1
|
Guo Y, Guo Y, Ying H, Yu W, Chen S, Zhang Y, Zhang S, Lin Y, Sun F, Zhang Y, Yu J, Ma K, Qin L, Long F, Zhu H, Mao R, Xue J, Zhang J. In-hospital adverse outcomes and risk factors among chronic kidney disease patients infected with the omicron variant of SARS-CoV-2: a single-center retrospective study. BMC Infect Dis 2023; 23:698. [PMID: 37853317 PMCID: PMC10585898 DOI: 10.1186/s12879-023-08620-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 09/18/2023] [Indexed: 10/20/2023] Open
Abstract
INTRODUCTION The SARS-CoV-2 Omicron variant has decreased virulence and pathogenicity, yet the number of Omicron infections worldwide is unprecedentedly high, with rather high mortality and severe disease rate. Chronic kidney disease (CKD) patients are particularly vulnerable to the SARS-CoV-2 Omicron variant and have unique clinical outcomes. METHODS We retrospectively collected data from 2140 hospitalized patients with SARS-CoV-2 Omicron variant infection from March 29, 2022, to May 17, 2022. Demographic characteristics, ancillary examination results, and clinical treatments were described. Occurrence of critical COVID-19 or death and time of positive-to-negative conversion was defined as primary outcomes. The presence of COVID-19 pneumonia and the usage of respiratory or circulatory support was defined as secondary outcomes. Univariate or multivariate logistic regression analyses were performed to identify risk factors for primary outcomes. RESULTS 15.74% of CKD patients infected with the SARS-CoV-2 Omicron variant ended up with critical COVID-19 or death. Pre-existing CKD was a risk factor for critical COVID-19 or death and prolonged time of positive-to-negative conversion of SARS-CoV-2. Nirmatrelvir-ritonavir facilitated viral clearance among COVID-19 patients with non-severe CKD. CONCLUSION We found patients with CKD and COVID-19 due to Omicron experienced worse clinical outcomes and prolonged time of positive-to-negative conversion of SARS-CoV-2 compared to patients without CKD, which helps rationalize limited medical resources and offers guidance for appropriate clinical treatments.
Collapse
Affiliation(s)
- Yue Guo
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Shanghai Institute of Infectious Diseases and Biosecurity, Huashan Hospital, National Medical Center for Infectious Diseases, Fudan University, Shanghai, China
| | - Yifei Guo
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Shanghai Institute of Infectious Diseases and Biosecurity, Huashan Hospital, National Medical Center for Infectious Diseases, Fudan University, Shanghai, China
| | - Huajian Ying
- Department of Nephrology, Huashan Hospital Fudan University, Shanghai, China
| | - Weien Yu
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Shanghai Institute of Infectious Diseases and Biosecurity, Huashan Hospital, National Medical Center for Infectious Diseases, Fudan University, Shanghai, China
| | - Shiqi Chen
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Shanghai Institute of Infectious Diseases and Biosecurity, Huashan Hospital, National Medical Center for Infectious Diseases, Fudan University, Shanghai, China
| | - Yao Zhang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Shanghai Institute of Infectious Diseases and Biosecurity, Huashan Hospital, National Medical Center for Infectious Diseases, Fudan University, Shanghai, China
| | - Shenyan Zhang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Shanghai Institute of Infectious Diseases and Biosecurity, Huashan Hospital, National Medical Center for Infectious Diseases, Fudan University, Shanghai, China
| | - Yanxue Lin
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Shanghai Institute of Infectious Diseases and Biosecurity, Huashan Hospital, National Medical Center for Infectious Diseases, Fudan University, Shanghai, China
| | - Feng Sun
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Shanghai Institute of Infectious Diseases and Biosecurity, Huashan Hospital, National Medical Center for Infectious Diseases, Fudan University, Shanghai, China
| | - Yongmei Zhang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Shanghai Institute of Infectious Diseases and Biosecurity, Huashan Hospital, National Medical Center for Infectious Diseases, Fudan University, Shanghai, China
| | - Jie Yu
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Shanghai Institute of Infectious Diseases and Biosecurity, Huashan Hospital, National Medical Center for Infectious Diseases, Fudan University, Shanghai, China
| | - Ke Ma
- Department of Emergency and Acute Critical Care, Huashan Hospital North, Fudan University, Shanghai, China
| | - Lunxiu Qin
- Department of General Surgery, Cancer Metastasis Institute, Huashan Hospital, Fudan University, Shanghai, China
| | - Feng Long
- Department of Respiratory Medicine, Huashan Hospital North, Fudan University, Shanghai, China
| | - Haoxiang Zhu
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Shanghai Institute of Infectious Diseases and Biosecurity, Huashan Hospital, National Medical Center for Infectious Diseases, Fudan University, Shanghai, China
| | - Richeng Mao
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Shanghai Institute of Infectious Diseases and Biosecurity, Huashan Hospital, National Medical Center for Infectious Diseases, Fudan University, Shanghai, China
| | - Jun Xue
- Department of Nephrology, Huashan Hospital Fudan University, Shanghai, China
| | - Jiming Zhang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Shanghai Institute of Infectious Diseases and Biosecurity, Huashan Hospital, National Medical Center for Infectious Diseases, Fudan University, Shanghai, China
- Key Laboratory of Medical Molecular Virology (MOE/MOH), Shanghai Medical College, Fudan University, Shanghai, China
- Department of Infectious Diseases, Jing’An Branch of Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
2
|
Bussani R, Zentilin L, Correa R, Colliva A, Silvestri F, Zacchigna S, Collesi C, Giacca M. Persistent SARS-CoV-2 infection in patients seemingly recovered from COVID-19. J Pathol 2023; 259:254-263. [PMID: 36651103 PMCID: PMC10107739 DOI: 10.1002/path.6035] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 10/27/2022] [Accepted: 11/15/2022] [Indexed: 01/19/2023]
Abstract
SARS-CoV-2 infection is clinically heterogeneous, ranging from asymptomatic to deadly. A few patients with COVID-19 appear to recover from acute viral infection but nevertheless progress in their disease and eventually die, despite persistent negativity at molecular tests for SARS-CoV-2 RNA. Here, we performed post-mortem analyses in 27 consecutive patients who had apparently recovered from COVID-19 but had progressively worsened in their clinical conditions despite repeated viral negativity in nasopharyngeal swabs or bronchioalveolar lavage for 11-300 consecutive days (average: 105.5 days). Three of these patients remained PCR-negative for over 9 months. Post-mortem analysis revealed evidence of diffuse or focal interstitial pneumonia in 23/27 (81%) patients, accompanied by extensive fibrotic substitution in 13 cases (47%). Despite apparent virological remission, lung pathology was similar to that observed in acute COVID-19 individuals, including micro- and macro-vascular thrombosis (67% of cases), vasculitis (24%), squamous metaplasia of the respiratory epithelium (30%), frequent cytological abnormalities and syncytia (67%), and the presence of dysmorphic features in the bronchial cartilage (44%). Consistent with molecular test negativity, SARS-CoV-2 antigens were not detected in the respiratory epithelium. In contrast, antibodies against both spike and nucleocapsid revealed the frequent (70%) infection of bronchial cartilage chondrocytes and para-bronchial gland epithelial cells. In a few patients (19%), we also detected positivity in vascular pericytes and endothelial cells. Quantitative RT-PCR amplification in tissue lysates confirmed the presence of viral RNA. Together, these findings indicate that SARS-CoV-2 infection can persist significantly longer than suggested by standard PCR-negative tests, with specific infection of specific cell types in the lung. Whether these persistently infected cells also play a pathogenic role in long COVID remains to be addressed. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Rossana Bussani
- Department of Medical, Surgical and Health SciencesUniversity of TriesteTriesteItaly
| | - Lorena Zentilin
- International Centre for Genetic Engineering and Biotechnology (ICGEB)TriesteItaly
| | - Ricardo Correa
- International Centre for Genetic Engineering and Biotechnology (ICGEB)TriesteItaly
| | - Andrea Colliva
- Department of Medical, Surgical and Health SciencesUniversity of TriesteTriesteItaly
- International Centre for Genetic Engineering and Biotechnology (ICGEB)TriesteItaly
| | - Furio Silvestri
- Department of Medical, Surgical and Health SciencesUniversity of TriesteTriesteItaly
| | - Serena Zacchigna
- Department of Medical, Surgical and Health SciencesUniversity of TriesteTriesteItaly
- International Centre for Genetic Engineering and Biotechnology (ICGEB)TriesteItaly
| | - Chiara Collesi
- Department of Medical, Surgical and Health SciencesUniversity of TriesteTriesteItaly
- International Centre for Genetic Engineering and Biotechnology (ICGEB)TriesteItaly
| | - Mauro Giacca
- Department of Medical, Surgical and Health SciencesUniversity of TriesteTriesteItaly
- International Centre for Genetic Engineering and Biotechnology (ICGEB)TriesteItaly
- School of Cardiovascular Medicine & SciencesKing's College London, British Heart Foundation Centre of Research ExcellenceLondonUK
| |
Collapse
|
3
|
Kuhlmeier E, Chan T, Agüí CV, Willi B, Wolfensberger A, Beisel C, Topolsky I, Beerenwinkel N, Stadler T, Jones S, Tyson G, Hosie MJ, Reitt K, Hüttl J, Meli ML, Hofmann-Lehmann R. Detection and Molecular Characterization of the SARS-CoV-2 Delta Variant and the Specific Immune Response in Companion Animals in Switzerland. Viruses 2023; 15:245. [PMID: 36680285 PMCID: PMC9864232 DOI: 10.3390/v15010245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/09/2023] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
In human beings, there are five reported variants of concern of severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2). However, in contrast to human beings, descriptions of infections of animals with specific variants are still rare. The aim of this study is to systematically investigate SARS-CoV-2 infections in companion animals in close contact with SARS-CoV-2-positive owners ("COVID-19 households") with a focus on the Delta variant. Samples, obtained from companion animals and their owners were analyzed using a real-time reverse transcriptase-polymerase chain reaction (RT-qPCR) and next-generation sequencing (NGS). Animals were also tested for antibodies and neutralizing activity against SARS-CoV-2. Eleven cats and three dogs in nine COVID-19-positive households were RT-qPCR and/or serologically positive for the SARS-CoV-2 Delta variant. For seven animals, the genetic sequence could be determined. The animals were infected by one of the pangolin lineages B.1.617.2, AY.4, AY.43 and AY.129 and between zero and three single-nucleotide polymorphisms (SNPs) were detected between the viral genomes of animals and their owners, indicating within-household transmission between animal and owner and in multi-pet households also between the animals. NGS data identified SNPs that occur at a higher frequency in the viral sequences of companion animals than in viral sequences of humans, as well as SNPs, which were exclusively found in the animals investigated in the current study and not in their owners. In conclusion, our study is the first to describe the SARS-CoV-2 Delta variant transmission to animals in Switzerland and provides the first-ever description of Delta-variant pangolin lineages AY.129 and AY.4 in animals. Our results reinforce the need of a One Health approach in the monitoring of SARS-CoV-2 in animals.
