1
|
Zhang J, Zhang X, Zhu Y, Chen H, Chen Z, Hu Z. Recent advances in moisture-induced electricity generation based on wood lignocellulose: Preparation, properties, and applications. Int J Biol Macromol 2024; 279:135258. [PMID: 39233166 DOI: 10.1016/j.ijbiomac.2024.135258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/15/2024] [Accepted: 08/31/2024] [Indexed: 09/06/2024]
Abstract
Moisture-induced electricity generation (MEG), which can directly harvest electricity from moisture, is considered as an effective strategy for alleviating the growing energy crisis. Recently, tremendous efforts have been devoted to developing MEG active materials from wood lignocellulose (WLC) due to its excellent properties including environmental friendliness, sustainability, and biodegradability. This review comprehensively summarizes the recent advances in MEG based on WLC (wood, cellulose, lignin, and woody biochar), covering its principles, preparation, performances, and applications. In detail, the basic working mechanisms of MEG are discussed, and the natural features of WLC and their significant advantages in the fabrication of MEG active materials are emphasized. Furthermore, the recent advances in WLC-based MEG for harvesting electrical energy from moisture are specifically discussed, together with their potential applications (sensors and power sources). Finally, the main challenges of current WLC-based MEG are presented, as well as the potential solutions or directions to develop highly efficient MEG from WLC.
Collapse
Affiliation(s)
- Jinchao Zhang
- School of Environmental and Nature Resources, Zhejiang University of Science and Technology, Hangzhou, Zhejiang 310023, China.
| | - Xuejin Zhang
- School of Environmental and Nature Resources, Zhejiang University of Science and Technology, Hangzhou, Zhejiang 310023, China
| | - Yachong Zhu
- Key Laboratory of Bio-based Material Science and Technology (Ministry of Education), College of Material Science and Engineering, Northeast Forestry University, Harbin 150040, China
| | - Hua Chen
- School of Environmental and Nature Resources, Zhejiang University of Science and Technology, Hangzhou, Zhejiang 310023, China
| | - Zhuo Chen
- School of Environmental and Nature Resources, Zhejiang University of Science and Technology, Hangzhou, Zhejiang 310023, China
| | - Zhijun Hu
- School of Environmental and Nature Resources, Zhejiang University of Science and Technology, Hangzhou, Zhejiang 310023, China.
| |
Collapse
|
2
|
Yang D, Fan B, He YC. UV-blocking, antibacterial, corrosion resistance, antioxidant, and fruit packaging ability of lignin-rich alkaline black liquor composite film. Int J Biol Macromol 2024; 275:133344. [PMID: 38914391 DOI: 10.1016/j.ijbiomac.2024.133344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 05/18/2024] [Accepted: 06/19/2024] [Indexed: 06/26/2024]
Abstract
The novel multifunctional active packaging composite film with antimicrobial, antioxidant, water-vapor and UV-barrier, and corrosion resistance properties was successfully prepared from waste biomass. In this study, waste poplar sawdust was pretreated using green liquor to extract black liquor (BL). BL was then mixed with polyvinyl alcohol (PVA) solution for synthesizing silver nanoparticles (AgNPs). PVA-BL-AgNPs film was fabricated by solution casting method, and the microstructure characterization and macroscopic performance testing of the composite film were conducted. The results revealed that PVA-BL-AgNPs film exhibited inhibitory effects against Staphylococcus aureus (inhibition zone: 33.6 mm), Pseudomonas aeruginosa (inhibition zone: 31.6 mm), and Escherichia coli (inhibition zone: 32.0 mm). It could eliminate over 99 % of 2,2-diazodi (3-ethyl-benzothiazol-6-sulfonic acid) (ABTS) free radicals and provided 100 % UV-blocking, reducing light-induced food damage. It exhibited the improvement of water-vapor barrier properties and corrosion resistance. In vitro cytotoxicity assays demonstrated that no significant impact occurred on cell proliferation, confirming the safety of the film. Packaging experiments showed that PVA-BL-AgNPs film effectively inhibited milk spoilage and prolonged the shelf-life of bread and bananas. Therefore, PVA-BL-AgNPs film might extend the shelf-life of food and offer significant opportunities in addressing the issues of low safety and environmental pollution associated with traditional packaging films.
Collapse
Affiliation(s)
- Dan Yang
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou 213164, China
| | - Bo Fan
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou 213164, China
| | - Yu-Cai He
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou 213164, China; State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China.
| |
Collapse
|
3
|
Zhou T, Wu X, Liu S, Wang A, Liu Y, Zhou W, Sun K, Li S, Zhou J, Li B, Jiang J. Biomass-Derived Catalytically Active Carbon Materials for the Air Electrode of Zn-Air Batteries. CHEMSUSCHEM 2024; 17:e202301779. [PMID: 38416074 DOI: 10.1002/cssc.202301779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/17/2024] [Accepted: 02/28/2024] [Indexed: 02/29/2024]
Abstract
Given the growing environmental and energy problems, developing clean, renewable electrochemical energy storage devices is of great interest. Zn-air batteries (ZABs) have broad prospects in energy storage because of their high specific capacity and environmental friendliness. The unavailability of cheap air electrode materials and effective and stable oxygen electrocatalysts to catalyze air electrodes are main barriers to large-scale implementation of ZABs. Due to the abundant biomass resources, self-doped heteroatoms, and unique pore structure, biomass-derived catalytically active carbon materials (CACs) have great potential to prepare carbon-based catalysts and porous electrodes with excellent performance for ZABs. This paper reviews the research progress of biomass-derived CACs applied to ZABs air electrodes. Specifically, the principle of ZABs and the source and preparation method of biomass-derived CACs are introduced. To prepare efficient biomass-based oxygen electrocatalysts, heteroatom doping and metal modification were introduced to improve the efficiency and stability of carbon materials. Finally, the effects of electron transfer number and H2O2 yield in ORR on the performance of ZABs were evaluated. This review aims to deepen the understanding of the advantages and challenges of biomass-derived CACs in the air electrodes of ZABs, promote more comprehensive research on biomass resources, and accelerate the commercial application of ZABs.
Collapse
Affiliation(s)
- Ting Zhou
- College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
| | - Xianli Wu
- College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
| | - Shuling Liu
- College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
| | - Ao Wang
- Institute of Chemical Industry of Forest Products, CAF, National Engineering Lab for Biomass Chemical Utilization, Key and Open Lab on Forest Chemical Engineering, SFA, 16 Suojinwucun, Nanjing, 210042, P. R. China
| | - Yanyan Liu
- College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
- College of Science, Henan Agricultural University, 95 Wenhua Road, Zhengzhou, 450002, P. R. China
| | - Wenshu Zhou
- Institute of Chemical Industry of Forest Products, CAF, National Engineering Lab for Biomass Chemical Utilization, Key and Open Lab on Forest Chemical Engineering, SFA, 16 Suojinwucun, Nanjing, 210042, P. R. China
| | - Kang Sun
- Institute of Chemical Industry of Forest Products, CAF, National Engineering Lab for Biomass Chemical Utilization, Key and Open Lab on Forest Chemical Engineering, SFA, 16 Suojinwucun, Nanjing, 210042, P. R. China
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Shuqi Li
- College of Science, Henan Agricultural University, 95 Wenhua Road, Zhengzhou, 450002, P. R. China
| | - Jingjing Zhou
- College of Science, Henan Agricultural University, 95 Wenhua Road, Zhengzhou, 450002, P. R. China
| | - Baojun Li
- College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
| | - Jianchun Jiang
- Institute of Chemical Industry of Forest Products, CAF, National Engineering Lab for Biomass Chemical Utilization, Key and Open Lab on Forest Chemical Engineering, SFA, 16 Suojinwucun, Nanjing, 210042, P. R. China
| |
Collapse
|
4
|
Zhang C, Chen N, Zhao M, Zhong W, Wu WJ, Jin YC. High-performance electrode materials of heteroatom-doped lignin-based carbon materials for supercapacitor applications. Int J Biol Macromol 2024; 273:133017. [PMID: 38876242 DOI: 10.1016/j.ijbiomac.2024.133017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 06/16/2024]
Abstract
Supercapacitors are the preferred option for supporting renewable energy sources owing to many benefits, including fast charging, long life, high energy and power density, and saving energy. While electrode materials with environmentally friendly preparation, high performance, and low cost are important research directions of supercapacitors. At present, the growing global population and the increasingly pressing issue of environmental pollution have drawn the focus of numerous researchers worldwide to the development and utilization of renewable biomass resources. Lignin, a renewable aromatic polymer, has reserves second only to cellulose in nature. Ten million tonnes of industrial lignin are produced in pulp and paper mills annually, most of which are disposed of as waste or burned for fuel, seriously depleting natural resources and polluting the environment. One practical strategy to accomplish sustainable development is to employ lignin resources to create high-value materials. Based on the high carbon content and rich functional groups of lignin, the lignin-based carbon materials generated after carbonization treatment display specific electrochemical properties as electrode materials. Nevertheless, low electrochemical activity of untreated lignin precludes it from achieving its full potential for application in energy storage. Heteroatom doping is a common modification method that aims to improve the electrochemical performance of the electrode materials by optimizing the structure of the lignin, improving its pore structure and increasing the number of active sites on its surface. This paper aims to establish theoretical foundations for design, preparation, and optimizing the performance of heteroatom-doped lignin-based carbon materials, as well as for developing high-value-added lignin materials. The most reported the mechanism of supercapacitors, the doping process involving various types of heteroatoms, and the analysis of how heteroatoms affect the performance of lignin-based carbon materials are also detailed in this review.
Collapse
Affiliation(s)
- Cheng Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, China
| | - Nuo Chen
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, China
| | - Miao Zhao
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, China
| | - Wei Zhong
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, China
| | - Wen-Juan Wu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, China; College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, 210037, China.
| | - Yong-Can Jin
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, China; College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, 210037, China
| |
Collapse
|
5
|
Ortega-Sanhueza I, Girard V, Ziegler-Devin I, Chapuis H, Brosse N, Valenzuela F, Banerjee A, Fuentealba C, Cabrera-Barjas G, Torres C, Méndez A, Segovia C, Pereira M. Preparation and Characterization of Lignin Nanoparticles from Different Plant Sources. Polymers (Basel) 2024; 16:1610. [PMID: 38891555 PMCID: PMC11174508 DOI: 10.3390/polym16111610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 05/27/2024] [Accepted: 06/03/2024] [Indexed: 06/21/2024] Open
Abstract
This article presents new research on producing lignin nanoparticles (LNPs) using the antisolvent nanoprecipitation method. Acetone (90%) served as the lignin solvent and water (100%) as the antisolvent, using five types of lignins from various sources. Comprehensive characterization techniques, including NMR, GPC, FTIR, TEM, and DLS, were employed to assess both lignin and LNP properties. The antioxidant activity of the LNPs was evaluated as well. The results demonstrated the successful formation of spherical nanoparticles below 100 nm with initial lignin concentrations of 1 and 2%w/v. The study highlighted the crucial role of lignin purity in LNP formation and colloidal stability, noting that residual carbohydrates adversely affect efficiency. This method offers a straightforward, environmentally friendly approach using cost-effective solvents, applicable to diverse lignin sources. The innovation of this study lies in its demonstration of a cost-effective and eco-friendly method to produce stable, nanometric-sized spherical LNPs. These LNPs have significant potential as reinforcement materials due to their reinforcing capability, hydrophilicity, and UV absorption. This work underscores the importance of starting material purity for optimizing the process and achieving the desired nanometric dimensions, marking a pioneering advancement in lignin-based nanomaterials.
