1
|
Ishigaki S, Yoshimoto K, Akiyama M, Matsumoto K, Suzuki K, Yamanoi K, Iwakura Y, Takeuchi T, Kaneko Y. Expansion of granulocyte-macrophage colony-stimulating factor producing CD4+ T cells in an animal model with enhanced interleukin-1 signal. Immunol Med 2024:1-9. [PMID: 39600116 DOI: 10.1080/25785826.2024.2430913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 09/14/2024] [Indexed: 11/29/2024] Open
Abstract
Interleukin-1, a pro-inflammatory cytokine, plays a crucial role in inflammatory disease pathogenesis. Interleukin-1 receptor antagonist knockout (IL-1Ra KO) mice spontaneously develop aortitis, arthritis and dermatitis, and are employed as a model for human inflammatory diseases. Previous studies have shown that transferring total T cells from IL-1Ra KO mice into nude mice induces aortitis and arthritis; however, the roles of specific T cell subsets in these inflammatory responses remain unclear. In this study, we aimed to investigate the T cell subsets in IL-1Ra KO mice. We found that the proportion of PD-1+CD44+CD62L-CD4+ T cells in the spleen and lymph nodes of IL-1Ra KO mice was significantly higher than that of wild type mice. RNA sequencing revealed elevated expression of basic helix-loop-helix family member e40 and granulocyte macrophage colony stimulating factor (GM-CSF) in splenic CD44+CD62L-CD4+ T cells from IL-1Ra KO mice. In addition, GM-CSF production from splenic CD4+ T cells of IL-1Ra KO mice was significantly higher than that of wild type mice when stimulated with PMA and ionomycin in vitro. Notably, immunohistochemical staining showed infiltration of GM-CSF+CD4+ T cells at inflammatory sites in IL-1Ra KO mice. Our results suggest that a subset of GM-CSF+CD4 + T cells emerges under IL-1 signal-enhanced inflammatory conditions.
Collapse
Affiliation(s)
- Sho Ishigaki
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Keiko Yoshimoto
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Mitsuhiro Akiyama
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Kotaro Matsumoto
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Katsuya Suzuki
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Kazuhiro Yamanoi
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan
| | - Yoichiro Iwakura
- Center for Animal Disease Models, Research Institute for Biomedical Sciences, Tokyo University of Science, Noda, Chiba, Japan
| | - Tsutomu Takeuchi
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Yuko Kaneko
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
2
|
Ferrigno I, Bonacini M, Rossi A, Nicastro M, Muratore F, Boiardi L, Cavazza A, Bisagni A, Cimino L, Ghidini A, Malchiodi G, Zerbini A, Pipitone N, Salvarani C, Croci S. Genes deregulated in giant cell arteritis by Nanostring nCounter gene expression profiling in temporal artery biopsies. RMD Open 2024; 10:e004600. [PMID: 39317454 PMCID: PMC11423731 DOI: 10.1136/rmdopen-2024-004600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 09/13/2024] [Indexed: 09/26/2024] Open
Abstract
OBJECTIVE To identify differentially expressed genes in temporal artery biopsies (TABs) from patients with giant cell arteritis (GCA) with different histological patterns of inflammation: transmural inflammation (TMI) and inflammation limited to adventitia (ILA), compared with normal TABs from patients without GCA. METHODS Expression of 770 immune-related genes was profiled with the NanoString nCounter PanCancer Immune Profiling Panel on formalin-fixed paraffin-embedded TABs from 42 GCA patients with TMI, 7 GCA patients with ILA and 7 non-GCA controls. RESULTS Unsupervised clustering of the samples revealed two distinct groups: normal TABs and TABs with ILA in one group, 41/42 TABs with TMI in the other one. TABs with TMI showed 31 downregulated and 256 upregulated genes compared with normal TABs; they displayed 26 downregulated and 187 upregulated genes compared with TABs with ILA (>2.0 fold changes and adjusted p values <0.05). Gene expression in TABs with ILA resembled normal TABs although 38 genes exhibited >2.0 fold changes, but these changes lost statistical significance after Benjamini-Yekutieli correction. Genes encoding TNF superfamily members, immune checkpoints, chemokine and chemokine receptors, toll-like receptors, complement molecules, Fc receptors for IgG antibodies, signalling lymphocytic activation molecules, JAK3, STAT1 and STAT4 resulted upregulated in TMI. CONCLUSIONS TABs with TMI had a distinct transcriptome compared with normal TABs and TABs with ILA. The few genes potentially deregulated in ILA were also deregulated in TMI. Gene profiling allowed to deepen the knowledge of GCA pathogenesis.
Collapse
Affiliation(s)
- Ilaria Ferrigno
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, Modena, Italy
- Unit of Clinical Immunology, Allergy and Advanced Biotechnologies, Azienda Unità Sanitaria Locale - IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Martina Bonacini
- Unit of Clinical Immunology, Allergy and Advanced Biotechnologies, Azienda Unità Sanitaria Locale - IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Alessandro Rossi
- Unit of Clinical Immunology, Allergy and Advanced Biotechnologies, Azienda Unità Sanitaria Locale - IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Maria Nicastro
- Unit of Clinical Immunology, Allergy and Advanced Biotechnologies, Azienda Unità Sanitaria Locale - IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Francesco Muratore
- Unit of Rheumatology, Azienda Unità Sanitaria Locale - IRCCS di Reggio Emilia, Reggio Emilia, Italy
- Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Luigi Boiardi
- Unit of Rheumatology, Azienda Unità Sanitaria Locale - IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Alberto Cavazza
- Unit of Pathology, Azienda Unità Sanitaria Locale - IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Alessandra Bisagni
- Unit of Pathology, Azienda Unità Sanitaria Locale - IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Luca Cimino
- Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
- Unit of Ocular Immunology, Azienda Unità Sanitaria Locale - IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Angelo Ghidini
- Unit of Otolaryngology, Azienda Unità Sanitaria Locale - IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Giuseppe Malchiodi
- Unit of Vascular Surgery, Azienda Unità Sanitaria Locale - IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Alessandro Zerbini
- Unit of Clinical Immunology, Allergy and Advanced Biotechnologies, Azienda Unità Sanitaria Locale - IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Nicolò Pipitone
- Unit of Rheumatology, Azienda Unità Sanitaria Locale - IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Carlo Salvarani
- Unit of Rheumatology, Azienda Unità Sanitaria Locale - IRCCS di Reggio Emilia, Reggio Emilia, Italy
- Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Stefania Croci
- Unit of Clinical Immunology, Allergy and Advanced Biotechnologies, Azienda Unità Sanitaria Locale - IRCCS di Reggio Emilia, Reggio Emilia, Italy
| |
Collapse
|
3
|
Teng L, Li L, Cui D, An R, Jin J. Polymyalgia rheumatica and giant cell arteritis: A bidirectional Mendelian randomization study. Medicine (Baltimore) 2024; 103:e39723. [PMID: 39312384 PMCID: PMC11419444 DOI: 10.1097/md.0000000000039723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 08/26/2024] [Indexed: 09/25/2024] Open
Abstract
Polymyalgia rheumatica (PMR) and giant cell arteritis (GCA) as 2 types of autoimmune diseases are frequently concomitant, and Mendelian randomization (MR) was applied in this study to assess the causal relationship between them. In this study, single-nucleotide polymorphism (SNP) was used as the instrumental variable for Mendelian analysis, and the SNP data of GCA and PMR were obtained from the FinnGen Biobank databases. SNPs are significantly correlated with GCA and PMR and were screened based on preset thresholds. Inverse variance weighted analysis was used as the main analysis, supplemented with MR-Egger and weighted median. The evidence of the impact of GCA on PMR risk was found in inverse variance weighted results (odds ratio, 1.22 [95% confidence interval, 1.11-1.34]; P < .01), and the evidence of the impact of PMR on GCA risk has also been found (odds ratio, 1.58 [95% confidence interval, 1.28-1.96]; P < .01). Finally, the stability and reliability of the results were tested using the retention method, heterogeneity test, and horizontal gene pleiotropy test. MR analysis indicates that GCA increases the risk of PMR and PMR is an important risk factor for GCA, with a causal relationship. The potential value of reasonable management of PMR in patients with GCA has received high attention. In addition, novel GCA therapeutics may be indicated for PMR, and it is a potential for further investigation.