Collapse
Affiliation(s)
- Evelyn Kuhlmeier
- Clinical Laboratory, Department of Clinical Diagnostics and Services, Center for Clinical Studies, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, 8057 Zurich, Switzerland
| | - Tatjana Chan
- Clinical Laboratory, Department of Clinical Diagnostics and Services, Center for Clinical Studies, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, 8057 Zurich, Switzerland
| | - Cecilia Valenzuela Agüí
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland
- SIB Swiss Institute of Bioinformatics, 4058 Basel, Switzerland
| | - Barbara Willi
- Clinic for Small Animal Internal Medicine, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, 8057 Zurich, Switzerland
| | - Aline Wolfensberger
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Rämistrasse 100, 8091 Zurich, Switzerland
| | - Christian Beisel
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Ivan Topolsky
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland
- SIB Swiss Institute of Bioinformatics, 4058 Basel, Switzerland
| | - Niko Beerenwinkel
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland
- SIB Swiss Institute of Bioinformatics, 4058 Basel, Switzerland
| | - Tanja Stadler
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland
- SIB Swiss Institute of Bioinformatics, 4058 Basel, Switzerland
| | | | - Sarah Jones
- School of Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bearsden Road, Glasgow G61 1QH, UK
- MRC-University of Glasgow Centre for Virus, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bearsden Road, Glasgow G61 1QH, UK
| | - Grace Tyson
- School of Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bearsden Road, Glasgow G61 1QH, UK
| | - Margaret J. Hosie
- MRC-University of Glasgow Centre for Virus, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bearsden Road, Glasgow G61 1QH, UK
| | - Katja Reitt
- Center for Laboratory Medicine, Veterinary Diagnostic Services, Frohbergstrasse 3, 9001 St. Gallen, Switzerland
| | - Julia Hüttl
- Center for Laboratory Medicine, Veterinary Diagnostic Services, Frohbergstrasse 3, 9001 St. Gallen, Switzerland
| | - Marina L. Meli
- Clinical Laboratory, Department of Clinical Diagnostics and Services, Center for Clinical Studies, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, 8057 Zurich, Switzerland
| | - Regina Hofmann-Lehmann
- Clinical Laboratory, Department of Clinical Diagnostics and Services, Center for Clinical Studies, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, 8057 Zurich, Switzerland
| |
Collapse
|
4
|
Li C, Yue L, Ju Y, Wang J, Chen M, Lu H, Liu S, Liu T, Wang J, Hu X, Tuohetaerbaike B, Wen H, Zhang W, Xu S, Jiang C, Chen F. Serum Proteomic Analysis for New Types of Long-Term Persistent COVID-19 Patients in Wuhan. Microbiol Spectr 2022; 10:e0127022. [PMID: 36314975 PMCID: PMC9784772 DOI: 10.1128/spectrum.01270-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 10/07/2022] [Indexed: 12/24/2022] Open
Abstract
The emergence of a new type of COVID-19 patients, who were retested positive after hospital discharge with long-term persistent SARS-CoV-2 infection but without COVID-19 clinical symptoms (hereinafter, LTPPs), poses novel challenges to COVID-19 treatment and prevention. Why was there such a contradictory phenomenon in LTPPs? To explore the mechanism underlying this phenomenon, we performed quantitative proteomic analyses using the sera of 12 LTPPs (Wuhan Pulmonary Hospital), with the longest carrying history of 132 days, and mainly focused on 7 LTPPs without hypertension (LTPPs-NH). The results showed differential serum protein profiles between LTPPs/LTPPs-NH and health controls. Further analysis identified 174 differentially-expressed-proteins (DEPs) for LTPPs, and 165 DEPs for LTPPs-NH, most of which were shared. GO and KEGG analyses for these DEPs revealed significant enrichment of "coagulation" and "immune response" in both LTPPs and LTPPs-NH. A unity of contradictory genotypes in the 2 aspects were then observed: some DEPs showed the same dysregulated expressed trend as that previously reported for patients in the acute phase of COVID-19, which might be caused by long-term stimulation of persistent SARS-CoV-2 infection in LTPPs, further preventing them from complete elimination; in contrast, some DEPs showed the opposite expression trend in expression, so as to retain control of COVID-19 clinical symptoms in LTPPs. Overall, the contrary effects of these DEPs worked together to maintain the balance of LTPPs, further endowing their contradictory steady-state with long-term persistent SARS-CoV-2 infection but without symptoms. Additionally, our study revealed some potential therapeutic targets of COVID-19. Further studies on these are warranted. IMPORTANCE This study reported a new type of COVID-19 patients and explored the underlying molecular mechanism by quantitative proteomic analyses. DEPs were significantly enriched in "coagulation" and "immune response". Importantly, we identified 7 "coagulation system"- and 9 "immune response"-related DEPs, the expression levels of which were consistent with those previously reported for patients in the acute phase of COVID-19, which appeared to play a role in avoiding the complete elimination of SARS-CoV-2 in LTPPs. On the contrary, 6 "coagulation system"- and 5 "immune response"-related DEPs showed the opposite trend in expression. The 11 inconsistent serum proteins seem to play a key role in the fight against long-term persistent SARS-CoV-2 infection, further retaining control of COVID-19 clinical symptom of LTPPs. The 26 proteins can serve as potential therapeutic targets and are thus valuable for the treatment of LTPPs; further studies on them are warranted.
Collapse
Affiliation(s)
- Cuidan Li
- Beijing Institute of Genomics, Chinese Academy of Sciences, China National Center for Bioinformation, Beijing, China
| | - Liya Yue
- Beijing Institute of Genomics, Chinese Academy of Sciences, China National Center for Bioinformation, Beijing, China
| | - Yingjiao Ju
- Beijing Institute of Genomics, Chinese Academy of Sciences, China National Center for Bioinformation, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jie Wang
- Beijing Institute of Genomics, Chinese Academy of Sciences, China National Center for Bioinformation, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Mengfan Chen
- Beijing Institute of Genomics, Chinese Academy of Sciences, China National Center for Bioinformation, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hao Lu
- Beijing Institute of Genomics, Chinese Academy of Sciences, China National Center for Bioinformation, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Sitong Liu
- Beijing Institute of Genomics, Chinese Academy of Sciences, China National Center for Bioinformation, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Tao Liu
- Beijing Institute of Genomics, Chinese Academy of Sciences, China National Center for Bioinformation, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jing Wang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Urumqi, Xinjiang, China
| | - Xin Hu
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Urumqi, Xinjiang, China
| | - Bahetibieke Tuohetaerbaike
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Urumqi, Xinjiang, China
| | - Hao Wen
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Urumqi, Xinjiang, China
| | - Wenbao Zhang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Urumqi, Xinjiang, China
| | - Sihong Xu
- Division II of In Vitro Diagnostics for Infectious Diseases, Institute for In Vitro Diagnostics Control, National Institutes for Food and Drug Control, Beijing, China
| | - Chunlai Jiang
- National Engineering Laboratory for AIDS Vaccine, School of Life Science, Jilin University, Changchun, China
| | - Fei Chen
- Beijing Institute of Genomics, Chinese Academy of Sciences, China National Center for Bioinformation, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Urumqi, Xinjiang, China
- Beijing Key Laboratory of Genome and Precision Medicine Technologies, Beijing, China
| |
Collapse
|
5
|
Langan LM, O’Brien M, Rundell ZC, Back JA, Ryan BJ, Chambliss CK, Norman RS, Brooks BW. Comparative Analysis of RNA-Extraction Approaches and Associated Influences on RT-qPCR of the SARS-CoV-2 RNA in a University Residence Hall and Quarantine Location. ACS ES&T WATER 2022; 2:1929-1943. [PMID: 37552714 PMCID: PMC9063990 DOI: 10.1021/acsestwater.1c00476] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 05/09/2023]
Abstract
Wastewater-based epidemiology (WBE) provides an early warning and trend analysis approach for determining the presence of COVID-19 in a community and complements clinical testing in assessing the population level, even as viral loads fluctuate. Here, we evaluate combinations of two wastewater concentration methods (i.e., ultrafiltration and composite supernatant-solid), four pre-RNA extraction modifications, and three nucleic acid extraction kits using two different wastewater sampling locations. These consisted of a quarantine facility containing clinically confirmed COVID-19-positive inhabitants and a university residence hall. Of the combinations examined, composite supernatant-solid with pre-RNA extraction consisting of water concentration and RNA/DNA shield performed the best in terms of speed and sensitivity. Further, of the three nucleic acid extraction kits examined, the most variability was associated with the Qiagen kit. Focusing on the quarantine facility, viral concentrations measured in wastewater were generally significantly related to positive clinical cases, with the relationship dependent on method, modification, kit, target, and normalization, although results were variable-dependent on individual time points (Kendall's Tau-b (τ) = 0.17 to 0.6) or cumulatively (Kendall's Tau-b (τ) = -0.048 to 1). These observations can support laboratories establishing protocols to perform wastewater surveillance and monitoring efforts for COVID-19.
Collapse
Affiliation(s)
- Laura M. Langan
- Department of Environmental Science,
Baylor University, One Bear Place #97266, Waco, Texas 76798,
United States
- Center for Reservoir and Aquatic Systems Research,
Baylor University, One Bear Place #97178, Waco, Texas 76798,
United States
| | - Megan O’Brien
- Center for Reservoir and Aquatic Systems Research,
Baylor University, One Bear Place #97178, Waco, Texas 76798,
United States
| | - Zach C. Rundell
- Center for Reservoir and Aquatic Systems Research,
Baylor University, One Bear Place #97178, Waco, Texas 76798,
United States
| | - Jeffrey A. Back
- Center for Reservoir and Aquatic Systems Research,
Baylor University, One Bear Place #97178, Waco, Texas 76798,
United States
| | - Benjamin J. Ryan
- Department of Environmental Science,
Baylor University, One Bear Place #97266, Waco, Texas 76798,
United States
| | - C. Kevin Chambliss
- Center for Reservoir and Aquatic Systems Research,
Baylor University, One Bear Place #97178, Waco, Texas 76798,
United States
- Department of Chemistry and Biochemistry,
Baylor University, One Bear Place #97348, Waco, Texas 76798,
United States
| | - R. Sean Norman
- Environmental Health Sciences, Arnold
School of Public Health, South Carolina, 921 Assembly Street, Columbia,
South Carolina 29208, United States
| | - Bryan W. Brooks
- Department of Environmental Science,
Baylor University, One Bear Place #97266, Waco, Texas 76798,
United States
- Center for Reservoir and Aquatic Systems Research,
Baylor University, One Bear Place #97178, Waco, Texas 76798,
United States
- Institute of Biomedical Studies, Baylor
University, One Bear Place #97224, Waco, Texas 76798, United
States
| |
Collapse
|
6
|
Wais T, Hasan M, Rai V, Agrawal DK. Gut-brain communication in COVID-19: molecular mechanisms, mediators, biomarkers, and therapeutics. Expert Rev Clin Immunol 2022; 18:947-960. [PMID: 35868344 PMCID: PMC9388545 DOI: 10.1080/1744666x.2022.2105697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 07/21/2022] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Infection with COVID-19 results in acute respiratory symptoms followed by long COVID multi-organ effects presenting with neurological, cardiovascular, musculoskeletal, and gastrointestinal (GI) manifestations. Temporal relationship between gastrointestinal and neurological symptoms is unclear but warranted for exploring better clinical care for COVID-19 patients. AREAS COVERED We critically reviewed the temporal relationship between gut-brain axis after SARS-CoV-2 infection and the molecular mechanisms involved in neuroinvasion following GI infection. Mediators are identified that could serve as biomarkers and therapeutic targets in SARS-CoV-2. We discussed the potential therapeutic approaches to mitigate the effects of GI infection with SARS-CoV-2. EXPERT OPINION Altered gut microbiota cause increased expression of various mediators, including zonulin causing disruption of tight junction. This stimulates enteric nervous system and signals to CNS precipitating neurological sequalae. Published reports suggest potential role of cytokines, immune cells, B(0)AT1 (SLC6A19), ACE2, TMRSS2, TMPRSS4, IFN-γ, IL-17A, zonulin, and altered gut microbiome in gut-brain axis and associated neurological sequalae. Targeting these mediators and gut microbiome to improve immunity will be of therapeutic significance. In-depth research and well-designed large-scale population-based clinical trials with multidisciplinary and collaborative approaches are warranted. Investigating the temporal relationship between organs involved in long-term sequalae is critical due to evolving variants of SARS-CoV-2.