Collapse
Affiliation(s)
- Isidora Ortega-Sanhueza
- Facultad de Ciencias Forestales, Universidad de Concepción, Concepción 4070374, Chile; (C.T.); (A.M.)
| | - Victor Girard
- Laboratoire d’Etude et de Recherche sur le MAtériau Bois (LERMAB), Faculté des Sciences et Techniques, Université de Lorraine, 54500 Vandœuvre-lès-Nancy, France; (V.G.); (I.Z.-D.); (H.C.); (N.B.)
| | - Isabelle Ziegler-Devin
- Laboratoire d’Etude et de Recherche sur le MAtériau Bois (LERMAB), Faculté des Sciences et Techniques, Université de Lorraine, 54500 Vandœuvre-lès-Nancy, France; (V.G.); (I.Z.-D.); (H.C.); (N.B.)
| | - Hubert Chapuis
- Laboratoire d’Etude et de Recherche sur le MAtériau Bois (LERMAB), Faculté des Sciences et Techniques, Université de Lorraine, 54500 Vandœuvre-lès-Nancy, France; (V.G.); (I.Z.-D.); (H.C.); (N.B.)
| | - Nicolas Brosse
- Laboratoire d’Etude et de Recherche sur le MAtériau Bois (LERMAB), Faculté des Sciences et Techniques, Université de Lorraine, 54500 Vandœuvre-lès-Nancy, France; (V.G.); (I.Z.-D.); (H.C.); (N.B.)
| | - Francisca Valenzuela
- Instituto de Ciencias Aplicadas, Facultad de Ingeniería, Universidad Autónoma de Chile, Talca 3467987, Chile; (F.V.); (A.B.)
| | - Aparna Banerjee
- Instituto de Ciencias Aplicadas, Facultad de Ingeniería, Universidad Autónoma de Chile, Talca 3467987, Chile; (F.V.); (A.B.)
| | - Cecilia Fuentealba
- Unidad de Desarrollo Tecnológico (UDT), Universidad de Concepción, Av. Cordillera 2634, Parque Industrial Coronel, P.O. Box 4051 Mail 3, Concepción, Chile;
- Centro Nacional de Excelencia para la Industria de la Madera (CENAMAD), Pontificia Universidad Católica de Chile, Av. Vicuña Mackena, 4860, Santiago 7820436, Chile
| | - Gustavo Cabrera-Barjas
- Facultad de Ciencias para el Cuidado de la Salud, Universidad San Sebastián Campus Las Tres Pascualas, Lientur 1457, Concepción 4080871, Chile;
| | - Camilo Torres
- Facultad de Ciencias Forestales, Universidad de Concepción, Concepción 4070374, Chile; (C.T.); (A.M.)
| | - Alejando Méndez
- Facultad de Ciencias Forestales, Universidad de Concepción, Concepción 4070374, Chile; (C.T.); (A.M.)
| | - César Segovia
- Centre d’Essais Textile Lorrain, CETELOR—Université de Lorraine, 27 rue Philippe Seguin, 88051 Epinal, France;
| | - Miguel Pereira
- Facultad de Ingeniería, Departamento de Ingeniería Química, Universidad de Concepción, Concepción 4070374, Chile
| |
Collapse
|
6
|
Zhong W, Su W, Li P, Li K, Wu W, Jiang B. Preparation and research progress of lignin-based supercapacitor electrode materials. Int J Biol Macromol 2024; 259:128942. [PMID: 38143066 DOI: 10.1016/j.ijbiomac.2023.128942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/20/2023] [Accepted: 12/19/2023] [Indexed: 12/26/2023]
Abstract
The reserve of lignin in the biological world is the second largest biomass resource after cellulose. Lignin has the characteristics of wide sources, low cost, and rich active components. Due to environmental pollution and energy scarcity, lignin is often used as a substitute good for petrochemical products. Lignin-based functional materials can be prepared by chemical modification or compounding, which are widely used in the fields of energy storage, chemical industry, and medicine. Among them, lignin-based carbon materials have the features of stable chemical properties, large pH application range, ideal electrical conductivity, developed pore size, and high specific surface area, which have great application prospects as supercapacitor materials. This paper mainly introduces the structural properties of lignin, the methods, and mechanisms of carbonization, pore-making, and pore-expansion, as well as the research progress of lignin-based carbon materials for supercapacitors, while looking forward to the future research direction of lignin carbon materials.
Collapse
Affiliation(s)
- Wei Zhong
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Wanting Su
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Penghui Li
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Kongyan Li
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Wenjuan Wu
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China.
| | - Bo Jiang
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
7
|
Huang C, Su Y, Gong H, Jiang Y, Chen B, Xie Z, Zhou J, Li Y. Biomass-derived multifunctional nanoscale carbon fibers toward fire warning sensors, supercapacitors and moist-electric generators. Int J Biol Macromol 2024; 256:127878. [PMID: 37949269 DOI: 10.1016/j.ijbiomac.2023.127878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/13/2023] [Accepted: 11/02/2023] [Indexed: 11/12/2023]
Abstract
Nowadays, great effort has been devoted to designing biomass-derived nanoscale carbon fibers with controllable fibrous morphology, high conductivity, big specific surface area and multifunctional characteristics. Herein, a green and renewable strategy is performed to prepare the biomass-based nanoscale carbon fibers for fire warning sensor, supercapacitor and moist-electric generator. This preparation strategy thoroughly gets over the dependence of petroleum-based polymeride, and effectually improves the energy storage capacity, sensing sensitivity, humidity power generation efficiency of the obtaining biomass-based carbon nanofibers. Without the introduction of any active components or pseudocapacitive materials, the specific capacitance and energy density for biomass-based nanoscale carbon fibers achieve 143.58 F/g and 19.9 Wh/kg, severally. The biomass-based fire sensor displays excellent fire resistance, stability, and flame sensitivity with a response time of 2 s. Furthermore, the biomass-based moist-electric generator shows high power generation efficiency. The output voltage and current of five series connected and parallel-connected biomass-based moist-electric generators reaches 4.30 V and 43 μA, respectively. Notably, as the number of biomass-based moist-electric generators in series or parallel increases, the overall output voltage and current of the device system have a linear relationship. This work proposes a self-powered fire prediction system based on nanoscale carbon fibers that integrates sensing, power generation, and energy storage functions.
Collapse
Affiliation(s)
- Chen Huang
- Liaoning Province Key Laboratory of Pulp and Papermaking Engineering, Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, Dalian Polytechnic University, Dalian, Liaoning Province 116034, PR China
| | - Yingying Su
- Liaoning Province Key Laboratory of Pulp and Papermaking Engineering, Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, Dalian Polytechnic University, Dalian, Liaoning Province 116034, PR China
| | - Hui Gong
- Liaoning Province Key Laboratory of Pulp and Papermaking Engineering, Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, Dalian Polytechnic University, Dalian, Liaoning Province 116034, PR China
| | - Yuewei Jiang
- Liaoning Province Key Laboratory of Pulp and Papermaking Engineering, Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, Dalian Polytechnic University, Dalian, Liaoning Province 116034, PR China
| | - Bo Chen
- Liaoning Province Key Laboratory of Pulp and Papermaking Engineering, Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, Dalian Polytechnic University, Dalian, Liaoning Province 116034, PR China
| | - Zhanghong Xie
- Liaoning Province Key Laboratory of Pulp and Papermaking Engineering, Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, Dalian Polytechnic University, Dalian, Liaoning Province 116034, PR China
| | - Jinghui Zhou
- Liaoning Province Key Laboratory of Pulp and Papermaking Engineering, Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, Dalian Polytechnic University, Dalian, Liaoning Province 116034, PR China
| | - Yao Li
- Liaoning Province Key Laboratory of Pulp and Papermaking Engineering, Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, Dalian Polytechnic University, Dalian, Liaoning Province 116034, PR China.
| |
Collapse
|
8
|
Tanis MH, Wallberg O, Galbe M, Al-Rudainy B. Lignin Extraction by Using Two-Step Fractionation: A Review. Molecules 2023; 29:98. [PMID: 38202680 PMCID: PMC10779531 DOI: 10.3390/molecules29010098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/12/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
Lignocellulosic biomass represents the most abundant renewable carbon source on earth and is already used for energy and biofuel production. The pivotal step in the conversion process involving lignocellulosic biomass is pretreatment, which aims to disrupt the lignocellulose matrix. For effective pretreatment, a comprehensive understanding of the intricate structure of lignocellulose and its compositional properties during component disintegration and subsequent conversion is essential. The presence of lignin-carbohydrate complexes and covalent interactions between them within the lignocellulosic matrix confers a distinctively labile nature to hemicellulose. Meanwhile, the recalcitrant characteristics of lignin pose challenges in the fractionation process, particularly during delignification. Delignification is a critical step that directly impacts the purity of lignin and facilitates the breakdown of bonds involving lignin and lignin-carbohydrate complexes surrounding cellulose. This article discusses a two-step fractionation approach for efficient lignin extraction, providing viable paths for lignin-based valorization described in the literature. This approach allows for the creation of individual process streams for each component, tailored to extract their corresponding compounds.
Collapse
Affiliation(s)
| | | | | | - Basel Al-Rudainy
- Department of Chemical Engineering, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden; (M.H.T.); (O.W.); (M.G.)
| |
Collapse
|
9
|
Jia G, Yu Y, Wang X, Jia C, Hu Z, Yu S, Xiang H, Zhu M. Highly conductive and porous lignin-derived carbon fibers. MATERIALS HORIZONS 2023; 10:5847-5858. [PMID: 37849349 DOI: 10.1039/d3mh01027a] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2023]
Abstract
Bio-based carbon fibers derived from lignin have gained significant attention due to their diverse and renewable sources, ease of extraction, and low cost. However, the current limitations of low specific surface area and insufficient electrical conductivity hinder the widespread application of lignin-derived carbon fibers (LCFs). In this work, highly conductive and porous LCFs are developed through melt-blowing, pretreatment, and carbonization processes. The effects of the carbonization temperature and heating rate on the structures and properties of the LCFs are systematically investigated. The resultant LCFs exhibit high electrical conductivity (71 400 S m-1) and a large specific surface area (923 m2 g-1). The assembled lithium-ion battery based on the LCF anodes demonstrates a long cycle life of >800 cycles and a high specific capacity of 466 mA h g-1. The findings of this study hold practical significance for promoting the utilization of lignin in the fields of energy storage, adsorption, and beyond.