Collapse
Affiliation(s)
- Lin Teng
- Yanbian University Hospital, Yanji, China
| | - Lei Li
- Yanbian University Hospital, Yanji, China
| | - Dinglu Cui
- Yanbian University Hospital, Yanji, China
| | | | | |
Collapse
|
4
|
Xu S, Jiemy WF, Boots AMH, Arends S, van Sleen Y, Nienhuis PH, van der Geest KSM, Heeringa P, Brouwer E, Sandovici M. Altered Plasma Levels and Tissue Expression of Fibroblast Activation Protein Alpha in Giant Cell Arteritis. Arthritis Care Res (Hoboken) 2024; 76:1322-1332. [PMID: 38685696 DOI: 10.1002/acr.25354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 04/09/2024] [Accepted: 04/26/2024] [Indexed: 05/02/2024]
Abstract
OBJECTIVE Giant cell arteritis (GCA) is characterized by granulomatous inflammation of the medium- and large-sized arteries accompanied by remodeling of the vessel wall. Fibroblast activation protein alpha (FAP) is a serine protease that promotes both inflammation and fibrosis. Here, we investigated the plasma levels and vascular expression of FAP in GCA. METHODS Plasma FAP levels were measured with enzyme-linked immunosorbent assay in treatment-naive patients with GCA (n = 60) and polymyalgia rheumatica (PMR) (n = 63) compared with age- and sex-matched healthy controls (HCs) (n = 42) and during follow-up, including treatment-free remission (TFR). Inflamed temporal artery biopsies (TABs) of patients with GCA (n = 9), noninflamed TABs (n = 14), and aorta samples from GCA-related (n = 9) and atherosclerosis-related aneurysm (n = 11) were stained for FAP using immunohistochemistry. Immunofluorescence staining was performed for fibroblasts (CD90), macrophages (CD68/CD206/folate receptor beta), vascular smooth muscle cells (desmin), myofibroblasts (α-smooth muscle actin), interleukin-6 (IL-6), and matrix metalloproteinase-9 (MMP-9). RESULTS Baseline plasma FAP levels were significantly lower in patients with GCA compared with patients with PMR and HCs and inversely correlated with systemic markers of inflammation and angiogenesis. FAP levels decreased even further at 3 months on remission in patients with GCA and gradually increased to the level of HCs in TFR. FAP expression was increased in inflamed TABs and aorta of patients with GCA compared with control tissues. FAP was abundantly expressed in fibroblasts and macrophages. Some of the FAP+ fibroblasts expressed IL-6 and MMP-9. CONCLUSION FAP expression in GCA is clearly modulated both in plasma and in vessels. FAP may be involved in the inflammatory and remodeling processes in GCA and have utility as a target for imaging and therapeutic intervention.
Collapse
Affiliation(s)
- Shuang Xu
- Department of Rheumatology and Clinical Immunology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - William F Jiemy
- Department of Rheumatology and Clinical Immunology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Annemieke M H Boots
- Department of Rheumatology and Clinical Immunology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Suzanne Arends
- Department of Rheumatology and Clinical Immunology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Yannick van Sleen
- Department of Rheumatology and Clinical Immunology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Pieter H Nienhuis
- Department of Rheumatology and Clinical Immunology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Kornelis S M van der Geest
- Department of Rheumatology and Clinical Immunology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Peter Heeringa
- Department of Rheumatology and Clinical Immunology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Elisabeth Brouwer
- Department of Rheumatology and Clinical Immunology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Maria Sandovici
- Department of Rheumatology and Clinical Immunology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
5
|
Karabayas M, Ibrahim HE, Roelofs AJ, Reynolds G, Kidder D, De Bari C. Vascular disease persistence in giant cell arteritis: are stromal cells neglected? Ann Rheum Dis 2024; 83:1100-1109. [PMID: 38684323 PMCID: PMC11420755 DOI: 10.1136/ard-2023-225270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 04/05/2024] [Indexed: 05/02/2024]
Abstract
Giant cell arteritis (GCA), the most common systemic vasculitis, is characterised by aberrant interactions between infiltrating and resident cells of the vessel wall. Ageing and breach of tolerance are prerequisites for GCA development, resulting in dendritic and T-cell dysfunction. Inflammatory cytokines polarise T-cells, activate resident macrophages and synergistically enhance vascular inflammation, providing a loop of autoreactivity. These events originate in the adventitia, commonly regarded as the biological epicentre of the vessel wall, with additional recruitment of cells that infiltrate and migrate towards the intima. Thus, GCA-vessels exhibit infiltrates across the vascular layers, with various cytokines and growth factors amplifying the pathogenic process. These events activate ineffective repair mechanisms, where dysfunctional vascular smooth muscle cells and fibroblasts phenotypically shift along their lineage and colonise the intima. While high-dose glucocorticoids broadly suppress these inflammatory events, they cause well known deleterious effects. Despite the emerging targeted therapeutics, disease relapse remains common, affecting >50% of patients. This may reflect a discrepancy between systemic and local mediators of inflammation. Indeed, temporal arteries and aortas of GCA-patients can show immune-mediated abnormalities, despite the treatment induced clinical remission. The mechanisms of persistence of vascular disease in GCA remain elusive. Studies in other chronic inflammatory diseases point to the fibroblasts (and their lineage cells including myofibroblasts) as possible orchestrators or even effectors of disease chronicity through interactions with immune cells. Here, we critically review the contribution of immune and stromal cells to GCA pathogenesis and analyse the molecular mechanisms by which these would underpin the persistence of vascular disease.
Collapse
Affiliation(s)
- Maira Karabayas
- Centre for Arthritis and Musculoskeletal Health, University of Aberdeen, Aberdeen, UK
| | - Hafeez E Ibrahim
- Centre for Arthritis and Musculoskeletal Health, University of Aberdeen, Aberdeen, UK
| | - Anke J Roelofs
- Centre for Arthritis and Musculoskeletal Health, University of Aberdeen, Aberdeen, UK
| | - Gary Reynolds
- Centre for Immunology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Dana Kidder
- Centre for Arthritis and Musculoskeletal Health, University of Aberdeen, Aberdeen, UK
| | - Cosimo De Bari
- Centre for Arthritis and Musculoskeletal Health, University of Aberdeen, Aberdeen, UK
| |
Collapse
|
6
|
van der Geest KSM, Sandovici M, Bley TA, Stone JR, Slart RHJA, Brouwer E. Large vessel giant cell arteritis. THE LANCET. RHEUMATOLOGY 2024; 6:e397-e408. [PMID: 38574745 DOI: 10.1016/s2665-9913(23)00300-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/02/2023] [Accepted: 11/02/2023] [Indexed: 04/06/2024]
Abstract
Giant cell arteritis is the principal form of systemic vasculitis affecting people over 50. Large-vessel involvement, termed large vessel giant cell arteritis, mainly affects the aorta and its branches, often occurring alongside cranial giant cell arteritis, but large vessel giant cell arteritis without cranial giant cell arteritis can also occur. Patients mostly present with constitutional symptoms, with localising large vessel giant cell arteritis symptoms present in a minority of patients only. Large vessel giant cell arteritis is usually overlooked until clinicians seek to exclude it with imaging by ultrasonography, magnetic resonance angiography (MRA), computed tomography angiography (CTA), or [18F]fluorodeoxyglucose-PET-CT. Although the role of imaging in treatment monitoring remains uncertain, imaging by MRA or CTA is crucial for identifying aortic aneurysm formation during patient follow up. In this Series paper, we define the large vessel subset of giant cell arteritis and summarise its clinical challenges. Furthermore, we identify areas for future research regarding the management of large vessel giant cell arteritis.
