1
|
Janssen K, Kirchmair J, Proppe J. Relevance and Potential Applications of C2-Carboxylated 1,3-Azoles. ChemMedChem 2024; 19:e202400307. [PMID: 39022854 DOI: 10.1002/cmdc.202400307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 07/12/2024] [Accepted: 07/16/2024] [Indexed: 07/20/2024]
Abstract
Carbon dioxide (CO2) is an economically viable and abundant carbon source that can be incorporated into compounds such as C2-carboxylated 1,3-azoles relevant to the pharmaceutical, cosmetics, and pesticide industries. Of the 2.4 million commercially available C2-unsubstituted 1,3-azole compounds, less than 1 % are currently purchasable as their C2-carboxylated derivatives, highlighting the substantial gap in compound availability. This availability gap leaves ample opportunities for exploring the synthetic accessibility and use of carboxylated azoles in bioactive compounds. In this study, we analyze and quantify the relevance of C2-carboxylated 1,3-azoles in small-molecule research. An analysis of molecular databases such as ZINC, ChEMBL, COSMOS, and DrugBank identified relevant C2-carboxylated 1,3-azoles as anticoagulant and aroma-giving compounds. Moreover, a pharmacophore analysis highlights promising pharmaceutical potential associated with C2-carboxylated 1,3-azoles, revealing the ATP-sensitive inward rectifier potassium channel 1 (KATP) and Kinesin-like protein KIF18 A as targets that can potentially be addressed with C2-carboxylated 1,3-azoles. Moreover, we identified several bioisosteres of C2-carboxylated 1,3-azoles. In conclusion, further exploration of the chemical space of C2-carboxylated 1,3-azoles is recommended to harness their full potential in drug discovery and related fields.
Collapse
Affiliation(s)
- Kerrin Janssen
- Institute of Physical and Theoretical Chemistry, TU Braunschweig, 38106, Braunschweig, Germany
| | - Johannes Kirchmair
- Christian Doppler Laboratory for Molecular Informatics in the Biosciences and Department of Pharmaceutical Sciences, University of Vienna, 1090, Vienna, Austria
| | - Jonny Proppe
- Institute of Physical and Theoretical Chemistry, TU Braunschweig, 38106, Braunschweig, Germany
| |
Collapse
|
2
|
Liu Y, Xue GH, He Z, Yue JP, Pan M, Song L, Zhang W, Ye JH, Yu DG. Visible-Light Photoredox-Catalyzed Direct Carboxylation of Tertiary C(sp 3)-H Bonds with CO 2: Facile Synthesis of All-Carbon Quaternary Carboxylic Acids. J Am Chem Soc 2024. [PMID: 39374105 DOI: 10.1021/jacs.4c09558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
Direct carboxylation of C-H bonds with CO2 represents an attractive strategy to synthesize valuable carboxylic acids with high atom, step, and redox economy. Although great progress has been achieved in this field, catalytic carboxylation of tertiary C(sp3)-H bonds still remains challenging due to their inherent inertness and significant steric hindrance. Herein, we report a direct carboxylation of tertiary benzylic C(sp3)-H bonds with CO2 via visible-light photoredox catalysis. Various all-carbon quaternary carboxylic acids, which are of significant importance in medicinal chemistry, are successfully obtained with high yields. This direct carboxylation is characterized by good functional group tolerance, broad substrate scope, and mild operational conditions. Furthermore, our methodology enables the efficient and rapid synthesis of key drug or bioactive molecules, such as carbetapentane, caramiphen, and PRE-084 (σ1 receptor agonist), and facilitates various functionalizations of C(sp2)-H bonds using the directing ability of target carboxylic acids, thus highlighting its practical applications. Mechanistic studies indicate that a carbanion, which serves as the key intermediate to react with CO2, is catalytically generated via a single electron reduction of a benzylic radical through a consecutive photoinduced electron transfer process.
Collapse
Affiliation(s)
- Yi Liu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Guan-Hua Xue
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Zhen He
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Jun-Ping Yue
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Min Pan
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Lei Song
- College of Carbon Neutrality Future Technology, Sichuan University, Chengdu 610065, P. R. China
| | - Wei Zhang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Jian-Heng Ye
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Da-Gang Yu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
- State Key Laboratory of Elemento-organic Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| |
Collapse
|
3
|
Desmons S, Bonin J, Robert M, Bontemps S. Four-electron reduction of CO 2: from formaldehyde and acetal synthesis to complex transformations. Chem Sci 2024:d4sc02888k. [PMID: 39246334 PMCID: PMC11376136 DOI: 10.1039/d4sc02888k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 08/02/2024] [Indexed: 09/10/2024] Open
Abstract
The expansive and dynamic field of the CO2 Reduction Reaction (CO2RR) seeks to harness CO2 as a sustainable carbon source or energy carrier. While significant progress has been made in two, six, and eight-electron reductions of CO2, the four-electron reduction remains understudied. This review fills this gap, comprehensively exploring CO2 reduction into formaldehyde (HCHO) or acetal-type compounds (EOCH2OE, with E = [Si], [B], [Zr], [U], [Y], [Nb], [Ta] or -R) using various CO2RR systems. These encompass (photo)electro-, bio-, and thermal reduction processes with diverse reductants. Formaldehyde, a versatile C1 product, is challenging to synthesize and isolate from the CO2RR. The review also discusses acetal compounds, emphasizing their significance as pathways to formaldehyde with distinct reactivity. Providing an overview of the state of four-electron CO2 reduction, this review highlights achievements, challenges, and the potential of the produced compounds - formaldehyde and acetals - as sustainable sources for valuable product synthesis, including chiral compounds.
Collapse
Affiliation(s)
- Sarah Desmons
- LCC-CNRS, Université de Toulouse, CNRS 205 route de Narbonne 31077 Toulouse Cedex 04 France
| | - Julien Bonin
- Laboratoire d'Electrochimie Moléculaire, Université Paris Cité, CNRS F-75013 Paris France
- Institut Parisien de Chimie Moléculaire, Sorbonne Université, CNRS F-75005 Paris France
| | - Marc Robert
- Laboratoire d'Electrochimie Moléculaire, Université Paris Cité, CNRS F-75013 Paris France
- Institut Parisien de Chimie Moléculaire, Sorbonne Université, CNRS F-75005 Paris France
- Institut Universitaire de France (IUF) F-75005 Paris France
| | - Sébastien Bontemps
- LCC-CNRS, Université de Toulouse, CNRS 205 route de Narbonne 31077 Toulouse Cedex 04 France
| |
Collapse
|
4
|
Zhang S, Zheng R, Long J, Zhu Y, Tan T. Computational design of carboxylase for the synthesis of 4-hydroxyisophthalic acid from p-hydroxybenzoic acid by fixing CO 2. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 366:121703. [PMID: 38996602 DOI: 10.1016/j.jenvman.2024.121703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 06/11/2024] [Accepted: 07/02/2024] [Indexed: 07/14/2024]
Abstract
Carbon dioxide (CO2) emissions constitute the primary contribution to global climate change. Synthetic CO2 fixation represents an exceptionally appealing and sustainable method for carbon neutralization. Unlike the limitations of chemical catalysis, biological CO2 fixation displays high selectivity and the ability to operate under mild conditions. The superfamily of amidohydrolases has demonstrated the ability to synthesize a range of aromatic monocarboxylic acids. However, there is a scarcity of reported carboxylases capable of synthesizing aromatic dicarboxylic acids. Among these, 4-hydroxyisophthalic acid holds significant potential for applications across various fields, yet no enzyme has been reported for its synthesis. In this study, we developed for the first time that exhibits starting activity in fixing CO2 to synthesize 4-hydroxyisophthalic acid. Furthermore, we have devised a computational strategy that effectively enhances the catalytic activity of this enzyme. A focused library comprising only 13 variants was generated. Experimental validation confirmed a threefold improvement in the carboxylation activity of the optimal variant (L47M). The computational enzyme design strategy proposed in this paper demonstrates broad applicability in developing carboxylases for synthesizing other aromatic dicarboxylic acids. This lays the groundwork for leveraging biocatalysis in industrial synthesis for CO2 fixation.
Collapse
Affiliation(s)
- Shiding Zhang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Ruonan Zheng
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Jianyu Long
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yushan Zhu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China; National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Tianwei Tan
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China; National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, Beijing, 100029, China.
| |
Collapse
|
5
|
Fujisawa JI, Kato S, Hanaya M. Interfacial charge-transfer transitions enable photovoltaic conversion with CO 2-fixation products. Chem Commun (Camb) 2024; 60:7918-7921. [PMID: 38980140 DOI: 10.1039/d4cc01457j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
We demonstrate that organic-inorganic interfacial charge-transfer transitions enable favourable photovoltaic conversion with CO2-fixation products such as aromatic carboxylic acids, verifying a new possibility of CO2-fixation products in the development of optoelectronic conversion materials.
