 2024; 255:128125. [PMID: 37984571 DOI: 10.1016/j.ijbiomac.2023.128125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/27/2023] [Accepted: 11/03/2023] [Indexed: 11/22/2023]
Abstract
Transforming lignin into aromatic monomers is critically attractive to develop green and sustainable energy supplies. However, the usage of the additional catalysts like metal or base/acid is commonly limited by the caused repolymerized and environmental issues. The key step is to mediate electron transfer in lignin to trigger lignin C-C/C-O bonds cleavage without the catalysts mentioned above. Here, we report that the ionic liquids [BMim][ClO4] was found to trigger lignin electron transfer to cleave the C-C/C-O bonds for aromatic monomers without any additional catalyst. The proton transfer from [BMim]+ to [ClO4]- could polarize the anion and decrease its structure stability, upon which the active hydroxyl radical generated and induced lignin C-C/C-O bonds fragmentation via free radical-mediated routes with the assistance of photothermal synergism. About 4.4 wt% yields of aromatic monomers, mainly composed of vanillin and acetosyringone, are afforded in [BMim][ClO4] under UV-light irradiation in the air at 80 °C. This work opens the way to produce value-added aromatic monomers from lignin using an eco-friendly, energy-efficient, and simple route that may contribute to the sustainable utilization of renewable natural resources.
Collapse
Affiliation(s)
- Ying Kang
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Xingmei Lu
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100190, China.
| | - Junli Xu
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Qing Zhou
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Guangjin Zhang
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
| | - Jiayu Xin
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Dongxia Yan
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | | |
Collapse
|
15
|
Fink F, Stawski TM, Stockmann JM, Emmerling F, Falkenhagen J. Surface Modification of Kraft Lignin by Mechanochemical Processing with Sodium Percarbonate. Biomacromolecules 2023; 24:4274-4284. [PMID: 37561452 DOI: 10.1021/acs.biomac.3c00584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
In this article, we present a novel one-pot mechanochemical reaction for the surface activation of lignin. The process involves environmentally friendly oxidation with hydrogen peroxide, depolymerization of fractions with high molecular mass, and introduction of new carbonyl functions into the lignin backbone. Kraft lignin was ground with sodium percarbonate and sodium hydroxide in a ball mill at different time intervals. Analyses by infrared spectroscopy (IR), nuclear magnetic resonance spectroscopy (NMR), size exclusion chromatography (SEC), dynamic vapor sorption (DVS), and small-angle X-ray scattering (SAXS) showed significant improvements. After only 5 min of reaction, there was a 47% reduction in mass-average molecular weight and an increase in carboxyl functionalities. Chemical activation resulted in an approximately 2.8-fold increase in water adsorption. Principal component analysis (PCA) provided further insight into the correlations between IR spectra and SAXS parameters.
Collapse
Affiliation(s)
- Friedrich Fink
- Bundesanstalt für Materialforschung und -prüfung (BAM), Richard-Willstätter-Strasse 11, 12489 Berlin, Germany
- Humboldt-Universität zu Berlin, Mathematische-Naturwissenschaftliche Fakultät, Unter den Linden 6, 10099 Berlin, Germany
| | - Tomasz M Stawski
- Bundesanstalt für Materialforschung und -prüfung (BAM), Richard-Willstätter-Strasse 11, 12489 Berlin, Germany
| | - Jörg M Stockmann
- Bundesanstalt für Materialforschung und -prüfung (BAM), Richard-Willstätter-Strasse 11, 12489 Berlin, Germany
| | - Franziska Emmerling
- Bundesanstalt für Materialforschung und -prüfung (BAM), Richard-Willstätter-Strasse 11, 12489 Berlin, Germany
- Humboldt-Universität zu Berlin, Mathematische-Naturwissenschaftliche Fakultät, Unter den Linden 6, 10099 Berlin, Germany
| | - Jana Falkenhagen
- Bundesanstalt für Materialforschung und -prüfung (BAM), Richard-Willstätter-Strasse 11, 12489 Berlin, Germany
| |
Collapse
|
16
|
Xu X, Li P, Zhong Y, Yu J, Miao C, Tong G. Review on the oxidative catalysis methods of converting lignin into vanillin. Int J Biol Macromol 2023:125203. [PMID: 37270116 DOI: 10.1016/j.ijbiomac.2023.125203] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/12/2023] [Accepted: 05/31/2023] [Indexed: 06/05/2023]
Abstract
Vanillin plays an important role not only in food and flavouring, but also as a platform compound for the synthesis of other valuable products, mainly derived from the oxidative decarboxylation of petroleum-based guaiacol production. In order to alleviate the problem of collapsing oil resources, the preparation of vanillin from lignin has become a good option from the perspective of environmental sustainability, but it is still not optimistic in terms of vanillin production. Currently, catalytic oxidative depolymerization of lignin for the preparation of vanillin is the main development trend. This paper mainly reviews four ways of preparing vanillin from lignin base: alkaline (catalytic) oxidation, electrochemical (catalytic) oxidation, Fenton (catalytic) oxidation and photo (catalytic) oxidative degradation of lignin. In this work, the working principles, influencing factors, vanillin yields obtained, respective advantages and disadvantages and the development trends of the four methods are systematically summarized, and finally, several methods for the separation and purification of lignin-based vanillin are briefly reviewed.
Collapse
Affiliation(s)
- Xuewen Xu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab of Pulp and Paper Science and Technology, College of Light Industry and Food, Nanjing Forestry University, Nanjing 210037, China
| | - Penghui Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab of Pulp and Paper Science and Technology, College of Light Industry and Food, Nanjing Forestry University, Nanjing 210037, China
| | - Yidan Zhong
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab of Pulp and Paper Science and Technology, College of Light Industry and Food, Nanjing Forestry University, Nanjing 210037, China
| | - Jiangdong Yu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab of Pulp and Paper Science and Technology, College of Light Industry and Food, Nanjing Forestry University, Nanjing 210037, China
| | - Chen Miao
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab of Pulp and Paper Science and Technology, College of Light Industry and Food, Nanjing Forestry University, Nanjing 210037, China
| | - Guolin Tong
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab of Pulp and Paper Science and Technology, College of Light Industry and Food, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
17
|
Lin Z, Ying W, Wen P, Lian Z, Zhang J. Effect of peracetic acid generation in hydrogen peroxide-acetic acid pretreatment on production of xylooligosaccharides from poplar by organic acid hydrolysis. BIORESOURCE TECHNOLOGY 2023; 376:128848. [PMID: 36906236 DOI: 10.1016/j.biortech.2023.128848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/02/2023] [Accepted: 03/05/2023] [Indexed: 06/18/2023]
Abstract
Hydrogen peroxide-acetic acid (HPAA) compositions affect the peracetic acid generation and subsequent delignification of lignocellulosic materials. However, the effects of HPAA compositions on lignin removal and poplar hydrolyzability after HPAA pretreatment are not fully elucidated yet. In this work, different volume ratios of HP to AA were used to pretreat poplar, AA and lactic acid (LA) hydrolysis of delignified poplar to produce XOS was compared. Peracetic acid was mainly produced in 1 h of HPAA pretreatment. HPAA with HP to AA ratio of 8:2 (HP8AA2) generated 4.4% peracetic acid and removed 57.7% of lignin at 2 h. Furthermore, XOS production from HP8AA2-pretreated poplar by AA and LA hydrolysis was increased by 97.1% and 14.9% compared to those from raw poplar, respectively. After alkaline incubation, the glucose yield of HP8AA2-AA-pretreated poplar increased from 40.1% to 97.1%. The study results indicated that HP8AA2 was conducive to XOS and monosaccharides production from poplar..
Collapse
Affiliation(s)
- Zihe Lin
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Wenjun Ying
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Peiyao Wen
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Zhina Lian
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China; Key Laboratory of Forestry Genetics & Biotechnology (Nanjing Forestry University), Ministry of Education, Nanjing 210037, China; Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, Nanjing 210037, China
| | - Junhua Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China; Key Laboratory of Forestry Genetics & Biotechnology (Nanjing Forestry University), Ministry of Education, Nanjing 210037, China; Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, Nanjing 210037, China.
| |
Collapse
|
18
|
Fangueiro JF, de Carvalho NM, Antunes F, Mota IF, Pintado ME, Madureira AR, Costa PS. Lignin from sugarcane bagasse as a prebiotic additive for poultry feed. Int J Biol Macromol 2023; 239:124262. [PMID: 37003388 DOI: 10.1016/j.ijbiomac.2023.124262] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/03/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023]
Abstract
Diet is a crucial factor on health and well-being of livestock animals. Nutritional strengthening with diet formulations is essential to the livestock industry and animal perfor-mance. Searching for valuable feed additives among by-products may promote not only circular economy, but also functional diets. Lignin from sugarcane bagasse was proposed as a potential prebiotic additive for chickens and incorporated at 1 % (w/w) in commercial chicken feed, tested in two feed forms, namely, mash and pellets. Physico-chemical characterization of both feed types with and without lignin was performed. Also, the prebiotic potential for feeds with lignin was assessed by in vitro gastrointestinal model and evaluated the impact on chicken cecal Lactobacillus and Bifidobacterium. As for the pellet's physical quality, there was a higher cohesion of the pellets with lignin, indicating a higher resistance to breakout and lignin decreases the tendency of the pellets for microbial contamination. Regarding the prebiotic potential, mash feed with lignin showed higher promotion of Bifidobacterium in comparison with mash feed without lignin and to pellet feed with lignin. Lignin from sugarcane bagasse has prebiotic potential as additive to chicken feed when supplemented in mash feed diets, presenting itself as a sustainable and eco-friendly alternative to chicken feed additives supplementation.