Collapse
Affiliation(s)
- Kornelis S M van der Geest
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands.
| | - Maria Sandovici
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Thorsten A Bley
- Department of Diagnostic and Interventional Radiology, Faculty of Medicine, University Hospital Wuerzburg, University of Wuerzburg, Wuerzburg, Germany
| | - James R Stone
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Riemer H J A Slart
- Medical Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Netherlands; Department of Biomedical Photonic Imaging, Faculty of Science and Technology, University of Twente, Enschede, Netherlands
| | - Elisabeth Brouwer
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| |
Collapse
|
7
|
Xu S, Jiemy WF, Brouwer E, Burgess JK, Heeringa P, van der Geest KSM, Alba-Rovira R, Corbera-Bellalta M, Boots AH, Cid MC, Sandovici M. Current evidence on the role of fibroblasts in large-vessel vasculitides: From pathogenesis to therapeutics. Autoimmun Rev 2024; 23:103574. [PMID: 38782083 DOI: 10.1016/j.autrev.2024.103574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/29/2024] [Accepted: 05/20/2024] [Indexed: 05/25/2024]
Abstract
Large-vessel vasculitides (LVV) comprise a group of chronic inflammatory diseases of the aorta and its major branches. The most common forms of LVV are giant cell arteritis (GCA) and Takayasu arteritis (TAK). Both GCA and TAK are characterized by granulomatous inflammation of the vessel wall accompanied by a maladaptive immune and vascular response that promotes vascular damage and remodeling. The inflammatory process in LVV starts in the adventitia where fibroblasts constitute the dominant cell population. Fibroblasts are traditionally recognized for synthesizing and renewing the extracellular matrix thereby being major players in maintenance of normal tissue architecture and in tissue repair. More recently, fibroblasts have emerged as a highly plastic cell population exerting various functions, including the regulation of local immune processes and organization of immune cells at the site of inflammation through production of cytokines, chemokines and growth factors as well as cell-cell interaction. In this review, we summarize and discuss the current knowledge on fibroblasts in LVV. Furthermore, we identify key questions that need to be addressed to fully understand the role of fibroblasts in the pathogenesis of LVV.
Collapse
Affiliation(s)
- Shuang Xu
- University of Groningen, University Medical Center Groningen, Department of Rheumatology and Clinical Immunology, the Netherlands
| | - William F Jiemy
- University of Groningen, University Medical Center Groningen, Department of Rheumatology and Clinical Immunology, the Netherlands
| | - Elisabeth Brouwer
- University of Groningen, University Medical Center Groningen, Department of Rheumatology and Clinical Immunology, the Netherlands
| | - Janette K Burgess
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, the Netherlands
| | - Peter Heeringa
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, the Netherlands
| | - Kornelis S M van der Geest
- University of Groningen, University Medical Center Groningen, Department of Rheumatology and Clinical Immunology, the Netherlands
| | - Roser Alba-Rovira
- Vasculitis Research Group, Department of Autoimmune Diseases, Hospital Clínic, University of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Marc Corbera-Bellalta
- Vasculitis Research Group, Department of Autoimmune Diseases, Hospital Clínic, University of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Annemieke H Boots
- University of Groningen, University Medical Center Groningen, Department of Rheumatology and Clinical Immunology, the Netherlands
| | - Maria C Cid
- Vasculitis Research Group, Department of Autoimmune Diseases, Hospital Clínic, University of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Maria Sandovici
- University of Groningen, University Medical Center Groningen, Department of Rheumatology and Clinical Immunology, the Netherlands.
| |
Collapse
|
8
|
Palamidas DA, Chatzis L, Papadaki M, Gissis I, Kambas K, Andreakos E, Goules AV, Tzioufas AG. Current Insights into Tissue Injury of Giant Cell Arteritis: From Acute Inflammatory Responses towards Inappropriate Tissue Remodeling. Cells 2024; 13:430. [PMID: 38474394 DOI: 10.3390/cells13050430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/25/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
Giant cell arteritis (GCA) is an autoimmune disease affecting large vessels in patients over 50 years old. It is an exemplary model of a classic inflammatory disorder with IL-6 playing the leading role. The main comorbidities that may appear acutely or chronically are vascular occlusion leading to blindness and thoracic aorta aneurysm formation, respectively. The tissue inflammatory bulk is expressed as acute or chronic delayed-type hypersensitivity reactions, the latter being apparent by giant cell formation. The activated monocytes/macrophages are associated with pronounced Th1 and Th17 responses. B-cells and neutrophils also participate in the inflammatory lesion. However, the exact order of appearance and mechanistic interactions between cells are hindered by the lack of cellular and molecular information from early disease stages and accurate experimental models. Recently, senescent cells and neutrophil extracellular traps have been described in tissue lesions. These structures can remain in tissues for a prolonged period, potentially favoring inflammatory responses and tissue remodeling. In this review, current advances in GCA pathogenesis are discussed in different inflammatory phases. Through the description of these-often overlapping-phases, cells, molecules, and small lipid mediators with pathogenetic potential are described.
Collapse
Affiliation(s)
- Dimitris Anastasios Palamidas
- Department of Pathophysiology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Loukas Chatzis
- Department of Pathophysiology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Laboratory of Immunobiology, Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | - Maria Papadaki
- Laboratory of Immunobiology, Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | - Ilias Gissis
- Department of Thoracic and Cardiovascular Surgery, Evangelismos General Hospital, 11473 Athens, Greece
| | - Konstantinos Kambas
- Laboratory of Molecular Genetics, Department of Immunology, Hellenic Pasteur Institute, 11521 Athens, Greece
| | - Evangelos Andreakos
- Laboratory of Immunobiology, Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | - Andreas V Goules
- Department of Pathophysiology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Laboratory of Immunobiology, Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | - Athanasios G Tzioufas
- Department of Pathophysiology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Laboratory of Immunobiology, Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
- Research Institute for Systemic Autoimmune Diseases, 11527 Athens, Greece
| |
Collapse
|
9
|
La Barbera L, Rizzo C, Camarda F, Miceli G, Tuttolomondo A, Guggino G. The Contribution of Innate Immunity in Large-Vessel Vasculitis: Detangling New Pathomechanisms beyond the Onset of Vascular Inflammation. Cells 2024; 13:271. [PMID: 38334663 PMCID: PMC10854891 DOI: 10.3390/cells13030271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/28/2024] [Accepted: 01/30/2024] [Indexed: 02/10/2024] Open
Abstract
Large-vessel vasculitis (LVV) are autoimmune and autoinflammatory diseases focused on vascular inflammation. The central core of the intricate immunological and molecular network resides in the disruption of the "privileged immune state" of the arterial wall. The outbreak, initially primed by dendritic cells (DC), is then continuously powered in a feed-forward loop by the intimate cooperation between innate and adaptive immunity. If the role of adaptive immunity has been largely elucidated, knowledge of the critical function of innate immunity in LVV is still fragile. A growing body of evidence has strengthened the active role of innate immunity players and their key signaling pathways in orchestrating the complex pathomechanisms underlying LVV. Besides DC, macrophages are crucial culprits in LVV development and participate across all phases of vascular inflammation, culminating in vessel wall remodeling. In recent years, the variety of potential pathogenic actors has expanded to include neutrophils, mast cells, and soluble mediators, including the complement system. Interestingly, new insights have recently linked the inflammasome to vascular inflammation, paving the way for its potential pathogenic role in LVV. Overall, these observations encourage a new conceptual approach that includes a more in-depth study of innate immunity pathways in LVV to guide future targeted therapies.