Collapse
Affiliation(s)
- Guosheng Jia
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Yan Yu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Xuefen Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Chao Jia
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Zexu Hu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Senlong Yu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Hengxue Xiang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| |
Collapse
|
10
|
Wu W, Li P, Su W, Yan Z, Wang X, Xu S, Wei Y, Wu C. Polyaniline as a Nitrogen Source and Lignosulfonate as a Sulphur Source for the Preparation of the Porous Carbon Adsorption of Dyes and Heavy Metal Ions. Polymers (Basel) 2023; 15:4515. [PMID: 38231908 PMCID: PMC10708433 DOI: 10.3390/polym15234515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/16/2023] [Accepted: 11/22/2023] [Indexed: 01/19/2024] Open
Abstract
Using agricultural and forestry wastes as raw materials, adsorbent materials were prepared for dye adsorption in wastewater, which can minimize the environmental load and fully realize sustainability by treating waste with waste. Taking lignosulfonate as a raw material, due to its molecular structure having more reactive groups, it is easy to form composite materials via a chemical oxidation reaction with an aniline monomer. After that, using a sodium lignosulfonate/polyaniline composite as the precursor, the activated high-temperature pyrolysis process is used to prepare porous carbon materials with controllable morphology, structure, oxygen, sulfur, and nitrogen content, which opens up a new way for the preparation of functional carbon materials. When the prepared O-N-S co-doped activated carbon materials (SNC) were used as adsorbents, the adsorption study of cationic dye methylene blue was carried out, and the removal rate of SNC could reach up to 99.53% in a methylene blue solution with an initial concentration of 100 mg/L, which was much higher than that of undoped lignocellulosic carbon materials, and the kinetic model conformed to the pseudo-second-order kinetic model. The adsorption equilibrium amount of NC (lignosulfonate-free) and SNC reached 478.30 mg/g and 509.00 mg/g, respectively, at an initial concentration of 500 mg/L, which was consistent with the Langmuir adsorption isothermal model, and the adsorption of methylene blue on the surface of the carbon material was a monomolecular layer. The adsorption of methylene blue dye on the carbon-based adsorbent was confirmed to be a spontaneous and feasible adsorption process by thermodynamic parameters. Finally, the adsorption of SNC on methylene blue, rhodamine B, Congo red, and methyl orange dyes were compared, and it was found that the material adsorbed cationic dyes better. Furthermore, we also studied the adsorption of SNC on different kinds of heavy metal ions and found that its adsorption selectivity is better for Cr3+ and Pb2+ ions.
Collapse
Affiliation(s)
- Wenjuan Wu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; (P.L.); (S.X.); (C.W.)
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China (Z.Y.); (X.W.); (Y.W.)
| | - Penghui Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; (P.L.); (S.X.); (C.W.)
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China (Z.Y.); (X.W.); (Y.W.)
| | - Wanting Su
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China (Z.Y.); (X.W.); (Y.W.)
| | - Zifei Yan
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China (Z.Y.); (X.W.); (Y.W.)
| | - Xinyan Wang
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China (Z.Y.); (X.W.); (Y.W.)
| | - Siyu Xu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; (P.L.); (S.X.); (C.W.)
| | - Yumeng Wei
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China (Z.Y.); (X.W.); (Y.W.)
| | - Caiwen Wu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; (P.L.); (S.X.); (C.W.)
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China (Z.Y.); (X.W.); (Y.W.)
| |
Collapse
|
11
|
Wang Z, Li J. The Physicochemical Characteristics and Heavy Metal Retention Capability of Black Liquor Lignin-Based Biochars. Molecules 2023; 28:7694. [PMID: 38067425 PMCID: PMC10708106 DOI: 10.3390/molecules28237694] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/19/2023] [Accepted: 11/20/2023] [Indexed: 07/30/2024] Open
Abstract
Due to its high carbon content, lignin, particularly for lignin-containing solid waste, is considered an excellent raw material for the preparation of carbon materials like biochar. To produce high-quality lignin-based biochar (LGBCs), lignin extracted from black liquor was employed to prepare biochar at various pyrolysis temperatures (300~600 °C). The physicochemical properties of LGBCs were assessed using scanning electron microscopy, N2 adsorption/desorption, Fourier transform infrared spectroscopy, Raman spectroscopy, and X-ray diffraction. Furthermore, the adsorption capability and potential mechanism of LGBCs in removing Cd(II) were investigated as well. The results indicate that LGBCs produced at higher pyrolysis temperatures exhibit rougher surfaces and more developed pore structures, which facilitate the exposure of numerous active adsorption sites. The adsorption of Cd(II) by LGBCs generally follows the order of LG-300C < LG-400C < LG-500C < LG-600C. According to the Langmuir adsorption isotherm model, the theoretical maximum adsorption capacity of LG-600C for Cd(II) is calculated to be 18.54 mg/g. Adsorption mechanism analysis reveals that the complexation interaction, dependent on the surface functional groups, plays a crucial role in the adsorption of Cd(II) by LGBCs prepared at higher pyrolysis temperatures. This study demonstrates that, by controlling the pyrolysis temperature during biochar preparation, high-quality lignin-based biochar can be readily obtained.
Collapse
Affiliation(s)
- Zhanghong Wang
- College of Eco-Environmental Engineering, Guizhou Minzu University, Guiyang 550025, China;
- Research Center of Solid Waste Pollution Control and Recycling, Guizhou Minzu University, Guiyang 550025, China
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, Southeast University, Nanjing 210096, China
| | - Jiale Li
- College of Eco-Environmental Engineering, Guizhou Minzu University, Guiyang 550025, China;
| |
Collapse
|
12
|
Anuchi S, Campbell KLS, Hallett JP. Effects of the Ionic Liquid Structure on Porosity of Lignin-Derived Carbon Materials. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2023; 11:15228-15241. [PMID: 37886039 PMCID: PMC10598883 DOI: 10.1021/acssuschemeng.3c03035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/26/2023] [Indexed: 10/28/2023]
Abstract
Converting lignin into advanced porous carbon materials, with desirable surface functionalities, can be challenging. While lignin-derived carbons produced by pyrolysis at >600 °C develop porosity, they also simultaneously lose nearly all their surface functional groups. By contrast, pyrolysis of lignin at lower temperatures (e.g., <400 °C) results in the formation of nonporous char that retains some surface functionalities. However, copyrolysis of lignin with some ionic liquids (ILs) at lower temperatures offers an opportunity to produce porous carbon materials with both large surface areas and an abundance of surface functional groups. This study investigates the effects of IL properties (solubility, thermal, and ionic size) on the specific surface areas of lignin-derived carbons produced by copyrolysis of lignin and ILs at 350-400 °C for 20 min. It was found that ILs that have bulky anions and small cation sizes can induce porosity in lignin-derived carbons with large surface areas. Among 16 ILs that were tested, [C2MIm][NTF2] demonstrated the best performance; the inclusion of it in the copyrolysis process resulted in lignin-derived carbons with ∼528 m2 g-1 and 0.48 cm3 g-1. Lignin-derived carbons produced using no IL, [C2MIm][NTF2], and [C4MIm][OTF] were further characterized for morphology, interfacial chemical, and elemental properties. The copyrolysis of lignin and [C2MIm][NTF2], and [C4MIm][OTF] resulted in doping of heteroatoms (N and S) on the porous carbon materials during pyrolysis reaction. The present findings contribute to a better understanding of the main property of ILs responsible for creating porosity in lignin carbon during pyrolysis.
Collapse
Affiliation(s)
- Samson
O. Anuchi
- Laboratory
of Sustainable Chemical Technology, Department of Chemical Engineering, Imperial College London, South Kensington Campus, London SW7 1AZ, U.K.
| | | | - Jason P. Hallett
- Laboratory
of Sustainable Chemical Technology, Department of Chemical Engineering, Imperial College London, South Kensington Campus, London SW7 1AZ, U.K.
| |
Collapse
|
13
|
Wannid P, Hararak B, Padee S, Klinsukhon W, Suwannamek N, Raita M, Champreda V, Prahsarn C. Fiber Melt Spinning and Thermo-Stabilization of Para-Rubber Wood Lignin: An Approach for Fully Biomass Precursor Preparation. ACS OMEGA 2023; 8:33891-33903. [PMID: 37744868 PMCID: PMC10515410 DOI: 10.1021/acsomega.3c04590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 08/21/2023] [Indexed: 09/26/2023]
Abstract
Para-rubber wood (PRW) lignin, extracted from agricultural waste, was successfully melt-spun to fibers and thermo-stabilized without employing auxiliary additives. 31P NMR analysis revealed that PRW-lignin contained mainly a syringyl unit of phenolic C5-substituted OH group, which enabled melt flow during fiber spinning, as well as a guaiacyl unit which offered the ability to cross-link during thermo-stabilization. Thermo-stabilized fibers with no fusion were achieved at 250 °C with the heating rate of 0.1 °C/min. Structural changes in the fibers during stabilization were systematically investigated using FTIR and XPS analyses. From the results, changes in the intensities of characteristic bands relating to C-H stretching, aromatic C-H stretching, and C=O stretching indicated structural changes of lignin toward aromaticity via oxidation reactions. XPS analysis of the fibers carbonized at 900, 1000, and 1200 °C revealed an increase in carbon content from 72 to 87 wt %. and a decrease in oxygen content from 28 to 13 wt %. with the increasing carbonization temperature. The weight loss of carbonized fibers was in the range of 73.6 to 88.7%. The high weight loss of fibers carbonized at 1200 °C was explained partly due to the thermal decomposition of disordered carbon. The tensile strength and modulus of carbonized fibers were 163.0 and 275.1 MPa, respectively. This study demonstrates an approach to prepare a fully biomass precursor fiber and contributes to the exploration of the potential use of lignin from biomass waste.
Collapse
Affiliation(s)
- Prapudsorn Wannid
- National
Metal and Materials Technology Center (MTEC), National Science and Technology Development Agency (NSTDA), 114 Paholyothin Road, Klong Luang, Pathum Thani 12120, Thailand
| | - Bongkot Hararak
- National
Metal and Materials Technology Center (MTEC), National Science and Technology Development Agency (NSTDA), 114 Paholyothin Road, Klong Luang, Pathum Thani 12120, Thailand
| | - Sirada Padee
- National
Metal and Materials Technology Center (MTEC), National Science and Technology Development Agency (NSTDA), 114 Paholyothin Road, Klong Luang, Pathum Thani 12120, Thailand
| | - Wattana Klinsukhon
- National
Metal and Materials Technology Center (MTEC), National Science and Technology Development Agency (NSTDA), 114 Paholyothin Road, Klong Luang, Pathum Thani 12120, Thailand
| | - Natthaphop Suwannamek
- National
Metal and Materials Technology Center (MTEC), National Science and Technology Development Agency (NSTDA), 114 Paholyothin Road, Klong Luang, Pathum Thani 12120, Thailand
| | - Marisa Raita
- National
Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency
(NSTDA), 113 Paholyothin Road, Klong Luang, Pathum Thani 12120, Thailand
| | - Verawat Champreda
- National
Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency
(NSTDA), 113 Paholyothin Road, Klong Luang, Pathum Thani 12120, Thailand
| | - Chureerat Prahsarn
- National
Metal and Materials Technology Center (MTEC), National Science and Technology Development Agency (NSTDA), 114 Paholyothin Road, Klong Luang, Pathum Thani 12120, Thailand
| |
Collapse
|
14
|
Vasile C, Baican M. Lignins as Promising Renewable Biopolymers and Bioactive Compounds for High-Performance Materials. Polymers (Basel) 2023; 15:3177. [PMID: 37571069 PMCID: PMC10420922 DOI: 10.3390/polym15153177] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/16/2023] [Accepted: 07/17/2023] [Indexed: 08/13/2023] Open
Abstract
The recycling of biomass into high-value-added materials requires important developments in research and technology to create a sustainable circular economy. Lignin, as a component of biomass, is a multipurpose aromatic polymer with a significant potential to be used as a renewable bioresource in many fields in which it acts both as promising biopolymer and bioactive compound. This comprehensive review gives brief insights into the recent research and technological trends on the potential of lignin development and utilization. It is divided into ten main sections, starting with an outlook on its diversity; main properties and possibilities to be used as a raw material for fuels, aromatic chemicals, plastics, or thermoset substitutes; and new developments in the use of lignin as a bioactive compound and in nanoparticles, hydrogels, 3D-printing-based lignin biomaterials, new sustainable biomaterials, and energy production and storage. In each section are presented recent developments in the preparation of lignin-based biomaterials, especially the green approaches to obtaining nanoparticles, hydrogels, and multifunctional materials as blends and bio(nano)composites; most suitable lignin type for each category of the envisaged products; main properties of the obtained lignin-based materials, etc. Different application categories of lignin within various sectors, which could provide completely sustainable energy conversion, such as in agriculture and environment protection, food packaging, biomedicine, and cosmetics, are also described. The medical and therapeutic potential of lignin-derived materials is evidenced in applications such as antimicrobial, antiviral, and antitumor agents; carriers for drug delivery systems with controlled/targeting drug release; tissue engineering and wound healing; and coatings, natural sunscreen, and surfactants. Lignin is mainly used for fuel, and, recently, studies highlighted more sustainable bioenergy production technologies, such as the supercapacitor electrode, photocatalysts, and photovoltaics.