Collapse
Affiliation(s)
- Joana F Fangueiro
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho, 1327, 4169-005 Porto, Portugal
| | - Nelson Mota de Carvalho
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho, 1327, 4169-005 Porto, Portugal
| | - Filipa Antunes
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho, 1327, 4169-005 Porto, Portugal; Amyris Bio Products Portugal Unipessoal Lda, Portugal
| | - Inês F Mota
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho, 1327, 4169-005 Porto, Portugal
| | - Manuela Estevez Pintado
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho, 1327, 4169-005 Porto, Portugal
| | - Ana Raquel Madureira
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho, 1327, 4169-005 Porto, Portugal.
| | - Patrícia Santos Costa
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho, 1327, 4169-005 Porto, Portugal
| |
Collapse
|
19
|
Wang Y, Chen M, Yang Y, Ralph J, Pan X. Efficient O-demethylation of lignin-derived aromatic compounds under moderate conditions. RSC Adv 2023; 13:5925-5932. [PMID: 36816077 PMCID: PMC9936356 DOI: 10.1039/d3ra00245d] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 02/09/2023] [Indexed: 02/19/2023] Open
Abstract
Lignin is a potential feedstock to produce renewable aromatic chemicals. However, lignin-derived aromatics are heavily methoxylated, which affects their reactivity in some downstream valorization attempts. Herein, we report an efficient method for the demethylation of the aromatics derived from lignin depolymerization using acidic concentrated lithium bromide (ACLB) under moderate conditions (e.g., 1.5 M HCl, 110 °C, and 2 h). Aromatics with one or two methoxy groups (G-type and S-type), alkyl hydroxyl and carbonyl groups, and electron-donating and electron-withdrawing substituents were used to investigate the demethylation mechanisms. S-type aromatics were demethylated faster than their G-type analogs. Alkyl hydroxyl groups were brominated under the conditions. Carbonyl groups (aldehydes and ketones) promoted unwelcome condensation. Electron-donating substituents promoted demethylation, whereas electron-withdrawing substituents retarded the demethylation. An ortho-carboxylic group enhanced the demethylation because of the formation of a stable intermediate.
Collapse
Affiliation(s)
- Yueqing Wang
- Department of Biological Systems Engineering, University of Wisconsin-Madison 460 Henry Mall Madison WI 53706 USA
| | - Mingjie Chen
- Wisconsin Energy Institute, University of Wisconsin–Madison1552 University AvenueMadisonWI 53726USA
| | - Yang Yang
- Department of Chemistry, University of Wisconsin–Madison1101 University AvenueMadisonWI 53706USA
| | - John Ralph
- Wisconsin Energy Institute, University of Wisconsin–Madison1552 University AvenueMadisonWI 53726USA
| | - Xuejun Pan
- Department of Biological Systems Engineering, University of Wisconsin-Madison 460 Henry Mall Madison WI 53706 USA
| |
Collapse
|
20
|
Wan S, Tan J, Jiang H, Chu Q, Wu S, Jin Y. Lignin detaching from the oxidative delignified softwood during enzymatic hydrolysis and its effect on carbohydrate saccharification. Int J Biol Macromol 2023; 227:664-672. [PMID: 36521709 DOI: 10.1016/j.ijbiomac.2022.12.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 11/21/2022] [Accepted: 12/06/2022] [Indexed: 12/15/2022]
Abstract
Most studies about the influence of lignin on enzymatic digestibility of lignocellulose have focused on the content and properties, but less on the detaching behavior of lignin. The samples were prepared from Pinus massoniana wood chips by kraft cooking followed by delignification using oxygen/alkali (KP-O) and chlorine dioxide (KP-D), respectively. Two oxidative delignified samples with a similar lignin content were subject to enzymatic hydrolysis at both pH of 5.0 and 5.5 to investigate the effects of lignin detached rate (LDR) on substrate enzymatic digestibility (SED). The LDRs and the SEDs from both samples increased with the enzymatic hydrolysis time, and the situations of KP-D were much higher than those of KP-O under the same enzymatic hydrolysis time. The results of enzymatic hydrolysis at an elevated pH of 5.5 and the changes in concentration of free cellulase of the two samples indicated that the lignin detaching increased the free cellulase concentration, and thus promoted the enzymatic digestibility. Moreover, lignin distribution analysis by X-ray photoelectric spectroscopy and confocal laser scanning microscopy indicated surface lignin being preferentially detached. This work provided a reference for rationally designing pretreatment strategies, which can improve the efficiency of enzyme hydrolysis of lignocellulosic biomass.
Collapse
Affiliation(s)
- Shanqi Wan
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; College of Light Industry and Food Engineering, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, China
| | - Jingjing Tan
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; College of Light Industry and Food Engineering, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, China
| | - Huicong Jiang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; College of Light Industry and Food Engineering, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, China
| | - Qiulu Chu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; College of Light Industry and Food Engineering, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, China
| | - Shufang Wu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; College of Light Industry and Food Engineering, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, China.
| | - Yongcan Jin
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; College of Light Industry and Food Engineering, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, China
| |
Collapse
|
21
|
Qin RC, Ma YY, Wang D, Bao NZ, Liu CG. Preparation of Cellulose Nanofibers from Corn Stalks by Fenton Reaction: A New Insight into the Mechanism by an Experimental and Theoretical Study. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:1907-1920. [PMID: 36652295 DOI: 10.1021/acs.jafc.2c08475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Agricultural biomass wastes are an abundant feedstock for biorefineries. However, most of these wastes are not treated in the right way. Here, corn stalks (CSs) were assigned as the raw material to produce cellulose nanofibers (CNFs) via in situ Fenton oxidation treatment. In order to probe the formation mechanism of an in situ Fenton reactor, the bonding interaction of hydrated Fe2+ ions and fiber has been systemically studied based on adsorption experiments, IR spectroscopy, density functional theory (DFT) calculations, and Raman spectroscopy. The results indicate that the coordination of the hydrated Fe2+ ion to the fiber generates a quasi-octahedral-coordinated sphere around the Fe center. The Jahn-Teller distortion effect of the Fe center promotes the Fe-O2H2 bonding interaction via reduction of the energy gap of the dz2 orbital of the Fe center and π2py/π2pz orbitals of the H2O2 molecule. The oxidation treatment of the pretreated CS by the in situ Fenton process shows the formation of a new carboxyl group on the fiber surface. The scanning electron microscopy image shows that the Fenton-treated fiber was scattered into the nanosized CNFs with a diameter of up to 50 nm. Both experimental and theoretical studies show that the pseudo-first-order kinetic reaction could describe the in situ Fenton kinetics well. Moreover, the proposed catalytic cycle shows that the large thermodynamic barrier is the cleavage of the O-O bond of H2O2 to generate the •OH radical, and the whole catalytic cycle is found to be spontaneous at room temperature.
Collapse
Affiliation(s)
- Rui-Cheng Qin
- Department of Chemistry, Faculty of Science, Beihua University, Jilin City132013, P. R. China
| | - Yi-Ying Ma
- Department of Chemistry, Faculty of Science, Beihua University, Jilin City132013, P. R. China
| | - Dan Wang
- Department of Chemistry, Faculty of Science, Beihua University, Jilin City132013, P. R. China
| | - Nan-Zhu Bao
- Department of Chemistry, Faculty of Science, Beihua University, Jilin City132013, P. R. China
| | - Chun-Guang Liu
- Department of Chemistry, Faculty of Science, Beihua University, Jilin City132013, P. R. China
| |
Collapse
|
22
|
Kumar A, Connal LA. Biobased Transesterification Vitrimers. Macromol Rapid Commun 2023; 44:e2200892. [PMID: 36661130 DOI: 10.1002/marc.202200892] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/19/2022] [Indexed: 01/21/2023]
Abstract
The rapid increase in the use of plastics and the related sustainability issues, including the depletion of global petroleum reserves, have rightly sparked interest in the use of biobased polymer feedstocks. Thermosets cannot be remolded, processed, or recycled, and hence cannot be reused because of their permanent molecular architecture. Vitrimers have emerged as a novel polymer family capable of bridging the difference between thermoplastic and thermosets. Vitrimers enable unique recycling strategies, however, it is still important to understand where the raw material feedstocks originate from. Transesterification vitrimers derived from renewable resources are a massive opportunity, however, limited research has been conducted in this specific family of vitrimers. This review article provides a comprehensive overview of transesterification vitrimers produced from biobased monomers. The focus is on the biomass structural suitability with dynamic covalent chemistry, as well as the viability of the synthetic methods.
Collapse
Affiliation(s)
- Ashwani Kumar
- Research School of Chemistry, Australian National University, Canberra, ACT, 2600, Australia
| | - Luke A Connal
- Research School of Chemistry, Australian National University, Canberra, ACT, 2600, Australia
| |
Collapse
|
23
|
More A, Elder T, Pajer N, Argyropoulos DS, Jiang Z. Novel and Integrated Process for the Valorization of Kraft Lignin to Produce Lignin-Containing Vitrimers. ACS OMEGA 2023; 8:1097-1108. [PMID: 36643463 PMCID: PMC9835646 DOI: 10.1021/acsomega.2c06445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
The valorization of lignin into value-added products by oxidative conversion is a widely studied strategy. However, in many cases, this approach has limited scope for integration into industrial processes. The objective of our work is to maximize overall lignin utilization to produce diverse value-added products with a focus on integration in the existing industrial pulp and paper processes. The utilization of the sequential oxidation strategy using oxygen and ozone resulted in kraft lignin with a marked improvement in carboxyl content and also allowed the formation of vanillin and vanillic acid in the oxygen stage. The sequentially oxidized lignin (OxL-COOH) was then cured with poly(ethylene glycol) diglycidyl ether (PEG-epoxy) to form high-lignin-content (>48 wt %) vitrimers with high thermal stability, fast relaxation, swelling, and self-healing due to the presence of bond-exchangeable cross-linked networks. Overall, this study provides a novel approach for the multidimensional valorization of lignin and demonstrates an integrated approach for kraft lignin valorization in the pulp and paper industry.