Collapse
Affiliation(s)
- Lidia La Barbera
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, Rheumatology Section, University of Palermo, 90133 Palermo, Italy; (L.L.B.); (C.R.); (F.C.)
| | - Chiara Rizzo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, Rheumatology Section, University of Palermo, 90133 Palermo, Italy; (L.L.B.); (C.R.); (F.C.)
| | - Federica Camarda
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, Rheumatology Section, University of Palermo, 90133 Palermo, Italy; (L.L.B.); (C.R.); (F.C.)
| | - Giuseppe Miceli
- Unit of Internal Medicine and Stroke, Department of Health Promotion, Maternal and Child Care, Internal Medicine and Specialized Medicine, University of Palermo, 90133 Palermo, Italy; (G.M.); (A.T.)
| | - Antonino Tuttolomondo
- Unit of Internal Medicine and Stroke, Department of Health Promotion, Maternal and Child Care, Internal Medicine and Specialized Medicine, University of Palermo, 90133 Palermo, Italy; (G.M.); (A.T.)
| | - Giuliana Guggino
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, Rheumatology Section, University of Palermo, 90133 Palermo, Italy; (L.L.B.); (C.R.); (F.C.)
| |
Collapse
|
10
|
Paroli M, Caccavale R, Accapezzato D. Giant Cell Arteritis: Advances in Understanding Pathogenesis and Implications for Clinical Practice. Cells 2024; 13:267. [PMID: 38334659 PMCID: PMC10855045 DOI: 10.3390/cells13030267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 01/27/2024] [Accepted: 01/30/2024] [Indexed: 02/10/2024] Open
Abstract
Giant cell arteritis (GCA) is a noninfectious granulomatous vasculitis of unknown etiology affecting individuals older than 50 years. Two forms of GCA have been identified: a cranial form involving the medium-caliber temporal artery causing temporal arteritis (TA) and an extracranial form involving the large vessels, mainly the thoracic aorta and its branches. GCA generally affects individuals with a genetic predisposition, but several epigenetic (micro)environmental factors are often critical for the onset of this vasculitis. A key role in the pathogenesis of GCA is played by cells of both the innate and adaptive immune systems, which contribute to the formation of granulomas that may include giant cells, a hallmark of the disease, and arterial tertiary follicular organs. Cells of the vessel wall cells, including vascular smooth muscle cells (VSMCs) and endothelial cells, actively contribute to vascular remodeling responsible for vascular stenosis and ischemic complications. This review will discuss new insights into the molecular and cellular pathogenetic mechanisms of GCA, as well as the implications of these findings for the development of new diagnostic biomarkers and targeted drugs that could hopefully replace glucocorticoids (GCs), still the backbone of therapy for this vasculitis.
Collapse
Affiliation(s)
- Marino Paroli
- Department of Clinical, Internal, Anesthesiologic and Cardiovascular Sciences, Sapienza University of Rome, Polo Pontino, 04100 Latina, Italy; (R.C.); (D.A.)
| | | | | |
Collapse
|
11
|
Chu CQ. Advances and challenges in management of large vessel vasculitis. RHEUMATOLOGY AND IMMUNOLOGY RESEARCH 2023; 4:188-195. [PMID: 38125643 PMCID: PMC10729599 DOI: 10.2478/rir-2023-0028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 05/20/2023] [Indexed: 12/23/2023]
Abstract
Glucocorticoids (GC) remains the mainstay for management of large vessel vasculitis (LVV). Recent introduction of interleukin-6 signaling blocker, tocilizumab has substantially changed the practice in management of patients with LVV, in particular, giant cell arteritis (GCA). Benefit of tocilizumab to patients with Takayasu arteritis (TAK) is supported by observational studies, but randomized clinical trials are lacking. Addition of tocilizumab enables reduction of the total amount of GC in patients with GCA, but GC burden remains high and to be further reduced. Ongoing studies aim at minimal use of GC or even GC-free. Tumor necrosis factor inhibitors appear to be beneficial to TAK despite their ineffectiveness to GCA. Randomized clinical trials are undergoing to target other inflammatory cytokines in both GCA and TAK. Janus kinase inhibitors alone or in combination with conventional disease modifying anti-rheumatic drugs showed promising results in treatment of TAK.
Collapse
Affiliation(s)
- Cong-Qiu Chu
- Division of Arthritis and Rheumatic Diseases, Oregon Health & Science University, PortlandOregon 97239USA
- Rheumatology Section, Veterans Affairs Portland Health Care System, PortlandOregon 97239USA
| |
Collapse
|
12
|
Zhu X, Chen S, Zhang P, Ma Y, Liu X, Fei H, Qian J, Hao Y, Jiang L, Lin X. Granulocyte-macrophage colony-stimulating factor promotes endometrial repair after injury by regulating macrophages in mice. J Reprod Immunol 2023; 160:104156. [PMID: 37801891 DOI: 10.1016/j.jri.2023.104156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 07/07/2023] [Accepted: 09/20/2023] [Indexed: 10/08/2023]
Abstract
Intrauterine adhesion (IUA) caused by endometrial injury is a common cause of female infertility and is challenging to treat. Macrophages play a critical role in tissue repair and cyclical endometrial regeneration. Granulocyte-macrophage colony-stimulating factor (GM-CSF) has significant reparative and anti-fibrotic effects in various tissues. However, there is limited research on the role of GM-CSF in the repair of endometrial injury and the involvement of macrophages in GM-CSF-mediated endometrial repair. In this study, using a mouse model of endometrial scratching injury, we found that GM-CSF treatment accelerated the repair of endometrial injury and improved fertility. At the molecular level, we observed that GM-CSF can downregulate the transcript levels of tumor necrosis factor (TNF) in mouse bone marrow-derived macrophages (BMDMs) stimulated by lipopolysaccharide (LPS) and upregulate the expression of Arginase-1 (Arg-1) and mannose receptor C-type 1 (MRC1). Importantly, during the early and middle stages of injury, GM-CSF increased the proportion of M1-like, M2-like, and M1/M2 mixed macrophages, while in the late stage of injury, GM-CSF facilitated a decline in the number of M2-like macrophages. These findings suggest that GM-CSF may promote endometrial repair by recruiting macrophages and modulating the LPS-induced M1-like macrophages into a less inflammatory phenotype. These insights have the potential to contribute to the development of novel therapeutic approaches for the treatment of intrauterine adhesion and related infertility.