Collapse
Affiliation(s)
- Tameena Wais
- Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences. Pomona, CA 91766
| | - Mehde Hasan
- Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences. Pomona, CA 91766
| | - Vikrant Rai
- Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences. Pomona, CA 91766
| | - Devendra K. Agrawal
- Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences. Pomona, CA 91766
| |
Collapse
|
7
|
Okita Y, Morita T, Kumanogoh A. Duration of SARS-CoV-2 RNA positivity from various specimens and clinical characteristics in patients with COVID-19: a systematic review and meta-analysis. Inflamm Regen 2022; 42:16. [PMID: 35642011 PMCID: PMC9156361 DOI: 10.1186/s41232-022-00205-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 03/10/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The duration of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA positivity will be important to prevent the spread of coronavirus disease 2019 (COVID-19). A systematic review and meta-analysis were conducted following PRISMA to determine the duration from several parts of the body and clinical characteristics affecting it. MAIN TEXT PubMed, Web of Science, Scopus, and CENTRAL were searched for original studies reporting the duration from COVID-19 onset to the disappearance of viral RNA. Of the 1682 studies identified, 100 met the selection criteria and 13,431 patients were included in this study. The duration of SARS-CoV-2 RNA positivity was 18.29 [95% confidence interval: 17.00-19.89] days in the upper respiratory tract samples, 23.79 [20.43-27.16] days in the sputum, 14.60 [12.16-17.05] days in the blood, and 22.38 [18.40-26.35] days in the stool. Sensitivity analysis revealed that the duration was positively correlated with age, comorbidities, severity, and usage of glucocorticoid. Subgroup analysis indicated that the presence or absence of complications had the greatest impact on the difference in DSRP. CONCLUSIONS The duration of SARS-CoV-2 RNA positivity was 18.29 days in the upper respiratory tract samples. The duration in the sputum and the stool was longer, while that in the blood was shorter. The duration in the upper respiratory tract samples was longer in older, with any comorbidities, severer, and treated with glucocorticoid. These results provide the basic data for the duration of SARS-CoV-2 RNA positivity, and in the future, the effect of vaccination against SARS-CoV-2 and the SARS-CoV-2 variants on the duration of RNA positivity should be assessed.
Collapse
Affiliation(s)
- Yasutaka Okita
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Takayoshi Morita
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Atsushi Kumanogoh
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan
- Department of Immunopathology, World Premier International Immunology Frontier Research Center (iFReC), Suita, Osaka, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, Osaka, Japan
- Center for Infectious Disease Education and Research (CiDER), Osaka University, Suita, Osaka, Japan
| |
Collapse
|
8
|
Lin YC, Malott RJ, Ward L, Kiplagat L, Pabbaraju K, Gill K, Berenger BM, Hu J, Fonseca K, Noyce RS, Louie T, Evans DH, Conly JM. Detection and quantification of infectious severe acute respiratory coronavirus-2 in diverse clinical and environmental samples. Sci Rep 2022; 12:5418. [PMID: 35354854 PMCID: PMC8967087 DOI: 10.1038/s41598-022-09218-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 03/14/2022] [Indexed: 12/19/2022] Open
Abstract
To explore the potential modes of Severe Acute Respiratory Coronavirus-2 (SARS-CoV-2) transmission, we collected 535 diverse clinical and environmental samples from 75 infected hospitalized and community patients. Infectious SARS-CoV-2 with quantitative burdens varying from 5 plaque-forming units/mL (PFU/mL) up to 1.0 × 106 PFU/mL was detected in 151/459 (33%) of the specimens assayed and up to 1.3 × 106 PFU/mL on fomites with confirmation by plaque morphology, PCR, immunohistochemistry, and/or sequencing. Infectious virus in clinical and associated environmental samples correlated with time since symptom onset with no detection after 7-8 days in immunocompetent hosts and with N-gene based Ct values ≤ 25 significantly predictive of yielding plaques in culture. SARS-CoV-2 isolated from patient respiratory tract samples caused illness in a hamster model with a minimum infectious dose of ≤ 14 PFU. Together, our findings offer compelling evidence that large respiratory droplet and contact (direct and indirect i.e., fomites) are important modes of SARS-CoV-2 transmission.
Collapse
Affiliation(s)
- Yi-Chan Lin
- Department of Medical Microbiology and Immunology, University of Alberta, 6-142L Katz Group Centre, Edmonton, AB, T6G 2J7, Canada
| | - Rebecca J Malott
- Cumming School of Medicine, University of Calgary, 3030 Hospital Dr NW, Calgary, AB, T2N 4W4, Canada
| | - Linda Ward
- Cumming School of Medicine, University of Calgary, 3030 Hospital Dr NW, Calgary, AB, T2N 4W4, Canada
- Foothills Medical Centre, Alberta Health Services, 1403 29 Street NW, Calgary, AB, 2TN 2T9, Canada
| | - Linet Kiplagat
- Cumming School of Medicine, University of Calgary, 3030 Hospital Dr NW, Calgary, AB, T2N 4W4, Canada
| | - Kanti Pabbaraju
- Alberta Public Health Laboratory, Alberta Precision Laboratories, Calgary, AB, Canada
| | - Kara Gill
- Alberta Public Health Laboratory, Alberta Precision Laboratories, Calgary, AB, Canada
| | - Byron M Berenger
- Cumming School of Medicine, University of Calgary, 3030 Hospital Dr NW, Calgary, AB, T2N 4W4, Canada
- Alberta Public Health Laboratory, Alberta Precision Laboratories, Calgary, AB, Canada
| | - Jia Hu
- Cumming School of Medicine, University of Calgary, 3030 Hospital Dr NW, Calgary, AB, T2N 4W4, Canada
| | - Kevin Fonseca
- Cumming School of Medicine, University of Calgary, 3030 Hospital Dr NW, Calgary, AB, T2N 4W4, Canada
- Foothills Medical Centre, Alberta Health Services, 1403 29 Street NW, Calgary, AB, 2TN 2T9, Canada
- Alberta Public Health Laboratory, Alberta Precision Laboratories, Calgary, AB, Canada
| | - Ryan S Noyce
- Department of Medical Microbiology and Immunology, University of Alberta, 6-142L Katz Group Centre, Edmonton, AB, T6G 2J7, Canada
| | - Thomas Louie
- Cumming School of Medicine, University of Calgary, 3030 Hospital Dr NW, Calgary, AB, T2N 4W4, Canada
- Foothills Medical Centre, Alberta Health Services, 1403 29 Street NW, Calgary, AB, 2TN 2T9, Canada
| | - David H Evans
- Department of Medical Microbiology and Immunology, University of Alberta, 6-142L Katz Group Centre, Edmonton, AB, T6G 2J7, Canada.
| | - John M Conly
- Cumming School of Medicine, University of Calgary, 3030 Hospital Dr NW, Calgary, AB, T2N 4W4, Canada
- Foothills Medical Centre, Alberta Health Services, 1403 29 Street NW, Calgary, AB, 2TN 2T9, Canada
| |
Collapse
|
9
|
Lin YC, Malott RJ, Ward L, Kiplagat L, Pabbaraju K, Gill K, Berenger BM, Hu J, Fonseca K, Noyce RS, Louie T, Evans DH, Conly JM. Detection and quantification of infectious severe acute respiratory coronavirus-2 in diverse clinical and environmental samples. Sci Rep 2022. [PMID: 35354854 DOI: 10.1101/2021.07.08.21259744] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2023] Open
Abstract
To explore the potential modes of Severe Acute Respiratory Coronavirus-2 (SARS-CoV-2) transmission, we collected 535 diverse clinical and environmental samples from 75 infected hospitalized and community patients. Infectious SARS-CoV-2 with quantitative burdens varying from 5 plaque-forming units/mL (PFU/mL) up to 1.0 × 106 PFU/mL was detected in 151/459 (33%) of the specimens assayed and up to 1.3 × 106 PFU/mL on fomites with confirmation by plaque morphology, PCR, immunohistochemistry, and/or sequencing. Infectious virus in clinical and associated environmental samples correlated with time since symptom onset with no detection after 7-8 days in immunocompetent hosts and with N-gene based Ct values ≤ 25 significantly predictive of yielding plaques in culture. SARS-CoV-2 isolated from patient respiratory tract samples caused illness in a hamster model with a minimum infectious dose of ≤ 14 PFU. Together, our findings offer compelling evidence that large respiratory droplet and contact (direct and indirect i.e., fomites) are important modes of SARS-CoV-2 transmission.
Collapse
Affiliation(s)
- Yi-Chan Lin
- Department of Medical Microbiology and Immunology, University of Alberta, 6-142L Katz Group Centre, Edmonton, AB, T6G 2J7, Canada
| | - Rebecca J Malott
- Cumming School of Medicine, University of Calgary, 3030 Hospital Dr NW, Calgary, AB, T2N 4W4, Canada
| | - Linda Ward
- Cumming School of Medicine, University of Calgary, 3030 Hospital Dr NW, Calgary, AB, T2N 4W4, Canada
- Foothills Medical Centre, Alberta Health Services, 1403 29 Street NW, Calgary, AB, 2TN 2T9, Canada
| | - Linet Kiplagat
- Cumming School of Medicine, University of Calgary, 3030 Hospital Dr NW, Calgary, AB, T2N 4W4, Canada
| | - Kanti Pabbaraju
- Alberta Public Health Laboratory, Alberta Precision Laboratories, Calgary, AB, Canada
| | - Kara Gill
- Alberta Public Health Laboratory, Alberta Precision Laboratories, Calgary, AB, Canada
| | - Byron M Berenger
- Cumming School of Medicine, University of Calgary, 3030 Hospital Dr NW, Calgary, AB, T2N 4W4, Canada
- Alberta Public Health Laboratory, Alberta Precision Laboratories, Calgary, AB, Canada
| | - Jia Hu
- Cumming School of Medicine, University of Calgary, 3030 Hospital Dr NW, Calgary, AB, T2N 4W4, Canada
| | - Kevin Fonseca
- Cumming School of Medicine, University of Calgary, 3030 Hospital Dr NW, Calgary, AB, T2N 4W4, Canada
- Foothills Medical Centre, Alberta Health Services, 1403 29 Street NW, Calgary, AB, 2TN 2T9, Canada
- Alberta Public Health Laboratory, Alberta Precision Laboratories, Calgary, AB, Canada
| | - Ryan S Noyce
- Department of Medical Microbiology and Immunology, University of Alberta, 6-142L Katz Group Centre, Edmonton, AB, T6G 2J7, Canada
| | - Thomas Louie
- Cumming School of Medicine, University of Calgary, 3030 Hospital Dr NW, Calgary, AB, T2N 4W4, Canada
- Foothills Medical Centre, Alberta Health Services, 1403 29 Street NW, Calgary, AB, 2TN 2T9, Canada
| | - David H Evans
- Department of Medical Microbiology and Immunology, University of Alberta, 6-142L Katz Group Centre, Edmonton, AB, T6G 2J7, Canada.
| | - John M Conly
- Cumming School of Medicine, University of Calgary, 3030 Hospital Dr NW, Calgary, AB, T2N 4W4, Canada
- Foothills Medical Centre, Alberta Health Services, 1403 29 Street NW, Calgary, AB, 2TN 2T9, Canada
| |
Collapse
|
10
|
Hursitoglu M, Isıksacan N, Erismis B, Karandere F, Kural A, Kumbasar AB, Kart Yasar K. In-vitro cytokine production and nasopharyngeal microbiota composition in the early stage of COVID-19 infection. Cytokine 2022; 149:155757. [PMID: 34763156 PMCID: PMC8570934 DOI: 10.1016/j.cyto.2021.155757] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 09/26/2021] [Accepted: 10/26/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND To determine and compare nasopharyngeal microbiota (NM) composition, in vitro basal (Nil tube), provoked (Mitogen tube) production of cytokines at the early stage of COVID-19. METHODS This cross-sectional study included 4 age and sex-matched study groups; group 1 (recovered COVID-19) (n = 26), group 2 (mild COVID-19) (n = 24), group 3 (severe COVID-19) (n = 25), and group 4 (healthy controls) (n = 25). The study parameters obtained from the COVID-19 (group 2, and 3) at the early phase of hospital admission. RESULTS The results from the reaserch deoicted that the Mean ± SD age was 53.09 ± 14.51 years. Some of the in vitro cytokines production was significantly different between the study groups. Some of the findinggs on cytokines depicted a significant differences between study groups were interleukin (IL)-1β Nil, IL-1β Mitogen, and their subtraction (i.e Mitogen-Nil). Regarding IL-10, and IL-17a levels, Mitogen, and Mitogen-Nil tube production levels were significantly different between the groups. Surprisingly, most of these measures were lowest in the severe COVID-19 patients' group. Using discriminant analysis effect size (LEfSe), Taxa of NM with significant abundance was determined. About 20 taxa with an LDA score > 4 were identified as candidate biomarkers. Some of these taxa showed a significant correlation with IL-1β and IL-10 Mitogen and Mitogen- Nil levels (R > 0.3 or < -0.3, p < 0.05). CONCLUSIONS The findings of this perticular study regarting the early stage of COVID-19 showed that in vitro cytokines production, studies might be more useful than the ordinary cytokines' blood level measurement. Besides, the study identified some NM species that could be candidate biomarkers in managing this infection. However, further detailed studies are needed in these fields.