Collapse
Affiliation(s)
- Ajinkya More
- Alabama
Center for Paper and Bioresource Engineering (AC-PABE), Department
of Chemical Engineering, Auburn University, Auburn, Alabama36849, United States
| | - Thomas Elder
- United
States Department of Agriculture, U.S. Forest
Service, Southern Research
Station, Auburn, Alabama36849, United States
| | - Nicolò Pajer
- Department
of Molecular Sciences and Nanosystems, Ca’
Foscari University of Venice, Via Torino 155, Venezia, Mestre30172, Italy
| | - Dimitris S. Argyropoulos
- Department
of Forest Biomaterials, NC State University, Campus Box 8005, Raleigh, North Carolina27695-8005, United States
| | - Zhihua Jiang
- Alabama
Center for Paper and Bioresource Engineering (AC-PABE), Department
of Chemical Engineering, Auburn University, Auburn, Alabama36849, United States
| |
Collapse
|
24
|
Li S, Park S, Sherman BD, Yoo CG, Leem G. Photoelectrochemical approaches for the conversion of lignin at room temperature. Chem Commun (Camb) 2023; 59:401-413. [PMID: 36519448 DOI: 10.1039/d2cc05491d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The selective cleavage of C-C/C-O linkages represents a key step toward achieving the chemical conversion of biomass to targeted value-added chemical products under ambient conditions. Using photoelectrosynthetic solar cells is a promising method to address the energy intensive depolymerization of lignin for the production of biofuels and valuable chemicals. This feature article gives an in-depth overview of recent progress using dye-sensitized photoelectrosynthetic solar cells (DSPECs) to initiate the cleavage of C-C/C-O bonds in lignin and related model compounds. This approach takes advantage of N-oxyl mediated catalysis in organic electrolytes and presents a promising direction for the sustainable production of chemicals currently derived from fossil fuels.
Collapse
Affiliation(s)
- Shuya Li
- Department of Chemistry, State University of New York College of Environmental Science and Forestry, Syracuse, New York 13210, USA.
| | - Seongsu Park
- Department of Chemistry, State University of New York College of Environmental Science and Forestry, Syracuse, New York 13210, USA.
| | - Benjamin D Sherman
- Department of Chemistry & Biochemistry, Texas Christian University, Fort Worth, Texas 76129, USA
| | - Chang Geun Yoo
- Department of Chemical Engineering, State University of New York College of Environmental Science and Forestry, Syracuse, New York 13210, USA.,The Michael M. Szwarc Polymer Research Institute, Syracuse, New York 13210, USA
| | - Gyu Leem
- Department of Chemistry, State University of New York College of Environmental Science and Forestry, Syracuse, New York 13210, USA. .,The Michael M. Szwarc Polymer Research Institute, Syracuse, New York 13210, USA
| |
Collapse
|
25
|
Zhou Z, Ouyang D, Liu D, Zhao X. Oxidative pretreatment of lignocellulosic biomass for enzymatic hydrolysis: Progress and challenges. BIORESOURCE TECHNOLOGY 2023; 367:128208. [PMID: 36323374 DOI: 10.1016/j.biortech.2022.128208] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/20/2022] [Accepted: 10/22/2022] [Indexed: 06/16/2023]
Abstract
Deconstruction of cell wall structure is important for biorefining of lignocellulose to produce various biofuels and chemicals. Oxidative delignification is an effective way to increase the enzymatic digestibility of cellulose. In this work, the current research progress on conventional oxidative pretreatment including wet oxidation, alkaline hydrogen peroxide, organic peracids, Fenton oxidation, and ozone oxidation were reviewed. Some recently developed novel technologies for coupling pretreatment and direct biomass-to-electricity conversion with recyclable oxidants were also introduced. The primary mechanism of oxidative pretreatment to enhance cellulose digestibility is delignification, especially in alkaline medium, thus eliminating the physical blocking and non-productive adsorption of enzymes by lignin. However, the cost of oxidative delignification as a pretreatment is still too expensive to be applied at large scale at present. Efforts should be made particularly to reduce the cost of oxidants, or explore valuable products to obtain more revenue.
Collapse
Affiliation(s)
- Ziyuan Zhou
- School of Chemistry & Chemical Engineering, Anhui University, Hefei 230601, China
| | - Denghao Ouyang
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing 100084, China; Institute of Applied Chemistry, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Dehua Liu
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing 100084, China; Institute of Applied Chemistry, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Xuebing Zhao
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing 100084, China; Institute of Applied Chemistry, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
26
|
Wang X, Yang X, Wang Y, Tang X, Zheng H, Zhang P, Gao D, Che G, Wang Z, Guan A, Xiang JF, Tang M, Dong X, Li K, Mao HK. From Biomass to Functional Crystalline Diamond Nanothread: Pressure-Induced Polymerization of 2,5-Furandicarboxylic Acid. J Am Chem Soc 2022; 144:21837-21842. [PMID: 36399710 DOI: 10.1021/jacs.2c08914] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
2,5-Furandicarboxylic acid (FDCA) is one of the top-12 value-added chemicals from sugar. Besides the wide application in chemical industry, here we found that solid FDCA polymerized to form an atomic-scale ordered sp3-carbon nanothread (CNTh) upon compression. With the help of perfectly aligned π-π stacked molecules and strong intermolecular hydrogen bonds, crystalline poly-FDCA CNTh with uniform syn-configuration was obtained above 11 GPa, with the crystal structure determined by Rietveld refinement of the X-ray diffraction (XRD). The in situ XRD and theoretical simulation results show that the FDCA experienced continuous [4 + 2] Diels-Alder reactions along the stacking direction at the threshold C···C distance of ∼2.8 Å. Benefiting from the abundant carbonyl groups, the poly-FDCA shows a high specific capacity of 375 mAh g-1 as an anode material of a lithium battery with excellent Coulombic efficiency and rate performance. This is the first time a three-dimensional crystalline CNTh is obtained, and we demonstrated it is the hydrogen bonds that lead to the formation of the crystalline material with a unique configuration. It also provides a new method to move biomass compounds toward advanced functional carbon materials.
Collapse
Affiliation(s)
- Xuan Wang
- Center for High Pressure Science and Technology Advanced Research, Beijing, 100193, People's Republic of China.,Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Xin Yang
- Center for High Pressure Science and Technology Advanced Research, Beijing, 100193, People's Republic of China
| | - Yida Wang
- Center for High Pressure Science and Technology Advanced Research, Beijing, 100193, People's Republic of China
| | - Xingyu Tang
- Center for High Pressure Science and Technology Advanced Research, Beijing, 100193, People's Republic of China
| | - Haiyan Zheng
- Center for High Pressure Science and Technology Advanced Research, Beijing, 100193, People's Republic of China
| | - Peijie Zhang
- Center for High Pressure Science and Technology Advanced Research, Beijing, 100193, People's Republic of China
| | - Dexiang Gao
- Center for High Pressure Science and Technology Advanced Research, Beijing, 100193, People's Republic of China
| | - Guangwei Che
- Center for High Pressure Science and Technology Advanced Research, Beijing, 100193, People's Republic of China
| | - Zijia Wang
- Center for High Pressure Science and Technology Advanced Research, Beijing, 100193, People's Republic of China
| | - Aijiao Guan
- Institute of Chemistry, Chinese Academy of Sciences, Zhongguancunbeiyijie 2, Beijing, 100190, People's Republic of China
| | - Jun-Feng Xiang
- Institute of Chemistry, Chinese Academy of Sciences, Zhongguancunbeiyijie 2, Beijing, 100190, People's Republic of China.,University of Chinese Academy of Sciences, Yuquan Road 19(A), Beijing, 100049, People's Republic of China
| | - Mingxue Tang
- Center for High Pressure Science and Technology Advanced Research, Beijing, 100193, People's Republic of China
| | - Xiao Dong
- Key Laboratory of Weak-Light Nonlinear Photonics and School of Physics, Nankai University, Tianjin, 300071, People's Republic of China
| | - Kuo Li
- Center for High Pressure Science and Technology Advanced Research, Beijing, 100193, People's Republic of China
| | - Ho-Kwang Mao
- Center for High Pressure Science and Technology Advanced Research, Beijing, 100193, People's Republic of China
| |
Collapse
|
27
|
Kuznetsov BN, Garyntseva NV, Sudakova IG, Skripnikov AM, Pestunov AV. Heterogeneous Catalytic Fractionation of Birch-Wood Biomass into a Microcrystalline Cellulose, Xylose and Enterosorbents. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2022. [DOI: 10.1134/s1068162022070160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
28
|
A thermostable bacterial catalase-peroxidase oxidizes phenolic compounds derived from lignins. Appl Microbiol Biotechnol 2022; 107:201-217. [DOI: 10.1007/s00253-022-12263-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 10/19/2022] [Accepted: 10/23/2022] [Indexed: 11/27/2022]
|
29
|
Al‐Naji M, Brandi F, Drieß M, Rosowski F. From Lignin to Chemicals: An Expedition from Classical to Modern Catalytic Valorization Technologies. CHEM-ING-TECH 2022. [DOI: 10.1002/cite.202200079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Majd Al‐Naji
- Technische Universität Berlin BasCat – UniCat BASF JointLab Hardenbergstraße 36, Sekr. EW K-01 10623 Berlin Germany
| | - Francesco Brandi
- KU Leuven Center for Sustainable Catalysis and Engineering Celestijnenlaan 200F 3001 Heverlee Belgium
| | - Matthias Drieß
- Technische Universität Berlin BasCat – UniCat BASF JointLab Hardenbergstraße 36, Sekr. EW K-01 10623 Berlin Germany
- Technische Universität Berlin Department of Chemistry, Metalorganics and Inorganic Materials Straße des 17. Juni 115, Sekr. C2 10623 Berlin Germany
| | - Frank Rosowski
- Technische Universität Berlin BasCat – UniCat BASF JointLab Hardenbergstraße 36, Sekr. EW K-01 10623 Berlin Germany
- BASF SE Process Research and Chemical Engineering 67056 Ludwigshafen Germany
| |
Collapse
|
30
|
Recent Advancements and Challenges in Lignin Valorization: Green Routes towards Sustainable Bioproducts. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27186055. [PMID: 36144795 PMCID: PMC9500909 DOI: 10.3390/molecules27186055] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/10/2022] [Accepted: 09/13/2022] [Indexed: 11/27/2022]
Abstract
The aromatic hetero-polymer lignin is industrially processed in the paper/pulp and lignocellulose biorefinery, acting as a major energy source. It has been proven to be a natural resource for useful bioproducts; however, its depolymerization and conversion into high-value-added chemicals is the major challenge due to the complicated structure and heterogeneity. Conversely, the various pre-treatments techniques and valorization strategies offers a potential solution for developing a biomass-based biorefinery. Thus, the current review focus on the new isolation techniques for lignin, various pre-treatment approaches and biocatalytic methods for the synthesis of sustainable value-added products. Meanwhile, the challenges and prospective for the green synthesis of various biomolecules via utilizing the complicated hetero-polymer lignin are also discussed.