Collapse
Affiliation(s)
- Xiaohong Zhu
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, No. 3 Qingchun East Road, Jianggan District, Hangzhou 310016, China; Department of Obstetrics and Gynecology, Affiliated Xiaoshan Hospital, Hangzhou Normal University (Zhejiang Xiaoshan Hospital), 311201 Hangzhou, China
| | - Sijia Chen
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, No. 3 Qingchun East Road, Jianggan District, Hangzhou 310016, China
| | - Peipei Zhang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, No. 3 Qingchun East Road, Jianggan District, Hangzhou 310016, China; Department of Obstetrics and Gynecology, Tiantai People's Hospital of Zhejiang Province, 317200 Taizhou, China
| | - Yana Ma
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, No. 3 Qingchun East Road, Jianggan District, Hangzhou 310016, China
| | - Xiu Liu
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, No. 3 Qingchun East Road, Jianggan District, Hangzhou 310016, China; Key Laboratory of Reproductive Dysfunction, Management of Zhejiang Province, 310016 Hangzhou, China
| | - Haiyi Fei
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, No. 3 Qingchun East Road, Jianggan District, Hangzhou 310016, China; Key Laboratory of Reproductive Dysfunction, Management of Zhejiang Province, 310016 Hangzhou, China
| | - Jingjing Qian
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, No. 3 Qingchun East Road, Jianggan District, Hangzhou 310016, China; Department of Obstetrics and Gynecology, Yuyao People's Hospital, 315400 Ningbo, China
| | - Yanqing Hao
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, No. 3 Qingchun East Road, Jianggan District, Hangzhou 310016, China
| | - Lingling Jiang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, No. 3 Qingchun East Road, Jianggan District, Hangzhou 310016, China; Key Laboratory of Reproductive Dysfunction, Management of Zhejiang Province, 310016 Hangzhou, China.
| | - Xiaona Lin
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, No. 3 Qingchun East Road, Jianggan District, Hangzhou 310016, China; Key Laboratory of Reproductive Dysfunction, Management of Zhejiang Province, 310016 Hangzhou, China.
| |
Collapse
|
13
|
Qin XY, Ha SY, Chen L, Zhang T, Li MQ. Recent Advances in Folates and Autoantibodies against Folate Receptors in Early Pregnancy and Miscarriage. Nutrients 2023; 15:4882. [PMID: 38068740 PMCID: PMC10708193 DOI: 10.3390/nu15234882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 12/18/2023] Open
Abstract
Though firstly identified in cerebral folate deficiency, autoantibodies against folate receptors (FRAbs) have been implicated in pregnancy complications such as miscarriage; however, the underlying mechanism needs to be further elaborated. FRAbs can be produced via sensitization mediated by folate-binding protein as well as gene mutation, aberrant modulation, or degradation of folate receptors (FRs). FRAbs may interfere with folate internalization and metabolism through blocking or binding with FRs. Interestingly, different types of FRs are expressed on trophoblast cells, decidual epithelium or stroma, and macrophages at the maternal-fetal interface, implying FRAbs may be involved in the critical events necessary for a successful pregnancy. Thus, we propose that FRAbs may disturb pregnancy establishment and maintenance by modulating trophoblastic biofunctions, placental development, decidualization, and decidua homeostasis as well as the functions of FOLR2+ macrophages. In light of these findings, FRAbs may be a critical factor in pathological pregnancy, and deserve careful consideration in therapies involving folic acid supplementation for pregnancy complications.
Collapse
Affiliation(s)
- Xue-Yun Qin
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, China; (X.-Y.Q.); (S.-Y.H.)
| | - Si-Yao Ha
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, China; (X.-Y.Q.); (S.-Y.H.)
| | - Lu Chen
- Assisted Reproductive Technology Unit, Department of Obstetrics and Gynecology, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong 999077, China;
| | - Tao Zhang
- Assisted Reproductive Technology Unit, Department of Obstetrics and Gynecology, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong 999077, China;
| | - Ming-Qing Li
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, China; (X.-Y.Q.); (S.-Y.H.)
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, China
| |
Collapse
|
14
|
Graver JC, Jiemy WF, Altulea DHA, van Sleen Y, Xu S, van der Geest KSM, Verstappen GMPJ, Heeringa P, Abdulahad WH, Brouwer E, Boots AMH, Sandovici M. Cytokine producing B-cells and their capability to polarize macrophages in giant cell arteritis. J Autoimmun 2023; 140:103111. [PMID: 37703805 DOI: 10.1016/j.jaut.2023.103111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/30/2023] [Accepted: 09/03/2023] [Indexed: 09/15/2023]
Abstract
OBJECTIVE The lack of disease-specific autoantibodies in giant cell arteritis (GCA) suggests an alternative role for B-cells readily detected in the inflamed arteries. Here we study the cytokine profile of tissue infiltrated and peripheral blood B-cells of patients with GCA. Moreover, we investigate the macrophage skewing capability of B-cell-derived cytokines. METHODS The presence of various cytokines in B-cell areas in temporal artery (n = 11) and aorta (n = 10) was identified by immunohistochemistry. PBMCs of patients with GCA (n = 11) and polymyalgia rheumatica (n = 10), and 14 age- and sex-matched healthy controls (HC) were stimulated, followed by flow cytometry for cytokine expression in B-cells. The skewing potential of B-cell-derived cytokines (n = 6 for GCA and HC) on macrophages was studied in vitro. RESULTS The presence of IL-6, GM-CSF, TNFα, IFNγ, LTβ and IL-10 was documented in B-cells and B-cell rich areas of GCA arteries. In vitro, B-cell-derived cytokines (from both GCA and HC) skewed macrophages towards a pro-inflammatory phenotype with enhanced expression of IL-6, IL-1β, TNFα, IL-23, YKL-40 and MMP-9. In vitro stimulated peripheral blood B-cells from treatment-naïve GCA patients showed an enhanced frequency of IL-6+ and TNFα+IL-6+ B-cells compared to HCs. This difference was no longer detected in treatment-induced remission. Erythrocyte sedimentation rate positively correlated with IL-6+TNFα+ B-cells. CONCLUSION B-cells are capable of producing cytokines and steering macrophages towards a pro-inflammatory phenotype. Although the capacity of B-cells in skewing macrophages is not GCA specific, these data support a cytokine-mediated role for B-cells in GCA and provide grounds for B-cell targeted therapy in GCA.
Collapse
Affiliation(s)
- Jacoba C Graver
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - William F Jiemy
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Dania H A Altulea
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Yannick van Sleen
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Shuang Xu
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Kornelis S M van der Geest
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Gwenny M P J Verstappen
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Peter Heeringa
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Wayel H Abdulahad
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Elisabeth Brouwer
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Annemieke M H Boots
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Maria Sandovici
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.
| |
Collapse
|
15
|
Nepal D, Putman M, Unizony S. Giant Cell Arteritis and Polymyalgia Rheumatica: Treatment Approaches and New Targets. Rheum Dis Clin North Am 2023; 49:505-521. [PMID: 37331730 DOI: 10.1016/j.rdc.2023.03.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Prolonged glucocorticoid tapers have been the standard of care for giant cell arteritis (GCA) and polymyalgia rheumatica (PMR), but recent advancements have improved outcomes for patients with GCA while reducing glucocorticoid-related toxicities. Many patients with GCA and PMR still experience persistent or relapsing disease, and cumulative exposure to glucocorticoids for both diseases remains high. The objective of this review is to define current treatment approaches as well as new therapeutic targets and strategies. Studies investigating inhibition of cytokine pathways, including interleukin-6, interleukin-17, interleukin-23, granulocyte-macrophage colony-stimulating factor, Janus kinase-signal transduction and activator of transcription, and others, will be reviewed.