Collapse
Affiliation(s)
- Cornelia Vasile
- Romanian Academy, “P. Poni” Institute of Macromolecular Chemistry, Physical Chemistry of Polymers Department 41A Grigore Ghica Voda Alley, RO700487 Iaşi, Romania
| | - Mihaela Baican
- “Grigore T. Popa” Medicine and Pharmacy University, Faculty of Pharmacy, Pharmaceutical Sciences I Department, Laboratory of Pharmaceutical Physics, 16 University Street, RO700115 Iaşi, Romania;
| |
Collapse
|
15
|
Jin Y, Wang J, Gao X, Ren F, Chen Z, Sun Z, Ren P. Spent Coffee Grounds Derived Carbon Loading C, N Doped TiO 2 for Photocatalytic Degradation of Organic Dyes. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5137. [PMID: 37512411 PMCID: PMC10385829 DOI: 10.3390/ma16145137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/14/2023] [Accepted: 07/15/2023] [Indexed: 07/30/2023]
Abstract
Titanium dioxide (TiO2) is an ideal photocatalyst candidate due to its high activity, low toxicity and cost, and high chemical stability. However, its practical application in photocatalysis is seriously hindered by the wide band gap energy of TiO2 and the prone recombination of electron-hole pairs. In this study, C, N doped TiO2 were supported on spent coffee grounds-derived carbon (ACG) via in situ formation, which was denoted as C, N-TiO2@ACG. The obtained C, N-TiO2@ACG exhibits increased light absorption efficiency with the band gap energy decreasing from 3.31 eV of TiO2 to 2.34 eV, a higher specific surface area of 145.8 m2/g, and reduced recombination rates attributed to the synergistic effect of a spent coffee grounds-derived carbon substrate and C, N doping. Consequently, the optimal 1:1 C, N-TiO2@ACG delivers considerable photocatalytic activity with degradation efficiencies for methylene blue (MB) reaching 96.9% within 45 min, as well as a high reaction rate of 0.06348 min-1, approximately 4.66 times that of TiO2 (0.01361 min-1). Furthermore, it also demonstrated greatly enhanced photocatalytic efficiency towards methyl orange (MO) in the presence of MB compared with a single MO solution. This work provides a feasible and universal strategy of synchronous introducing nonmetal doping and biomass-derived carbon substrates to promote the photocatalytic performance of TiO2 for the degradation of organic dyes.
Collapse
Affiliation(s)
- Yanling Jin
- Faculty of Printing, Packaging Engineering and Digital Media Technology, Xi'an University of Technology, Jinhua South Road No. 5, Xi'an 710048, China
- School of Materials Science and Engineering, Xi'an University of Technology, Jinhua South Road No. 5, Xi'an 710048, China
| | - Jiayi Wang
- Faculty of Printing, Packaging Engineering and Digital Media Technology, Xi'an University of Technology, Jinhua South Road No. 5, Xi'an 710048, China
| | - Xin Gao
- Faculty of Printing, Packaging Engineering and Digital Media Technology, Xi'an University of Technology, Jinhua South Road No. 5, Xi'an 710048, China
| | - Fang Ren
- Faculty of Printing, Packaging Engineering and Digital Media Technology, Xi'an University of Technology, Jinhua South Road No. 5, Xi'an 710048, China
- School of Materials Science and Engineering, Xi'an University of Technology, Jinhua South Road No. 5, Xi'an 710048, China
| | - Zhengyan Chen
- Faculty of Printing, Packaging Engineering and Digital Media Technology, Xi'an University of Technology, Jinhua South Road No. 5, Xi'an 710048, China
- School of Materials Science and Engineering, Xi'an University of Technology, Jinhua South Road No. 5, Xi'an 710048, China
| | - Zhenfeng Sun
- Faculty of Printing, Packaging Engineering and Digital Media Technology, Xi'an University of Technology, Jinhua South Road No. 5, Xi'an 710048, China
| | - Penggang Ren
- Faculty of Printing, Packaging Engineering and Digital Media Technology, Xi'an University of Technology, Jinhua South Road No. 5, Xi'an 710048, China
- School of Materials Science and Engineering, Xi'an University of Technology, Jinhua South Road No. 5, Xi'an 710048, China
| |
Collapse
|
16
|
Lignin-based nitrogen/sulfur dual-doped nanosheets decorated with Co 1-xS nanoparticles as efficient bifunctional oxygen electrocatalysts. J Colloid Interface Sci 2023; 634:469-480. [PMID: 36542976 DOI: 10.1016/j.jcis.2022.12.070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/08/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
The development of efficient, cost-effective, bifunctional cathode catalyst materials to replace precious metals is highly attractive for the fabrication of Zn-air battery. Here, the three-dimensional N and S co-doped carbon nanosheets loaded with cobalt sulfide nanoparticles (Co1-xS@SNFC) for bifunctional oxygen electrocatalysis were synthesized with Co(NO3)2·6H2O as the Co source, lignin as the carbon source, thiourea as the nitrogen/ sulfur source, and MgO as the template. The synergistic effect of multiple active sites gives the Co1-xS@SNFC fast electrochemical kinetic properties and excellent stability to oxygen reduction reactions (ORR) and oxygen evolution reactions (OER). The half-wave potential and overpotential of Co1-xS@SNFC were 0.84 mV and 306 mV, respectively, which is closed to commercial noble metal catalysts. In addition, Co1-xS@SNFC exhibited four-electron transfer characteristics and ultra-low tafel slope. Compared with commercial Pt/C, the Zn-air battery assembled from Co1-xS@SNFC exhibited a low voltage gap of polarization curve (0.75 V) between charging and discharge and high power density (207 mWcm-2) in alkaline electrolyte. This work developed a green and novel fabrication approach for the synthesis of bifunctional electrocatalyst and provides a new idea for high-value utilization of biomass.
Collapse
|
17
|
Liu J, Mei XW, Peng F. Lignin derived porous carbon with favorable mesoporous contributions for highly efficient ionic liquid-based supercapacitors. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
18
|
Jia G, Innocent MT, Yu Y, Hu Z, Wang X, Xiang H, Zhu M. Lignin-based carbon fibers: Insight into structural evolution from lignin pretreatment, fiber forming, to pre-oxidation and carbonization. Int J Biol Macromol 2023; 226:646-659. [PMID: 36521701 DOI: 10.1016/j.ijbiomac.2022.12.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/26/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022]
Abstract
Lignin remains the second abundant source of renewable carbon with an aromatic structure. However, most of the lignin is burnt directly for power generation, with an effective utilization rate of <2 %, making value addition on lignin an urgent requirement. From this perspective, preparation of lignin-based carbon fibers has been widely studied as an effective way to increase value addition on lignin. However, lignin species are diverse and complex in structure, and the pathway that enables changes in lignin structure during pretreatment, fiber formation, stabilization, and carbonization is still uncertain. In this review, we condense the common structural evolution route from the previous studies, which can serve as a guide towards engineered lignin carbon fibers with high performance properties.
Collapse
Affiliation(s)
- Guosheng Jia
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Mugaanire Tendo Innocent
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Yan Yu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Zexu Hu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Xuefen Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Hengxue Xiang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| |
Collapse
|
19
|
The Effect of Water Content on Lignin Solubilization in Deep Eutectic Solvents. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
20
|
Recent advances in lignin-based carbon materials and their applications: A review. Int J Biol Macromol 2022; 223:980-1014. [PMID: 36375669 DOI: 10.1016/j.ijbiomac.2022.11.070] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/30/2022] [Accepted: 11/08/2022] [Indexed: 11/13/2022]
Abstract
As the most abundant natural aromatic polymer, tens of million of tons of lignin produced in paper-making or biorefinery industry are used as fuel annually, which is a low-value utilization. Moreover, burning lignin results in large amounts of carbon dioxide and pollutants in the air. The potential of lignin is far from being fully exploited and the search for high value-added application of lignin is highly pursued. Because of the high carbon content of lignin, converting lignin into advanced carbon-based structural or functional materials is regarded as one of the most promising solutions for both environmental protection and utilization of renewable resources. Significant progresses in lignin-based carbon materials (LCMs) including porous carbon, activated carbon, carbon fiber, carbon aerogel, nanostructured carbon, etc., for various valued applications have been witnessed in recent years. Here, this review summarized the recent advances in LCMs from the perspectives of preparation, structure, and applications. In particular, this review attempts to figure out the intrinsic relationship between the structure and functionalities of LCMs from their recent applications. Hopefully, some thoughts and discussions on the structure-property relationship of LCMs can inspire researchers to stride over the present barriers in the preparation and applications of LCMs.
Collapse
|
21
|
Pan W, Lin J. Efficient centrifugal spinning of soda lignin for the production of activated carbon nanofibers with highly porous structure. Int J Biol Macromol 2022; 222:1433-1442. [DOI: 10.1016/j.ijbiomac.2022.09.268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 09/22/2022] [Accepted: 09/28/2022] [Indexed: 11/05/2022]
|
22
|
Bai J, Feng Z, Huang L, Tang J, Wang Y, Wang S. Hardwood Kraft lignin-derived carbon microfibers with enhanced electrochemical performance. Int J Biol Macromol 2022; 220:733-742. [PMID: 36007695 DOI: 10.1016/j.ijbiomac.2022.08.131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/15/2022] [Accepted: 08/18/2022] [Indexed: 11/20/2022]
Abstract
It is of great challenge to prepare lignin-derived carbon microfibers with suitable graphite crystallites due to the volatilization of incorporated polymers. In this work, we proposed a simple method for the construction of graphite crystallites based on the regulation of the hydrogen-bonding interaction between hardwood Kraft lignin (HKL) and poly(m-phenylene isophthalamide) (PMIA). The strong hydrogen-bonding interaction demonstrated by the results of TG, FTIR, XPS, Raman and XRD increased the graphite crystal size and perfected the crystal structure of HKL-based carbon microfibers, which further enhanced the electrochemical performance of HKL/PMIA-based carbon microfibers electrodes, especially for the increase of capacitance and cycle performance and the decrease of charge transfer resistance. The specific capacitance, energy density and power density of P2H2-based (HKL/PMIA = 1:1) carbon microfibers electrode were up to 190.8 F g-1, 34.4 Wh kg-1 and 540 W kg-1 at a current density of 0.5 A g-1, respectively, which were comparable to or even higher than those of lignin composites-based carbon fibers electrodes. This work reveals the relationship between hydrogen-bonding interaction and crystalline structure, which can be further considered in the preparation of lignin-based carbon fibers electrodes.