Collapse
|
31
|
Guo M, Lu X, Xiong J, Zhang R, Li X, Qiao Y, Ji N, Yu Z. Alloy-Driven Efficient Electrocatalytic Oxidation of Biomass-Derived 5-Hydroxymethylfurfural towards 2,5-Furandicarboxylic Acid: A Review. CHEMSUSCHEM 2022; 15:e202201074. [PMID: 35790081 DOI: 10.1002/cssc.202201074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 07/02/2022] [Indexed: 06/15/2023]
Abstract
In recent years, electrocatalysis was progressively developed to facilitate the selective oxidation of biomass-derived 5-hydroxymethylfurfural (HMF) towards the value-added chemical 2,5-furandicarboxylic acid (FDCA). Among reported electrocatalysts, alloy materials have demonstrated superior electrocatalytic properties due to their tunable electronic and geometric properties. However, a specific discussion of the potential impacts of alloy structures on the electrocatalytic HMF oxidation performance has not yet been presented in available Reviews. In this regard, this Review introduces the most recent perspectives on the alloy-driven electrocatalysis for HMF oxidation towards FDCA, including oxidation mechanism, alloy nanostructure modulation, and external conditions control. Particularly, modulation strategies for electronic and geometric structures of alloy electrocatalysts have been discussed. Challenges and suggestions are also provided for the rational design of alloy electrocatalysts. The viewpoints presented herein are anticipated to potentially contribute to a further development of alloy-driven electrocatalytic oxidation of HMF towards FDCA and to help boost a more sustainable and efficient biomass refining system.
Collapse
Affiliation(s)
- Mengyan Guo
- School of Environmental Science and Engineering, Tianjin Key Laboratory of Biomass/Wastes Utilization, Tianjin University, Tianjin, 300350, P.R. China
| | - Xuebin Lu
- School of Environmental Science and Engineering, Tianjin Key Laboratory of Biomass/Wastes Utilization, Tianjin University, Tianjin, 300350, P.R. China
- School of Science, Tibet University, Lhasa, 850000, P.R. China
| | - Jian Xiong
- School of Science, Tibet University, Lhasa, 850000, P.R. China
| | - Rui Zhang
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin, 300384, P.R. China
| | - Xiaoyun Li
- School of Agriculture, Sun Yat-sen University Guangzhou, Guangdong, 510275, P.R. China
| | - Yina Qiao
- School of Environment and Safety Engineering, North University of China, Taiyuan, 030051, P.R. China
| | - Na Ji
- School of Environmental Science and Engineering, Tianjin Key Laboratory of Biomass/Wastes Utilization, Tianjin University, Tianjin, 300350, P.R. China
| | - Zhihao Yu
- School of Environmental Science and Engineering, Tianjin Key Laboratory of Biomass/Wastes Utilization, Tianjin University, Tianjin, 300350, P.R. China
| |
Collapse
|
32
|
Qiao J, Cui H, Wang M, Fu X, Wang X, Li X, Huang H. Integrated biorefinery approaches for the industrialization of cellulosic ethanol fuel. BIORESOURCE TECHNOLOGY 2022; 360:127516. [PMID: 35764282 DOI: 10.1016/j.biortech.2022.127516] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/20/2022] [Accepted: 06/22/2022] [Indexed: 06/15/2023]
Abstract
Lignocellulosic biomass is an abundant and sustainable raw material, but its conversion into ethanol fuel has not yet achieved large-scale industrialization and economic benefits. Integrated biorefineries have been widely identified as the key to achieving this goal. Here, four promising routes were summarized to assemble the new industrial plants for cellulose-based fuels and chemicals, including 1) integration of cellulase production systems into current cellulosic ethanol processes; 2) combination of processes and facilities between cellulosic ethanol and first-generation ethanol; 3) application of enzyme-free saccharification processes and computational approaches to increase the bioethanol yield and optimize the integration process; 4) production of multiple products to maximize the value derived from the lignocellulosic biomass. Finally, the remaining challenges and perspectives of this field are also discussed.
Collapse
Affiliation(s)
- Jie Qiao
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, No. 2 Xuelin Road, Nanjing 210097, China
| | - Haiyang Cui
- Institute of Biotechnology, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany
| | - Minghui Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, No. 2 Xuelin Road, Nanjing 210097, China
| | - Xianshen Fu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, No. 2 Xuelin Road, Nanjing 210097, China
| | - Xinyue Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, No. 2 Xuelin Road, Nanjing 210097, China
| | - Xiujuan Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, No. 2 Xuelin Road, Nanjing 210097, China.
| | - He Huang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, No. 2 Xuelin Road, Nanjing 210097, China; School of Pharmaceutical Sciences, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, China
| |
Collapse
|
33
|
Koch SM, Pillon M, Keplinger T, Dreimol CH, Weinkötz S, Burgert I. Intercellular Matrix Infiltration Improves the Wet Strength of Delignified Wood Composites. ACS APPLIED MATERIALS & INTERFACES 2022; 14:31216-31224. [PMID: 35767702 DOI: 10.1021/acsami.2c04014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Delignified wood (DW) represents a promising bio-based fibrous material as a reinforcing component in high-performance composites. These cellulose composites possess excellent strength and stiffness in the dry state, which are significantly higher than for natural wood. However, in the wet state, a penetrating water layer enters the intercellular regions and disrupts the stress transfer mechanisms between cell fibers in fully DW. This water layer initially facilitates complex shaping of the material but imparts DW composites with very low wet stiffness and strength. Therefore, a sufficient stress transfer in the wet state necessitates a resin impregnation of these intercellular regions, establishing bonding mechanisms between adjacent fibers. Here, we utilize a water-based dimethyloldihydroxyethylene urea thermosetting matrix (DMDHEU) and compare it with a non-water-based epoxy matrix. We infiltrate these resins into DW and investigate their spatial distribution by scanning electron microscopy, atomic force microscopy, and confocal Raman spectroscopy. The water-based resin impregnates the intercellular areas and generates an artificial compound middle lamella, while the epoxy infiltrates only the cell lumina of the dry DW. Tensile tests in the dry and wet states show that the DMDHEU matrix infiltration of the intercellular areas and the cell wall results in a higher tensile strength and stiffness compared to the epoxy resin. Here, the artificial compound middle lamella made of DMDHEU bonds adjacent fibers together and substantially increases the composites' wet strength. This study elucidates the importance of the interaction and spatial distribution of the resin system within the DW structure to improve mechanical properties, particularly in the wet state.