Collapse
Affiliation(s)
- Jun-Ichi Fujisawa
- Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma, 376-8515, Japan.
| | - Shunsuke Kato
- Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma, 376-8515, Japan.
| | - Minoru Hanaya
- Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma, 376-8515, Japan.
| |
Collapse
|
6
|
Basuri P, Mukhopadhyay S, Reddy KSSVP, Unni K, Spoorthi BK, Shantha Kumar J, Yamijala SSRKC, Pradeep T. Spontaneous α-C-H Carboxylation of Ketones by Gaseous CO 2 at the Air-water Interface of Aqueous Microdroplets. Angew Chem Int Ed Engl 2024; 63:e202403229. [PMID: 38577991 DOI: 10.1002/anie.202403229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/29/2024] [Accepted: 04/02/2024] [Indexed: 04/06/2024]
Abstract
We present a catalyst-free route for the reduction of carbon dioxide integrated with the formation of a carbon-carbon bond at the air/water interface of negatively charged aqueous microdroplets, at ambient temperature. The reactions proceed through carbanion generation at the α-carbon of a ketone followed by nucleophilic addition to CO2. Online mass spectrometry reveals that the product is an α-ketoacid. Several factors, such as the concentration of the reagents, pressure of CO2 gas, and distance traveled by the droplets, control the kinetics of the reaction. Theoretical calculations suggest that water in the microdroplets facilitates this unusual chemistry. Furthermore, such a microdroplet strategy has been extended to seven different ketones. This work demonstrates a green pathway for the reduction of CO2 to useful carboxylated organic products.
Collapse
Affiliation(s)
- Pallab Basuri
- DST Unit of Nanoscience and Thematic Unit of Excellence, Department of Chemistry, Indian Institute of Technology Madras, 600036, Chennai, Tamil Nadu, India
| | - Sinchan Mukhopadhyay
- DST Unit of Nanoscience and Thematic Unit of Excellence, Department of Chemistry, Indian Institute of Technology Madras, 600036, Chennai, Tamil Nadu, India
| | - K S S V Prasad Reddy
- Department of Chemistry, Indian Institute of Technology Madras, 600036, Chennai, Tamil Nadu, India
| | - Keerthana Unni
- DST Unit of Nanoscience and Thematic Unit of Excellence, Department of Chemistry, Indian Institute of Technology Madras, 600036, Chennai, Tamil Nadu, India
| | - B K Spoorthi
- DST Unit of Nanoscience and Thematic Unit of Excellence, Department of Chemistry, Indian Institute of Technology Madras, 600036, Chennai, Tamil Nadu, India
| | - Jenifer Shantha Kumar
- DST Unit of Nanoscience and Thematic Unit of Excellence, Department of Chemistry, Indian Institute of Technology Madras, 600036, Chennai, Tamil Nadu, India
| | - Sharma S R K C Yamijala
- Centre for Atomistic Modelling and Materials Design, Centre for Molecular Materials and Functions, Centre for Quantum Information, Communication, and Computing, Department of Chemistry, Indian Institute of Technology Madras, 600036, Chennai, Tamil Nadu, India
| | - Thalappil Pradeep
- DST Unit of Nanoscience and Thematic Unit of Excellence, Department of Chemistry, Indian Institute of Technology Madras, 600036, Chennai, Tamil Nadu, India
| |
Collapse
|
7
|
Chen XW, Li C, Gui YY, Yue JP, Zhou Q, Liao LL, Yang JW, Ye JH, Yu DG. Atropisomeric Carboxylic Acids Synthesis via Nickel-Catalyzed Enantioconvergent Carboxylation of Aza-Biaryl Triflates with CO 2. Angew Chem Int Ed Engl 2024; 63:e202403401. [PMID: 38527960 DOI: 10.1002/anie.202403401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 03/25/2024] [Accepted: 03/25/2024] [Indexed: 03/27/2024]
Abstract
Upgrading CO2 to value-added chiral molecules via catalytic asymmetric C-C bond formation is a highly important yet challenging task. Although great progress on the formation of centrally chiral carboxylic acids has been achieved, catalytic construction of axially chiral carboxylic acids with CO2 has never been reported to date. Herein, we report the first catalytic asymmetric synthesis of axially chiral carboxylic acids with CO2, which is enabled by nickel-catalyzed dynamic kinetic asymmetric reductive carboxylation of racemic aza-biaryl triflates. A variety of important axially chiral carboxylic acids, which are valuable but difficult to obtain via catalysis, are generated in an enantioconvergent version. This new methodology features good functional group tolerance, easy to scale-up, facile transformation and avoids cumbersome steps, handling organometallic reagents and using stoichiometric chiral materials. Mechanistic investigations indicate a dynamic kinetic asymmetric transformation process induced by chiral nickel catalysis.
Collapse
Affiliation(s)
- Xiao-Wang Chen
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Chao Li
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Yong-Yuan Gui
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610068, P. R. China
| | - Jun-Ping Yue
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Qi Zhou
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Li-Li Liao
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Jing-Wei Yang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Jian-Heng Ye
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Da-Gang Yu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| |
Collapse
|
8
|
Wang L, Wu H, Zhao Y, Li B, Wang B. Nickel-Catalyzed Lactamization Reaction of 2-Arylanilines with CO 2. Org Lett 2024; 26:3940-3944. [PMID: 38686851 DOI: 10.1021/acs.orglett.4c01156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Transition-metal-catalyzed lactamization and lactonization of C-H bonds with CO2 assisted by the chelation of amino or hydroxyl groups have been developed but limited to the use of precious metal catalysts such as palladium and rhodium. In this work, we report the nonprecious metal nickel-catalyzed lactamization reaction of 2-arylanilines with CO2 under redox-neutral conditions via C-H bond activation. The reaction displayed excellent functional group tolerance, providing various phenanthridinones with moderate to high yields.
Collapse
Affiliation(s)
- Lu Wang
- State Key Laboratory of Elemento-Organic Chemistry and Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| | - Hanxuan Wu
- State Key Laboratory of Elemento-Organic Chemistry and Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| | - Yucheng Zhao
- State Key Laboratory of Elemento-Organic Chemistry and Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| | - Bin Li
- State Key Laboratory of Elemento-Organic Chemistry and Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| | - Baiquan Wang
- State Key Laboratory of Elemento-Organic Chemistry and Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, People's Republic of China
| |
Collapse
|
9
|
Zainul R, Abdullah MN, Saeed SM, Idan AH, Ahmed Alsultany NM, Arshadi S, Behmagham F, Vessally E. Recent trends in incorporation of CO 2 into organosulfur compounds via C-S bond cleavage. RSC Adv 2024; 14:15680-15690. [PMID: 38752156 PMCID: PMC11095090 DOI: 10.1039/d4ra02405b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 04/29/2024] [Indexed: 05/18/2024] Open
Abstract
Desulfurative functionalization of organosulfur compounds to form various carbon-carbon and carbon-heteroatom bonds has become established as a powerful tool in organic chemistry. In this context, desulfurative carboxylation of this class of compounds using carbon dioxide (CO2) as a sustainable and renewable source of carboxyl has recently been developed as an efficient option for the synthesis of carboxylic acid derivatives. The aim of this Focus Review is to summarize the major progress in this appealing research field with particular emphasis on the mechanistic features of the reactions. Literature has been surveyed until the end of February 2024, according to the data collected using SciFinder and Google Scholar engines.
Collapse
Affiliation(s)
- Rahadian Zainul
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Negeri Padang Indonesia
- Center for Advanced Material Processing, Artificial Intelligence, and Biophysics Informatics (CAMPBIOTICS), Universitas Negeri Padang Indonesia
| | - Media Noori Abdullah
- Department of Chemistry, College of Science, Salahaddin University-Erbil Erbil Kurdistan Region Iraq
| | | | | | | | - Sattar Arshadi
- Department of Chemical Engineering, University of Science and Technology of Mazandaran Behshahr Iran
| | - Farnaz Behmagham
- Department of Chemistry, Miandoab Branch, Islamic Azad University Miandoab Iran
| | - Esmail Vessally
- Department of Chemistry, Payame Noor University P. O. Box 19395-1697 Tehran Iran
| |
Collapse
|
10
|
Liu H, Shi L, Tan X, Kang B, Luo G, Jiang H, Qi C. Et 2 Zn-Mediated Gem-Dicarboxylation of Cyclopropanols with CO 2. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307633. [PMID: 38126667 PMCID: PMC10916615 DOI: 10.1002/advs.202307633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Indexed: 12/23/2023]
Abstract
An unprecedented Et2 Zn-mediated gem-dicarboxylation of C─C/C─H single bond of cyclopropanols with CO2 is disclosed, which provides a straightforward and efficient methodology for the synthesis of a variety of structurally diverse and useful malonic acids in moderate to excellent yields. The protocol features mild reaction conditions, excellent functional group compatibility, broad substrate scope, and facile derivatization of the products. DFT calculations confirm that the transition-metal-free transformation proceeds through a novel ring-opening/α-functionalization/ring-closing/ring-opening/β-functionalization (ROFCOF) process, and 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) plays dual important roles in the transformation.