Collapse
Affiliation(s)
- Mehmet Hursitoglu
- Internal Medicine Department, Basaksehir Cam & Sakura Sehir Hospital, University of Health Sciences, Istanbul, Turkey; Internal Medicine Department, Bakirkoy Dr. Sadi Konuk Training & Research Hospital, University of Health Sciences, Istanbul, Turkey.
| | - Nilgun Isıksacan
- Biochemistry Department, Bakirkoy Dr. Sadi Konuk Training & Research Hospital, University of Health Sciences, Istanbul, Turkey
| | - Betul Erismis
- Internal Medicine Department, Bakirkoy Dr. Sadi Konuk Training & Research Hospital, University of Health Sciences, Istanbul, Turkey
| | - Faruk Karandere
- Internal Medicine Department, Bakirkoy Dr. Sadi Konuk Training & Research Hospital, University of Health Sciences, Istanbul, Turkey
| | - Alev Kural
- Biochemistry Department, Bakirkoy Dr. Sadi Konuk Training & Research Hospital, University of Health Sciences, Istanbul, Turkey
| | - A Baki Kumbasar
- Internal Medicine Department, Bakirkoy Dr. Sadi Konuk Training & Research Hospital, University of Health Sciences, Istanbul, Turkey
| | - Kadriye Kart Yasar
- Clinical Microbiology and Infectious Diseases Department, Bakirkoy Dr. Sadi Konuk Training & Research Hospital, University of Health Sciences, Istanbul, Turkey
| |
Collapse
|
11
|
Leitão IDC, Calil PT, Galliez RM, Moreira FRR, Mariani D, Castiñeiras ACP, da Silva GPD, Maia RA, Corrêa IA, Monteiro FLL, de Souza MRM, Gonçalves CCA, Higa LM, de Jesus Ribeiro L, Fonseca VWP, Bastos VC, Voloch CM, Faffe DS, da Costa Ferreira O, Tanuri A, Castiñeiras TMPP, da Costa LJ. Prolonged SARS-CoV-2 Positivity in Immunocompetent Patients: Virus Isolation, Genomic Integrity, and Transmission Risk. Microbiol Spectr 2021; 9:e0085521. [PMID: 34787498 PMCID: PMC8597635 DOI: 10.1128/spectrum.00855-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 10/21/2021] [Indexed: 12/23/2022] Open
Abstract
Current guidelines for patient isolation in COVID-19 cases recommend a symptom-based approach, averting the use of control real-time reverse transcription PCR (rRT-PCR) testing. However, we hypothesized that patients with persistently positive results by RT-PCR for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) could be potentially infectious for a prolonged time, even if immunocompetent and asymptomatic, which would demand a longer social isolation period than presently recommended. To test this hypothesis, 72 samples from 51 mildly symptomatic immunocompetent patients with long-lasting positive rRT-PCR results for SARS-CoV-2 were tested for their infectiousness in cell culture. The serological response of samples from those patients and virus genomic integrity were also analyzed. Infectious viruses were successfully isolated from 34.38% (22/64) of nasopharynx samples obtained 14 days or longer after symptom onset. Indeed, we observed successful virus isolation up to 128 days. Complete SARS-COV-2 genome integrity was demonstrated, suggesting the presence of replication-competent viruses. No correlation was found between the isolation of infectious viruses and rRT-PCR cycle threshold values or the humoral immune response. These findings call attention to the need to review current isolation guidelines, particularly in scenarios involving high-risk individuals. IMPORTANCE In this study, we evaluated mildly symptomatic immunocompetent patients with long-lasting positive rRT-PCR results for SARS-CoV-2. Infectious viruses were successfully isolated in cell cultures from nasopharynx samples obtained 14 days or longer after symptom onset. Indeed, we observed successful virus isolation for up to 128 days. Moreover, SARS-CoV-2 genome integrity was demonstrated by sequencing, suggesting the presence of replication-competent viruses. These data point out the risk of continuous SARS-CoV-2 transmission from patients with prolonged detection of SARS-CoV-2 in the upper respiratory tract, which has important implications for current precaution guidelines, particularly in settings where vulnerable individuals may be exposed (e.g., nursing homes and hospitals).
Collapse
Affiliation(s)
- Isabela de Carvalho Leitão
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Pedro Telles Calil
- Laboratório de Genética e Imunologia das Infecções Virais, Departamento de Virologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Rafael Mello Galliez
- Departamento de Doenças Infecciosas e Parasitárias, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Filipe Romero Rebello Moreira
- Laboratório de Virologia Molecular, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Diana Mariani
- Laboratório de Virologia Molecular, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | | | - Gustavo Peixoto Duarte da Silva
- Laboratório de Genética e Imunologia das Infecções Virais, Departamento de Virologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Richard Araújo Maia
- Laboratório de Virologia Molecular, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Isadora Alonso Corrêa
- Laboratório de Genética e Imunologia das Infecções Virais, Departamento de Virologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Fábio Luís Lima Monteiro
- Laboratório de Genética e Imunologia das Infecções Virais, Departamento de Virologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Marcos Romário Matos de Souza
- Laboratório de Genética e Imunologia das Infecções Virais, Departamento de Virologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | | | - Luiza Mendonça Higa
- Laboratório de Virologia Molecular, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Liane de Jesus Ribeiro
- Laboratório de Virologia Molecular, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | | | - Victoria Cortes Bastos
- Departamento de Doenças Infecciosas e Parasitárias, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Carolina Moreira Voloch
- Laboratório de Virologia Molecular, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Débora Souza Faffe
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Orlando da Costa Ferreira
- Laboratório de Virologia Molecular, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Amilcar Tanuri
- Laboratório de Virologia Molecular, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | | | - Luciana Jesus da Costa
- Laboratório de Genética e Imunologia das Infecções Virais, Departamento de Virologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| |
Collapse
|
12
|
Wu LH, Ye ZN, Peng P, Xie WR, Xu JT, Zhang XY, Xia HHX, He XX. Efficacy and Safety of Washed Microbiota Transplantation to Treat Patients with Mild-to-Severe COVID-19 and Suspected of Having Gut Microbiota Dysbiosis: Study Protocol for a Randomized Controlled Trial. Curr Med Sci 2021; 41:1087-1095. [PMID: 34846698 PMCID: PMC8630278 DOI: 10.1007/s11596-021-2475-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 11/02/2021] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Coronavirus disease 2019 (COVID-19) is often accompanied by gastrointestinal symptoms, which are related to gut microbiota dysbiosis (GMD). Whether washed microbiota transplantation (WMT) is an effective treatment for COVID-19 patients suspected of having GMD by restoring the gut microbiota is unknown. This study is designed to explore the efficacy and safety of WMT in COVID-19 patients suspected of having GMD. METHODS This is a randomized, multicenter, single-blind prospective study. COVID-19 patients suspected of having GMD will be randomly divided to receive routine treatment only or to receive routine treatment and WMT. The frequency of WMT will be once a day for three consecutive days. Laboratory and imaging examinations will be performed at admission, 1 and 2 weeks after treatment, and on the day of discharge. Then a telephone follow-up will be conducted at 1st week, 2nd week, and 6th month after discharge. The clinical efficacy and safety of WMT in COVD-19 patients suspected of having GMD and the effects of WMT on the organ function, homeostasis, inflammatory response, intestinal mucosal barrier function, and immunity of the patients will be evaluated. RESULTS By following the proposed protocol, WMT is expected to be efficacious and safe for the treatment of COVID-19 patients suspected of having GMD, and the therapeutic effect is expected to be associated with improvement of the intestinal mucosal barrier function, inflammatory response, and immunity. CONCLUSION The findings from this study may offer a new approach for the prevention and treatment of COVID-19 patients suspected of having GMD.
Collapse
Affiliation(s)
- Li-hao Wu
- Department of Gastroenterology, the First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510080 China
- Research Center for Engineering Techniques of Microbiota-Targeted Therapies of Guangdong Province, the First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510080 China
| | - Zhi-ning Ye
- Department of Gastroenterology, the First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510080 China
- Research Center for Engineering Techniques of Microbiota-Targeted Therapies of Guangdong Province, the First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510080 China
| | - Ping Peng
- Guangzhou Eighth People’s Hospital, Guangzhou, 510060 China
| | - Wen-rui Xie
- Department of Gastroenterology, the First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510080 China
- Research Center for Engineering Techniques of Microbiota-Targeted Therapies of Guangdong Province, the First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510080 China
| | - Jia-ting Xu
- Department of Gastroenterology, the First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510080 China
- Research Center for Engineering Techniques of Microbiota-Targeted Therapies of Guangdong Province, the First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510080 China
| | - Xue-yuan Zhang
- Department of Gastroenterology, the First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510080 China
- Research Center for Engineering Techniques of Microbiota-Targeted Therapies of Guangdong Province, the First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510080 China
| | - Harry Hua-xiang Xia
- Department of Gastroenterology, the First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510080 China
| | - Xing-xiang He
- Department of Gastroenterology, the First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510080 China
- Research Center for Engineering Techniques of Microbiota-Targeted Therapies of Guangdong Province, the First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510080 China
| |
Collapse
|
13
|
Fakhroo A, AlKhatib HA, Al Thani AA, Yassine HM. Reinfections in COVID-19 Patients: Impact of Virus Genetic Variability and Host Immunity. Vaccines (Basel) 2021; 9:1168. [PMID: 34696276 PMCID: PMC8537829 DOI: 10.3390/vaccines9101168] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 01/02/2023] Open
Abstract
The COVID-19 pandemic is still posing a devastating threat to social life and economics. Despite the modest decrease in the number of cases during September-November 2020, the number of active cases is on the rise again. This increase was associated with the emergence and spread of the new SARS-CoV-2 variants of concern (VOCs), such as the U.K. (B1.1.7), South Africa (B1.351), Brazil (P1), and Indian (B1.617.2) strains. The rapid spread of these new variants has raised concerns about the multiple waves of infections and the effectiveness of available vaccines. In this review, we discuss SARS-CoV-2 reinfection rates in previously infected and vaccinated individuals in relation to humoral responses. Overall, a limited number of reinfection cases have been reported worldwide, suggesting long protective immunity. Most reinfected patients were asymptomatic during the second episode of infection. Reinfection was attributed to several viral and/or host factors, including (i) underlying immunological comorbidities; (ii) low antibody titers due to the primary infection or vaccination; (iii) rapid decline in antibody response after infection or vaccination; and (iv) reinfection with a different SARS-CoV-2 variant/lineage. Infections after vaccination were also reported on several occasions, but mostly associated with mild or no symptoms. Overall, findings suggest that infection- and vaccine-induced immunity would protect from severe illness, with the vaccine being effective against most VOCs.