Collapse
Affiliation(s)
- Sophie Marie Koch
- Wood Materials Science, Institute for Building Materials, ETH Zürich, 8093 Zürich, Switzerland
- WoodTec Group, Cellulose & Wood Materials, Empa, 8600 Dübendorf, Switzerland
| | - Manuel Pillon
- Wood Materials Science, Institute for Building Materials, ETH Zürich, 8093 Zürich, Switzerland
| | - Tobias Keplinger
- Wood Materials Science, Institute for Building Materials, ETH Zürich, 8093 Zürich, Switzerland
| | - Christopher Hubert Dreimol
- Wood Materials Science, Institute for Building Materials, ETH Zürich, 8093 Zürich, Switzerland
- WoodTec Group, Cellulose & Wood Materials, Empa, 8600 Dübendorf, Switzerland
| | - Stephan Weinkötz
- BASF, Advanced Materials & Systems Research, BASF SE, 67056 Ludwigshafen, Germany
| | - Ingo Burgert
- Wood Materials Science, Institute for Building Materials, ETH Zürich, 8093 Zürich, Switzerland
- WoodTec Group, Cellulose & Wood Materials, Empa, 8600 Dübendorf, Switzerland
| |
Collapse
|
34
|
Zhang Z, Han P, Li L, Zhang X, Cheng X, Lin J, Wan S, Xiong H, Wang Y, Wang S. Confinement-Enhanced Selective Oxidation of Lignin Derivatives to Formic Acid Over Fe-Cu/ZSM-5 Catalysts Under Mild Conditions. CHEMSUSCHEM 2022; 15:e202200218. [PMID: 35419991 DOI: 10.1002/cssc.202200218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/13/2022] [Indexed: 06/14/2023]
Abstract
Aqueous-phase oxidation by H2 O2 , known as the Fenton-type process, provides an attractive route to convert recalcitrant lignin derivatives to valuable chemicals under mild conditions. The development of this technology is, however, limited by the uncontrolled selectivity, resulting from the highly reactive nature of H2 O2 and the thermodynamically favored deep oxidation to form CO2 . This study demonstrated that formic acid could be produced with a high selectivity (up to 80.3 % at 313 K) from the Fenton-type oxidation of guaiacol and several other lignin derivatives over a bimetallic Fe-Cu catalyst supported on a ZSM-5 zeolite. Combined experimental and theoretical investigations unveiled that the micropores of the zeolite support, which contained active metal sites, preferred to adsorb C2 -C4 intermediates over formic acid because of its stronger dispersive interaction with the larger guest molecules. This confinement effect significantly suppressed the secondary oxidation of formic acid, accounting for the uniquely high formic acid selectivity over Fe-Cu/ZSM-5.
Collapse
Affiliation(s)
- Zhaoxia Zhang
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National Engineering Laboratory for Green Chemical Productions of Alcohols-Ethers-Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Peijie Han
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National Engineering Laboratory for Green Chemical Productions of Alcohols-Ethers-Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Leisu Li
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National Engineering Laboratory for Green Chemical Productions of Alcohols-Ethers-Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Xindi Zhang
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National Engineering Laboratory for Green Chemical Productions of Alcohols-Ethers-Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Xiaojie Cheng
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National Engineering Laboratory for Green Chemical Productions of Alcohols-Ethers-Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Jingdong Lin
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National Engineering Laboratory for Green Chemical Productions of Alcohols-Ethers-Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Shaolong Wan
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National Engineering Laboratory for Green Chemical Productions of Alcohols-Ethers-Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Haifeng Xiong
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National Engineering Laboratory for Green Chemical Productions of Alcohols-Ethers-Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Yong Wang
- Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA 99164, USA
| | - Shuai Wang
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National Engineering Laboratory for Green Chemical Productions of Alcohols-Ethers-Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| |
Collapse
|
35
|
Jian T, Zhou Y, Wang P, Yang W, Mu P, Zhang X, Zhang X, Chen CL. Highly stable and tunable peptoid/hemin enzymatic mimetics with natural peroxidase-like activities. Nat Commun 2022; 13:3025. [PMID: 35641490 PMCID: PMC9156750 DOI: 10.1038/s41467-022-30285-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 04/25/2022] [Indexed: 02/05/2023] Open
Abstract
Developing tunable and stable peroxidase mimetics with high catalytic efficiency provides a promising opportunity to improve and expand enzymatic catalysis in lignin depolymerization. A class of peptoid-based peroxidase mimetics with tunable catalytic activity and high stability is developed by constructing peptoids and hemins into self-assembled crystalline nanomaterials. By varying peptoid side chain chemistry to tailor the microenvironment of active sites, these self-assembled peptoid/hemin nanomaterials (Pep/hemin) exhibit highly modulable catalytic activities toward two lignin model substrates 2,2-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) and 3,3’,5,5’-tetramethylbenzidine. Among them, a Pep/hemin complex containing the pyridyl side chain showed the best catalytic efficiency (Vmax/Km = 5.81 × 10−3 s−1). These Pep/hemin catalysts are highly stable; kinetics studies suggest that they follow a peroxidase-like mechanism. Moreover, they exhibit a high efficacy on depolymerization of a biorefinery lignin. Because Pep/hemin catalysts are highly robust and tunable, we expect that they offer tremendous opportunities for lignin valorization to high value products. Peroxidase mimics are currently being investigated as catalysts for lignin depolymerisation. In this article, the authors investigate a class of self-assembled and highly stable peptoid/hemin nanomaterials as peroxidase mimics that are highly stable and tuneable for the depolymerisation of a biorefinery lignin.
Collapse
Affiliation(s)
- Tengyue Jian
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Yicheng Zhou
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA.,The Voiland School of Chemical Engineering and Bioengineering, Washington State University, Richland, WA, 99354, USA
| | - Peipei Wang
- The Voiland School of Chemical Engineering and Bioengineering, Washington State University, Richland, WA, 99354, USA
| | - Wenchao Yang
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA.,School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin, 300072, People's Republic of China
| | - Peng Mu
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA.,Department of Mechanical Engineering and Materials Science and Engineering Program, State University of New York, Binghamton, NY, 13902, USA
| | - Xin Zhang
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Xiao Zhang
- The Voiland School of Chemical Engineering and Bioengineering, Washington State University, Richland, WA, 99354, USA.
| | - Chun-Long Chen
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA. .,Department of Chemical Engineering, University of Washington, Seattle, WA, 98195, USA.
| |
Collapse
|
36
|
Vega-Aguilar C, Costa C, Barreiro MF, Rodrigues AE. Microwave-Assisted Lignin Wet Peroxide Oxidation to C 4 Dicarboxylic Acids. Ind Eng Chem Res 2022; 61:3570-3581. [PMID: 36569588 PMCID: PMC9775456 DOI: 10.1021/acs.iecr.1c05004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Innovative methodologies, such as microwave-assisted reaction, can help to valorize lignin with higher productivity and better energy efficiency. In this work, microwave heating was tested in the wet peroxide oxidation of three lignins (Indulin AT, Lignol, and Eucalyptus globulus lignins) as a novel methodology to obtain C4 dicarboxylic acids. The effect of temperature, time, and catalyst type (TS-1 or Fe-TS1) was evaluated in the production of these acids. The TS-1 catalyst improved succinic acid yield, achieving up to 9.4 wt % for Lignol lignin. Moreover, the microwave heating specifically enhanced Lignol conversion to malic acid (34 wt %), even without catalyst, showing to be an attractive path for the future valorization of organosolv lignins. Overall, compared to conventional heating, microwave heating originated a rapid lignin conversion. Nevertheless, for prolonged times, conventional heating led to better results for some target products, e.g., malic and succinic acids.
Collapse
Affiliation(s)
- Carlos
A. Vega-Aguilar
- Laboratory
of Separation and Reaction Engineering—Laboratory of Catalysis
and Materials (LSRE-LCM), Department of Chemical Engineering, Faculdade
de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal,Centro
de Investigação de Montanha—CIMO, Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Carina Costa
- Laboratory
of Separation and Reaction Engineering—Laboratory of Catalysis
and Materials (LSRE-LCM), Department of Chemical Engineering, Faculdade
de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal
| | - Maria Filomena Barreiro
- Centro
de Investigação de Montanha—CIMO, Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Alírio E. Rodrigues
- Laboratory
of Separation and Reaction Engineering—Laboratory of Catalysis
and Materials (LSRE-LCM), Department of Chemical Engineering, Faculdade
de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal,
| |
Collapse
|
37
|
Banu Jamaldheen S, Kurade MB, Basak B, Yoo CG, Oh KK, Jeon BH, Kim TH. A review on physico-chemical delignification as a pretreatment of lignocellulosic biomass for enhanced bioconversion. BIORESOURCE TECHNOLOGY 2022; 346:126591. [PMID: 34929325 DOI: 10.1016/j.biortech.2021.126591] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 12/14/2021] [Accepted: 12/16/2021] [Indexed: 06/14/2023]
Abstract
Effective pretreatment of lignocellulosic biomass (LCB) is one of the most important steps in biorefinery, ensuring the quality and commercial viability of the overall bioprocess. Lignin recalcitrance in LCB is a major bottleneck in biological conversion as the polymerization of lignin with hemicellulose hinders enzyme accessibility and further bioconversion to fuels and chemicals. Therefore, there is a need to delignify LCB to ease further bioprocessing. The efficiency of delignification, quality and quantity of the desired products, and generation of inhibitors depend upon the type of pretreatment employed. This review summarizes different single and integrated physicochemical pretreatments for delignification. Additionally, conditions required for effective delignification and the advantages and drawbacks of each method were evaluated. Advances in overcoming the recalcitrance of residual lignin to saccharification and the methods to recover lignin after delignification are also discussed. Efficient lignin recovery and valorization strategies provide an avenue for the sustainable lignocellulose biorefinery.