Collapse
Affiliation(s)
- Hongjian Liu
- Key Laboratory of Functional Molecular Engineering of Guangdong ProvinceSchool of Chemistry and Chemical EngineeringSouth China University of TechnologyGuangzhou510640China
| | - Lei Shi
- Institutes of Physical Science and Information TechnologyAnhui UniversityHefei230601China
| | - Xiaobin Tan
- Key Laboratory of Functional Molecular Engineering of Guangdong ProvinceSchool of Chemistry and Chemical EngineeringSouth China University of TechnologyGuangzhou510640China
| | - Bangxiong Kang
- Key Laboratory of Functional Molecular Engineering of Guangdong ProvinceSchool of Chemistry and Chemical EngineeringSouth China University of TechnologyGuangzhou510640China
| | - Gen Luo
- Institutes of Physical Science and Information TechnologyAnhui UniversityHefei230601China
| | - Huanfeng Jiang
- Key Laboratory of Functional Molecular Engineering of Guangdong ProvinceSchool of Chemistry and Chemical EngineeringSouth China University of TechnologyGuangzhou510640China
| | - Chaorong Qi
- Key Laboratory of Functional Molecular Engineering of Guangdong ProvinceSchool of Chemistry and Chemical EngineeringSouth China University of TechnologyGuangzhou510640China
| |
Collapse
|
11
|
Morales A, Gonçalves C, Sournia-Saquet A, Vendier L, Lledós A, Baslé O, Bontemps S. Single electron reduction of NHC-CO 2-borane compounds. Chem Sci 2024; 15:3165-3173. [PMID: 38425525 PMCID: PMC10901481 DOI: 10.1039/d3sc06325a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 01/18/2024] [Indexed: 03/02/2024] Open
Abstract
The carbon dioxide radical anion [CO2˙-] is a highly reactive species of fundamental and synthetic interest. However, the direct one-electron reduction of CO2 to generate [CO2˙-] occurs at very negative reduction potentials, which is often a limiting factor for applications. Here, we show that NHC-CO2-BR3 species - generated from the Frustrated Lewis Pair (FLP)-type activation of CO2 by N-heterocyclic carbenes (NHCs) and boranes (BR3) - undergo single electron reduction at a less negative potential than free CO2. A net gain of more than one volt was notably measured with a CAAC-CO2-B(C6F5)3 adduct, which was chemically reduced to afford [CAAC-CO2-B(C6F5)3˙-]. This room temperature stable radical anion was characterized by EPR spectroscopy and by single-crystal X-ray diffraction analysis. Of particular interest, DFT calculations showed that, thanks to the electron withdrawing properties of the Lewis acid, significant unpaired spin density is localised on the carbon atom of the CO2 moiety. Finally, these species were shown to exhibit analogous reactivity to the carbon dioxide radical anion [CO2˙-] toward DMPO. This work demonstrates the advantage provided by FLP systems in the generation and stabilization of [CO2˙-]-like species.
Collapse
Affiliation(s)
- Agustín Morales
- LCC-CNRS, Université de Toulouse, CNRS, 205 route de Narbonne 31077 Toulouse Cedex 04 France
- Departament de Química, Universitat Autonoma de Barcelona 08193 Cerdanyola del Valles Catalonia Spain
| | - Caroline Gonçalves
- LCC-CNRS, Université de Toulouse, CNRS, 205 route de Narbonne 31077 Toulouse Cedex 04 France
| | - Alix Sournia-Saquet
- LCC-CNRS, Université de Toulouse, CNRS, 205 route de Narbonne 31077 Toulouse Cedex 04 France
| | - Laure Vendier
- LCC-CNRS, Université de Toulouse, CNRS, 205 route de Narbonne 31077 Toulouse Cedex 04 France
| | - Agustí Lledós
- Departament de Química, Universitat Autonoma de Barcelona 08193 Cerdanyola del Valles Catalonia Spain
| | - Olivier Baslé
- LCC-CNRS, Université de Toulouse, CNRS, 205 route de Narbonne 31077 Toulouse Cedex 04 France
| | - Sébastien Bontemps
- LCC-CNRS, Université de Toulouse, CNRS, 205 route de Narbonne 31077 Toulouse Cedex 04 France
| |
Collapse
|
12
|
Zhang S, Li L, Li D, Zhou YY, Tang Y. Catalytic Regio- and Enantioselective Boracarboxylation of Arylalkenes with CO 2 and Diboron. J Am Chem Soc 2024; 146:2888-2894. [PMID: 38277681 DOI: 10.1021/jacs.3c12720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2024]
Abstract
Catalytic asymmetric carboxylation of readily available alkenes with CO2, an abundant and sustainable one-carbon building block, that gives access to value-added α-stereogenic carboxylic acids in an atom- and step-economic manner is highly attractive. However, it has remained a formidable challenge for the synthetic community. Here, the first example of Cu-catalyzed highly regio- and enantioselective boracarboxylation reaction on various arylalkenes with diboron under an atmospheric pressure of CO2 is described, which afforded a variety of chiral β-boron-functionalized α-aryl carboxylic acids with up to 87% yield and 97% ee under mild conditions. Importantly, α-substituted arylalkenes could also be subject to this protocol with excellent enantiopurities, thereby rendering an efficient approach for the generation of enantioenriched carboxylic acids with an α-chiral all-carbon quaternary center. Moreover, high functional group tolerance, scalable synthesis, and facile access to bioactive compounds, like (-)-scopolamine, (-)-anisodamine, and (-)-tropicamide, further demonstrated the synthetic utility of this strategy.
Collapse
Affiliation(s)
- Sudong Zhang
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| | - Liping Li
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| | - Dingxi Li
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| | - You-Yun Zhou
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| | - Yong Tang
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, P. R. China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, P. R. China
| |
Collapse
|
13
|
Lan J, Lu X, Ren B, Duo F, Niu X, Si J. Visible-light-driven photocatalytic carboxylation to aromatic carboxylic acids with CO 2. Org Biomol Chem 2024; 22:682-693. [PMID: 38189574 DOI: 10.1039/d3ob01788e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
(Hetero)aromatic carboxylic acids and their derivatives attract attention due to their role in the synthesis of several biologically active molecules, active pharmaceutical ingredients, polymers, etc. Carbon dioxide (CO2) is a prime C1 source for the synthesis of aromatic carboxylic acids because of its nontoxicity, nonflammability, abundance and renewability. Owing to the thermodynamic and chemical inertness of CO2, traditional carboxylation to aromatic carboxylic acids with CO2 is always performed under harsh reaction conditions or using stoichiometric metallic reductants. Visible-light-driven carboxylation with CO2 provides an environmentally benign, mild, and high-efficiency route for the production of aromatic carboxylic acids. This review comprehensively introduces the visible-light-driven preparation of aromatic carboxylic acids through a visible-light-driven oxidative addition and reductive elimination mechanism, binding of aryl (radical) anions which are produced by photoinduced electron transfer (PET) to CO2, binding of carbon dioxide anion radicals (CO2˙-) which are formed by PET to aryl compounds, radical coupling between CO2˙- and aryl radicals, and other mechanisms. Finally, this review provides a summary and the future work direction. This article offers a theoretical guidance for efficient synthesis of aromatic carboxylic acids via photocatalysis.
Collapse
Affiliation(s)
- Jihong Lan
- School of Chemistry and Materials Engineering, Xinxiang University, Xinxiang 453003, China.
| | - Xiaoyan Lu
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang, China
| | - Bo Ren
- School of Pharmacy, Xinxiang University, Xinxiang 453003, China
| | - Fangfang Duo
- School of Chemistry and Materials Engineering, Xinxiang University, Xinxiang 453003, China.
| | - Xinkai Niu
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang, China
| | - Jiangju Si
- School of Chemistry and Materials Engineering, Xinxiang University, Xinxiang 453003, China.
| |
Collapse
|
14
|
Luo Y, Huang W. Base-mediated carboxylation of C-nucleophiles with CO 2. Org Biomol Chem 2023; 21:8628-8641. [PMID: 37860946 DOI: 10.1039/d3ob01367g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Carbon dioxide (CO2) is an available, abundant, and renewable C1 resource, which could be converted into value-added chemicals. Due to its inherent thermodynamic stability and kinetic inertness, it is difficult to realize its efficient utilization. Nevertheless, many elegant strategies for the utilization of CO2 have been developed using Lewis bases, frustrated Lewis pairs, hydroxyl-containing compounds, amino-group-containing compounds or transition metal catalysis. Among them, base-mediated carboxylation of C-nucleophiles is an environmentally friendly strategy for CO2 conversion, which is operationally simple, using low-toxicity bases and economical available promoters, without the use of complex ligands or cocatalysts. This review summarizes related work on the base-mediated carboxylation of C-nucleophiles with CO2, based on the effects of nucleophiles, promoters, additives, and solvents. The types of pronucleophile are categorized as follows: hydrocarbon with C(sp3)-H, C(sp2)-H or C(sp)-H bonds, organosilanes, organotin, organoboron, and N-tosylhydrazones. Typical mechanisms and applications of these carboxylation reactions are also depicted. Moreover, mechanistic comprehension of CO2 activation and conversion at a molecular level aims to further expand the repertoire of carboxylation transformations mediated by bases.
Collapse
Affiliation(s)
- Yanlong Luo
- School of Chemical Engineering and Technology, Tianshui Normal University, Tianshui, Gansu 741001, China.
| | - Wenbin Huang
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China.
| |
Collapse
|
15
|
Giovanelli R, Lombardi L, Pedrazzani R, Monari M, Reis MC, López CS, Bertuzzi G, Bandini M. Nickel Catalyzed Carbonylation/Carboxylation Sequence via Double CO 2 Incorporation. Org Lett 2023; 25:6969-6974. [PMID: 37669466 PMCID: PMC10546374 DOI: 10.1021/acs.orglett.3c02394] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Indexed: 09/07/2023]
Abstract
A carbonylation-carboxylation synthetic sequence, via double CO2 fixation, is described. The productive merger of a Ni-catalyzed cross-electrophile coupling manifold, with the use of AlCl3, triggered a cascade reaction with the formation of three consecutive C-C bonds in a single operation. This strategy traces an unprecedented synthetic route to ketones under Lewis acid assisted carbon dioxide valorization. Computational insights revealed a unique double function of AlCl3, and labeling (13CO2) experiments validate the genuine incorporation of CO2 in both functional groups.