Collapse
Affiliation(s)
- Desh Nepal
- Department of Medicine, Division of Rheumatology, Hub for Collaborative Medicine, Medical College of Wisconsin, 8701 Watertown Plank Road, Rheumatology, 6th Floor, Milwaukee, WI 53226, USA.
| | - Michael Putman
- Department of Medicine, Division of Rheumatology, Hub for Collaborative Medicine, Medical College of Wisconsin, 8701 Watertown Plank Road, Rheumatology, 6th Floor, Milwaukee, WI 53226, USA
| | - Sebastian Unizony
- Massachusetts General Hospital, Vasculitis and Glomerulonephritis Center, Harvard Medical School, 55 Fruit Street, Yawkey 4B, Boston, MA 02114, USA
| |
Collapse
|
16
|
Carvajal Alegria G, Nicolas M, van Sleen Y. Biomarkers in the era of targeted therapy in giant cell arteritis and polymyalgia rheumatica: is it possible to replace acute-phase reactants? Front Immunol 2023; 14:1202160. [PMID: 37398679 PMCID: PMC10313393 DOI: 10.3389/fimmu.2023.1202160] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 05/23/2023] [Indexed: 07/04/2023] Open
Abstract
Research into giant cell arteritis (GCA) and polymyalgia rheumatica (PMR) has become more important in the last few decades. Physicians are facing several challenges in managing the diagnosis, treatment, and relapses of GCA and PMR patients. The search for biomarkers could provide elements to guide a physician's decision. In this review, we aim to summarize the scientific publications about biomarkers in GCA and PMR in the past decade. The first point raised by this review is the number of clinical situations in which biomarkers could be useful: differential diagnosis of either GCA or PMR, diagnosis of underlying vasculitis in PMR, prediction of relapse or complications, disease activity monitoring, choice, and modification of treatments. The second point raised by this review is the large number of biomarkers studied, from common markers like C-reactive protein, erythrocyte sedimentation rate, or elements of blood count to inflammatory cytokines, growth factors, or immune cell subpopulations. Finally, this review underlines the heterogeneity between the studies and proposes points to consider in studies evaluating biomarkers in general and particularly in the case of GCA and PMR.
Collapse
Affiliation(s)
- Guillermo Carvajal Alegria
- EA6295 Nanomédicaments et Nanosondes, Université de Tours, Tours, France
- Department of Rheumatology, Centre Hospitalier Régional Universitaire (CHRU) de Tours, Tours Cedex, France
| | - Mathilde Nicolas
- Department of Rheumatology, Centre Hospitalier Régional Universitaire (CHRU) de Tours, Tours Cedex, France
| | - Yannick van Sleen
- Department of Rheumatology and Clinical Immunology, University Medical Center Groningen, Groningen, Netherlands
| |
Collapse
|
17
|
Tomelleri A, van der Geest KSM, Khurshid MA, Sebastian A, Coath F, Robbins D, Pierscionek B, Dejaco C, Matteson E, van Sleen Y, Dasgupta B. Disease stratification in GCA and PMR: state of the art and future perspectives. Nat Rev Rheumatol 2023:10.1038/s41584-023-00976-8. [PMID: 37308659 DOI: 10.1038/s41584-023-00976-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/02/2023] [Indexed: 06/14/2023]
Abstract
Giant cell arteritis (GCA) and polymyalgia rheumatica (PMR) are closely related conditions characterized by systemic inflammation, a predominant IL-6 signature, an excellent response to glucocorticoids, a tendency to a chronic and relapsing course, and older age of the affected population. This Review highlights the emerging view that these diseases should be approached as linked conditions, unified under the term GCA-PMR spectrum disease (GPSD). In addition, GCA and PMR should be seen as non-monolithic conditions, with different risks of developing acute ischaemic complications and chronic vascular and tissue damage, different responses to available therapies and disparate relapse rates. A comprehensive stratification strategy for GPSD, guided by clinical findings, imaging and laboratory data, facilitates appropriate therapy and cost-effective use of health-economic resources. Patients presenting with predominant cranial symptoms and vascular involvement, who usually have a borderline elevation of inflammatory markers, are at an increased risk of sight loss in early disease but have fewer relapses in the long term, whereas the opposite is observed in patients with predominant large-vessel vasculitis. How the involvement of peripheral joint structures affects disease outcomes remains uncertain and understudied. In the future, all cases of new-onset GPSD should undergo early disease stratification, with their management adapted accordingly.
Collapse
Affiliation(s)
- Alessandro Tomelleri
- Unit of Immunology, Rheumatology, Allergy and Rare diseases, IRCCS San Raffaele Hospital, Milan, Italy
| | - Kornelis S M van der Geest
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | | | - Alwin Sebastian
- Department of Rheumatology, University Hospital Limerick, Limerick, Ireland
| | - Fiona Coath
- Rheumatology Department, Mid and South Essex University Hospitals NHS Foundation Trust, Southend University Hospital, Westcliff-on-sea, UK
| | - Daniel Robbins
- Medical Technology Research Centre, School of Allied Health, Anglia Ruskin University, Chelmsford, UK
| | - Barbara Pierscionek
- Faculty of Health Education Medicine and Social Care, Medical Technology Research Centre, Anglia Ruskin University, Chelmsford Campus, Chelmsford, UK
| | - Christian Dejaco
- Department of Rheumatology, Hospital of Bruneck (ASAA-SABES), Teaching Hospital of the Paracelsus Medical University, Bruneck, Italy
- Department of Rheumatology and Immunology, Medical University of Graz, Graz, Austria
| | - Eric Matteson
- Division of Rheumatology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Yannick van Sleen
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Bhaskar Dasgupta
- Rheumatology Department, Mid and South Essex University Hospitals NHS Foundation Trust, Southend University Hospital, Westcliff-on-sea, UK.
| |
Collapse
|
18
|
Christ L, Gloor AD, Kollert F, Gaber T, Buttgereit F, Reichenbach S, Villiger PM. Serum proteomics in giant cell arteritis in response to a three-day pulse of glucocorticoid followed by tocilizumab monotherapy (the GUSTO trial). Front Immunol 2023; 14:1165758. [PMID: 37287970 PMCID: PMC10242646 DOI: 10.3389/fimmu.2023.1165758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 05/02/2023] [Indexed: 06/09/2023] Open
Abstract
Objective Proteome analyses in patients with newly diagnosed, untreated giant cell arteritis (GCA) have not been reported previously, nor are changes of protein expression upon treatment with glucocorticoids (GC) and/or tocilizumab (TCZ) known. The GUSTO trial allows to address these questions, provides the opportunity to learn about the differential effects of GC and TCZ on proteomics and may help to identify serum proteins to monitor disease activity. Methods Serum samples obtained from 16 patients with new-onset GCA at different time points (day 0, 3, 10, and week 4, 24, 52) during the GUSTO trial (NCT03745586) were examined for 1436 differentially expressed proteins (DEPs) based on proximity extension assay technology. The patients received 500 mg methylprednisolone intravenously for 3 consecutive days followed by TCZ monotherapy. Results When comparing day 0 (before the first GC infusion) with week 52 (lasting remission), 434 DEPs (213↑, 221↓) were identified. In response to treatment, the majority of changes occurred within 10 days. GC inversely regulated 25 proteins compared to remission. No difference was observed between weeks 24 and 52 during established remission and ongoing TCZ treatment. Expression of CCL7, MMP12, and CXCL9 was not regulated by IL6. Conclusion Disease-regulated serum proteins improved within 10 days and were normalized within 24 weeks, showing a kinetic corresponding to the gradual achievement of clinical remission. The proteins inversely regulated by GC and TCZ shed light on the differential effects of the two drugs. CCL7, CXCL9, and MMP12 are biomarkers that reflect disease activity despite normalized C-reactive protein levels.