Collapse
Affiliation(s)
- Sumitha Banu Jamaldheen
- Department of Materials Science and Chemical Engineering, Hanyang University, Ansan, Gyeonggi-do 15588, Republic of Korea
| | - Mayur B Kurade
- Department of Earth Resources and Environmental Engineering, Hanyang University, 222-Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Bikram Basak
- Department of Earth Resources and Environmental Engineering, Hanyang University, 222-Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Chang Geun Yoo
- Department of Chemical Engineering, State University of New York, College of Environmental Science and Forestry, Syracuse, NY 13210, USA
| | - Kyeong Keun Oh
- Department of Chemical Engineering, Dankook University, Youngin 16890, Gyeonggi-do, Republic of Korea
| | - Byong-Hun Jeon
- Department of Earth Resources and Environmental Engineering, Hanyang University, 222-Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Tae Hyun Kim
- Department of Materials Science and Chemical Engineering, Hanyang University, Ansan, Gyeonggi-do 15588, Republic of Korea.
| |
Collapse
|
38
|
Ramesh M, Rajeshkumar L, Sasikala G, Balaji D, Saravanakumar A, Bhuvaneswari V, Bhoopathi R. A Critical Review on Wood-Based Polymer Composites: Processing, Properties, and Prospects. Polymers (Basel) 2022; 14:589. [PMID: 35160578 PMCID: PMC8838915 DOI: 10.3390/polym14030589] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/24/2022] [Accepted: 01/24/2022] [Indexed: 02/01/2023] Open
Abstract
Waste recycling is one of the key aspects in current day studies to boost the country's circular economy. Recycling wood from construction and demolished structures and combining it with plastics forms wood-polymer composites (WPC) which have a very wide scope of usage. Such recycled composites have very low environmental impact in terms of abiotic potential, global warming potential, and greenhouse potential. Processing of WPCs can be easily done with predetermined strength values that correspond to its end application. Yet, the usage of conventional polymer composite manufacturing techniques such as injection molding and extrusion has very limited scope. Many rheological characterization techniques are being followed to evaluate the influence of formulation and process parameters over the quality of final WPCs. It will be very much interesting to carry out a review on the material formulation of WPCs and additives used. Manufacturing of wood composites can also be made by using bio-based adhesives such as lignin, tannin, and so on. Nuances in complete replacement of synthetic adhesives as bio-based adhesives are also discussed by various researchers which can be done only by complete understanding of formulating factors of bio-based adhesives. Wood composites play a significant role in many non-structural and structural applications such as construction, floorings, windows, and door panels. The current review focuses on the processing of WPCs along with additives such as wood flour and various properties of WPCs such as mechanical, structural, and morphological properties. Applications of wood-based composites in various sectors such as automotive, marine, defense, and structural applications are also highlighted in this review.
Collapse
Affiliation(s)
- Manickam Ramesh
- Department of Mechanical Engineering, KIT-Kalaignarkarunanidhi Institute of Technology, Coimbatore 641402, Tamil Nadu, India
| | - Lakshminarasimhan Rajeshkumar
- Department of Mechanical Engineering, KPR Institute of Engineering and Technology, Coimbatore 641407, Tamil Nadu, India; (L.R.); (D.B.); (V.B.)
| | - Ganesan Sasikala
- Department of Mathematics, SRM Valliammai Engineering College, Kattankulathur, Kanchipuram 603203, Tamil Nadu, India;
| | - Devarajan Balaji
- Department of Mechanical Engineering, KPR Institute of Engineering and Technology, Coimbatore 641407, Tamil Nadu, India; (L.R.); (D.B.); (V.B.)
| | - Arunachalam Saravanakumar
- Department of Mechanical Engineering, K.S.R.M College of Engineering, Kadapa 516003, Andhra Pradesh, India;
| | - Venkateswaran Bhuvaneswari
- Department of Mechanical Engineering, KPR Institute of Engineering and Technology, Coimbatore 641407, Tamil Nadu, India; (L.R.); (D.B.); (V.B.)
| | - Ramasamy Bhoopathi
- Department of Mechanical Engineering, Sri Sairam Engineering College, Chennai 600044, Tamil Nadu, India;
| |
Collapse
|
39
|
Borovkova VS, Malyar YN, Sudakova IG, Chudina AI, Skripnikov AM, Fetisova OY, Kazachenko AS, Miroshnikova AV, Zimonin DV, Ionin VA, Seliverstova AA, Samoylova ED, Issaoui N. Molecular Characteristics and Antioxidant Activity of Spruce ( Picea abies) Hemicelluloses Isolated by Catalytic Oxidative Delignification. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27010266. [PMID: 35011498 PMCID: PMC8746494 DOI: 10.3390/molecules27010266] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 12/27/2021] [Accepted: 12/30/2021] [Indexed: 01/18/2023]
Abstract
Spruce (Piceaabies) wood hemicelluloses have been obtained by the noncatalytic and catalytic oxidative delignification in the acetic acid-water-hydrogen peroxide medium in a processing time of 3–4 h and temperatures of 90–100 °C. In the catalytic process, the H2SO4, MnSO4, TiO2, and (NH4)6Mo7O24 catalysts have been used. A polysaccharide yield of up to 11.7 wt% has been found. The hemicellulose composition and structure have been studied by a complex of physicochemical methods, including gas and gel permeation chromatography, Fourier-transform infrared spectroscopy, and thermogravimetric analysis. The galactose:mannose:glucose:arabinose:xylose monomeric units in a ratio of 5:3:2:1:1 have been identified in the hemicelluloses by gas chromatography. Using gel permeation chromatography, the weight average molar mass Mw of hemicelluloses has been found to attain 47,654 g/mol in noncatalytic delignification and up to 42,793 g/mol in catalytic delignification. Based on the same technique, a method for determining the α and k parameters of the Mark–Kuhn–Houwink equation for hemicelluloses has been developed; it has been established that these parameters change between 0.33–1.01 and 1.57–472.17, respectively, depending on the catalyst concentration and process temperature and time. Moreover, the FTIR spectra of the hemicellulose samples contain all the bands characteristic of heteropolysaccharides, specifically, 1069 cm−1 (C–O–C and C–O–H), 1738 cm−1 (ester C=O), 1375 cm−1 (–C–CH3), 1243 cm−1 (–C–O–), etc. It has been determined by the thermogravimetric analysis that the hemicelluloses isolated from spruce wood are resistant to heating to temperatures of up to ~100 °C and, upon further heating, start destructing at an increasing rate. The antioxidant activity of the hemicelluloses has been examined using the compounds simulating the 2,2-diphenyl-2-picrylhydrazyl free radicals.
Collapse
Affiliation(s)
- Valentina S. Borovkova
- School of Non-Ferrous Metals and Materials Science, Siberian Federal University, pr. Svobodny 79, 660041 Krasnoyarsk, Russia; (V.S.B.); (A.M.S.); (A.S.K.); (A.V.M.); (D.V.Z.); (V.A.I.); (A.A.S.); (E.D.S.)
- Krasnoyarsk Science Center, Institute of Chemistry and Chemical Technology, Siberian Branch, Russian Academy of Sciences, Akademgorodok 50/24, 660036 Krasnoyarsk, Russia; (I.G.S.); (A.I.C.); (O.Y.F.)
| | - Yuriy N. Malyar
- School of Non-Ferrous Metals and Materials Science, Siberian Federal University, pr. Svobodny 79, 660041 Krasnoyarsk, Russia; (V.S.B.); (A.M.S.); (A.S.K.); (A.V.M.); (D.V.Z.); (V.A.I.); (A.A.S.); (E.D.S.)
- Krasnoyarsk Science Center, Institute of Chemistry and Chemical Technology, Siberian Branch, Russian Academy of Sciences, Akademgorodok 50/24, 660036 Krasnoyarsk, Russia; (I.G.S.); (A.I.C.); (O.Y.F.)
- Correspondence: ; Tel.: +79-(08)-2065517
| | - Irina G. Sudakova
- Krasnoyarsk Science Center, Institute of Chemistry and Chemical Technology, Siberian Branch, Russian Academy of Sciences, Akademgorodok 50/24, 660036 Krasnoyarsk, Russia; (I.G.S.); (A.I.C.); (O.Y.F.)
| | - Anna I. Chudina
- Krasnoyarsk Science Center, Institute of Chemistry and Chemical Technology, Siberian Branch, Russian Academy of Sciences, Akademgorodok 50/24, 660036 Krasnoyarsk, Russia; (I.G.S.); (A.I.C.); (O.Y.F.)
| | - Andrey M. Skripnikov
- School of Non-Ferrous Metals and Materials Science, Siberian Federal University, pr. Svobodny 79, 660041 Krasnoyarsk, Russia; (V.S.B.); (A.M.S.); (A.S.K.); (A.V.M.); (D.V.Z.); (V.A.I.); (A.A.S.); (E.D.S.)
- Krasnoyarsk Science Center, Institute of Chemistry and Chemical Technology, Siberian Branch, Russian Academy of Sciences, Akademgorodok 50/24, 660036 Krasnoyarsk, Russia; (I.G.S.); (A.I.C.); (O.Y.F.)
| | - Olga Yu. Fetisova
- Krasnoyarsk Science Center, Institute of Chemistry and Chemical Technology, Siberian Branch, Russian Academy of Sciences, Akademgorodok 50/24, 660036 Krasnoyarsk, Russia; (I.G.S.); (A.I.C.); (O.Y.F.)
| | - Alexander S. Kazachenko
- School of Non-Ferrous Metals and Materials Science, Siberian Federal University, pr. Svobodny 79, 660041 Krasnoyarsk, Russia; (V.S.B.); (A.M.S.); (A.S.K.); (A.V.M.); (D.V.Z.); (V.A.I.); (A.A.S.); (E.D.S.)
- Krasnoyarsk Science Center, Institute of Chemistry and Chemical Technology, Siberian Branch, Russian Academy of Sciences, Akademgorodok 50/24, 660036 Krasnoyarsk, Russia; (I.G.S.); (A.I.C.); (O.Y.F.)
| | - Angelina V. Miroshnikova
- School of Non-Ferrous Metals and Materials Science, Siberian Federal University, pr. Svobodny 79, 660041 Krasnoyarsk, Russia; (V.S.B.); (A.M.S.); (A.S.K.); (A.V.M.); (D.V.Z.); (V.A.I.); (A.A.S.); (E.D.S.)