Collapse
Affiliation(s)
- Aisha Fakhroo
- Research and Development Department, Barzan Holdings, Doha 7178, Qatar;
| | - Hebah A. AlKhatib
- Biomedical Research Center, Qatar University, Doha 2713, Qatar; (H.A.A.); (A.A.A.T.)
| | - Asmaa A. Al Thani
- Biomedical Research Center, Qatar University, Doha 2713, Qatar; (H.A.A.); (A.A.A.T.)
| | - Hadi M. Yassine
- Biomedical Research Center, Qatar University, Doha 2713, Qatar; (H.A.A.); (A.A.A.T.)
| |
Collapse
|
14
|
Ong SWX, Chiew CJ, Ang LW, Mak TM, Cui L, Toh MPHS, Lim YD, Lee PH, Lee TH, Chia PY, Maurer-Stroh S, Lin RTP, Leo YS, Lee VJ, Lye DC, Young BE. Clinical and Virological Features of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Variants of Concern: A Retrospective Cohort Study Comparing B.1.1.7 (Alpha), B.1.351 (Beta), and B.1.617.2 (Delta). Clin Infect Dis 2021; 75:e1128-e1136. [PMID: 34423834 PMCID: PMC8522361 DOI: 10.1093/cid/ciab721] [Citation(s) in RCA: 250] [Impact Index Per Article: 83.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The impact of SARS-CoV-2 variants of concern (VOCs) on disease severity is unclear. In this retrospective study, we compared the outcomes of patients infected with B.1.1.7, B.1.351, and B.1.617.2 with wild-type strains from early 2020. METHODS National surveillance data from January to May 2021 were obtained and outcomes in relation to VOCs were explored. Detailed patient-level data from all patients with VOC infection admitted to our center between December 2020 and May 2021 were analyzed. Clinical outcomes were compared with a cohort of 846 patients admitted from January to April 2020. RESULTS A total of 829 patients in Singapore in the study period were infected with these 3 VOCs. After adjusting for age and sex, B.1.617.2 was associated with higher odds of oxygen requirement, intensive care unit admission, or death (adjusted odds ratio [aOR], 4.90; 95% confidence interval [CI]: 1.43-30.78). Of these patients, 157 were admitted to our center. After adjusting for age, sex, comorbidities, and vaccination, the aOR for pneumonia with B.1.617.2 was 1.88 (95% CI: .95-3.76) compared with wild-type. These differences were not seen with B.1.1.7 and B.1.351. Vaccination status was associated with decreased severity. B.1.617.2 was associated with significantly lower polymerase chain reaction cycle threshold (Ct) values and longer duration of Ct value ≤30 (median duration 18 days for B.1.617.2, 13 days for wild-type). CONCLUSIONS B.1.617.2 was associated with increased severity of illness, and with lower Ct values and longer viral shedding. These findings provide impetus for the rapid implementation of vaccination programs.
Collapse
Affiliation(s)
- Sean Wei Xiang Ong
- National Centre for Infectious Diseases, Singapore, Singapore,Department of Infectious Diseases, Tan Tock Seng Hospital, Singapore, Singapore
| | - Calvin J Chiew
- National Centre for Infectious Diseases, Singapore, Singapore,Ministry of Health, Singapore, Singapore
| | - Li Wei Ang
- National Centre for Infectious Diseases, Singapore, Singapore
| | - Tze Minn Mak
- National Centre for Infectious Diseases, Singapore, Singapore
| | - Lin Cui
- National Centre for Infectious Diseases, Singapore, Singapore
| | - Matthias Paul H S Toh
- National Centre for Infectious Diseases, Singapore, Singapore,Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
| | | | - Pei Hua Lee
- National Centre for Infectious Diseases, Singapore, Singapore,Department of Infectious Diseases, Tan Tock Seng Hospital, Singapore, Singapore
| | - Tau Hong Lee
- National Centre for Infectious Diseases, Singapore, Singapore,Department of Infectious Diseases, Tan Tock Seng Hospital, Singapore, Singapore,Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore,Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Po Ying Chia
- National Centre for Infectious Diseases, Singapore, Singapore,Department of Infectious Diseases, Tan Tock Seng Hospital, Singapore, Singapore,Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Sebastian Maurer-Stroh
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore,Bioinformatics Institute, Agency for Science, Technology and Research, Singapore, Singapore,A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR), Singapore,Department of Biological Sciences, National University of Singapore, Singapore
| | - Raymond T P Lin
- National Centre for Infectious Diseases, Singapore, Singapore,Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Yee Sin Leo
- National Centre for Infectious Diseases, Singapore, Singapore,Department of Infectious Diseases, Tan Tock Seng Hospital, Singapore, Singapore,Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore,Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Vernon J Lee
- Ministry of Health, Singapore, Singapore,Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
| | - David Chien Lye
- National Centre for Infectious Diseases, Singapore, Singapore,Department of Infectious Diseases, Tan Tock Seng Hospital, Singapore, Singapore,Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore,Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Barnaby Edward Young
- Correspondence: Barnaby Young, National Centre for Infectious Diseases, 16 Jln Tan Tock Seng, Singapore 308442 ()
| |
Collapse
|
15
|
Awada H, Nassereldine H, Hajj Ali A. Severe acute respiratory syndrome coronavirus 2 reinfection in a coronavirus disease 2019 recovered young adult: a case report. J Med Case Rep 2021; 15:382. [PMID: 34271967 PMCID: PMC8284680 DOI: 10.1186/s13256-021-02965-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 06/16/2021] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Coronavirus disease 2019 has been a public health threat and a worldwide emergency for more than a year. Unfortunately, many questions concerning the pathophysiology, management, and long-term side effects remain unanswered, and novel aspects of the disease keep on emerging. Of concern to healthcare providers are the recent reported cases of reinfection. Serum coronavirus disease 2019 antibodies have been detected within a few days after onset of the disease. However, it remains unclear whether this immune response is universal, or whether it can lead to latent immunity. CASE PRESENTATION A previously healthy 27-year-old white man presented with fever, chills, back pain, and other constitutional symptoms, 2 days after being exposed to coronavirus disease 2019 positive patients. His severe acute respiratory syndrome coronavirus 2 polymerase chain reaction was positive, and his symptoms resolved over the next 2 weeks. One month after a confirmatory negative severe acute respiratory syndrome coronavirus 2 polymerase chain reaction, he was found to be ineligible for plasma donation as his anti-severe acute respiratory syndrome coronavirus 2 serology was negative. The patient redeveloped symptoms similar to his first infection 3 weeks after the negative serology test. He and his wife both tested positive via polymerase chain reaction. Their symptoms resolved over the next few days, and they had a negative polymerase chain reaction test 10 days after the positive polymerase chain reaction. CONCLUSION While studies showed that anti-severe acute respiratory syndrome coronavirus 2 immunoglobulins start to develop early after infection, our healthy young patient's immune system failed to mount latent immunity against the virus. This left him, especially amid widespread social and medical misconceptions, vulnerable to reinfection by severe acute respiratory syndrome coronavirus 2. Our case disputes the timelines for immune response that were set and supported by research studies. Our case also raises questions regarding prioritizing vaccinating other individuals over those with prior infection.
Collapse
Affiliation(s)
- Hussein Awada
- Faculty of Medicine, American University of Beirut, Beirut, Lebanon.
| | | | - Adel Hajj Ali
- Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| |
Collapse
|
16
|
Badu K, Oyebola K, Zahouli JZB, Fagbamigbe AF, de Souza DK, Dukhi N, Amankwaa EF, Tolba MF, Sylverken AA, Mosi L, Mante PK, Matoke-Muhia D, Goonoo N. SARS-CoV-2 Viral Shedding and Transmission Dynamics: Implications of WHO COVID-19 Discharge Guidelines. Front Med (Lausanne) 2021; 8:648660. [PMID: 34239886 PMCID: PMC8259580 DOI: 10.3389/fmed.2021.648660] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 05/14/2021] [Indexed: 12/20/2022] Open
Abstract
The evolving nature of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has necessitated periodic revisions of COVID-19 patient treatment and discharge guidelines. Since the identification of the first COVID-19 cases in November 2019, the World Health Organization (WHO) has played a crucial role in tackling the country-level pandemic preparedness and patient management protocols. Among others, the WHO provided a guideline on the clinical management of COVID-19 patients according to which patients can be released from isolation centers on the 10th day following clinical symptom manifestation, with a minimum of 72 additional hours following the resolution of symptoms. However, emerging direct evidence indicating the possibility of viral shedding 14 days after the onset of symptoms called for evaluation of the current WHO discharge recommendations. In this review article, we carried out comprehensive literature analysis of viral shedding with specific focus on the duration of viral shedding and infectivity in asymptomatic and symptomatic (mild, moderate, and severe forms) COVID-19 patients. Our literature search indicates that even though, there are specific instances where the current protocols may not be applicable ( such as in immune-compromised patients there is no strong evidence to contradict the current WHO discharge criteria.
Collapse
Affiliation(s)
- Kingsley Badu
- African Academy of Sciences Affiliates, Nairobi, Kenya
- Department of Theoretical and Applied Biology, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Kolapo Oyebola
- African Academy of Sciences Affiliates, Nairobi, Kenya
- Biochemistry and Nutrition Department, Nigerian Institute of Medical Research, Lagos, Nigeria
- Department of Zoology, Faculty of Science, University of Lagos, Lagos, Nigeria
| | - Julien Z. B. Zahouli
- African Academy of Sciences Affiliates, Nairobi, Kenya
- Centre Suisse de Recherches Scientifiques en Côte d'Ivoire, Abidjan, Côte d'Ivoire
- Centre d'Entomologie Médicale et Vétérinaire, Université Alassane Ouattara, Bouaké, Côte d'Ivoire
| | - Adeniyi Francis Fagbamigbe
- African Academy of Sciences Affiliates, Nairobi, Kenya
- Department of Epidemiology and Medical Statistics, Faculty of Public Health, College of Medicine, University of Ibadan, Ibadan, Nigeria
- Division of Population and Behavioral Sciences, School of Medicine, St. Andrews University, St. Andrews, United Kingdom
| | - Dziedzom K. de Souza
- African Academy of Sciences Affiliates, Nairobi, Kenya
- College of Health Sciences, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Natisha Dukhi
- African Academy of Sciences Affiliates, Nairobi, Kenya
- College of Health Sciences, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
- Human and Social Capabilities Division, Human Sciences Research Council, Cape Town, South Africa
| | - Ebenezer F. Amankwaa
- African Academy of Sciences Affiliates, Nairobi, Kenya
- Department of Geography and Resource Development, University of Ghana, Accra, Ghana
| | - Mai F. Tolba
- African Academy of Sciences Affiliates, Nairobi, Kenya
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
- The Center of Drug Discovery Research and Development, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
- School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation, New Administrative Capital, Egypt
| | - Augustina A. Sylverken
- African Academy of Sciences Affiliates, Nairobi, Kenya
- Department of Theoretical and Applied Biology, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
- Kumasi Centre for Collaborative Research in Tropical Medicine, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Lydia Mosi
- African Academy of Sciences Affiliates, Nairobi, Kenya
- West African Centre for Cell Biology of Infectious Diseases, University of Ghana, Accra, Ghana
- Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Accra, Ghana
| | - Priscilla Kolibea Mante
- African Academy of Sciences Affiliates, Nairobi, Kenya
- Department of Pharmacology, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Damaris Matoke-Muhia
- African Academy of Sciences Affiliates, Nairobi, Kenya
- Centre for Biotechnology Research and Development, Kenya Medical Research Institute, Nairobi, Kenya
| | - Nowsheen Goonoo
- African Academy of Sciences Affiliates, Nairobi, Kenya
- Biomaterials, Drug Delivery and Nanotechnology Unit, Center for Biomedical and Biomaterials Research (CBBR), University of Mauritius, Reduit, Mauritius
| |
Collapse
|
17
|
Lim AY, Cheong HK, Oh YJ, Lee JK, So JB, Kim HJ, Han B, Park SW, Jang Y, Yoon CY, Park YO, Kim JH, Kim JY. Modeling the early temporal dynamics of viral load in respiratory tract specimens of COVID-19 patients in Incheon, the Republic of Korea. Int J Infect Dis 2021; 108:428-434. [PMID: 34058374 PMCID: PMC8161782 DOI: 10.1016/j.ijid.2021.05.062] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 04/20/2021] [Accepted: 05/25/2021] [Indexed: 01/01/2023] Open
Abstract
Objective To investigate the duration and peak of severe acute respiratory syndrome coronavirus 2 shedding as infectivity markers for determining the isolation period. Methods A total of 2,558 upper respiratory tract (URT) and lower respiratory tract (LRT) specimens from 138 patients with laboratory-confirmed coronavirus disease were analyzed. Measurements of sequential viral loads were aggregated using the cubic spline smoothing function of a generalized additive model. The time to negative conversion was compared between symptom groups using survival analysis. Results In URT samples, viral RNA levels peaked on day 4 after symptom onset and rapidly decreased until day 10 for both E and RdRp genes, whereas those in LRT samples immediately peaked from symptom onset and decreased until days 15.6 and 15.0 for E and RdRp genes, respectively. Median (interquartile range) time to negative conversion was significantly longer in symptomatic (18.0 [13.0–25.0] days) patients than in asymptomatic (13.0 [9.5–17.5] days) patients. The more types of symptoms a patient had, the longer the time to negative conversion. Conclusions The viral load rapidly changes depending on the time after symptom onset; the viral shedding period may be longer with more clinical symptoms. Different isolation policies should be applied depending on disease severity.