Collapse
Affiliation(s)
- Jixing Bai
- Institute of Hybrid Materials, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Zihao Feng
- Institute of Hybrid Materials, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Linjun Huang
- Institute of Hybrid Materials, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Jianguo Tang
- Institute of Hybrid Materials, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China.
| | - Yao Wang
- Institute of Hybrid Materials, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Shichao Wang
- Institute of Hybrid Materials, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
23
|
He Z, Li Y, Liu C, Yang J, Qian M, Zhu Y, Wang X. Turning lignin into treasure: An innovative filler comparable to commercial carbon black for the green development of the rubber industry. Int J Biol Macromol 2022; 218:891-899. [PMID: 35907456 DOI: 10.1016/j.ijbiomac.2022.07.190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 07/18/2022] [Accepted: 07/23/2022] [Indexed: 11/15/2022]
Abstract
Driven by the global carbon neutrality action, biomass-derived functional materials have been applied in many fields to alleviate the pressure brought by the depletion of fossil energy. However, due to the complex structure, lignin faces many difficulties in its high-value utilization. The second largest biomass in the world has become the largest "natural waste". In this paper, the lignin-based biochar-silica (LB-S) hybrid nanoparticles were prepared via a combination of two-step acid precipitation and carbonization using lignin black liquor extracted from xylose residue and sodium silicate as raw materials. The effects of carbonization temperature and lignin-based biochar (LB) content on the reinforcing properties of LB-S were studied. The results show that the particle size, specific surface area, pore characteristics, and surface polarity of LB-S all affect the mechanical properties of the final vulcanizates. The reinforcement performance of the best sample (LMB500-S) with "high structure" characteristics can be comparable to that of commercial carbon black (CB) N550. This study shows that LMB500-S hybrid nanoparticles with economic benefits possess the potential to completely replace commercial CB, which can turn lignin waste into treasure and promote the green development of traditional rubber industry in the context of carbon neutrality.
Collapse
Affiliation(s)
- Zhongyu He
- State Key Laboratory of Inorganic Synthesis & Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Yixin Li
- State Key Laboratory of Inorganic Synthesis & Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Chang Liu
- Jilin Province Product Quality Supervision Test Institute, Changchun 130103, PR China
| | - Jun Yang
- Jilin Province Product Quality Supervision Test Institute, Changchun 130103, PR China
| | - Miaomiao Qian
- State Key Laboratory of Inorganic Synthesis & Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Yanchao Zhu
- State Key Laboratory of Inorganic Synthesis & Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Xiaofeng Wang
- State Key Laboratory of Inorganic Synthesis & Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, PR China.
| |
Collapse
|
24
|
Green and Low-Cost Natural Lignocellulosic Biomass-Based Carbon Fibers—Processing, Properties, and Applications in Sports Equipment: A Review. Polymers (Basel) 2022; 14:polym14132591. [PMID: 35808637 PMCID: PMC9269417 DOI: 10.3390/polym14132591] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/21/2022] [Accepted: 06/23/2022] [Indexed: 01/24/2023] Open
Abstract
At present, high-performance carbon fibers (CFs) are mainly produced from petroleum-based materials. However, the high costs and environmental problems of the production process prompted the development of new precursors from natural biopolymers. This review focuses on the latest research on the conversion of natural lignocellulosic biomass into precursor fibers and CFs. The influence of the properties, advantages, separation, and extraction of lignin and cellulose (the most abundant natural biopolymers), as well as the spinning process on the final CF performance are detailed. Recent strategies to further improve the quality of such CFs are discussed. The importance and application of CFs in sports equipment manufacturing are briefly summarized. While the large-scale production of CFs from natural lignocellulosic biomass and their applications in sports equipment have not yet been realized, CFs still provide a promising market prospect as green and low-cost materials. Further research is needed to ensure the market entry of lignocellulosic biomass-based CFs.
Collapse
|
25
|
Rahman M, Karacan I. Improved thermal stability of jute fiber as an eco-friendly precursor for activated carbon fiber processing. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-03093-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
26
|
Liu R, Jiang T, Liu D, Ma X. A facile and green strategy to obtain organic room-temperature phosphorescence from natural lignin. Sci China Chem 2022. [DOI: 10.1007/s11426-022-1228-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
27
|
Simple, additive-free, extra pressure-free process to direct convert lignin into carbon foams. Int J Biol Macromol 2022; 209:692-702. [PMID: 35429516 DOI: 10.1016/j.ijbiomac.2022.04.062] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/31/2022] [Accepted: 04/08/2022] [Indexed: 11/23/2022]
Abstract
To achieve lignin valorization, we reported a simple method to direct covert lignin into carbon foam materials in this work. Unlike multiple steps required to fabricate traditional carbon foams from most of other precursors (often non-renewable), the approach herein required solely heating for carbon production. We found that the intrinsic features of lignin render the formation of lignin block meanwhile generate the porous structure under the invented heating course. Three key factors including glass transition temperature, crosslinking ability, and thermal stability of lignin were identified to determine the successful fabrication of lignin foam (i.e., precursor of carbon foam). Upon tuning the heating profile or fractionating the lignin, lignin foam with different morphologies and properties were obtained. After carbonization, the selected lignin-derived carbon foams possessed well porous structures with bulk densities of 0.52 or 0.62 g cm-3, superior integrity with strength properties of around 10 MPa, BET surface areas of 143.29 or 325.86 m2 g-1, and many other attractive properties. This work is expected to stimulate further seek of lignin valorization in carbon foam production.
Collapse
|
28
|
Synthesis and Electrochemical Properties of Lignin-Derived High Surface Area Carbons. SURFACES 2022. [DOI: 10.3390/surfaces5020019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Activated carbons play an essential role in developing new electrodes for renewable energy devices due to their electrochemical and physical properties. They have been the subject of much research due to their prominent surface areas, porosity, light weight, and excellent conductivity. The performance of electric double-layer capacitors (EDLCs) is highly related to the morphology of porous carbon electrodes, where high surface area and pore size distribution are proportional to capacitance to a significant extent. In this work, we designed and synthesized several activated carbons based on lignin for both supercapacitors and Li-S batteries. Our most favorable synthesized carbon material had a very high specific surface area (1832 m2·g−1) and excellent pore diameter (3.6 nm), delivering a specific capacitance of 131 F·g−1 in our EDLC for the initial cycle. This translates to an energy density of the supercapacitor cell at 55.6 Wh·kg−1. Using this material for Li-S cells, composited with a nickel-rich phosphide and sulfur, showed good retention of soluble lithium polysulfide intermediates by maintaining a specific capacity of 545 mA·h·g−1 for more than 180 cycles at 0.2 C.
Collapse
|
29
|
Jung HY, Lee JS, Han HT, Jung J, Eom K, Lee JT. Lignin-Based Materials for Sustainable Rechargeable Batteries. Polymers (Basel) 2022; 14:673. [PMID: 35215585 PMCID: PMC8879276 DOI: 10.3390/polym14040673] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/02/2022] [Accepted: 02/04/2022] [Indexed: 02/01/2023] Open
Abstract
This review discusses important scientific progress, problems, and prospects of lignin-based materials in the field of rechargeable batteries. Lignin, a component of the secondary cell wall, is considered a promising source of biomass. Compared to cellulose, which is the most extensively studied biomass material, lignin has a competitive price and a variety of functional groups leading to broad utilization such as adhesive, emulsifier, pesticides, polymer composite, carbon precursor, etc. The lignin-based materials can also be applied to various components in rechargeable batteries such as the binder, separator, electrolyte, anode, and cathode. This review describes how lignin-based materials are adopted in these five components with specific examples and explains why lignin is attractive in each case. The electrochemical behaviors including charge-discharge profiles, cyclability, and rate performance are discussed between lignin-based materials and materials without lignin. Finally, current limitations and future prospects are categorized to provide design guidelines for advanced lignin-based materials.
Collapse
Affiliation(s)
- Han Young Jung
- Department of Plant and Environmental New Resources, Kung Hee University, Yongin 17104, Korea; (H.Y.J.); (J.S.L.); (H.T.H.)
| | - Jeong Seok Lee
- Department of Plant and Environmental New Resources, Kung Hee University, Yongin 17104, Korea; (H.Y.J.); (J.S.L.); (H.T.H.)
| | - Hyun Taek Han
- Department of Plant and Environmental New Resources, Kung Hee University, Yongin 17104, Korea; (H.Y.J.); (J.S.L.); (H.T.H.)
| | - Jaehan Jung
- Department of Materials Science and Engineering, Hongik University, Sejong 30016, Korea
| | - KwangSup Eom
- School of Materials Science and Engineering, Gwangju Institute of Science Technology (GIST), Gwangju 61005, Korea
| | - Jung Tae Lee
- Department of Plant and Environmental New Resources, Kung Hee University, Yongin 17104, Korea; (H.Y.J.); (J.S.L.); (H.T.H.)
| |
Collapse
|
30
|
Wu X, Guo T, Chen Z, Wang Z, Qin K, Wang Z, Ao Z, Yang C, Shen D, Wu C. Facile and green preparation of solid carbon nanoonions via catalytic co-pyrolysis of lignin and polyethylene and their adsorption capability towards Cu(ii). RSC Adv 2022; 12:5042-5052. [PMID: 35425478 PMCID: PMC8981647 DOI: 10.1039/d1ra06761c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 12/16/2021] [Indexed: 12/14/2022] Open
Abstract
Carbon nanomaterials, such as carbon nanoonions (CNOs), possess promising applications in various fields. There are urgent demands to synthesize carbon nanomaterials from a green and renewable carbon source. In this study, solid CNOs with relatively uniform size distribution (with diameters of about 30-50 nm), abundant structure defects and oxygen-containing surface functional groups (such as -OH and -COOH) are developed from co-pyrolysis of lignin (LG) and polyethylene (PE) in the presence of Ni-based catalysts. The type of catalyst, the concentration of catalyst and catalytic co-pyrolysis temperature play important roles in the morphologies and properties of CNOs as confirmed by TEM and SEM. Furthermore, the produced CNOs can act as a low-cost and highly-efficient adsorbent to remove Cu(ii) from aqueous solution according to a homogeneous monolayer, chemical action-dominated, endothermic and spontaneous process. The theoretical maximum adsorption capacity of CNOs calculated from the Langmuir model is 100.00 mg g-1. Surface deposition, complexation, π electron-cation interaction and electrostatic interaction are responsible for the adsorption of Cu(ii) using the prepared CNOs.