- Krasnoyarsk Science Center, Institute of Chemistry and Chemical Technology, Siberian Branch, Russian Academy of Sciences, Akademgorodok 50/24, 660036 Krasnoyarsk, Russia; (I.G.S.); (A.I.C.); (O.Y.F.)
| | - Dmitriy V. Zimonin
- School of Non-Ferrous Metals and Materials Science, Siberian Federal University, pr. Svobodny 79, 660041 Krasnoyarsk, Russia; (V.S.B.); (A.M.S.); (A.S.K.); (A.V.M.); (D.V.Z.); (V.A.I.); (A.A.S.); (E.D.S.)
- Krasnoyarsk Science Center, Institute of Chemistry and Chemical Technology, Siberian Branch, Russian Academy of Sciences, Akademgorodok 50/24, 660036 Krasnoyarsk, Russia; (I.G.S.); (A.I.C.); (O.Y.F.)
| | - Vladislav A. Ionin
- School of Non-Ferrous Metals and Materials Science, Siberian Federal University, pr. Svobodny 79, 660041 Krasnoyarsk, Russia; (V.S.B.); (A.M.S.); (A.S.K.); (A.V.M.); (D.V.Z.); (V.A.I.); (A.A.S.); (E.D.S.)
- Krasnoyarsk Science Center, Institute of Chemistry and Chemical Technology, Siberian Branch, Russian Academy of Sciences, Akademgorodok 50/24, 660036 Krasnoyarsk, Russia; (I.G.S.); (A.I.C.); (O.Y.F.)
| | - Anastasia A. Seliverstova
- School of Non-Ferrous Metals and Materials Science, Siberian Federal University, pr. Svobodny 79, 660041 Krasnoyarsk, Russia; (V.S.B.); (A.M.S.); (A.S.K.); (A.V.M.); (D.V.Z.); (V.A.I.); (A.A.S.); (E.D.S.)
| | - Ekaterina D. Samoylova
- School of Non-Ferrous Metals and Materials Science, Siberian Federal University, pr. Svobodny 79, 660041 Krasnoyarsk, Russia; (V.S.B.); (A.M.S.); (A.S.K.); (A.V.M.); (D.V.Z.); (V.A.I.); (A.A.S.); (E.D.S.)
| | - Noureddine Issaoui
- Laboratory of Quantum and Statistical Physics (LR18ES18), Faculty of Sciences, University of Monastir, Monastir 5079, Tunisia;
| |
Collapse
|
40
|
Harlington AC, Shearwin KE, Bell SG, Whelan F. Efficient O-demethylation of lignin monoaromatics using the peroxygenase activity of cytochrome P450 enzymes. Chem Commun (Camb) 2022; 58:13321-13324. [DOI: 10.1039/d2cc04698a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Selective O-demethylation of the lignin monoaromatics, syringol and guaiacol, using the peroxygenase activity of two distinct cytochrome P450 enzymes.
Collapse
Affiliation(s)
- Alix C. Harlington
- Department of Molecular and Biomedical Science, University of Adelaide, Adelaide, SA 5005, Australia
| | - Keith E. Shearwin
- Department of Molecular and Biomedical Science, University of Adelaide, Adelaide, SA 5005, Australia
| | - Stephen G. Bell
- Department of Chemistry, University of Adelaide, Adelaide, SA 5005, Australia
| | - Fiona Whelan
- Department of Molecular and Biomedical Science, University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
41
|
Kumar A, Biswas B, Kaur R, Krishna BB, Bhaskar T. Hydrothermal oxidative valorisation of lignin into functional chemicals: A review. BIORESOURCE TECHNOLOGY 2021; 342:126016. [PMID: 34582987 DOI: 10.1016/j.biortech.2021.126016] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/19/2021] [Accepted: 09/20/2021] [Indexed: 06/13/2023]
Abstract
Lignin is a waste by-product of bio-refineries and paper-pulp industries. It has an attractive potential to produce numerous valuable chemicals due to its highly aromatic character. At present, large amount of lignin is burnt as a source of energy due to lack of suitable efficient lignin valorisation processes. The challenge exists in handling its complex heterogeneous structure and bond breaking at selective locations. The production of high value chemicals/petrochemical feedstocks will improve the economic viability of a bio-refinery. Oxidative depolymerization is a promising way to produce functional compounds from lignin. The aim of the current review is to present the novel methodologies currently used in the area of lignin oxidative depolymerization including effect of temperature, residence time, solvent, oxidizing agents, homogeneous and heterogeneous catalysis etc. It aims to present an insight into the structure of lignin and its breakdown mechanism.
Collapse
Affiliation(s)
- Avnish Kumar
- Sustainability Impact Assessment Area (SIA), Material Resource Efficiency Division (MRED), CSIR-Indian Institute of Petroleum (IIP), Dehradun 248005, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Bijoy Biswas
- Sustainability Impact Assessment Area (SIA), Material Resource Efficiency Division (MRED), CSIR-Indian Institute of Petroleum (IIP), Dehradun 248005, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ramandeep Kaur
- Sustainability Impact Assessment Area (SIA), Material Resource Efficiency Division (MRED), CSIR-Indian Institute of Petroleum (IIP), Dehradun 248005, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Bhavya B Krishna
- Sustainability Impact Assessment Area (SIA), Material Resource Efficiency Division (MRED), CSIR-Indian Institute of Petroleum (IIP), Dehradun 248005, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Thallada Bhaskar
- Sustainability Impact Assessment Area (SIA), Material Resource Efficiency Division (MRED), CSIR-Indian Institute of Petroleum (IIP), Dehradun 248005, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
42
|
Zuleta EC, Bozell JJ. Alkylation of monomeric, dimeric, and polymeric lignin models through carbon-hydrogen activation using Ru-catalyzed Murai reaction. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
43
|
Kumar A, Biswas B, Kaur R, Krishna BB, Thallada B. Oxidative valorisation of lignin into valuable phenolics: Effect of acidic and basic catalysts and reaction parameters. BIORESOURCE TECHNOLOGY 2021; 338:125513. [PMID: 34273630 DOI: 10.1016/j.biortech.2021.125513] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/30/2021] [Accepted: 07/02/2021] [Indexed: 06/13/2023]
Abstract
The aromatic nature of lignin makes it a good source for the production of numerous platform chemicals. The valorization of lignin into valuable compounds depends upon the type of bonds and functionality present in lignin. Here, we have studied the depolymerization of rice straw alkali lignin in N2 and O2 with acidic (ZSM-5), basic (MgO) catalyst and with their mixtures (1:1, 3:7 and 7:3). The effect of hydrogen peroxide on lignin depolymerization was also examined. Maximum yield of bio-oil (50 wt%) was obtained with pure ZSM-5 and 1 ml hydrogen peroxide in nitrogen atmosphere, while maximum conversion (60%) was observed in oxygen environment during the non-catalytic depolymerization of lignin. Bio-oil characterization through GC-MS showed maximum selectivity towards 2-methoxy-4-vinylphenol with 38.5 area% in the bio-oil of ZSM-5-N2. The bio-oils have also been characterized using 1H NMR, FT-IR and GC-MS.
Collapse
Affiliation(s)
- Avnish Kumar
- Sustainability Impact Assessment Area (SIA), Material Resource Efficiency Division (MRED), CSIR-Indian Institute of Petroleum (IIP), Dehradun 248005, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Bijoy Biswas
- Sustainability Impact Assessment Area (SIA), Material Resource Efficiency Division (MRED), CSIR-Indian Institute of Petroleum (IIP), Dehradun 248005, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ramandeep Kaur
- Sustainability Impact Assessment Area (SIA), Material Resource Efficiency Division (MRED), CSIR-Indian Institute of Petroleum (IIP), Dehradun 248005, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Bhavya B Krishna
- Sustainability Impact Assessment Area (SIA), Material Resource Efficiency Division (MRED), CSIR-Indian Institute of Petroleum (IIP), Dehradun 248005, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Bhaskar Thallada
- Sustainability Impact Assessment Area (SIA), Material Resource Efficiency Division (MRED), CSIR-Indian Institute of Petroleum (IIP), Dehradun 248005, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
44
|
Luo H, Weeda EP, Alherech M, Anson CW, Karlen SD, Cui Y, Foster CE, Stahl SS. Oxidative Catalytic Fractionation of Lignocellulosic Biomass under Non-alkaline Conditions. J Am Chem Soc 2021; 143:15462-15470. [PMID: 34498845 PMCID: PMC8487257 DOI: 10.1021/jacs.1c08635] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Biomass pretreatment methods are commonly used to isolate carbohydrates from biomass, but they often lead to modification, degradation, and/or low yields of lignin. Catalytic fractionation approaches provide a possible solution to these challenges by separating the polymeric sugar and lignin fractions in the presence of a catalyst that promotes cleavage of the lignin into aromatic monomers. Here, we demonstrate an oxidative fractionation method conducted in the presence of a heterogeneous non-precious-metal Co-N-C catalyst and O2 in acetone as the solvent. The process affords a 15 wt% yield of phenolic products bearing aldehydes (vanillin, syringaldehyde) and carboxylic acids (p-hydroxybenzoic acid, vanillic acid, syringic acid), complementing the alkylated phenols obtained from existing reductive catalytic fractionation methods. The oxygenated aromatics derived from this process have appealing features for use in polymer synthesis and/or biological funneling to value-added products, and the non-alkaline conditions associated with this process support preservation of the cellulose, which remains insoluble at reaction conditions and is recovered as a solid.