Collapse
Affiliation(s)
- Riccardo Giovanelli
- Dipartimento
di Chimica “Giacomo Ciamician”, Alma Mater Studiorum − Università di Bologna, Via P. Gobetti 85, 40129, Bologna, Italy
- Center
for Chemical Catalysis − C3, Dipartimento di Chimica “Giacomo
Ciamician”, Alma Mater Studiorum
− Università di Bologna, Via P. Gobetti 85, 40129, Bologna, Italy
| | - Lorenzo Lombardi
- Dipartimento
di Chimica “Giacomo Ciamician”, Alma Mater Studiorum − Università di Bologna, Via P. Gobetti 85, 40129, Bologna, Italy
| | - Riccardo Pedrazzani
- Dipartimento
di Chimica “Giacomo Ciamician”, Alma Mater Studiorum − Università di Bologna, Via P. Gobetti 85, 40129, Bologna, Italy
- Center
for Chemical Catalysis − C3, Dipartimento di Chimica “Giacomo
Ciamician”, Alma Mater Studiorum
− Università di Bologna, Via P. Gobetti 85, 40129, Bologna, Italy
| | - Magda Monari
- Dipartimento
di Chimica “Giacomo Ciamician”, Alma Mater Studiorum − Università di Bologna, Via P. Gobetti 85, 40129, Bologna, Italy
- Center
for Chemical Catalysis − C3, Dipartimento di Chimica “Giacomo
Ciamician”, Alma Mater Studiorum
− Università di Bologna, Via P. Gobetti 85, 40129, Bologna, Italy
| | - Marta Castiñeira Reis
- Departamento
de Química Orgánica, Universidad
de Vigo, As Lagoas-Marcosende, 36310, Vigo, Spain
| | - Carlos Silva López
- Departamento
de Química Orgánica, Universidad
de Vigo, As Lagoas-Marcosende, 36310, Vigo, Spain
| | - Giulio Bertuzzi
- Dipartimento
di Chimica “Giacomo Ciamician”, Alma Mater Studiorum − Università di Bologna, Via P. Gobetti 85, 40129, Bologna, Italy
- Center
for Chemical Catalysis − C3, Dipartimento di Chimica “Giacomo
Ciamician”, Alma Mater Studiorum
− Università di Bologna, Via P. Gobetti 85, 40129, Bologna, Italy
| | - Marco Bandini
- Dipartimento
di Chimica “Giacomo Ciamician”, Alma Mater Studiorum − Università di Bologna, Via P. Gobetti 85, 40129, Bologna, Italy
- Center
for Chemical Catalysis − C3, Dipartimento di Chimica “Giacomo
Ciamician”, Alma Mater Studiorum
− Università di Bologna, Via P. Gobetti 85, 40129, Bologna, Italy
| |
Collapse
|
16
|
Zhang L, Gao EQ. Catalytic C(sp)-H carboxylation with CO2. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
17
|
Wang S, Larrosa I, Yorimitsu H, Perry GJP. Carboxylic Acid Salts as Dual-Function Reagents for Carboxylation and Carbon Isotope Labeling. Angew Chem Int Ed Engl 2023; 62:e202218371. [PMID: 36746757 DOI: 10.1002/anie.202218371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/08/2023]
Abstract
The potassium salts of carboxylic acids are developed as efficient carboxylating agents through CO2 exchange. We describe these carboxylates as dual-function reagents because they function as a combined source of CO2 and base/metalating agent. By using the salt of a commercially available carboxylic acid, this protocol overcomes difficulties when using CO2 gas or organometallic reagents, such as pressurized containers or strictly inert conditions. The reaction proceeds under mild conditions, does not require transition metals or other additives, and shows broad substrate scope. Through the preparation of several biologically important molecules, we show how this strategy provides an opportunity for isotope labeling with low equivalents of labeled CO2 .
Collapse
Affiliation(s)
- Shuo Wang
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Igor Larrosa
- Department of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Hideki Yorimitsu
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Gregory J P Perry
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan.,Future correspondence: School of Chemistry, University of Southampton, Southampton, SO17 1BJ, UK
| |
Collapse
|
18
|
Sun GQ, Yu P, Zhang W, Zhang W, Wang Y, Liao LL, Zhang Z, Li L, Lu Z, Yu DG, Lin S. Electrochemical reactor dictates site selectivity in N-heteroarene carboxylations. Nature 2023; 615:67-72. [PMID: 36603811 PMCID: PMC10036166 DOI: 10.1038/s41586-022-05667-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 12/16/2022] [Indexed: 01/07/2023]
Abstract
Pyridines and related N-heteroarenes are commonly found in pharmaceuticals, agrochemicals and other biologically active compounds1,2. Site-selective C-H functionalization would provide a direct way of making these medicinally active products3-5. For example, nicotinic acid derivatives could be made by C-H carboxylation, but this remains an elusive transformation6-8. Here we describe the development of an electrochemical strategy for the direct carboxylation of pyridines using CO2. The choice of the electrolysis setup gives rise to divergent site selectivity: a divided electrochemical cell leads to C5 carboxylation, whereas an undivided cell promotes C4 carboxylation. The undivided-cell reaction is proposed to operate through a paired-electrolysis mechanism9,10, in which both cathodic and anodic events play critical roles in altering the site selectivity. Specifically, anodically generated iodine preferentially reacts with a key radical anion intermediate in the C4-carboxylation pathway through hydrogen-atom transfer, thus diverting the reaction selectivity by means of the Curtin-Hammett principle11. The scope of the transformation was expanded to a wide range of N-heteroarenes, including bipyridines and terpyridines, pyrimidines, pyrazines and quinolines.
Collapse
Affiliation(s)
- Guo-Quan Sun
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, People's Republic of China
| | - Peng Yu
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
| | - Wen Zhang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
| | - Wei Zhang
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, People's Republic of China
| | - Yi Wang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
| | - Li-Li Liao
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, People's Republic of China
| | - Zhen Zhang
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, People's Republic of China
| | - Li Li
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, People's Republic of China
| | - Zhipeng Lu
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
| | - Da-Gang Yu
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, People's Republic of China.
- Beijing National Laboratory for Molecular Sciences, Beijing, People's Republic of China.
| | - Song Lin
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
19
|
Kemper G, Hölscher M, Leitner W. Pd(II)-catalyzed carboxylation of aromatic C─H bonds with CO 2. SCIENCE ADVANCES 2023; 9:eadf2966. [PMID: 36735781 PMCID: PMC9897662 DOI: 10.1126/sciadv.adf2966] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 12/30/2022] [Indexed: 06/18/2023]
Abstract
The carboxylation of nonactivated C─H bonds provides an attractive yet hitherto largely elusive chemical process to synthesize carboxylic acids by incorporation of CO2 into the chemical value chain. Here, we report on the realization of such a reaction using simple and nonactivated arenes as starting materials. A computationally designed Pd(II) complex acts as organometallic single-component catalyst, and apart from a base, necessary for thermodynamic stabilization of the intermediates, no other additives or coreagents are required. Turnover numbers up to 102 and high regioselectivities are achieved. The potential of this catalytic reaction for "green chemistry" is demonstrated by the synthesis of veratric acid, an intermediate for pharmaceutical production, from CO2 and veratrol.
Collapse
Affiliation(s)
- Gregor Kemper
- Institut für Technische und Makromolekulare Chemie, RWTH Aachen University, Aachen, Germany
| | - Markus Hölscher
- Institut für Technische und Makromolekulare Chemie, RWTH Aachen University, Aachen, Germany
| | - Walter Leitner
- Institut für Technische und Makromolekulare Chemie, RWTH Aachen University, Aachen, Germany
- Max Planck Institute for Chemical Energy Conversion, Mülheim an der Ruhr, Germany
| |
Collapse
|
20
|
Karl TA, Seidl M, König B. Energy Harvesting: Synthetic Use of Recovered Energy in Electrochemical Late‐Stage Functionalization. ChemElectroChem 2023. [DOI: 10.1002/celc.202201097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Tobias A. Karl
- Faculty of Chemistry and Pharmacy University of Regensburg 93040 Regensburg Germany
| | - Max Seidl
- Faculty of Chemistry and Pharmacy University of Regensburg 93040 Regensburg Germany
| | - Burkhard König
- Faculty of Chemistry and Pharmacy University of Regensburg 93040 Regensburg Germany
| |
Collapse
|
21
|
Lu MZ, Goh J, Maraswami M, Jia Z, Tian JS, Loh TP. Recent Advances in Alkenyl sp 2 C-H and C-F Bond Functionalizations: Scope, Mechanism, and Applications. Chem Rev 2022; 122:17479-17646. [PMID: 36240299 DOI: 10.1021/acs.chemrev.2c00032] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Alkenes and their derivatives are featured widely in a variety of natural products, pharmaceuticals, and advanced materials. Significant efforts have been made toward the development of new and practical methods to access this important class of compounds by selectively activating the alkenyl C(sp2)-H bonds in recent years. In this comprehensive review, we describe the state-of-the-art strategies for the direct functionalization of alkenyl sp2 C-H and C-F bonds until June 2022. Moreover, metal-free, photoredox, and electrochemical strategies are also covered. For clarity, this review has been divided into two parts; the first part focuses on currently available alkenyl sp2 C-H functionalization methods using different alkene derivatives as the starting materials, and the second part describes the alkenyl sp2 C-F bond functionalization using easily accessible gem-difluoroalkenes as the starting material. This review includes the scope, limitations, mechanistic studies, stereoselective control (using directing groups as well as metal-migration strategies), and their applications to complex molecule synthesis where appropriate. Overall, this comprehensive review aims to document the considerable advancements, current status, and emerging work by critically summarizing the contributions of researchers working in this fascinating area and is expected to stimulate novel, innovative, and broadly applicable strategies for alkenyl sp2 C-H and C-F bond functionalizations in the coming years.