Collapse
Affiliation(s)
- Xiankun Wu
- School of Chemistry and Environmental Engineering, Yancheng Teachers University Yancheng 224007 PR China
| | - Ting Guo
- School of Chemistry and Environmental Engineering, Yancheng Teachers University Yancheng 224007 PR China
| | - Ziyan Chen
- School of Chemistry and Environmental Engineering, Yancheng Teachers University Yancheng 224007 PR China
| | - Zhanghong Wang
- College of Eco-Environmental Engineering, Guizhou Minzu University Guiyang 550025 PR China
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, Southeast University Nanjing 210096 PR China
| | - Kun Qin
- College of Eco-Environmental Engineering, Guizhou Minzu University Guiyang 550025 PR China
| | - Zhikang Wang
- College of Eco-Environmental Engineering, Guizhou Minzu University Guiyang 550025 PR China
| | - Ziqiang Ao
- College of Eco-Environmental Engineering, Guizhou Minzu University Guiyang 550025 PR China
| | - Cheng Yang
- College of Eco-Environmental Engineering, Guizhou Minzu University Guiyang 550025 PR China
| | - Dekui Shen
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, Southeast University Nanjing 210096 PR China
| | - Chunfei Wu
- School of Chemistry and Chemical Engineering, Queen's University Belfast Belfast BT7 1NN UK
| |
Collapse
|
31
|
García-Mateos FJ, Ruiz-Rosas R, Rosas JM, Rodríguez-Mirasol J, Cordero T. Phosphorus containing carbon (submicron)fibers as efficient acid catalysts. Catal Today 2022. [DOI: 10.1016/j.cattod.2020.10.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
32
|
Zhang W, Yin J, Wang C, Zhao L, Jian W, Lu K, Lin H, Qiu X, Alshareef HN. Lignin Derived Porous Carbons: Synthesis Methods and Supercapacitor Applications. SMALL METHODS 2021; 5:e2100896. [PMID: 34927974 DOI: 10.1002/smtd.202100896] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/04/2021] [Indexed: 05/12/2023]
Abstract
Lignin, one of the renewable constituents in natural plant biomasses, holds great potential as a sustainable source of functional carbon materials. Tremendous research efforts have been made on lignin-derived carbon electrodes for rechargeable batteries. However, lignin is considered as one of the most promising carbon precursors for the development of high-performance, low-cost porous carbon electrode materials for supercapacitor applications. Yet, these efforts have not been reviewed in detail in the current literature. This review, therefore, offers a basis for the utilization of lignin as a pivotal precursor for the synthesis of porous carbons for use in supercapacitor electrode applications. Lignin chemistry, the synthesis process of lignin-derived porous carbons, and future directions for developing better porous carbon electrode materials from lignin are systematically reviewed. Technological hurdles and approaches that should be prioritized in future research are presented.
Collapse
Affiliation(s)
- Wenli Zhang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology (GDUT), Panyu District, Guangzhou, 510006, China
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangdong University of Technology (GDUT), Panyu District, Guangzhou, 510006, China
| | - Jian Yin
- Materials Science and Engineering, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Chaoyang District, Changchun, 130012, China
| | - Caiwei Wang
- School of Chemistry and Chemical Engineering, South China University of Technology (SCUT), Tianhe District, Guangzhou, 510640, China
| | - Lei Zhao
- School of Chemical Engineering and Light Industry, Guangdong University of Technology (GDUT), Panyu District, Guangzhou, 510006, China
| | - Wenbin Jian
- School of Chemical Engineering and Light Industry, Guangdong University of Technology (GDUT), Panyu District, Guangzhou, 510006, China
| | - Ke Lu
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, 230601, China
| | - Haibo Lin
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Chaoyang District, Changchun, 130012, China
| | - Xueqing Qiu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology (GDUT), Panyu District, Guangzhou, 510006, China
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangdong University of Technology (GDUT), Panyu District, Guangzhou, 510006, China
| | - Husam N Alshareef
- Materials Science and Engineering, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| |
Collapse
|
33
|
Qu W, Yang J, Sun X, Bai X, Jin H, Zhang M. Towards producing high-quality lignin-based carbon fibers: A review of crucial factors affecting lignin properties and conversion techniques. Int J Biol Macromol 2021; 189:768-784. [PMID: 34464641 DOI: 10.1016/j.ijbiomac.2021.08.187] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/04/2021] [Accepted: 08/25/2021] [Indexed: 12/19/2022]
Abstract
The production of low-cost and high-quality carbon fibers (CFs) from biorenewable lignin precursors has been of worldwide interest for decades. Although numerous works have been reported and the proposed "1.72 GPa/172 GPa" target set by the Department of Energy (DOE) has been closely met in a few studies, most lignin-based CFs (LCFs) have poor strength properties compared to industrial PAN (polyacrylonitrile)-based CFs. The production of LCFs involves several steps, and the final quality of LCFs is governed by both lignin's properties and the manufacturing processes. Therefore, understanding the key factors of producing high quality LCF is of high importance. In this review, we firstly outlined several lignin's properties (e.g., impurities, thermal properties, molecular structure) that may play important role in determining its processability and suitability as carbon fiber precursor. Secondly, conversion strategies include spinning, stabilization and carbonization, and corresponding parameters influencing the final quality of LCF are comprehensively analyzed. Last, additional characterization methods are proposed as a means to facilitate analyzing of lignin and LCF. This review attempts to provide insights towards high-quality LCF production from both material and manufacturing aspects.
Collapse
Affiliation(s)
- Wangda Qu
- College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China.
| | - Jianming Yang
- College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Xinzhi Sun
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Xianglan Bai
- Department of Mechanical Engineering, Iowa State University, Ames, Iowa 50011, USA
| | - Hong Jin
- Xi'an Jiaotong University Suzhou Academy, Suzhou 215123, China.
| | - Meng Zhang
- Currently employed by Giti Tire Manufacturing, Richburg, SC, 29729, USA.
| |
Collapse
|
34
|
Electrospun Polyacrylonitrile/Lignin/Poly(Ethylene Glycol)-Based Porous Activated Carbon Nanofiber for Removal of Nickel(II) Ion from Aqueous Solution. Polymers (Basel) 2021; 13:polym13203590. [PMID: 34685349 PMCID: PMC8537280 DOI: 10.3390/polym13203590] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/07/2021] [Accepted: 09/10/2021] [Indexed: 12/18/2022] Open
Abstract
The issue of heavy metal contamination has caused a great deal of concern among water quality experts today, as it contributes to water pollution. Activated carbon nanofibers (ACNFs) showed a significant ability in removing heavy metals from the wastewater. In this study, polyacrylonitrile (PAN) was blended and electrospun with an abundant and inexpensive biopolymer, lignin and a water soluble polymer, poly(ethylene glycol) (PEG), by using an electrospinning technique to form nanofibers. The electrospun nanofibers were then investigated as a precursor for the production of porous ACNFs to study the removal of nickel(II) ions by adsorption technique. PEG was added to act as a porogen and to create the porous structure of carbon nanofibers (CNFs). CNFs were prepared by thermal treatment of the electrospun nanofibers and followed by activation of CNFs by thermal and acid treatment on CNFs. Attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) spectral analysis of the ACNFs showed a strong absorption peak of the C-O functional group, indicating the increase in the oxygenated compound. Field emission scanning electron microscopy (FESEM) images concluded that the ACNFs have more porous and compact fibers with a smaller fiber diameter of 263 ± 11 nm, while the CNFs are less compact and have slightly larger fiber diameter of 323 ± 6 nm. The adsorption study showed that the ACNFs possessed a much higher adsorption capacity of 18.09 mg/g compared with the CNFs, which the amount adsorbed was achieved only at 2.7 mg/g. The optimum adsorption conditions that gave the highest percentage of 60% for nickel(II) ions removal were 50 mg of adsorbent dosage, 100 ppm of nickel(II) solution, pH 3, and a contact time of 60 min. The study demonstrated that the fabrication of ACNFs from PAN/lignin/PEG electrospun nanofibers have potential as adsorbents for the removal of heavy metal contaminants.
Collapse
|
35
|
Hydrogenative coupling of nitriles with diamines to benzimidazoles using lignin-derived Rh 2P catalyst. iScience 2021; 24:103045. [PMID: 34585110 PMCID: PMC8450259 DOI: 10.1016/j.isci.2021.103045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 07/21/2021] [Accepted: 08/24/2021] [Indexed: 12/01/2022] Open
Abstract
Nitrile (C≡N bond) activation for direct organic synthesis has been less explored so far due to a high redox potential of nitrile and its low dissociation energy of C−CN bond. Herein, we demonstrate a direct reductive coupling of nitriles and 1,2-phenylenediamines to yield various benzimidazoles in excellent yields (95%–99%) by using rhodium phosphide (Rh2P) catalyst supported on lignin-derived carbon (LC) using H2 (or hydrazine hydrate) as a hydrogen source. The high catalytic performance of Rh2P/LC is attributed to enhanced charge transfer to Rh and strong P−Rh interactions. Our isotope trace experiment confirms the presence of H/D exchange between H2 and the inert –CD3 group of CD3CN via an intramolecular D-shift. Reusability of Rh2P/LC is further demonstrated by a seven-time recycling without evident loss of activity. This research thus highlights a great potential in organic transformation with nitrile as a synthetic building block. Nitrile was developed as synthetic building block for organic synthesis Reductive coupling of nitriles to 1,2-phenylenediamines yielded benzimidazoles Strong P−Rh interaction and charge transfer to Rh enhanced Rh2P activity H/D exchange between H2 and –CD3 in CD3CN occurred via intramolecular D-shift
Collapse
|
36
|
Zhang Y, Lu W, Zhao P, Tao L, Liu Y, Manaig D, Freschi DJ, Liu J. The role of carbon pore structure in tellurium/carbon cathodes for lithium-tellurium batteries. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138621] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
37
|
A promising nanocatalyst: Upgraded Kraft lignin by titania and palladium nanoparticles for organic dyes reduction. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.108746] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
38
|
Recent advances in lignin-based porous materials for pollutants removal from wastewater. Int J Biol Macromol 2021; 187:880-891. [PMID: 34329666 DOI: 10.1016/j.ijbiomac.2021.07.152] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/14/2021] [Accepted: 07/22/2021] [Indexed: 01/03/2023]
Abstract
Water pollution is one of the most serious threats facing mankind today and has obtained widespread attention. Significant advances have been made in the past decades to apply porous materials in wastewater treatment, due to their large specific surface areas (SBET) for interaction with the aimed ions or molecules. However, the majority of porous materials are prepared from fossil-based resources and still possess some drawbacks, such as high cost and non-degradability, which inevitably cause secondary pollution to the environment from their production to disposal. Lignin is the most abundant and the only scalable renewable aromatic resource on earth. Due to its unique physicochemical properties including high carbon content, plentiful functional groups and environmental friendliness, the lignin-based porous materials (LPMs) have shown promising prospects in efficient removal of soluble pollutants from wastewater. In this review, we firstly described the structural and chemical basis of LPMs, following presented the recent progress in the decontamination of heavy metal ions, organic dyes, antibiotics, anions and radionuclides from aqueous systems. Additionally, the outlook was provided to promote more practical implementation of LPMs in the near future.