Collapse
Affiliation(s)
- Hao Luo
- Department of Chemistry, University of Wisconsin–Madison, 1101 University Avenue Madison, WI, 53706, United States
| | - Eric P. Weeda
- Department of Chemistry, University of Wisconsin–Madison, 1101 University Avenue Madison, WI, 53706, United States
- D.O.E. Great Lakes Bioenergy Research Center, The Wisconsin Energy Institute, University of Wisconsin–Madison, Madison, Wisconsin 53726, United States
| | - Manar Alherech
- Department of Chemistry, University of Wisconsin–Madison, 1101 University Avenue Madison, WI, 53706, United States
- D.O.E. Great Lakes Bioenergy Research Center, The Wisconsin Energy Institute, University of Wisconsin–Madison, Madison, Wisconsin 53726, United States
| | - Colin W. Anson
- Department of Chemistry, University of Wisconsin–Madison, 1101 University Avenue Madison, WI, 53706, United States
| | - Steven D. Karlen
- D.O.E. Great Lakes Bioenergy Research Center, The Wisconsin Energy Institute, University of Wisconsin–Madison, Madison, Wisconsin 53726, United States
- Department of Biochemistry, University of Wisconsin–Madison, Madison, Wisconsin 53706, United States
| | - Yanbin Cui
- Department of Chemistry, University of Wisconsin–Madison, 1101 University Avenue Madison, WI, 53706, United States
- D.O.E. Great Lakes Bioenergy Research Center, The Wisconsin Energy Institute, University of Wisconsin–Madison, Madison, Wisconsin 53726, United States
| | - Cliff E. Foster
- D.O.E. Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, 48824, United States
| | - Shannon S. Stahl
- Department of Chemistry, University of Wisconsin–Madison, 1101 University Avenue Madison, WI, 53706, United States
- D.O.E. Great Lakes Bioenergy Research Center, The Wisconsin Energy Institute, University of Wisconsin–Madison, Madison, Wisconsin 53726, United States
| |
Collapse
|
45
|
Kuznetsov B, Sudakova I, Garyntseva N, Tarabanko V, Yatsenkova O, Djakovitch L, Rataboul F. Processes of catalytic oxidation for the production of chemicals from softwood biomass. Catal Today 2021. [DOI: 10.1016/j.cattod.2020.05.044] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
46
|
Bourbiaux D, Pu J, Rataboul F, Djakovitch L, Geantet C, Laurenti D. Reductive or oxidative catalytic lignin depolymerization: An overview of recent advances. Catal Today 2021. [DOI: 10.1016/j.cattod.2021.03.027] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
47
|
Costa CAE, Vega-Aguilar CA, Rodrigues AE. Added-Value Chemicals from Lignin Oxidation. Molecules 2021; 26:4602. [PMID: 34361756 PMCID: PMC8346967 DOI: 10.3390/molecules26154602] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 11/18/2022] Open
Abstract
Lignin is the second most abundant component, next to cellulose, in lignocellulosic biomass. Large amounts of this polymer are produced annually in the pulp and paper industries as a coproduct from the cooking process-most of it burned as fuel for energy. Strategies regarding lignin valorization have attracted significant attention over the recent decades due to lignin's aromatic structure. Oxidative depolymerization allows converting lignin into added-value compounds, as phenolic monomers and/or dicarboxylic acids, which could be an excellent alternative to aromatic petrochemicals. However, the major challenge is to enhance the reactivity and selectivity of the lignin structure towards depolymerization and prevent condensation reactions. This review includes a comprehensive overview of the main contributions of lignin valorization through oxidative depolymerization to produce added-value compounds (vanillin and syringaldehyde) that have been developed over the recent decades in the LSRE group. An evaluation of the valuable products obtained from oxidation in an alkaline medium with oxygen of lignins and liquors from different sources and delignification processes is also provided. A review of C4 dicarboxylic acids obtained from lignin oxidation is also included, emphasizing catalytic conversion by O2 or H2O2 oxidation.
Collapse
Affiliation(s)
- Carina A. Esteves Costa
- Laboratory of Separation and Reaction Engineering—Laboratory of Catalysis and Materials (LSRE-LCM), Department of Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal; (C.A.E.C.); (C.A.V.-A.)
| | - Carlos A. Vega-Aguilar
- Laboratory of Separation and Reaction Engineering—Laboratory of Catalysis and Materials (LSRE-LCM), Department of Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal; (C.A.E.C.); (C.A.V.-A.)
- Centro de Investigação de Montanha−CIMO, Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Alírio E. Rodrigues
- Laboratory of Separation and Reaction Engineering—Laboratory of Catalysis and Materials (LSRE-LCM), Department of Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal; (C.A.E.C.); (C.A.V.-A.)
| |
Collapse
|
48
|
Keplinger T, Wittel FK, Rüggeberg M, Burgert I. Wood Derived Cellulose Scaffolds-Processing and Mechanics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2001375. [PMID: 32797688 DOI: 10.1002/adma.202001375] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/19/2020] [Indexed: 05/16/2023]
Abstract
Wood-derived cellulose materials obtained by structure-retaining delignification are attracting increasing attention due to their excellent mechanical properties and great potential to serve as renewable and CO2 storing cellulose scaffolds for advanced hybrid materials with embedded functionality. Various delignification protocols and a multitude of further processing steps including polymer impregnation and densification are applied resulting in a large range of properties. However, treatment optimization requires a more comprehensive characterization of the developed materials in terms of structure, chemical composition, and mechanical properties for faster progress in the field. Herein, the current protocols for structure-retaining delignification are reviewed and the emphasis is placed on the mechanical characterization at different hierarchical levels of the cellulose scaffolds by experiments and modeling to reveal the underlying structure-property relationships.
Collapse
Affiliation(s)
- Tobias Keplinger
- ETH Zürich, Institute for Building Materials, Stefano-Franscini-Platz 3, Zurich, 8093, Switzerland
- Empa-Swiss Federal Laboratories for Material Testing and Research, Cellulose & Wood Materials Laboratory, Dübendorf, 8600, Switzerland
| | - Falk K Wittel
- ETH Zürich, Institute for Building Materials, Stefano-Franscini-Platz 3, Zurich, 8093, Switzerland
| | - Markus Rüggeberg
- ETH Zürich, Institute for Building Materials, Stefano-Franscini-Platz 3, Zurich, 8093, Switzerland
- Empa-Swiss Federal Laboratories for Material Testing and Research, Cellulose & Wood Materials Laboratory, Dübendorf, 8600, Switzerland
| | - Ingo Burgert
- ETH Zürich, Institute for Building Materials, Stefano-Franscini-Platz 3, Zurich, 8093, Switzerland
- Empa-Swiss Federal Laboratories for Material Testing and Research, Cellulose & Wood Materials Laboratory, Dübendorf, 8600, Switzerland
| |
Collapse
|
49
|
Depolymerization and Hydrogenation of Organosolv Eucalyptus Lignin by Using Nickel Raney Catalyst. Processes (Basel) 2021. [DOI: 10.3390/pr9071093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The use of lignocellulosic biomass to obtain biofuels and chemicals produces a large amount of lignin as a byproduct. Lignin valorization into chemicals needs efficient conversion processes to be developed. In this work, hydrocracking of organosolv lignin was performed by using nickel Raney catalyst. Organosolv lignin was obtained from the pretreatment of eucalyptus wood at 170 °C for 1 h by using 1/100/100 (w/v/v) ratio of biomass/oxalic acid solution (0.4% w/w)/1-butanol. The resulting organic phase of lignin in 1-butanol was used in hydrogenation tests. The conversion of lignin was carried out with a batch reactor equipped with a 0.3 L vessel with adjustable internal stirrer and heat control. The reactor was pressurized at 5 bar with hydrogen at room temperature, and then the temperature was raised to 250 °C and kept for 30 min. Operative conditions were optimized to achieve high conversion in monomers and to minimize the loss of solvent. At the best performance conditions, about 10 wt % of the lignin was solubilized into monomeric phenols. The need to find a trade-off between lignin conversion and solvent side reaction was highlighted.
Collapse
|
50
|
Singh AK, Bilal M, Iqbal HMN, Raj A. Lignin peroxidase in focus for catalytic elimination of contaminants - A critical review on recent progress and perspectives. Int J Biol Macromol 2021; 177:58-82. [PMID: 33577817 DOI: 10.1016/j.ijbiomac.2021.02.032] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 02/02/2021] [Accepted: 02/04/2021] [Indexed: 02/05/2023]
Abstract
Lignin peroxidase (LiP) seems to be a catalyst for cleaving high-redox potential non-phenolic compounds with an oxidative cleavage of CC and COC bonds. LiP has been picked to seek a practical and cost-effective alternative to the sustainable mitigation of diverse environmental contaminants. LiP has been an outstanding tool for catalytic cleaning and efficient mitigation of environmental pollutants, including lignin, lignin derivatives, dyes, endocrine-disrupting compounds (EDCs), and persistent organic pollutants (POPs) for the past couple of decades. The extended deployment of LiP has proved to be a promising method for catalyzing these environmentally related hazardous pollutants of supreme interest. The advantageous potential and capabilities to act at different pH and thermostability offer its working tendencies in extended environmental engineering applications. Such advantages led to the emerging demand for LiP and increasing requirements in industrial and biotechnological sectors. The multitude of the ability attributed to LiP is triggered by its stability in xenobiotic and non-phenolic compound degradation. However, over the decades, the catalytic activity of LiP has been continuing in focus enormously towards catalytic functionalities over the available physiochemical, conventional, catalyst mediated technology for catalyzing such molecules. To cover this literature gap, this became much more evident to consider the catalytic attributes of LiP. In this review, the existing capabilities of LiP and other competencies have been described with recent updates. Furthermore, numerous recently emerged applications, such as textile effluent treatment, dye decolorization, catalytic elimination of pharmaceutical and EDCs compounds, have been discussed with suitable examples.
Collapse
Affiliation(s)
- Anil Kumar Singh
- Environmental Microbiology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico.
| | - Abhay Raj
- Environmental Microbiology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|