Collapse
Affiliation(s)
- Ah-Young Lim
- Department of Social and Preventive Medicine, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Hae-Kwan Cheong
- Department of Social and Preventive Medicine, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Yoon Ju Oh
- Department of Internal Medicine, Incheon Medical Center, Incheon, Republic of Korea
| | - Jae Kap Lee
- Department of Internal Medicine, Incheon Medical Center, Incheon, Republic of Korea
| | - Jae Bum So
- Department of Internal Medicine, Incheon Medical Center, Incheon, Republic of Korea
| | - Hyun Jin Kim
- Department of Internal Medicine, Incheon Medical Center, Incheon, Republic of Korea
| | - Boram Han
- Department of Neurosurgery, Incheon Medical Center, Incheon, Republic of Korea
| | - Sung Won Park
- Department of Surgery, Incheon Medical Center, Incheon, Republic of Korea
| | - Yongsun Jang
- Department of Surgery, Incheon Medical Center, Incheon, Republic of Korea
| | - Chang Yong Yoon
- Department of Anesthesiology and Pain Medicine, Incheon Medical Center, Incheon, Republic of Korea
| | - Yun Ok Park
- Department of Anesthesiology and Pain Medicine, Incheon Medical Center, Incheon, Republic of Korea
| | - Jong-Hun Kim
- Department of Social and Preventive Medicine, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea.
| | - Jin Yong Kim
- Department of Internal Medicine, Incheon Medical Center, Incheon, Republic of Korea.
| |
Collapse
|
18
|
Harvey RA, Rassen JA, Kabelac CA, Turenne W, Leonard S, Klesh R, Meyer WA, Kaufman HW, Anderson S, Cohen O, Petkov VI, Cronin KA, Van Dyke AL, Lowy DR, Sharpless NE, Penberthy LT. Association of SARS-CoV-2 Seropositive Antibody Test With Risk of Future Infection. JAMA Intern Med 2021; 181:672-679. [PMID: 33625463 PMCID: PMC7905701 DOI: 10.1001/jamainternmed.2021.0366] [Citation(s) in RCA: 182] [Impact Index Per Article: 60.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 01/28/2021] [Indexed: 01/20/2023]
Abstract
Importance Understanding the effect of serum antibodies to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on susceptibility to infection is important for identifying at-risk populations and could have implications for vaccine deployment. Objective The study purpose was to evaluate evidence of SARS-CoV-2 infection based on diagnostic nucleic acid amplification test (NAAT) among patients with positive vs negative test results for antibodies in an observational descriptive cohort study of clinical laboratory and linked claims data. Design, Setting, and Participants The study created cohorts from a deidentified data set composed of commercial laboratory tests, medical and pharmacy claims, electronic health records, and hospital chargemaster data. Patients were categorized as antibody-positive or antibody-negative according to their first SARS-CoV-2 antibody test in the database. Main Outcomes and Measures Primary end points were post-index diagnostic NAAT results, with infection defined as a positive diagnostic test post-index, measured in 30-day intervals (0-30, 31-60, 61-90, >90 days). Additional measures included demographic, geographic, and clinical characteristics at the time of the index antibody test, including recorded signs and symptoms or prior evidence of coronavirus 2019 (COVID) diagnoses or positive NAAT results and recorded comorbidities. Results The cohort included 3 257 478 unique patients with an index antibody test; 56% were female with a median (SD) age of 48 (20) years. Of these, 2 876 773 (88.3%) had a negative index antibody result, and 378 606 (11.6%) had a positive index antibody result. Patients with a negative antibody test result were older than those with a positive result (mean age 48 vs 44 years). Of index-positive patients, 18.4% converted to seronegative over the follow-up period. During the follow-up periods, the ratio (95% CI) of positive NAAT results among individuals who had a positive antibody test at index vs those with a negative antibody test at index was 2.85 (95% CI, 2.73-2.97) at 0 to 30 days, 0.67 (95% CI, 0.6-0.74) at 31 to 60 days, 0.29 (95% CI, 0.24-0.35) at 61 to 90 days, and 0.10 (95% CI, 0.05-0.19) at more than 90 days. Conclusions and Relevance In this cohort study, patients with positive antibody test results were initially more likely to have positive NAAT results, consistent with prolonged RNA shedding, but became markedly less likely to have positive NAAT results over time, suggesting that seropositivity is associated with protection from infection. The duration of protection is unknown, and protection may wane over time.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Valentina I. Petkov
- National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Kathy A. Cronin
- National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Alison L. Van Dyke
- National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Douglas R. Lowy
- National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Norman E. Sharpless
- National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Lynne T. Penberthy
- National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
19
|
Li Y, Yang T, Wang S, Zheng J, Zhou J, Jiang M, Zhou T, Cao Y, Wang H. The value of lymphocyte count in determining the severity of COVID-19 and estimating the time for nucleic acid test results to turn negative. Bosn J Basic Med Sci 2021; 21:235-241. [PMID: 32893759 PMCID: PMC7982065 DOI: 10.17305/bjbms.2020.4868] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 08/24/2020] [Indexed: 02/06/2023] Open
Abstract
Peripheral blood lymphocyte count is shown to be decreased in patients with COVID-19 in the early stage of the disease. The degree of lymphocyte count reduction is related to COVID-19 severity and could be used as an indicator to reflect the disease severity. Our aim was to investigate the value of lymphocyte count in determining COVID-19 severity and estimating the time for SARS-CoV-2 nucleic acid test results to turn negative. We retrospectively analyzed clinical data of 201 patients with severe and critical COVID-19. The patients were admitted to the West Campus of Union Hospital of Tongji Medical College of Huazhong University of Science and Technology. The data included age, gender, chronic disease, lymphocyte count, and SARS-CoV-2 nucleic acid test results. The age of patients in critically ill group was higher than in severely ill group (p = 0.019). The lymphocyte count of critically ill patients was lower than of severely ill patients. The cutoff value of lymphocyte count to distinguish between the critically ill and the severely ill was 0.735 × 109/L (p = 0.001). The cutoff value of lymphocyte count for SARS-CoV-2 nucleic acid test results turning negative in severely and critically ill patients with chronic diseases (hypertension, diabetes, and coronary heart disease) was 0.835 × 109/L (p = 0.017). The cutoff value of lymphocyte count for SARS-CoV-2 nucleic acid test results turning negative in severely and critically ill male patients was 0.835 × 109/L (p < 0.0001). Lymphocyte count could be an effective indicator to predict COVID-19 severity. It may also be useful in determining the time for nucleic acid test results to turn negative in COVID-19 patients with underlying chronic diseases or male COVID-19 patients with severe and critical conditions.
Collapse
Affiliation(s)
- Yuanchao Li
- Department of Critical Care Medicine, the Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China; Heilongjiang Province Medical Aid Group for CVOID-19, Wuhan, Hubei, China
| | - Tuoyun Yang
- Department of Critical Care Medicine, the Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China; Heilongjiang Province Medical Aid Group for CVOID-19, Wuhan, Hubei, China
| | - Sicong Wang
- Department of Critical Care Medicine, the Cancer Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Junbo Zheng
- Department of Critical Care Medicine, the Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China; Heilongjiang Province Medical Aid Group for CVOID-19, Wuhan, Hubei, China
| | - Jing Zhou
- Department of Critical Care Medicine, the Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Min Jiang
- Department of Critical Care Medicine, the Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Tong Zhou
- Department of Critical Care Medicine, the Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yang Cao
- Department of Critical Care Medicine, the Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Hongliang Wang
- Department of Critical Care Medicine, the Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China; Heilongjiang Province Medical Aid Group for CVOID-19, Wuhan, Hubei, China
| |
Collapse
|
20
|
Abdelrahman Z, Liu Q, Jiang S, Li M, Sun Q, Zhang Y, Wang X. Evaluation of the Current Therapeutic Approaches for COVID-19: A Systematic Review and a Meta-analysis. Front Pharmacol 2021; 12:607408. [PMID: 33790785 PMCID: PMC8005525 DOI: 10.3389/fphar.2021.607408] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 01/06/2021] [Indexed: 01/08/2023] Open
Abstract
Background: Limited data on the efficacy and safety of currently applied COVID-19 therapeutics and their impact on COVID-19 outcomes have raised additional concern. Objective and Methods: To estimate the efficacy and safety of COVID-19 therapeutics, we performed meta-analyses of the studies reporting clinical features and treatments of COVID-19 published from January 21 to September 6, 2020. Results: We included 136 studies that involved 102,345 COVID-19 patients. The most prevalent treatments were antibiotics (proportion: 0.59, 95% CI: [0.51, 0.67]) and antivirals (proportion: 0.52, 95% CI: [0.44, 0.60]). The combination of lopinavir/ritonavir and Arbidol was the most effective in treating COVID-19 (standardized mean difference (SMD) = 0.68, 95% CI: [0.15, 1.21]). The use of corticosteroids was associated with a small clinical improvement (SMD = -0.40, 95% CI: [-0.85, -0.23]), but with a higher risk of disease progression and death (mortality: RR = 9.26, 95% CI: [4.81, 17.80]; hospitalization length: RR = 1.54, 95% CI: [1.39, 1.72]; severe adverse events: RR = 2.65, 95% CI: [2.09, 3.37]). The use of hydroxychloroquine was associated with a higher risk of death (RR = 1.68, 95% CI: [1.18, 2.38]). The combination of lopinavir/ritonavir, ribavirin, and interferon-β (RR = 0.34, 95% CI: [0.22, 0.54]); hydroxychloroquine (RR = 0.58, 95% CI: [0.39, 0.58]); and lopinavir/ritonavir (RR = 0.72, 95% CI: [0.56, 0.91]) was associated with reduced hospitalization length. Hydrocortisone (RR = 0.05, 95% CI: [0.03, 0.10]) and remdesivir (RR = 0.74, 95% CI: [0.62, 0.90]) were associated with lower incidence of severe adverse events. Dexamethasone was not significant in reducing disease progression (RR = 0.45, 95% CI: [0.16, 1.25]) and mortality (RR = 0.90, 95% CI: [0.70, 1.16]). The estimated combination of corticosteroids with antivirals was associated with a better clinical improvement than antivirals alone (SMD = -1.09, 95% CI: [-1.64, -0.53]). Conclusion: Antivirals are safe and effective in COVID-19 treatment. Remdesivir cannot significantly reduce COVID-19 mortality and hospitalization length, while it is associated with a lower incidence of severe adverse events. Corticosteroids could increase COVID-19 severity, but it could be beneficial when combined with antivirals. Our data are potentially valuable for the clinical treatment and management of COVID-19 patients.