Collapse
|
39
|
Bai J, Wang S, Li Y, Wang Z, Tang J. Effect of chemical structure and molecular weight on the properties of lignin-based ultrafine carbon fibers. Int J Biol Macromol 2021; 187:594-602. [PMID: 34324906 DOI: 10.1016/j.ijbiomac.2021.07.149] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/20/2021] [Accepted: 07/22/2021] [Indexed: 11/26/2022]
Abstract
Unlocking the effects of chemical structure and molecular weight of lignin on the properties of carbonized fiber can accelerate the development of lignin-based carbon fiber which was mainly limited by its complex structure. Hardwood kraft lignins (HKLs) with different structures and molecular weights prepared via heat treatment and fractionation processes were spun into ultrafine fibers using electrospinning technique at the assistance of 1 wt% polyoxyethylene (PEO), which was further removed during the carbonization process to eliminate the potential impacts. The structure and molecular weight of HKLs together with their influences on the thermal behavior, fiber morphology, crystal structure and mechanical performance of HKLs ultrafine fibers or carbonized ultrafine fibers were systemically investigated to provide an elaborate knowledge on the relationship between physico-chemical structure and properties of HKLs ultrafine fibers. Results suggest that a high molecular weight of HKL is beneficial to the formation of graphite-like crystallite, and the formed graphite-like crystallite and condensed structure of HKLs are crucial for the improvement of the mechanical performance of carbonized ultrafine fibers.
Collapse
Affiliation(s)
- Jixing Bai
- Institute of Hybrid Materials, College of Material Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Shichao Wang
- Institute of Hybrid Materials, College of Material Science and Engineering, Qingdao University, Qingdao 266071, China.
| | - Yajun Li
- Institute of Hybrid Materials, College of Material Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Zhe Wang
- Institute of Hybrid Materials, College of Material Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Jianguo Tang
- Institute of Hybrid Materials, College of Material Science and Engineering, Qingdao University, Qingdao 266071, China
| |
Collapse
|
40
|
Jin Y, Lin J, Cheng Y, Lu C. Lignin-Based High-Performance Fibers by Textile Spinning Techniques. MATERIALS (BASEL, SWITZERLAND) 2021; 14:3378. [PMID: 34207222 PMCID: PMC8234621 DOI: 10.3390/ma14123378] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/08/2021] [Accepted: 06/15/2021] [Indexed: 12/21/2022]
Abstract
As a major component of lignocellulosic biomass, lignin is one of the largest natural resources of biopolymers and, thus, an abundant and renewable raw material for products, such as high-performance fibers for industrial applications. Direct conversion of lignin has long been investigated, but the fiber spinning process for lignin is difficult and the obtained fibers exhibit unsatisfactory mechanical performance mainly due to the amorphous chemical structure, low molecular weight of lignin, and broad molecular weight distribution. Therefore, different textile spinning techniques, modifications of lignin, and incorporation of lignin into polymers have been and are being developed to increase lignin's spinnability and compatibility with existing materials to yield fibers with better mechanical performance. This review presents the latest advances in the textile fabrication techniques, modified lignin-based high-performance fibers, and their potential in the enhancement of the mechanical performance.
Collapse
Affiliation(s)
- Yanhong Jin
- Key Laboratory of Textile Science and Technology, Ministry of Education, Donghua University, Shanghai 201620, China; (Y.J.); (J.L.); (Y.C.)
- College of Textiles, Donghua University, Shanghai 201620, China
| | - Jiaxian Lin
- Key Laboratory of Textile Science and Technology, Ministry of Education, Donghua University, Shanghai 201620, China; (Y.J.); (J.L.); (Y.C.)
- College of Textiles, Donghua University, Shanghai 201620, China
| | - Yu Cheng
- Key Laboratory of Textile Science and Technology, Ministry of Education, Donghua University, Shanghai 201620, China; (Y.J.); (J.L.); (Y.C.)
- College of Textiles, Donghua University, Shanghai 201620, China
| | - Chunhong Lu
- Key Laboratory of Textile Science and Technology, Ministry of Education, Donghua University, Shanghai 201620, China; (Y.J.); (J.L.); (Y.C.)
- College of Textiles, Donghua University, Shanghai 201620, China
| |
Collapse
|
41
|
Jedrzejczyk M, Engelhardt J, Djokic MR, Bliznuk V, Van Geem KM, Verberckmoes A, De Clercq J, Bernaerts KV. Development of Lignin-Based Mesoporous Carbons for the Adsorption of Humic Acid. ACS OMEGA 2021; 6:15222-15235. [PMID: 34151101 PMCID: PMC8210454 DOI: 10.1021/acsomega.1c01475] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 05/25/2021] [Indexed: 06/04/2023]
Abstract
There is an increasing urge to make the transition toward biobased materials. Lignin, originating from lignocellulosic biomass, can be potentially valorized as humic acid (HA) adsorbents via lignin-based mesoporous carbon (MC). In this work, these materials were synthesized for the first time starting from modified lignin as the carbon precursor, using the soft-template methodology. The use of a novel synthetic approach, Claisen rearrangement of propargylated lignin, and a variety of surfactant templates (Pluronic, Kraton, and Solsperse) have been demonstrated to tune the properties of the resulting MCs. The obtained materials showed tunable properties (BET surface area: 95-367 m2/g, pore size: 3.3-36.6 nm, V BJH pore volume: 0.05-0.33 m3/g, and carbon and oxygen content: 55.5-91.1 and 3.0-12.2%, respectively) and good performance in terms of one of the highest HA adsorption capacities reported for carbon adsorbents (up to 175 mg/g).
Collapse
Affiliation(s)
- Monika
A. Jedrzejczyk
- Faculty
of Science and Engineering, Aachen-Maastricht Institute for Biobased
Materials (AMIBM), Maastricht University, Brightlands Chemelot Campus, Urmonderbaan
22, Geleen 6167 RD, The Netherland
| | - Julian Engelhardt
- Faculty
of Science and Engineering, Aachen-Maastricht Institute for Biobased
Materials (AMIBM), Maastricht University, Brightlands Chemelot Campus, Urmonderbaan
22, Geleen 6167 RD, The Netherland
| | - Marko R. Djokic
- Faculty
of Engineering and Architecture, Department of Materials, Textiles
and Chemical Engineering, Laboratorium for Chemical Technology (LCT), Ghent University, Technologiepark 125, 9052 Ghent, Belgium
| | - Vitaliy Bliznuk
- Faculty
of Engineering and Architecture, Department of Electrical Energy,
Metals, Mechanical Constructions and Systems, Ghent University, Technologiepark
46, 9052 Ghent, Belgium
| | - Kevin M. Van Geem
- Faculty
of Engineering and Architecture, Department of Materials, Textiles
and Chemical Engineering, Laboratorium for Chemical Technology (LCT), Ghent University, Technologiepark 125, 9052 Ghent, Belgium
| | - An Verberckmoes
- Faculty
of Engineering and Architecture, Department of Materials, Textiles
and Chemical Engineering, Industrial Catalysis and Adsorption Technology
(INCAT), Ghent University, Valentin Vaerwyckweg 1, 9000 Ghent, Belgium
| | - Jeriffa De Clercq
- Faculty
of Engineering and Architecture, Department of Materials, Textiles
and Chemical Engineering, Industrial Catalysis and Adsorption Technology
(INCAT), Ghent University, Valentin Vaerwyckweg 1, 9000 Ghent, Belgium
| | - Katrien V. Bernaerts
- Faculty
of Science and Engineering, Aachen-Maastricht Institute for Biobased
Materials (AMIBM), Maastricht University, Brightlands Chemelot Campus, Urmonderbaan
22, Geleen 6167 RD, The Netherland
| |
Collapse
|
42
|
Rois MF, Widiyastuti W, Setyawan H, Rahmatika AM, Ogi T. Preparation of activated carbon from alkali lignin using novel one-step process for high electrochemical performance application. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2021.103162] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
43
|
Cao KLA, Kitamoto Y, Iskandar F, Ogi T. Sustainable porous hollow carbon spheres with high specific surface area derived from Kraft lignin. ADV POWDER TECHNOL 2021. [DOI: 10.1016/j.apt.2021.04.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
44
|
Sun X, Jin H, Qu W. Lignin-derived 3D porous graphene on carbon cloth for flexible supercapacitors. RSC Adv 2021; 11:19695-19704. [PMID: 35479212 PMCID: PMC9033565 DOI: 10.1039/d1ra01754c] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 05/24/2021] [Indexed: 11/21/2022] Open
Abstract
In this work, we reported a new method to fabricate flexible carbon-based supercapacitor electrodes derived from a commercialized and low-cost lignin. The fabrication process skips traditional stabilization/carbonization/activation for lignin-based carbon production. Also, the process reported here was green and facile, with minimum solvent use and no pretreatment required. Characterization of the lignin showed that it has common properties among all types of lignin. The lignin was impregnated on carbon cloth and then subjected to direct laser writing to form the desired electrodes (LLC). The results showed that lignin was successfully bonded to carbon cloth. The LLC has a good porous carbon structure with a high I G/I D ratio of 1.39, and a small interlayer spacing d 002 of 0.3436 nm, which are superior to most of the reported lignin-based carbons. Although not optimized, the fabricated LLC showed good supercapacitance behavior with an areal capacitance of 157.3 mF cm-2 at 0.1 mA cm-2. In addition, the superior flexibility of LLC makes it a promising electrode that can be used more widely in portable devices. Conceptually, this method can be generalized to all types of lignin and can define intriguing new research interests towards lignin applications.
Collapse
Affiliation(s)
- Xinzhi Sun
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University Qingdao 266109 China
| | - Hong Jin
- Xi'an Jiaotong University Suzhou Academy Suzhou 215123 China
| | - Wangda Qu
- College of Life Sciences, Qingdao Agricultural University Qingdao 266109 China
| |
Collapse
|
45
|
Al Rai A, Yanilmaz M. High-performance nanostructured bio-based carbon electrodes for energy storage applications. CELLULOSE (LONDON, ENGLAND) 2021; 28:5169-5218. [PMID: 33897123 PMCID: PMC8053374 DOI: 10.1007/s10570-021-03881-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 04/10/2021] [Indexed: 06/01/2023]
Abstract
Polyacrylonitrile (PAN)-based carbon precursor is a well-established and researched material for electrodes in energy storage applications due to its good physical properties and excellent electrochemical performance. However, in the fight of preserving the environment and pioneering renewable energy sources, environmentally sustainable carbon precursors with superior electrochemical performance are needed. Therefore, bio-based materials are excellent candidates to replace PAN as a carbon precursor. Depending on the design requirement (e.g. carbon morphology, doping level, specific surface area, pore size and volume, and electrochemical performance), the appropriate selection of carbon precursors can be made from a variety of biomass and biowaste materials. This review provides a summary and discussion on the preparation and characterization of the emerging and recent bio-based carbon precursors that can be used as electrodes in energy storage applications. The review is outlined based on the morphology of nanostructures and the precursor's type. Furthermore, the review discusses and summarizes the excellent electrochemical performance of these recent carbon precursors in storage energy applications. Finally, a summary and outlook are also given. All this together portrays the promising role of bio-based carbon electrodes in energy storage applications.