Collapse
Affiliation(s)
- Lisa Christ
- Department of Rheumatology and Immunology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Andrea D. Gloor
- Department of General Internal Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Florian Kollert
- Department of Rheumatology and Immunology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Timo Gaber
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Frank Buttgereit
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Stephan Reichenbach
- Department of Rheumatology and Immunology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- University of Bern, Institute for Social and Preventive Medicine, Bern, Switzerland
| | - Peter M. Villiger
- Medical Center Monbijou, Rheumatology and Immunology, Bern, Switzerland
| |
Collapse
|
19
|
Springer JM, Kermani TA. Recent advances in the treatment of giant cell arteritis. Best Pract Res Clin Rheumatol 2023; 37:101830. [PMID: 37328409 DOI: 10.1016/j.berh.2023.101830] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/20/2023] [Accepted: 04/23/2023] [Indexed: 06/18/2023]
Abstract
Giant cell arteritis (GCA) is a systemic, granulomatous, large-vessel vasculitis that affects individuals over the age of 50 years. Morbidity from disease includes cranial manifestations which can cause irreversible blindness, while extra-cranial manifestations can cause vascular damage with large-artery stenosis, occlusions, aortitis, aneurysms, and dissections. Glucocorticoids while efficacious are associated with significant adverse effects. Furthermore, despite treatment with glucocorticoids, relapses are common. An understanding of the pathogenesis of GCA has led to the discovery of tocilizumab as an efficacious steroid-sparing therapy while additional therapeutic targets affecting different inflammatory pathways are under investigation. Surgical treatment may be indicated in cases of refractory ischemia or aortic complications but data on surgical outcomes are limited. Despite the recent advances, many unmet needs exist, including the identification of patients or subsets of GCA who would benefit from earlier initiation of adjunctive therapies, patients who may warrant long-term immunosuppression and medications that sustain permanent remission. The impact of medications like tocilizumab on long-term outcomes, including the development of aortic aneurysms and vascular damage also warrants investigation.
Collapse
Affiliation(s)
- Jason M Springer
- Vanderbilt University Medical Center, 1161 21st Avenue Sound, T3113 Medical Center North, Nashville, TN, 37232, USA.
| | - Tanaz A Kermani
- University of California Los Angeles, 2020 Santa Monica Boulevard, Suite 540, Santa Monica, CA, 90404, USA.
| |
Collapse
|
20
|
van der Geest KS, Slijkhuis BG, Tomelleri A, Gheysens O, Jiemy WF, Piccolo C, Nienhuis P, Sandovici M, Brouwer E, Glaudemans AW, Mulder DJ, Slart RH. Positron Emission Tomography Imaging in Vasculitis. Cardiol Clin 2023; 41:251-265. [PMID: 37003681 DOI: 10.1016/j.ccl.2023.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Abstract
Systemic vasculitides comprise a group of autoimmune diseases affecting blood vessels. [18F]-fluoro-2-deoxy-d-glucose positron emission tomography/computed tomography (FDG-PET/CT) plays an important role in the diagnosis and therapeutic monitoring of vasculitides affecting large-sized and medium-sized vessels. FDG-PET/CT also provides complementary information to other vascular imaging tools. The resolution and sensitivity of newer generation scanners continues to increase, hereby improving the ability of FDG-PET/CT to accurately assess the full disease extent in patients with vasculitis. Novel tracers targeting specific immune cells will allow for more detailed detection of vascular infiltrates.
Collapse
|
21
|
Involvement of angiogenesis in cancer-associated acinar-to-ductal metaplasia lesion of pancreatic cancer invasive front. J Cancer Res Clin Oncol 2023:10.1007/s00432-022-04554-5. [PMID: 36592214 DOI: 10.1007/s00432-022-04554-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 12/21/2022] [Indexed: 01/03/2023]
Abstract
PURPOSE This study aimed to demonstrate the involvement of angiogenesis in cancer-associated acinar-to-ductal metaplasia (CA-ADM) lesion of invasive front pancreatic ductal adenocarcinoma (PDAC) and investigate the possible mechanism. METHODS Tissue samples from 128 patients with PDAC and 36 LSL-KrasG12D/+; LSL-Trp53R172H/+; Pdx-1-Cre mice were analyzed. Immunohistochemical assay was performed using HE, anti-CK19 and anti-amylase to confirm the presence of CA-ADM lesions, using anti-CD34 and anti-CD31 to measure microvessel density (MVD), and using anti-CD68, anti-CD163, anti-iNOS, or anti-MMP9 to evaluate the immune microenvironment. We performed multiplex immunohistochemical assay to detect the co-expression of MMP9 and CD68 on macrophage. We examined clinical outcomes and other clinicopathological factors to determine the significance of high-level MVD of CA-ADM on survival and liver metastasis. We performed tube formation assay to evaluate the effect of macrophage on angiogenic capacity in vitro. RESULTS Angiogenesis was significantly abundant in CA-ADM lesions compared with that in PDAC lesions in human and mouse tissues. High-level MVD in CA-ADM lesions was an independent predictor of poor prognosis (P = 0.0047) and the recurrence of liver metastasis (P = 0.0027). More CD68-positive and CD163-positive macrophages were detected in CA-ADM lesions than in PDAC. The percentage of CD68-positive macrophages was positively correlated with MVD in CA-ADM lesions. Multiplex-immunostaining revealed that MMP9 was expressed in CD68-positive macrophages of CA-ADM lesions. In CA-ADM lesions, the percentage of macrophages was positively correlated with MMP9 expression, which positively correlated with microvessel density. CONCLUSION CA-ADM related angiogenesis is a promising predictive marker for poor prognosis of PDAC and may provide an attractive therapeutic target for PDAC.
Collapse
|
22
|
Matsumoto K, Suzuki K, Takeshita M, Takeuchi T, Kaneko Y. Changes in the molecular profiles of large-vessel vasculitis treated with biological disease-modifying anti-rheumatic drugs and Janus kinase inhibitors. Front Immunol 2023; 14:1197342. [PMID: 37197652 PMCID: PMC10183585 DOI: 10.3389/fimmu.2023.1197342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 04/19/2023] [Indexed: 05/19/2023] Open
Abstract
Giant cell arteritis and Takayasu arteritis are two types of primary large-vessel vasculitis (LVV). Although glucocorticoids (GC) are the standard treatment for LVV, the disease relapse rates are high. Recent clinical trials on biological disease-modifying anti-rheumatic drugs (bDMARDs) and Janus kinase (JAK) inhibitors have demonstrated their efficacy in reducing LVV relapse rates and GC dosages. However, the control of residual inflammation and degenerative alterations in the vessel wall remains an outstanding requirement in the clinical management of LVV. The analysis of immune cell phenotypes in patients with LVV may predict their response to treatment with bDMARDs and JAK inhibitors and guide their optimal use. In this mini-review, we focused on molecular markers, including the immune cell proportions and gene expression, in patients with LVV and in mouse models of LVV treated with bDMARDs and JAK inhibitors.
Collapse
|
23
|
Yang TM, Miao M, Yu WQ, Wang X, Xia FJ, Li YJ, Guo SD. Targeting macrophages in atherosclerosis using nanocarriers loaded with liver X receptor agonists: A narrow review. Front Mol Biosci 2023; 10:1147699. [PMID: 36936982 PMCID: PMC10018149 DOI: 10.3389/fmolb.2023.1147699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 02/20/2023] [Indexed: 03/06/2023] Open
Abstract
Macrophages are involved in the whole process of atherosclerosis, which is characterized by accumulation of lipid and inflammation. Presently, clinically used lipid-lowering drugs cannot completely retard the progress of atherosclerosis. Liver X receptor (LXR) plays a key role in regulation of lipid metabolism and inflammation. Accumulating evidence have demonstrated that synthetic LXR agonists can significantly retard the development of atherosclerosis. However, these agonists induce sever hypertriglyceridemia and liver steatosis. These side effects have greatly limited their potential application for therapy of atherosclerosis. The rapid development of drug delivery system makes it possible to delivery interested drugs to special organs or cells using nanocarriers. Macrophages express various receptors which can recognize and ingest specially modified nanocarriers loaded with LXR agonists. In the past decades, a great progress has been made in this field. These macrophage-targeted nanocarriers loaded with LXR agonists are found to decrease atherosclerosis by reducing cholesterol accumulation and inflammatory reactions. Of important, these nanocarriers can alleviate side effects of LXR agonists. In this article, we briefly review the roles of macrophages in atherosclerosis, mechanisms of action of LXR agonists, and focus on the advances of macrophage-targeted nanocarriers loaded with LXR agonists. This work may promote the potential clinical application of these nanocarriers.