Collapse
Affiliation(s)
- Ming-Zhu Lu
- College of Advanced Interdisciplinary Science and Technology, Henan University of Technology, Zhengzhou 450001, China.,School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore
| | - Jeffrey Goh
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore
| | - Manikantha Maraswami
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore
| | - Zhenhua Jia
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Jie-Sheng Tian
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Teck-Peng Loh
- College of Advanced Interdisciplinary Science and Technology, Henan University of Technology, Zhengzhou 450001, China.,School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore.,Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
22
|
Sahoo H, Zhang L, Cheng J, Nishiura M, Hou Z. Auto-Tandem Copper-Catalyzed Carboxylation of Undirected Alkenyl C-H Bonds with CO 2 by Harnessing β-Hydride Elimination. J Am Chem Soc 2022; 144:23585-23594. [PMID: 36524857 DOI: 10.1021/jacs.2c10754] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The exploration into challenging scenarios of the application of elementary reactions offers excellent opportunities for the development of unique transformations under organometallic catalysis. As a ubiquitous reaction of metal alkyl complexes, β-hydride elimination plays a crucial role in a number of important catalytic transformations. However, its functions in these catalytic cycles are limited to either releasing alkene products or generating isomerized intermediates through further migratory insertion. Herein, we report that the precise manipulation of β-hydride elimination enables an auto-tandem copper catalysis for the carboxylation of undirected alkenyl C-H bonds with CO2. In this transformation, β-hydride elimination of an alkyl copper intermediate is facilitated, while its reaction with CO2 is suppressed. The resulting copper hydride in turn reacts with CO2 to provide access to a multitasking catalyst, which enables the tandem borylation/carboxylation of C-H bonds in two mechanistically distinct catalytic cycles.
Collapse
Affiliation(s)
- Harekrishna Sahoo
- Advanced Catalysis Research Group, RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
| | - Liang Zhang
- Advanced Catalysis Research Group, RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan.,Organometallic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan
| | - Jianhua Cheng
- Organometallic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan
| | - Masayoshi Nishiura
- Advanced Catalysis Research Group, RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan.,Organometallic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan
| | - Zhaomin Hou
- Advanced Catalysis Research Group, RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan.,Organometallic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan
| |
Collapse
|
23
|
Jin Y, Caner J, Nishikawa S, Toriumi N, Iwasawa N. Catalytic direct hydrocarboxylation of styrenes with CO 2 and H 2. Nat Commun 2022; 13:7584. [PMID: 36481654 PMCID: PMC9732006 DOI: 10.1038/s41467-022-35293-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 11/24/2022] [Indexed: 12/14/2022] Open
Abstract
A three-component hydrocarboxylation of an olefin with CO2 and H2 could be regarded as a dream reaction, since it would provide a straightforward approach for the synthesis of aliphatic carboxylic acids in perfect atom economy. However, this transformation has not been realized in a direct manner under mild conditions, because boosting the carboxylation with thermodynamically stable CO2 while suppressing the rapid hydrogenation of olefin remains a challenging task. Here, we report a rhodium-catalysed reductive hydrocarboxylation of styrene derivatives with CO2 and H2 under mild conditions, in which H2 served as the terminal reductant. In this approach, the carboxylation process was largely accelerated by visible light irradiation, which was proved both experimentally and by computational studies. Hydrocarboxylation of various kinds of styrene derivatives was achieved in good yields without additional base under ambient pressure of CO2/H2 at room temperature. Mechanistic investigations revealed that use of a cationic rhodium complex was critical to achieve high hydrocarboxylation selectivity.
Collapse
Affiliation(s)
- Yushu Jin
- Department of Chemistry, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo, 152-8551, Japan
| | - Joaquim Caner
- Department of Chemistry, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo, 152-8551, Japan
| | - Shintaro Nishikawa
- Department of Chemistry, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo, 152-8551, Japan
| | - Naoyuki Toriumi
- Department of Chemistry, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo, 152-8551, Japan
| | - Nobuharu Iwasawa
- Department of Chemistry, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo, 152-8551, Japan.
| |
Collapse
|
24
|
A Combined Computational–Experimental Study on the Substrate Binding and Reaction Mechanism of Salicylic Acid Decarboxylase. Catalysts 2022. [DOI: 10.3390/catal12121577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Salicylic acid decarboxylase (SDC) from the amidohydrolase superfamily (AHS) catalyzes the reversible decarboxylation of salicylic acid to form phenol. In this study, the substrate binding mode and reaction mechanism of SDC were investigated using computational and crystallographic methods. Quantum chemical calculations show that the enzyme follows the general mechanism of AHS decarboxylases. Namely, the reaction begins with proton transfer from a metal-coordinated aspartic acid residue (Asp298 in SDC) to the C1 of salicylic acid, which is followed by the C–C bond cleavage, to generate the phenol product and release CO2. Interestingly, the calculations show that SDC is a Mg-dependent enzyme rather than the previously proposed Zn-dependent, and the substrate is shown to be bidentately coordinated to the metal center in the catalysis, which is also different from the previous proposal. These predictions are corroborated by the crystal structure of SDC solved in complex with the substrate analogue 2-nitrophenol. The mechanistic insights into SDC in the present study provide important information for the rational design of the enzyme.
Collapse
|
25
|
Kuznetsov NY, Maximov AL, Beletskaya IP. Novel Technological Paradigm of the Application of Carbon Dioxide as a C1 Synthon in Organic Chemistry: I. Synthesis of Hydroxybenzoic Acids, Methanol, and Formic Acid. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2022. [DOI: 10.1134/s1070428022120016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
26
|
Tang S, Zhao X, Yang L, Li B, Wang B. Copper‐Catalyzed Carboxylation of Aryl Thianthrenium Salts with CO
2. Angew Chem Int Ed Engl 2022; 61:e202212975. [DOI: 10.1002/anie.202212975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Indexed: 11/16/2022]
Affiliation(s)
- Shibiao Tang
- State Key Laboratory of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 30007 China
| | - Xiaobo Zhao
- State Key Laboratory of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 30007 China
| | - Lidong Yang
- State Key Laboratory of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 30007 China
| | - Bin Li
- State Key Laboratory of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 30007 China
| | - Baiquan Wang
- State Key Laboratory of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 30007 China
- State Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry Chinese Academy of Sciences Shanghai 200032 China
| |
Collapse
|
27
|
Chen X, Wang P, Peng F, Zhou Z, Waigi MG, Ling W. Ce(Ⅲ) activates peroxymonosulfate for the degradation of substituted PAHs. CHEMOSPHERE 2022; 306:135525. [PMID: 35779682 DOI: 10.1016/j.chemosphere.2022.135525] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/16/2022] [Accepted: 06/25/2022] [Indexed: 06/15/2023]
Abstract
Substituted polycyclic aromatic hydrocarbons (SPAHs) are being intensively investigated, considering their high toxicity. Additionally, the mechanism of the effect of substituents on the removal of SPAHs and the activation of Ce(III) ions on peroxymonosulfate (PMS) have not been explored. Here we evaluated the removal efficiency of SPAHs in the oxidation system constructed by Ce(Ⅲ) ions and PMS, with emphasized the effect of substituents on SPAHs degradation. Ce(Ⅲ) has high catalytic performance for PMS, and the degradation percentage of all pollutants was higher than 92%. The significantly negative correlation between the reaction rate constants of SPAHs and the highest occupied molecular orbital-the lowest unoccupied molecular orbital gap, confirms that substituents lead to the differences in the degradation of SPAHs. The generation of reactive oxygen species (SO4•-, •OH, and 1O2) is based on the electron transfer between Ce(Ⅲ) and PMS, and the contribution of ROS to substituted naphthalene varies due to the role of substituents. The Ce(Ⅳ)/Ce(Ⅲ) cycle accelerates the activation of PMS. Based on the transformation products and condensed Fukui function, the possible degradation pathways are inferred. In addition, inorganic anions and organic matter have little effect on the Ce(Ⅲ)/PMS system, which is a prerequisite for applying this system to real-world waste-water for SPAHs removal. This work demonstrates a new model of the degradation mechanism of SPAHs in the Ce(Ⅲ)/PMS system.