Collapse
Affiliation(s)
- Zeinab Abdelrahman
- Biomedical Informatics Research Lab, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
- Big Data Research Institute, China Pharmaceutical University, Nanjing, China
| | - Qian Liu
- Biomedical Informatics Research Lab, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
- Big Data Research Institute, China Pharmaceutical University, Nanjing, China
| | - Shanmei Jiang
- Biomedical Informatics Research Lab, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
- Big Data Research Institute, China Pharmaceutical University, Nanjing, China
| | - Mengyuan Li
- Biomedical Informatics Research Lab, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
- Big Data Research Institute, China Pharmaceutical University, Nanjing, China
| | - Qingrong Sun
- Biomedical Informatics Research Lab, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
- Big Data Research Institute, China Pharmaceutical University, Nanjing, China
| | - Yue Zhang
- Pinghu Hospital of Shenzhen University, Shenzhen, China
- Futian Hospital for Rheumatic Diseases, Shenzhen, China
- Department of Rheumatology and Immunology, The First Clinical College of Harbin Medical University, Harbin, China
| | - Xiaosheng Wang
- Biomedical Informatics Research Lab, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
- Big Data Research Institute, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
21
|
Banjar A, Al-Tawfiq JA, Alruwaily A, Alserehi H, Al-Qunaibet A, Alaswad R, Almutlaq H, Almudaiheem A, Khojah AT, Alsaif F, Almolad SK, Alqahtani S, AlJurayyan A, Alotaibi A, Almalki S, Abuhaimed Y, Alkhashan A, Alfaifi A, Alabdulkareem K, Jokhdar H, Assiri A, Almudarra S. Seroprevalence of antibodies to SARS-CoV-2 among blood donors in the early months of the pandemic in Saudi Arabia. Int J Infect Dis 2021; 104:452-457. [PMID: 33465488 PMCID: PMC7816871 DOI: 10.1016/j.ijid.2021.01.028] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Serologic testing provides better understanding of SARS-CoV-2 prevalence and its transmission. This study was an investigation of the prevalence of antibodies to SARS-CoV-2 among blood donors in Saudi Arabia. OBJECTIVE To estimate the seroprevalence of anti-SARS-CoV-2 antibodies among blood donors in Saudi Arabia during the early phase of the COVID-19 pandemic. METHODS Serology results and epidemiological data were analyzed for 837 adult blood donors, with no confirmed SARS-CoV-2 infection, in Saudi Arabia from 20th to 25th May 2020. Seroprevalence was determined using electrochemical immunoassay to detect anti-SARS-CoV-2 antibodies. RESULTS The overall seroprevalence of anti-SARS-CoV-2 antibodies was 1.4% (12/837). Non-citizens had higher seroprevalence compared with citizens (OR 13.6, p = 0.001). Secondary education was significantly associated with higher seroprevalence compared with higher education (OR 6.8, p = 0.005). The data showed that the highest seroprevalence was in Makkah (8.1%). Uisng Makkah seroprevalence as the reference, the seroprevalence in other areas was: Madinah 4.1% (OR 0.48, 95% CI 0.12-1.94), Jeddah 2.3% (OR 0.27, 95% CI 0.31-2.25), and Qassim 2.9 % (OR 0.34, 95% CI 0.04-2.89) and these were not statistically different from seroprevalence in the Makkah region. CONCLUSIONS At the early months of the COVID-19 pandemic in Saudi Arabia, the seroprevalence of antibodies to SARS-CoV-2 among blood donors was low, but was higher among non-citizens. These findings may indicate that non-citizens and less educated individuals may be less attentive to preventive measures. Monitoring seroprevalence trends over time require repeated sampling.
Collapse
Affiliation(s)
- Ayman Banjar
- Deputy Ministry for Public Health, Ministry of Health, Riyadh, Saudi Arabia
| | - Jaffar A Al-Tawfiq
- Infectious Disease Unit, Specialty Internal Medicine, Johns Hopkins Aramco Healthcare, Dhahran, Saudi Arabia; Infectious Disease Division, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA; Infectious Disease Division, Department of Medicine, Johns Hopkins University, Baltimore, MD, USA.
| | - Amaal Alruwaily
- Saudi Center for Disease Prevention and Control, Riyadh, Saudi Arabia
| | - Haleema Alserehi
- Saudi Center for Disease Prevention and Control, Riyadh, Saudi Arabia
| | - Ada Al-Qunaibet
- Saudi Center for Disease Prevention and Control, Riyadh, Saudi Arabia
| | - Rehab Alaswad
- Saudi Center for Disease Prevention and Control, Riyadh, Saudi Arabia
| | - Hind Almutlaq
- Saudi Center for Disease Prevention and Control, Riyadh, Saudi Arabia
| | | | - Abdullah T Khojah
- Faculty of Medicine, Al Imam Muhammad ibn Saud Islamic University, Riyadh, Saudi Arabia
| | - Faisal Alsaif
- Faculty of Medicine, King Saud University, Riyadh, Saudi Arabia
| | | | - Saeed Alqahtani
- Deputy Ministry for Laboratories and Blood Banks, Ministry of Health, Riyadh, Saudi Arabia
| | | | - Abdullah Alotaibi
- Dammam Regional Laboratory, Ministry of Health, Dammam, Saudi Arabia
| | - Safar Almalki
- Jeddah Regional Laboratory, Ministry of Health, Jeddah, Saudi Arabia
| | - Yousef Abuhaimed
- King Saud bin Abdulaziz University for Health Science, Riyadh, Saudi Arabia
| | - Abdullah Alkhashan
- Deputy Ministry for Laboratories and Blood Banks, Ministry of Health, Riyadh, Saudi Arabia
| | - Amal Alfaifi
- Deputy Ministry for Public Health, Ministry of Health, Riyadh, Saudi Arabia
| | - Khaled Alabdulkareem
- Deputy Ministry for Public Health, Ministry of Health, Riyadh, Saudi Arabia; Faculty of Medicine, Al Imam Muhammad ibn Saud Islamic University, Riyadh, Saudi Arabia
| | - Hani Jokhdar
- Deputy Ministry for Public Health, Ministry of Health, Riyadh, Saudi Arabia
| | - Abdullah Assiri
- Deputy Ministry for Public Health, Ministry of Health, Riyadh, Saudi Arabia
| | - Sami Almudarra
- Deputy Ministry for Public Health, Ministry of Health, Riyadh, Saudi Arabia; Saudi Center for Disease Prevention and Control, Riyadh, Saudi Arabia.
| |
Collapse
|
22
|
Simmonds P, Williams S, Harvala H. Understanding the outcomes of COVID-19 - does the current model of an acute respiratory infection really fit? J Gen Virol 2021; 102:001545. [PMID: 33331810 PMCID: PMC8222868 DOI: 10.1099/jgv.0.001545] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 12/01/2020] [Indexed: 12/11/2022] Open
Abstract
Although coronavirus disease 2019 (COVID-19) is regarded as an acute, resolving infection followed by the development of protective immunity, recent systematic literature review documents evidence for often highly prolonged shedding of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in respiratory and faecal samples, periodic recurrence of PCR positivity in a substantial proportion of individuals and increasingly documented instances of reinfection associated with a lack of protective immunity. This pattern of infection is quite distinct from the acute/resolving nature of other human pathogenic respiratory viruses, such as influenza A virus and respiratory syncytial virus. Prolonged shedding of SARS-CoV-2 furthermore occurs irrespective of disease severity or development of virus-neutralizing antibodies. SARS-CoV-2 possesses an intensely structured RNA genome, an attribute shared with other human and veterinary coronaviruses and with other mammalian RNA viruses such as hepatitis C virus. These are capable of long-term persistence, possibly through poorly understood RNA structure-mediated effects on innate and adaptive host immune responses. The assumption that resolution of COVID-19 and the appearance of anti-SARS-CoV-2 IgG antibodies represents virus clearance and protection from reinfection, implicit for example in the susceptible-infected-recovered (SIR) model used for epidemic prediction, should be rigorously re-evaluated.
Collapse
Affiliation(s)
- Peter Simmonds
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Sarah Williams
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Heli Harvala
- National Microbiology Services, NHS Blood and Transplant, London, UK
| |
Collapse
|
23
|
Lack of viable severe acute respiratory coronavirus virus 2 (SARS-CoV-2) among PCR-positive air samples from hospital rooms and community isolation facilities. Infect Control Hosp Epidemiol 2021; 42:1327-1332. [PMID: 33487210 PMCID: PMC7870907 DOI: 10.1017/ice.2021.8] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Understanding the extent of aerosol-based transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is important for tailoring interventions for control of the coronavirus disease 2019 (COVID-19) pandemic. Multiple studies have reported the detection of SARS-CoV-2 nucleic acid in air samples, but only one study has successfully recovered viable virus, although it is limited by its small sample size. OBJECTIVE We aimed to determine the extent of shedding of viable SARS-CoV-2 in respiratory aerosols from COVID-19 patients. METHODS In this observational air sampling study, air samples from airborne-infection isolation rooms (AIIRs) and a community isolation facility (CIF) housing COVID-19 patients were collected using a water vapor condensation method into liquid collection media. Samples were tested for presence of SARS-CoV-2 nucleic acid using quantitative real-time polymerase chain reaction (qRT-PCR), and qRT-PCR-positive samples were tested for viability using viral culture. RESULTS Samples from 6 (50%) of the 12 sampling cycles in hospital rooms were positive for SARS-CoV-2 RNA, including aerosols ranging from <1 µm to >4 µm in diameter. Of 9 samples from the CIF, 1 was positive via qRT-PCR. Viral RNA concentrations ranged from 179 to 2,738 ORF1ab gene copies per cubic meter of air. Virus cultures were negative after 4 blind passages. CONCLUSION Although SARS-CoV-2 is readily captured in aerosols, virus culture remains challenging despite optimized sampling methodologies to preserve virus viability. Further studies on aerosol-based transmission and control of SARS-CoV-2 are needed.
Collapse
|
24
|
Harvey RA, Rassen JA, Kabelac CA, Turenne W, Leonard S, Klesh R, Meyer WA, Kaufman HW, Anderson S, Cohen O, Petkov VI, Cronin KA, Van Dyke AL, Lowy DR, Sharpless NE, Penberthy LT. Real-world data suggest antibody positivity to SARS-CoV-2 is associated with a decreased risk of future infection. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2020:2020.12.18.20248336. [PMID: 33354682 PMCID: PMC7755144 DOI: 10.1101/2020.12.18.20248336] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Importance There is limited evidence regarding whether the presence of serum antibodies to SARS-CoV-2 is associated with a decreased risk of future infection. Understanding susceptibility to infection and the role of immune memory is important for identifying at-risk populations and could have implications for vaccine deployment. Objective The purpose of this study was to evaluate subsequent evidence of SARS-CoV-2 infection based on diagnostic nucleic acid amplification test (NAAT) among individuals who are antibody-positive compared with those who are antibody-negative, using real-world data. Design This was an observational descriptive cohort study. Participants The study utilized a national sample to create cohorts from a de-identified dataset composed of commercial laboratory test results, open and closed medical and pharmacy claims, electronic health records, hospital billing (chargemaster) data, and payer enrollment files from the United States. Patients were indexed as antibody-positive or antibody-negative according to their first SARS-CoV-2 antibody test recorded in the database. Patients with more than 1 antibody test on the index date where results were discordant were excluded. Main Outcomes/Measures Primary endpoints were index antibody test results and post-index diagnostic NAAT results, with infection defined as a positive diagnostic test post-index, as measured in 30-day intervals (0-30, 31-60, 61-90, >90 days). Additional measures included demographic, geographic, and clinical characteristics at the time of the index antibody test, such as recorded signs and symptoms or prior evidence of COVID-19 (diagnoses or NAAT+) and recorded comorbidities. Results We included 3,257,478 unique patients with an index antibody test. Of these, 2,876,773 (88.3%) had a negative index antibody result, 378,606 (11.6%) had a positive index antibody result, and 2,099 (0.1%) had an inconclusive index antibody result. Patients with a negative antibody test were somewhat older at index than those with a positive result (mean of 48 versus 44 years). A fraction (18.4%) of individuals who were initially seropositive converted to seronegative over the follow up period. During the follow-up periods, the ratio (CI) of positive NAAT results among individuals who had a positive antibody test at index versus those with a negative antibody test at index was 2.85 (2.73 - 2.97) at 0-30 days, 0.67 (0.6 - 0.74) at 31-60 days, 0.29 (0.24 - 0.35) at 61-90 days), and 0.10 (0.05 - 0.19) at >90 days. Conclusions Patients who display positive antibody tests are initially more likely to have a positive NAAT, consistent with prolonged RNA shedding, but over time become markedly less likely to have a positive NAAT. This result suggests seropositivity using commercially available assays is associated with protection from infection. The duration of protection is unknown and may wane over time; this parameter will need to be addressed in a study with extended duration of follow up.