Collapse
Affiliation(s)
- Adel Al Rai
- Faculty of Aeronautics and Astronautics, Istanbul Technical University, Istanbul, 34469 Turkey
| | - Meltem Yanilmaz
- Nano Science and Nano Engineering, Istanbul Technical University, Istanbul, 34469 Turkey
- Textile Engineering, Istanbul Technical University, Istanbul, 34469 Turkey
| |
Collapse
|
46
|
Chen Y, Fang F, Abbel R, Patel M, Parker K. Rapid Fabrication of Renewable Carbon Fibres by Plasma Arc Discharge and Their Humidity Sensing Properties. SENSORS 2021; 21:s21051911. [PMID: 33803332 PMCID: PMC7967239 DOI: 10.3390/s21051911] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 01/25/2023]
Abstract
Submicron-sized carbon fibres have been attracting research interest due to their outstanding mechanical and electrical properties. However, the non-renewable resources and their complex fabrication processes limit the scalability and pose difficulties for the utilisation of these materials. Here, we investigate the use of plasma arc technology to convert renewable electrospun lignin fibres into a new kind of carbon fibre with a globular and porous microstructure. The influence of arc currents (up to 60 A) on the structural and morphological properties of as-prepared carbon fibres is discussed. Owing to the catalyst-free synthesis, high purity micro-structured carbon fibres with nanocrystalline graphitic domains are produced. Furthermore, the humidity sensing characteristics of the treated fibres at room temperature (23 °C) are demonstrated. Sensors produced from these carbon fibres exhibit good humidity response and repeatability in the range of 30% to 80% relative humidity (RH) and an excellent sensitivity (0.81/%RH) in the high RH regime (60–80%). These results demonstrate that the plasma arc technology has great potential for the development of sustainable, lignin-based carbon fibres for a broad range of application in electronics, sensors and energy storage.
Collapse
Affiliation(s)
- Yi Chen
- Scion, 49 Sala Street, Private Bag 3020, Rotorua 3046, New Zealand; (R.A.); (M.P.); (K.P.)
- Correspondence:
| | - Fang Fang
- National Isotope Centre, GNS Science, 30 Gracefield, Lower Hutt 5010, New Zealand;
| | - Robert Abbel
- Scion, 49 Sala Street, Private Bag 3020, Rotorua 3046, New Zealand; (R.A.); (M.P.); (K.P.)
| | - Meeta Patel
- Scion, 49 Sala Street, Private Bag 3020, Rotorua 3046, New Zealand; (R.A.); (M.P.); (K.P.)
| | - Kate Parker
- Scion, 49 Sala Street, Private Bag 3020, Rotorua 3046, New Zealand; (R.A.); (M.P.); (K.P.)
| |
Collapse
|
47
|
Abstract
A sustainable shift from internal combustion engine (ICE) vehicles to electric vehicles (EVs) is essential to achieve a considerable reduction in emissions. The production of Li-ion batteries (LIBs) used in EVs is an energy-intensive and costly process. It can also lead to significant embedded emissions depending on the source of energy used. In fact, about 39% of the energy consumption in LIB production is associated with drying processes, where the electrode drying step accounts for about a half. Despite the enormous energy consumption and costs originating from drying processes, they are seldomly researched in the battery industry. Establishing knowledge within the LIB industry regarding state-of-the-art drying techniques and solvent evaporation mechanisms is vital for optimising process conditions, detecting alternative solvent systems, and discovering novel techniques. This review aims to give a summary of the state-of-the-art LIB processing techniques. An in-depth understanding of the influential factors for each manufacturing step of LIBs is then established, emphasising the electrode structure and electrochemical performance. Special attention is dedicated to the convection drying step in conventional water and N-Methyl-2-pyrrolidone (NMP)-based electrode manufacturing. Solvent omission in dry electrode processing substantially lowers the energy demand and allows for a thick, mechanically stable electrode coating. Small changes in the electrode manufacturing route may have an immense impact on the final battery performance. Electrodes used for research and development often have a different production route and techniques compared to those processed in industry. The scalability issues related to the comparison across scales are discussed and further emphasised when the industry moves towards the next-generation techniques. Finally, the critical aspects of the innovations and industrial modifications that aim to overcome the main challenges are presented.
Collapse
|
48
|
Hassan M, Liu Y, Naidu R, Parikh SJ, Du J, Qi F, Willett IR. Influences of feedstock sources and pyrolysis temperature on the properties of biochar and functionality as adsorbents: A meta-analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 744:140714. [PMID: 32717463 DOI: 10.1016/j.scitotenv.2020.140714] [Citation(s) in RCA: 152] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 07/01/2020] [Accepted: 07/01/2020] [Indexed: 05/14/2023]
Abstract
Biochar is a porous, amorphous, stable, and low-density carbon material derived from the carbonization of various biological residues. Biochars have multifunctional properties that make them promising adsorbents for the remediation of organic and inorganic contaminants from soil and water. High temperature treatment (HTT) and the properties of feedstocks are key factors influencing the properties of biochars. Feedstocks have distinctive physicochemical properties due to variations in elemental and structural composition, and they respond heterogeneously to specific pyrolysis conditions. The criteria for the selection of feedstocks and pyrolysis conditions for designing biochars for specific sorption properties are inadequately understood. We evaluated the influence of pyrolysis temperature on a wide range of feedstocks to investigate their effects on biochar properties. With increasing HTT, biochar pH, surface area, pore size, ash content, hydrophobicity and O/C vs. H/C (ratios that denote stability) increased, whereas, hydrophilicity, yield of biochar, O/C, and H/C decreased. Discriminant analysis of data from 533 published datasets revealed that biochar derived from hardwood (HBC) and softwood generally have greater surface area and carbon content, but lower content of oxygen and mineral constituents, than manure- (MBC) and grass-derived biochars (GBC). GBC and MBC have abundant oxygen-containing functional groups than SBC and HBC. The sequence of stability and aromaticity of feedstocks was MBC < GBC < SBC < HBC. Therefore, SBC and HBC are suitable for sorption of hydrophobic molecules. Biochars produced from low HTT are suitable for removal of ionic contaminants, whereas those produced at high HTT are suitable for removal of organic contaminants. The influences of biochar properties on sorption performance of heavy metals and organic contaminants are critically reviewed.
Collapse
Affiliation(s)
- Masud Hassan
- Global Centre for Environmental Remediation, Faculty of Science, University of Newcastle, Callaghan, NSW 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), Callaghan, NSW 2308, Australia.
| | - Yanju Liu
- Global Centre for Environmental Remediation, Faculty of Science, University of Newcastle, Callaghan, NSW 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), Callaghan, NSW 2308, Australia.
| | - Ravi Naidu
- Global Centre for Environmental Remediation, Faculty of Science, University of Newcastle, Callaghan, NSW 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), Callaghan, NSW 2308, Australia.
| | - Sanjai J Parikh
- Department of Land, Air and Water Resources, University of California, Davis, CA, USA.
| | - Jianhua Du
- Global Centre for Environmental Remediation, Faculty of Science, University of Newcastle, Callaghan, NSW 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), Callaghan, NSW 2308, Australia.
| | - Fangjie Qi
- Global Centre for Environmental Remediation, Faculty of Science, University of Newcastle, Callaghan, NSW 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), Callaghan, NSW 2308, Australia.
| | - Ian R Willett
- School of Agriculture & Food, The University of Melbourne, VIC 3052, Australia.
| |
Collapse
|
49
|
Li H, Shi F, An Q, Zhai S, Wang K, Tong Y. Three-dimensional hierarchical porous carbon derived from lignin for supercapacitors: Insight into the hydrothermal carbonization and activation. Int J Biol Macromol 2020; 166:923-933. [PMID: 33152364 DOI: 10.1016/j.ijbiomac.2020.10.249] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/18/2020] [Accepted: 10/30/2020] [Indexed: 12/19/2022]
Abstract
Three-dimensional hierarchical porous carbon is prepared by utilizing enzymatic hydrolysis lignin as a carbon source via hydrothermal carbonization and activation. The complicated operational parameters including temperature, time, concentration and pH in the hydrothermal carbonization are systemically investigated. We employed the hydrochar as electrode for supercapacitors. Accordingly, we not only achieve a high-performance specific capacitance for supercapacitors but also rationalize the effects of hydrothermal conditions on the specific capacitance via various characterizations. The activation process of hydrochar is also studied by comparing various activators and the activator/hydrochar ratios. The obtained materials possess a three-dimensional interconnected hierarchical structure with rational pore size distribution and a specific surface area reach up to 1504 m2 g-1. Then the corresponding supercapacitors achieve a large specific capacitance of 324 F g-1 as the current density is 0.5 A g-1. These supercapacitors acquire an outstanding cycling stability with 99.7% capacitance retention after 5000 cycles. The assembled symmetrical supercapacitors also show a high energy density of 17.9 W h kg-1 and can maintain at 5.6 W h kg-1 even at an ultra-high power density of 50,400 W kg-1.
Collapse
Affiliation(s)
- Hongsheng Li
- Faculty of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Feiyan Shi
- Faculty of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Qingda An
- Faculty of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China.
| | - Shangru Zhai
- Faculty of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Kai Wang
- Dalian National Laboratory for Clean Energy; Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Yao Tong
- Faculty of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
50
|
Xu Q, Wang X, Cheng J, Zhang L, He F, Xie H. Self-template/activation nitrogen-doped porous carbon materials derived from lignosulfonate-based ionic liquids for high performance supercapacitors. RSC Adv 2020; 10:36504-36513. [PMID: 35517918 PMCID: PMC9057050 DOI: 10.1039/d0ra06821g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 09/24/2020] [Indexed: 11/21/2022] Open
Abstract
A simple ion exchange reaction of sodium lignosulfonate (SLS) and 1-allyl-3-methyl imidazolium chloride ([Amim]Cl) produced a new polymeric ionic liquid [Amim]LS and NaCl, and the mixture was successfully used as a precursor to prepare a nitrogen-doped porous carbon material via direct carbonization without any additional activation agent or template. It was believed that the in situ produced NaCl during the precursor synthesis process acted as the self-template and in self-activation. The introduction of imidazolium ionic liquid into the precursor raised the nitrogen content of the obtained carbon material up to 4.68% for a high yield of [Amim]LS-700 carbon material up to 34.6%. The effect of carbonization temperature on the structures and electrochemical properties of the prepared carbon were also studied systematically. It was found that the carbon material exhibits a superior gravimetric capacitance up to 230 F g-1 (0.1 A g-1) at the carbonization temperature of 700 °C, a good energy density of 7.99 W h kg-1 at the power density of 25 W Kg-1, and an excellent cycling stability of 90.3% after 20 000 cycles. This work provides a new path for the value-added utilization of biomass coupled with the field of electrochemical energy storage.
Collapse
Affiliation(s)
- Qinqin Xu
- Department of New Energy Materials & Engineering, College of Materials & Metallurgy, Guizhou University Huaxi District Guiyang 550025 P. R. China
| | - Xia Wang
- Department of New Energy Materials & Engineering, College of Materials & Metallurgy, Guizhou University Huaxi District Guiyang 550025 P. R. China
| | - Jian Cheng
- Department of New Energy Materials & Engineering, College of Materials & Metallurgy, Guizhou University Huaxi District Guiyang 550025 P. R. China
| | - Lin Zhang
- Department of New Energy Materials & Engineering, College of Materials & Metallurgy, Guizhou University Huaxi District Guiyang 550025 P. R. China
| | - Feng He
- Department of New Energy Materials & Engineering, College of Materials & Metallurgy, Guizhou University Huaxi District Guiyang 550025 P. R. China
| | - Haibo Xie
- Department of New Energy Materials & Engineering, College of Materials & Metallurgy, Guizhou University Huaxi District Guiyang 550025 P. R. China
| |
Collapse
|