Collapse
Affiliation(s)
- Xuwen Chen
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Peixin Wang
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Fei Peng
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhou Zhou
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Michael Gatheru Waigi
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wanting Ling
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
28
|
Zhang Q, Ma Y, Yuan X, Zeng A. Box-Behnken experimental design for optimizing process parameters in carbonate-promoted direct thiophene carboxylation reaction with carbon dioxide. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2022.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
29
|
Choudhary N, Abdelgaid M, Mpourmpakis G, Mobin SM. CuNi bimetallic nanocatalyst enables sustainable direct carboxylation reactions. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
30
|
Zhang Q, Shi P, Yuan X, Ma Y, Zeng A. Direct Carboxylation of Thiophene with CO2 in the Solvent-free Carboxylate-carbonate Molten Medium: Experimental and Mechanistic Insights. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2022.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
31
|
Parmar B, Patel P, Bhadu GR, Eringathodi S. Comparative Effect of Amino Functionality on the Performance of Isostructural Mixed‐Ligand MOFs Towards Multifunctional Catalytic Application. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202200410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Bhavesh Parmar
- Central Salt and Marine Chemicals Research Institute CSIR Analytical and Environmental Science Division and Centralized Instrument Facility Lab No. 106, AESD&CIF, CSIR-CSMCRI,G. B. Marg, 364002 Bhavnagar INDIA
| | - Parth Patel
- Central Salt and Marine Chemicals Research Institute CSIR Inorganic Materials and Catalysis Division Lab No. 106, AESD&CIF, CSIR-CSMCRI,G. B. Marg, 364002 Bhavnagar INDIA
| | - Gopala Ram Bhadu
- Central Salt and Marine Chemicals Research Institute CSIR Analytical and Environmental Science Division and Centralized Instrument Facility Lab No. 106, AESD&CIF, CSIR-CSMCRI,G. B. Marg, 364002 Bhavnagar INDIA
| | - Suresh Eringathodi
- Central Salt and Marine Chemicals Research Institute CSIR Analytical and Environmental Science Division & Centralized Instrument Facility Lab 013, AESD&CIF,CSIR-CSMCRIG B Marg 364002 Bhavnagar INDIA
| |
Collapse
|
32
|
Wang S, Feng T, Wang Y, Qiu Y. Recent Advances in Electrocarboxylation with CO2. Chem Asian J 2022; 17:e202200543. [DOI: 10.1002/asia.202200543] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/06/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Siyi Wang
- China University of Mining and Technology School of Chemical Engineering & Technology CHINA
| | - Tian Feng
- Nankai University College of Chemistry CHINA
| | - Yanwei Wang
- Nankai University College of Chemistry CHINA
| | - Youai Qiu
- Nankai University College of Chemistry 94 Weijin Road 300071 Tianjin CHINA
| |
Collapse
|
33
|
Shigeno M, Tohara I, Sasaki K, Nozawa-Kumada K, Kondo Y. Combined Brønsted Base-Promoted CO 2 Fixation into Benzylic C-H Bonds of Alkylarenes. Org Lett 2022; 24:4825-4830. [PMID: 35763616 DOI: 10.1021/acs.orglett.2c01986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Interest in developing methods for direct CO2 fixation into readily available unfunctionalized C-H bonds in organic substances has recently surged. In contrast to the well-studied carboxylations of alkynyl C(sp)-H and aromatic C(sp2)-H bonds, carboxylation of benzylic C(sp3)-H bonds to produce 2-arylacetic acids is limited to photoirradiation reactions and continues to be a challenging issue because of the low chemical reactivity. We herein describe that a combined Brønsted base (i.e., LiO-t-Bu/CsF and LiOCEt3/CsF) achieves benzylic carboxylation of electron-deficient, -neutral, and -rich alkylarenes and enables various functionalities, including fragile ones such as bromide, alkene, alkyne, and carbonyl moieties. Dicarboxylation at the benzylic position is also established. Cs-alkoxide generated in situ acts as a reactive base, as demonstrated in experiments with independently prepared CsO-t-Bu and by 133Cs nuclear magnetic resonance studies.
Collapse
Affiliation(s)
- Masanori Shigeno
- Department of Biophysical Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba, Sendai 980-8578, Japan
| | - Itsuki Tohara
- Department of Biophysical Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba, Sendai 980-8578, Japan
| | - Keita Sasaki
- Department of Biophysical Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba, Sendai 980-8578, Japan
| | - Kanako Nozawa-Kumada
- Department of Biophysical Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba, Sendai 980-8578, Japan
| | - Yoshinori Kondo
- Department of Biophysical Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba, Sendai 980-8578, Japan
| |
Collapse
|
34
|
Mechanistic Insights into Palladium(II)-Catalyzed Carboxylation of Thiophene and Carbon Dioxide. Catalysts 2022. [DOI: 10.3390/catal12060654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
The mechanism in palladium-catalyzed carboxylation of thiophene and CO2 is investigated using the density functional theory (DFT) calculations, including three consecutive steps of the formation of carbanion through breaking the C–H bond(s) via the palladium acetate, the elimination of acetic acid and the nucleophile attacking the weak electrophile CO2 to form C–C bond. Results show that the C–C bond is formed through taking the three-membered cyclic conformation arrangement involving the interaction of the transition metal and the CO2, and the CO2 insertion step is the rate-determining step for this entire reaction process. Aiming to precisely disclose what factor determine the origin of the activation energy barrier in this carboxylation reaction, the distortion/interaction analysis is performed along with the entire reaction coordinate.
Collapse
|
35
|
Rawat A, Dhakla S, Lama P, Pal TK. Fixation of carbon dioxide to aryl/aromatic carboxylic acids. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.101939] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
36
|
Zhang M, Yang L, Zhou C, Fu L, Li G. Visible‐Light‐Induced Arylcarboxylation of Enamides with CO2 and Aryl Iodides to Synthesize α‐Amino Acids. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Meng Zhang
- Fujian Normal University College of Chemistry and Materials Science CHINA
| | - Lei Yang
- Fujian Institute of Research on the Struture of Matter Key Laboratory of Coal to Ethylene Glycol and Its Related Technology CHINA
| | - Chunlin Zhou
- Chinese Academy of Sciences Fujian Institute of Research on the Structure of Matter Key Laboratory of Coal to Ethylene Glycol and Its Related Technology CHINA
| | - Lei Fu
- Fujian Normal University College of Life Science CHINA
| | - Gang Li
- Shanghai Jiao Tong University Frontiers Science Center for Transformative Molecules 800 Dongchuan RD.Minhang District 200240 Shanghai CHINA
| |
Collapse
|
37
|
Li WD, Wu Y, Li SJ, Jiang YQ, Li YL, Lan Y, Xia JB. Boryl Radical Activation of Benzylic C-OH Bond: Cross-Electrophile Coupling of Free Alcohols and CO 2 via Photoredox Catalysis. J Am Chem Soc 2022; 144:8551-8559. [PMID: 35378034 DOI: 10.1021/jacs.1c12463] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A new strategy for the direct cleavage of the C(sp3)-OH bond has been developed via activation of free alcohols with neutral diphenyl boryl radical generated from sodium tetraphenylborate under mild visible light photoredox conditions. This strategy has been verified by cross-electrophile coupling of free alcohols and carbon dioxide for the synthesis of carboxylic acids. Direct transformation of a range of primary, secondary, and tertiary benzyl alcohols to acids has been achieved. Control experiments and computational studies indicate that activation of alcohols with neutral boryl radical undergoes homolysis of the C(sp3)-OH bond, generating alkyl radicals. After reducing the alkyl radical into carbon anion under photoredox conditions, the following carboxylation with CO2 affords the coupling product.
Collapse
Affiliation(s)
- Wen-Duo Li
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Center for Excellence in Molecular Synthesis, Lanzhou Institute of Chemical Physics (LICP), University of Chinese Academy of Sciences, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Yang Wu
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Center for Excellence in Molecular Synthesis, Lanzhou Institute of Chemical Physics (LICP), University of Chinese Academy of Sciences, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Shi-Jun Li
- College of Chemistry, and Institute of Green Catalysis, Zhengzhou University, 100 Science Avenue, Zhengzhou, Henan 450001, China
| | - Yi-Qian Jiang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Center for Excellence in Molecular Synthesis, Lanzhou Institute of Chemical Physics (LICP), University of Chinese Academy of Sciences, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Yan-Lin Li
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Center for Excellence in Molecular Synthesis, Lanzhou Institute of Chemical Physics (LICP), University of Chinese Academy of Sciences, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Yu Lan
- College of Chemistry, and Institute of Green Catalysis, Zhengzhou University, 100 Science Avenue, Zhengzhou, Henan 450001, China.,School of Chemistry and Chemical Engineering, and Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 400030, China
| | - Ji-Bao Xia
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Center for Excellence in Molecular Synthesis, Lanzhou Institute of Chemical Physics (LICP), University of Chinese Academy of Sciences, Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|
38
|
Lombardi L, Cerveri A, Ceccon L, Pedrazzani R, Monari M, Bertuzzi G, Bandini M. Merging C-C σ-bond activation of cyclobutanones with CO 2 fixation via Ni-catalysis. Chem Commun (Camb) 2022; 58:4071-4074. [PMID: 35262541 DOI: 10.1039/d2cc00149g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A carboxylative Ni-catalyzed tandem C-C σ-bond activation of cyclobutanones followed by CO2-electrophilic trapping is documented as a direct route to synthetically valuable 3-indanone-1-acetic acids. The protocol shows an adequate functional group tolerance and useful chemical outcomes (yield up to 76%) when AlCl3 is adopted as an additive. Manipulations of the targeted cyclic scaffolds and a mechanistic proposal based on experimental evidence complete the investigation.