Collapse
|
25
|
Wensman JJ, Stokstad M. Could Naturally Occurring Coronaviral Diseases in Animals Serve as Models for COVID-19? A Review Focusing on the Bovine Model. Pathogens 2020; 9:pathogens9120991. [PMID: 33256111 PMCID: PMC7760055 DOI: 10.3390/pathogens9120991] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/24/2020] [Accepted: 11/25/2020] [Indexed: 12/23/2022] Open
Abstract
The current pandemic of COVID-19 has highlighted the importance of basic studies on coronaviruses (CoVs) in general, and severe acute respiratory syndrome CoV type 2 (SARS-CoV-2) in particular. CoVs have for long been studied in veterinary medicine, due to their impact on animal health and welfare, production, and economy. Several animal models using coronaviral disease in the natural host have been suggested. In this review, different animal models are discussed, with the main focus on bovine CoV (BCoV). BCoV is endemic in the cattle population worldwide and has been known and studied for several decades. SARS-CoV-2 and BCoV are both betacoronaviruses, where BCoV is highly similar to human coronavirus (HCoV) OC43, encompassing the same virus species (Betacoronavirus 1). BCoV causes respiratory and gastrointestinal disease in young and adult cattle. This review summarizes the current knowledge of the similarities and dissimilarities between BCoV and SARS-CoV-2, as well as discussing the usage of BCoV as a model for human CoVs, including SARS-CoV-2.
Collapse
Affiliation(s)
- Jonas Johansson Wensman
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, SE-750 07 Uppsala, Sweden
- Correspondence: ; Tel.: +46-18-671446
| | - Maria Stokstad
- Department of Production Animal Clinical Sciences, Norwegian University of Life Sciences, 0102 Oslo, Norway;
| |
Collapse
|
26
|
Fain B, Dobrovolny HM. Initial Inoculum and the Severity of COVID-19: A Mathematical Modeling Study of the Dose-Response of SARS-CoV-2 Infections. EPIDEMIOLGIA (BASEL, SWITZERLAND) 2020; 1:5-15. [PMID: 36417207 PMCID: PMC9620883 DOI: 10.3390/epidemiologia1010003] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 09/30/2020] [Accepted: 10/14/2020] [Indexed: 12/14/2022]
Abstract
SARS-CoV-2 (Severe acute respiratory syndrome coronavirus 2) causes a variety of responses in those who contract the virus, ranging from asymptomatic infections to acute respiratory failure and death. While there are likely multiple mechanisms triggering severe disease, one potential cause of severe disease is the size of the initial inoculum. For other respiratory diseases, larger initial doses lead to more severe outcomes. We investigate whether there is a similar link for SARS-CoV-2 infections using the combination of an agent-based model (ABM) and a partial differential equation model (PDM). We use the model to examine the viral time course for different sizes of initial inocula, generating dose-response curves for peak viral load, time of viral peak, viral growth rate, infection duration, and area under the viral titer curve. We find that large initial inocula lead to short infections, but with higher viral titer peaks; and that smaller initial inocula lower the viral titer peak, but make the infection last longer.
Collapse
|
27
|
Sabino BD, Alonso FDOM, Oliveira MSCD, Venceslau MT, Guimarães MAAM, Varella RB. Long-term intermittent detection of SARS CoV 2 in the upper respiratory tract: what is the meaning of it? Infect Dis (Lond) 2020; 53:151-153. [PMID: 33078680 DOI: 10.1080/23744235.2020.1837944] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
| | | | | | - Marianna Tavares Venceslau
- Departament of Preventive Medicine, University Hospital Clementino Fraga Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Rafael Brandão Varella
- Department of Microbiology and Parasitology, Biomedical Institute, Fluminense Federal University, Rio de Janeiro, Brazil
| |
Collapse
|
28
|
To KKW, Hung IFN, Ip JD, Chu AWH, Chan WM, Tam AR, Fong CHY, Yuan S, Tsoi HW, Ng ACK, Lee LLY, Wan P, Tso E, To WK, Tsang D, Chan KH, Huang JD, Kok KH, Cheng VCC, Yuen KY. COVID-19 re-infection by a phylogenetically distinct SARS-coronavirus-2 strain confirmed by whole genome sequencing. Clin Infect Dis 2020; 73:e2946-e2951. [PMID: 32840608 PMCID: PMC7499500 DOI: 10.1093/cid/ciaa1275] [Citation(s) in RCA: 469] [Impact Index Per Article: 117.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 08/24/2020] [Indexed: 12/19/2022] Open
Abstract
Background Waning immunity occurs in patients who have recovered from COVID-19. However, it remains unclear whether true re-infection occurs. Methods Whole genome sequencing was performed directly on respiratory specimens collected during two episodes of COVID-19 in a patient. Comparative genome analysis was conducted to differentiate re-infection from persistent viral shedding. Laboratory results, including RT-PCR Ct values and serum SARS-CoV-2 IgG, were analyzed. Results The second episode of asymptomatic infection occurred 142 days after the first symptomatic episode in an apparently immunocompetent patient. During the second episode, there was serological evidence of elevated C-reactive protein and SARS-CoV-2 IgG seroconversion. Viral genomes from first and second episodes belong to different clades/lineages. Compared to viral genomes in GISAID, the first virus genome has a stop codon at position 64 of orf8 leading to a truncation of 58 amino acids, and was phylogenetically closely related to strains collected in March/April 2020, while the second virus genome was closely related to strains collected in July/August 2020. Another 23 nucleotide and 13 amino acid differences located in 9 different proteins, including positions of B and T cell epitopes, were found between viruses from the first and second episodes. Conclusions Epidemiological, clinical, serological and genomic analyses confirmed that the patient had re-infection instead of persistent viral shedding from first infection. Our results suggest SARS-CoV-2 may continue to circulate among the human populations despite herd immunity due to natural infection or vaccination. Further studies of patients with re-infection will shed light on protective correlates important for vaccine design.
Collapse
Affiliation(s)
- Kelvin Kai-Wang To
- State Key Laboratory for Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China.,Department of Microbiology, Queen Mary Hospital, Hong Kong Special Administrative Region, China
| | - Ivan Fan-Ngai Hung
- Department of Medicine, Queen Mary Hospital, Hong Kong Special Administrative Region, China
| | - Jonathan Daniel Ip
- State Key Laboratory for Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Allen Wing-Ho Chu
- State Key Laboratory for Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Wan-Mui Chan
- State Key Laboratory for Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Anthony Raymond Tam
- Department of Medicine, Queen Mary Hospital, Hong Kong Special Administrative Region, China
| | - Carol Ho-Yan Fong
- State Key Laboratory for Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Shuofeng Yuan
- State Key Laboratory for Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Hoi-Wah Tsoi
- State Key Laboratory for Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Anthony Chin-Ki Ng
- State Key Laboratory for Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Larry Lap-Yip Lee
- Department of Accident and Emergency Medicine, Tin Shui Wai Hospital, Hong Kong Special Administrative Region, China
| | - Polk Wan
- Department of Medicine, North Lantau Hospital, Hong Kong Special Administrative Region, China
| | - Eugene Tso
- Department of Medicine, United Christian Hospital, Hong Kong SAR, China
| | - Wing-Kin To
- Department of Pathology, Princess Margaret Hospital, Hong Kong, China
| | - Dominic Tsang
- Centre for Health Protection, Department of Health, Hong Kong
| | - Kwok-Hung Chan
- State Key Laboratory for Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Jian-Dong Huang
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Kin-Hang Kok
- State Key Laboratory for Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Vincent Chi-Chung Cheng
- State Key Laboratory for Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China.,Department of Microbiology, Queen Mary Hospital, Hong Kong Special Administrative Region, China
| | - Kwok-Yung Yuen
- State Key Laboratory for Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China.,Department of Microbiology, Queen Mary Hospital, Hong Kong Special Administrative Region, China
| |
Collapse
|
29
|
Jiang C, Wang Y, Hu M, Wen L, Wen C, Wang Y, Zhu W, Tai S, Jiang Z, Xiao K, Faria NR, De Clercq E, Xu J, Li G. Antibody seroconversion in asymptomatic and symptomatic patients infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Clin Transl Immunology 2020; 9:e1182. [PMID: 33005417 PMCID: PMC7519951 DOI: 10.1002/cti2.1182] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 08/28/2020] [Accepted: 08/28/2020] [Indexed: 01/08/2023] Open
Abstract
OBJECTIVES Asymptomatic and symptomatic patients may transmit severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), but their clinical features and immune responses remain largely unclear. We aimed to characterise the clinical features and immune responses of asymptomatic and symptomatic patients infected with SARS-CoV-2. METHODS We collected clinical, laboratory and epidemiological records of patients hospitalised in a coronavirus field hospital in Wuhan. We performed qualitative detection of anti-SARS-CoV-2 immunoglobulin M (IgM) and immunoglobulin G (IgG) using archived blood samples. RESULTS Of 214 patients with SARS-CoV-2, 26 (12%) were asymptomatic at hospital admission and during hospitalisation. Most asymptomatic patients were ≤ 60 years (96%) and females (65%) and had few comorbidities (< 16%). Serum levels of white and red blood cells were higher in asymptomatic than in symptomatic patients (P-values < 0.05). During hospitalisation, IgG seroconversion was commonly observed in both asymptomatic and symptomatic patients (85% versus 94%, P-value = 0.07); in contrast, IgM seroconversion was less common in asymptomatic than in symptomatic patients (31% versus 74%, P-value < 0.001). The median time from the first virus-positive screening to IgG or IgM seroconversion was significantly shorter in asymptomatic than in symptomatic patients (median: 7 versus 14 days, P-value < 0.01). Furthermore, IgG/IgM seroconversion rates increased concomitantly with the clearance of SARS-CoV-2 in both asymptomatic and symptomatic patients. At the time of virus clearance, IgG/IgM titres and plasma neutralisation capacity were significantly lower in recovered asymptomatic than in recovered symptomatic patients (P-values < 0.01). CONCLUSION Asymptomatic and symptomatic patients exhibited different kinetics of IgG/IgM responses to SARS-CoV-2. Asymptomatic patients may transmit SARS-CoV-2, highlighting the importance of early diagnosis and treatment.
Collapse
Affiliation(s)
- Chuanhao Jiang
- Department of Laboratory Medicine The Second Xiangya Hospital Central South University Changsha China
| | - Yali Wang
- Hunan Provincial Key Laboratory of Clinical Epidemiology School of Public Health Central South University Changsha China
| | - Min Hu
- Department of Laboratory Medicine The Second Xiangya Hospital Central South University Changsha China
| | - Lingjun Wen
- Department of Laboratory Medicine The Second Xiangya Hospital Central South University Changsha China
| | - Chuan Wen
- Department of Pediatrics The Second Xiangya Hospital Central South University Changsha China
| | - Yang Wang
- Department of Social Affairs The Second Xiangya Hospital Central South University Changsha China
| | - Weihong Zhu
- Department of Orthopedic Surgery The Second Xiangya Hospital Central South University Changsha China
| | - Shi Tai
- Department of Cardiology The Second Xiangya Hospital Central South University Changsha China
| | - Zhongbiao Jiang
- Department of Radiology The Second Xiangya Hospital Central South University Changsha China
| | - Kui Xiao
- Department of Pulmonary and Critical Care Medicine The Second Xiangya Hospital Central South University Changsha China
| | - Nuno Rodrigues Faria
- Department of Zoology University of Oxford Oxford UK.,Department of Infectious Disease Epidemiology School of Public Health Imperial College London London UK
| | - Erik De Clercq
- Department of Microbiology, Immunology and Transplantation Rega Institute for Medical Research KU Leuven Leuven Belgium
| | - Junmei Xu
- Department of Anesthesiology The Second Xiangya Hospital Central South University Changsha China
| | - Guangdi Li
- Department of Laboratory Medicine The Second Xiangya Hospital Central South University Changsha China.,Hunan Provincial Key Laboratory of Clinical Epidemiology School of Public Health Central South University Changsha China
| |
Collapse
|