Collapse
Affiliation(s)
- Lorenzo Lombardi
- Dipartimento di Chimica "Giacomo Ciamician", Alma Mater Studiorum, Università di Bologna, via Selmi 2, Bologna 40126, Italy. .,Center for Chemical Catalysis - C3, Alma Mater Studiorum - Università di Bologna, via Selmi 2, Bologna, 40126, Italy
| | - Alessandro Cerveri
- Dipartimento di Chimica "Giacomo Ciamician", Alma Mater Studiorum, Università di Bologna, via Selmi 2, Bologna 40126, Italy.
| | - Leonardo Ceccon
- Dipartimento di Chimica "Giacomo Ciamician", Alma Mater Studiorum, Università di Bologna, via Selmi 2, Bologna 40126, Italy.
| | - Riccardo Pedrazzani
- Dipartimento di Chimica "Giacomo Ciamician", Alma Mater Studiorum, Università di Bologna, via Selmi 2, Bologna 40126, Italy. .,Center for Chemical Catalysis - C3, Alma Mater Studiorum - Università di Bologna, via Selmi 2, Bologna, 40126, Italy
| | - Magda Monari
- Dipartimento di Chimica "Giacomo Ciamician", Alma Mater Studiorum, Università di Bologna, via Selmi 2, Bologna 40126, Italy. .,Center for Chemical Catalysis - C3, Alma Mater Studiorum - Università di Bologna, via Selmi 2, Bologna, 40126, Italy
| | - Giulio Bertuzzi
- Dipartimento di Chimica "Giacomo Ciamician", Alma Mater Studiorum, Università di Bologna, via Selmi 2, Bologna 40126, Italy. .,Center for Chemical Catalysis - C3, Alma Mater Studiorum - Università di Bologna, via Selmi 2, Bologna, 40126, Italy
| | - Marco Bandini
- Dipartimento di Chimica "Giacomo Ciamician", Alma Mater Studiorum, Università di Bologna, via Selmi 2, Bologna 40126, Italy. .,Center for Chemical Catalysis - C3, Alma Mater Studiorum - Università di Bologna, via Selmi 2, Bologna, 40126, Italy
| |
Collapse
|
39
|
Carboxylate-Assisted Carboxylation of Thiophene with CO2 in the Solvent-Free Carbonate Medium. Catalysts 2022. [DOI: 10.3390/catal12040369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Direct carboxylation of thiophene with CO2 has been achieved under a relatively mild solvent-free carbonate and carboxylate medium. This base-mediated medium can cleave the very weakly acidic C–H bond without using other limiting reagents, which is one indispensable step in the carboxylation reaction. Product yield varies with different carboxylate salts, and cesium pivalate is the most suitable base additive among targeted simple carboxylate salts. Furthermore, the detailed mechanism of this carboxylation reaction is studied, which involves initial proton abstraction, rendered by carbonate and C–C bond formation, by inserting CO2. The activation energy barrier of the C–H activation step is higher than the following CO2 insertion step, whether for the formation of the mono- and/or di-carboxylate, which indicates that the C–H deprotonation induced by the base is slow and the resulting carbon-centered nucleophile reacts rapidly with CO2.
Collapse
|
40
|
Modification of ZnCoPBA by different organic ligands and its application in the cycloaddition of CO2 and epoxides. J CHEM SCI 2022. [DOI: 10.1007/s12039-022-02034-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
41
|
You Y, Kanna W, Takano H, Hayashi H, Maeda S, Mita T. Electrochemical Dearomative Dicarboxylation of Heterocycles with Highly Negative Reduction Potentials. J Am Chem Soc 2022; 144:3685-3695. [PMID: 35189683 DOI: 10.1021/jacs.1c13032] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The dearomative dicarboxylation of stable heteroaromatics using CO2 is highly challenging but represents a very powerful method for producing synthetically useful dicarboxylic acids, which can potentially be employed as intermediates of biologically active molecules such as natural products and drug leads. However, these types of transformations are still underdeveloped, and concise methodologies with high efficiency (e.g., high yield and high selectivity for dicarboxylations) have not been reported. We herein describe a new electrochemical protocol using the CO2 radical anion (E1/2 of CO2 = -2.2 V in DMF and -2.3 V in CH3CN vs SCE) that produces unprecedented trans-oriented 2,3-dicarboxylic acids from N-Ac-, Boc-, and Ph-protected indoles that exhibit highly negative reduction potentials (-2.50 to -2.94 V). On the basis of the calculated reduction potentials, N-protected indoles with reduction potentials up to -3 V smoothly undergo the desired dicarboxylation. Other heteroaromatics, including benzofuran, benzothiophene, electron-deficient furans, thiophenes, 1,3-diphenylisobenzofuran, and N-Boc-pyrazole, also exhibit reduction potentials more positive than -3 V and served as effective substrates for such dicarboxylations. The dicarboxylated products thus obtained can be derivatized into useful synthetic intermediates for biologically active compounds in few steps. We also show how the dearomative monocarboxylation can be achieved selectively by choice of the electrolyte, solvent, and protic additive; this strategy was then applied to the synthesis of an octahydroindole-2-carboxylic acid (Oic) derivative, which is a useful proline analogue.
Collapse
Affiliation(s)
- Yong You
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Kita 21, Nishi 10, Kita-ku, Sapporo, Hokkaido 001-0021, Japan.,JST, ERATO Maeda Artificial Intelligence in Chemical Reaction Design and Discovery Project, Kita 10, Nishi 8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| | - Wataru Kanna
- Department of Chemistry, Faculty of Science, Hokkaido University, Kita 10, Nishi 8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| | - Hideaki Takano
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Kita 21, Nishi 10, Kita-ku, Sapporo, Hokkaido 001-0021, Japan.,JST, ERATO Maeda Artificial Intelligence in Chemical Reaction Design and Discovery Project, Kita 10, Nishi 8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| | - Hiroki Hayashi
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Kita 21, Nishi 10, Kita-ku, Sapporo, Hokkaido 001-0021, Japan.,JST, ERATO Maeda Artificial Intelligence in Chemical Reaction Design and Discovery Project, Kita 10, Nishi 8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| | - Satoshi Maeda
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Kita 21, Nishi 10, Kita-ku, Sapporo, Hokkaido 001-0021, Japan.,JST, ERATO Maeda Artificial Intelligence in Chemical Reaction Design and Discovery Project, Kita 10, Nishi 8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan.,Department of Chemistry, Faculty of Science, Hokkaido University, Kita 10, Nishi 8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan.,Research and Services Division of Materials Data and Integrated System (MaDIS), National Institute for Materials Science (NIMS), Tsukuba, Ibaraki 305-0044, Japan
| | - Tsuyoshi Mita
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Kita 21, Nishi 10, Kita-ku, Sapporo, Hokkaido 001-0021, Japan.,JST, ERATO Maeda Artificial Intelligence in Chemical Reaction Design and Discovery Project, Kita 10, Nishi 8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| |
Collapse
|
42
|
Jin Y, Toriumi N, Iwasawa N. Visible-Light-Enabled Carboxylation of Benzyl Alcohol Derivatives with CO 2 Using a Palladium/Iridium Dual Catalyst. CHEMSUSCHEM 2022; 15:e202102095. [PMID: 34821059 DOI: 10.1002/cssc.202102095] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/24/2021] [Indexed: 06/13/2023]
Abstract
A highly efficient carboxylation of benzyl alcohol derivatives with CO2 using a palladium/iridium dual catalyst under visible-light irradiation was developed. A wide range of benzyl alcohol derivatives could be employed to provide benzylic carboxylic acids in moderate to high yields. Mechanistic studies indicated that the oxidative addition of benzyl alcohol derivatives was possibly the rate-determining-step. It was also found that a switchable site-selective carboxylation between benzylic C-O and aryl C-Cl moieties could be achieved simply by changing the palladium catalyst.
Collapse
Affiliation(s)
- Yushu Jin
- Department of Chemistry, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo, 152-8551, Japan
| | - Naoyuki Toriumi
- Department of Chemistry, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo, 152-8551, Japan
| | - Nobuharu Iwasawa
- Department of Chemistry, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo, 152-8551, Japan
| |
Collapse
|
43
|
Liao LL, Wang ZH, Cao KG, Sun GQ, Zhang W, Ran CK, Li Y, Chen L, Cao GM, Yu DG. Electrochemical Ring-Opening Dicarboxylation of Strained Carbon-Carbon Single Bonds with CO 2: Facile Synthesis of Diacids and Derivatization into Polyesters. J Am Chem Soc 2022; 144:2062-2068. [PMID: 35084189 DOI: 10.1021/jacs.1c12071] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Diacids are important monomers in the polymer industry to construct valuable materials. Dicarboxylation of unsaturated bonds, such as alkenes and alkynes, with CO2 has been demonstrated as a promising synthetic method. However, dicarboxylation of C─C single bonds with CO2 has rarely been investigated. Herein we report a novel electrochemical ring-opening dicarboxylation of C─C single bonds in strained rings with CO2. Structurally diverse glutaric acid and adipic acid derivatives were synthesized from substituted cyclopropanes and cyclobutanes in moderate to high yields. In contrast to oxidative ring openings, this is also the first realization of an electroreductive ring-opening reaction of strained rings, including commercialized ones. Control experiments suggested that radical anions and carbanions might be the key intermediates in this reaction. Moreover, this process features high step and atom economy, mild reaction conditions (1 atm, room temperature), good chemoselectivity and functional group tolerance, low electrolyte concentration, and easy derivatization of the products. Furthermore, we conducted polymerization of the corresponding diesters with diols to obtain a potential UV-shielding material with a self-healing function and a fluorine-containing polyester, whose performance tests showed promising applications.
Collapse
Affiliation(s)
- Li-Li Liao
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, People's Republic of China
| | - Zhe-Hao Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, People's Republic of China
| | - Ke-Gong Cao
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, People's Republic of China
| | - Guo-Quan Sun
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, People's Republic of China
| | - Wei Zhang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, People's Republic of China
| | - Chuan-Kun Ran
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, People's Republic of China
| | - Yiwen Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, People's Republic of China
| | - Li Chen
- Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials, National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu 610064, People's Republic of China
| | - Guang-Mei Cao
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, People's Republic of China
| | - Da-Gang Yu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, People's Republic of China.,Beijing National Laboratory for Molecular Sciences, Beijing 100190, People's Republic of China
| |
Collapse
|
44
|
Shigeno M, Hanasaka K, Tohara I, Izumi K, Yamakoshi H, Kwon E, Nozawa-Kumada K, Kondo Y. Direct C-H Carboxylation Forming Polyfunctionalized Aromatic Carboxylic Acids by Combined Brønsted Bases. Org Lett 2022; 24:809-814. [PMID: 35048709 DOI: 10.1021/acs.orglett.1c03866] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
CO2 fixation into electron-deficient aromatic C-H bonds proceeds with the combined Brønsted bases LiO-t-Bu and LiO-t-Am/CsF/18-crown-6 (t-Am = CEtMe2) under a CO2 atmosphere to afford a variety of polyfunctionalized aromatic carboxylic acids.
Collapse
Affiliation(s)
- Masanori Shigeno
- Department of Biophysical Chemistry, Graduate School of Pharmaceutical Science, Tohoku University, Aoba, Sendai 980-8578, Japan
| | - Kazuya Hanasaka
- Department of Biophysical Chemistry, Graduate School of Pharmaceutical Science, Tohoku University, Aoba, Sendai 980-8578, Japan
| | - Itsuki Tohara
- Department of Biophysical Chemistry, Graduate School of Pharmaceutical Science, Tohoku University, Aoba, Sendai 980-8578, Japan
| | - Koki Izumi
- Department of Biophysical Chemistry, Graduate School of Pharmaceutical Science, Tohoku University, Aoba, Sendai 980-8578, Japan
| | - Hiroyuki Yamakoshi
- Central Analytical Center, Graduate School of Pharmaceutical Science, Tohoku University, Aoba, Sendai 980-8578, Japan
| | - Eunsang Kwon
- Research and Analytical Center for Giant Molecules, Graduate School of Science, Tohoku University, Aoba, Sendai 980-8578, Japan
| | - Kanako Nozawa-Kumada
- Department of Biophysical Chemistry, Graduate School of Pharmaceutical Science, Tohoku University, Aoba, Sendai 980-8578, Japan
| | - Yoshinori Kondo
- Department of Biophysical Chemistry, Graduate School of Pharmaceutical Science, Tohoku University, Aoba, Sendai 980-8578, Japan
| |
Collapse
|
45
|
Liu D, Xu Z, Liu M, Fu Y. Mechanistic insights into the rhodium-catalyzed aryl C–H carboxylation. Org Chem Front 2022. [DOI: 10.1039/d1qo01560e] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
We have conducted an in-depth theoretical exploration of the details for direct C–H bond activation and lactonization of 2-arylphenols.
Collapse
Affiliation(s)
- DeGuang Liu
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, iChEM, University of Science and Technology of China, Hefei 230026, China
| | - ZheYuan Xu
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, iChEM, University of Science and Technology of China, Hefei 230026, China
| | - MingQiang Liu
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, iChEM, University of Science and Technology of China, Hefei 230026, China
| | - Yao Fu
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, iChEM, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
46
|
Mao B, Wei JS, Shi M. Recent advancements in visible-light-driven carboxylation with carbon dioxide. Chem Commun (Camb) 2022; 58:9312-9327. [DOI: 10.1039/d2cc03380a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Carbon dioxide as a classic C1 source has long been investigated in organic synthetic chemistry. Diverse catalytic methods for CO2 activation were reported in the past several decades. In this...
Collapse
|
47
|
Dou Q, Wang T, Li S, Fang L, Zhai H, Cheng B. Recent Advances in Photocatalytic Carboxylation with CO 2 via σ-Bond Cleavage. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202206003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
48
|
Cauwenbergh R, Goyal V, Maiti R, Natte K, Das S. Challenges and recent advancements in the transformation of CO 2 into carboxylic acids: straightforward assembly with homogeneous 3d metals. Chem Soc Rev 2022; 51:9371-9423. [DOI: 10.1039/d1cs00921d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Transformation of carbon dioxide (CO2) into valuable organic carboxylic acids is essential for maintaining sustainability. In this review, such CO2 thermo-, photo- and electrochemical transformations under 3d-transition metal catalysis are described from 2017 until 2022.
Collapse
Affiliation(s)
- Robin Cauwenbergh
- Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerpen, Belgium
| | - Vishakha Goyal
- Chemical and Material Sciences Division, CSIR-Indian Institute of Petroleum, Dehradun-248005, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Joggers Road, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh 201 002, India
| | - Rakesh Maiti
- Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerpen, Belgium
| | - Kishore Natte
- Department of Chemistry, Indian Institute of Technology, Hyderabad, Kandi, Sangareddy, 502 285, Telangana, India
| | - Shoubhik Das
- Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerpen, Belgium
| |
Collapse
|
49
|
Chen Y, Dai X, Zhang W, Wu T, Chen L, Peng X. Carboxylation of sodium arylsulfinates with CO 2 over mesoporous K-Cu-20TiO 2. RSC Adv 2021; 12:772-776. [PMID: 35425121 PMCID: PMC8978649 DOI: 10.1039/d1ra05228d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 11/05/2021] [Indexed: 12/17/2022] Open
Abstract
A mesoporous ternary metal oxide (K-Cu-20TiO2) from a simple sol–gel method was prepared to catalyze heterogeneously the carboxylation reaction of various sodium arylsulfinates under atmospheric carbon dioxide. The catalyst showed excellent selectivity and good functional group tolerance to carboxylation recycle. The oxidation state of active copper(i) by characterization using FTIR, XRD, TG, XPS and TEM techniques proved to be efficacious to conduct atom economical reactions. A mesoporous ternary metal oxide (K-Cu-20TiO2) from a simple sol–gel method was prepared to catalyze heterogeneously the carboxylation reaction of various sodium arylsulfinates under atmospheric carbon dioxide.![]()
Collapse
Affiliation(s)
- Yanjiao Chen
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology Nanjing 210094 China
| | - Xuan Dai
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology Nanjing 210094 China
| | - Wenwei Zhang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology Nanjing 210094 China
| | - Tao Wu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology Nanjing 210094 China
| | - Lei Chen
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology Nanjing 210094 China
| | - Xinhua Peng
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology Nanjing 210094 China
| |
Collapse
|
50
|
Kron K, Rodriguez-Katakura A, Elhessen R, Mallikarjun Sharada S. Photoredox Chemistry with Organic Catalysts: Role of Computational Methods. ACS OMEGA 2021; 6:33253-33264. [PMID: 34926877 PMCID: PMC8674904 DOI: 10.1021/acsomega.1c05787] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 11/24/2021] [Indexed: 05/09/2023]
Abstract
Organic catalysts have the potential to carry out a wide range of otherwise thermally inaccessible reactions via photoredox routes. Early demonstrated successes of organic photoredox catalysts include one-electron CO2 reduction and H2 generation via water splitting. Photoredox systems are challenging to study and design owing to the sheer number and diversity of phenomena involved, including light absorption, emission, intersystem crossing, partial or complete charge transfer, and bond breaking or formation. Designing a viable photoredox route therefore requires consideration of a host of factors such as absorption wavelength, solvent, choice of electron donor or acceptor, and so on. Quantum chemistry methods can play a critical role in demystifying photoredox phenomena. Using one-electron CO2 reduction with phenylene-based chromophores as an illustrative example, this perspective highlights recent developments in quantum chemistry that can advance our understanding of photoredox processes and proposes a way forward for driving the design and discovery of organic catalysts.
Collapse
Affiliation(s)
- Kareesa
J. Kron
- Mork
Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089, United States
| | - Andres Rodriguez-Katakura
- Mork
Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089, United States
| | - Rachelle Elhessen
- Mork
Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089, United States
| | - Shaama Mallikarjun Sharada
- Mork
Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089, United States
- Department
of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|