Collapse
Affiliation(s)
| | | | | | | | | | - Yan-Jie Li
- *Correspondence: Yan-Jie Li, ; Shou-Dong Guo,
| | | |
Collapse
|
24
|
Aendekerk JP, Jiemy WF, Raveling-Eelsing E, Bijnens N, Abdul-Hamid MA, Strating IM, Dekkema GJ, Sanders JSF, Stegeman CA, Damoiseaux JGMC, Little MA, Heeringa P, van Paassen P. CD163 and CD206 expression define distinct macrophage subsets involved in active ANCA-associated glomerulonephritis. J Autoimmun 2022; 133:102914. [PMID: 36183584 DOI: 10.1016/j.jaut.2022.102914] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 09/06/2022] [Accepted: 09/12/2022] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Macrophages are key players in the immunopathology of anti-neutrophil cytoplasmic antibody (ANCA) mediated-vasculitis (AAV) with glomerulonephritis (ANCA GN). Different macrophage phenotypes are expected to play distinct roles in ANCA GN. Macrophages expressing CD163 and CD206 are found in lesions associated with ANCA GN. Hence, we aimed to investigate the clinicopathological significance of CD206 and CD163 in ANCA GN in a multicenter retrospective cohort study. MATERIAL AND METHODS Patients with ANCA-associated vasculitis, with clinical data, serum and urine samples were included from three cohorts. Serum soluble CD206 (ssCD206) and urinary soluble CD163 (usCD163) levels were measured. Human kidney tissue samples (n = 53) were stained for CD206 and CD163 using immunohistochemistry and immunofluorescence, and findings were correlated with clinical and pathological data. RESULTS In total, 210 patients were included (i.e., ANCA GN, n = 134; AAV without GN, n = 24; AAV in remission n = 52). Increased levels of both ssCD206 and usCD163 were seen in ANCA GN. High levels of ssCD206 declined after reaching remission, however, ssCD206 did not improve the accuracy of usCD163 to detect ANCA GN. Soluble markers correlated with histopathological findings. CD163+CD206- macrophages were found in the glomerulus and may play pivotal roles in glomerulonephritis, whereas CD206+CD163- and CD206+CD163+ macrophages were located tubulointerstitially and likely play a more prominent role in ANCA-associated tubulointerstitial inflammation. In ANCA GN patients increasing levels of ssCD206 increased the risk for end-stage renal disease and mortality. CONCLUSIONS Our results confirm and extend the notion that CD206+ and CD163+ macrophages are prominent components of the cellular infiltrate in ANCA GN. We found distinct macrophage phenotypes that may play distinct roles in the immunopathology of ANCA GN and elaborate on a potential mechanism underlying the findings of this study. usCD163 remains an excellent marker to detect active ANCA GN, whereas ssCD206 seems a more prominent marker for risk prediction.
Collapse
Affiliation(s)
- Joop P Aendekerk
- Department of Internal Medicine, Division of Nephrology and Clinical Immunology, Maastricht University Medical Center, P. Debyelaan 25, 6229HX, Maastricht, the Netherlands
| | - William F Jiemy
- Department of Rheumatology and Clinical Immunology, University Medical Center Groningen, Hanzeplein 1, 9713GZ, Groningen, the Netherlands; Department of Pathology and Medical Biology, University Medical Center Groningen, Hanzeplein 1, 9713GZ, Groningen, the Netherlands
| | - Elisabeth Raveling-Eelsing
- Department of Pathology and Medical Biology, University Medical Center Groningen, Hanzeplein 1, 9713GZ, Groningen, the Netherlands
| | - Nele Bijnens
- Department of Internal Medicine, Division of Nephrology and Clinical Immunology, Maastricht University Medical Center, P. Debyelaan 25, 6229HX, Maastricht, the Netherlands
| | - Myrurgia A Abdul-Hamid
- Department of Pathology, Maastricht University Medical Center, P. Debyelaan 25, 6229HX Maastricht, the Netherlands
| | - Inge M Strating
- Department of Pathology and Medical Biology, University Medical Center Groningen, Hanzeplein 1, 9713GZ, Groningen, the Netherlands
| | - Gerjan J Dekkema
- Department of Pathology and Medical Biology, University Medical Center Groningen, Hanzeplein 1, 9713GZ, Groningen, the Netherlands
| | - Jan-Stephan F Sanders
- Department of Internal Medicine, Division of Nephrology, University Medical Center Groningen, Hanzeplein 1, 9713GZ, Groningen, the Netherlands
| | - Coen A Stegeman
- Department of Internal Medicine, Division of Nephrology, University Medical Center Groningen, Hanzeplein 1, 9713GZ, Groningen, the Netherlands
| | - Jan G M C Damoiseaux
- Central Diagnostic Laboratory, Maastricht University Medical Center, P. Debyelaan 25, 6229HX, Maastricht, the Netherlands
| | - Mark A Little
- Trinity Health Kidney Centre, Trinity Translational Medicine Institute, Trinity College Dublin, St. James's Street, Dublin 8, Ireland
| | - Peter Heeringa
- Department of Pathology and Medical Biology, University Medical Center Groningen, Hanzeplein 1, 9713GZ, Groningen, the Netherlands
| | - Pieter van Paassen
- Department of Internal Medicine, Division of Nephrology and Clinical Immunology, Maastricht University Medical Center, P. Debyelaan 25, 6229HX, Maastricht, the Netherlands.
| |
Collapse
|
25
|
Stamatis P, Turesson C, Michailidou D, Mohammad AJ. Pathogenesis of giant cell arteritis with focus on cellular populations. Front Med (Lausanne) 2022; 9:1058600. [PMID: 36465919 PMCID: PMC9714577 DOI: 10.3389/fmed.2022.1058600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 10/31/2022] [Indexed: 08/27/2023] Open
Abstract
Giant cell arteritis (GCA), the most common non-infectious vasculitis, mainly affects elderly individuals. The disease usually affects the aorta and its main supra-aortic branches causing both general symptoms of inflammation and specific ischemic symptoms because of the limited blood flow due to arterial structural changes in the inflamed arteries. The pathogenesis of the GCA is complex and includes a dysregulated immune response that affects both the innate and the adaptive immunity. During the last two decades several studies have investigated interactions among antigen-presenting cells and lymphocytes, which contribute to the formation of the inflammatory infiltrate in the affected arteries. Toll-like receptor signaling and interactions through the VEGF-Notch-Jagged1 pathway are emerging as crucial events of the aberrant inflammatory response, facilitating among others the migration of inflammatory cells to the inflamed arteries and their interactions with the local stromal milieu. The increased use of checkpoint inhibitors in cancer immunotherapy and their immune-related adverse events has fed interest in the role of checkpoint dysfunction in GCA, and recent studies suggest a dysregulated check point system which is unable to suppress the inflammation in the previously immune-privileged arteries, leading to vasculitis. The role of B-cells is currently reevaluated because of new reports of considerable numbers of plasma cells in inflamed arteries as well as the formation of artery tertiary lymphoid organs. There is emerging evidence on previously less studied cell populations, such as the neutrophils, CD8+ T-cells, T regulatory cells and tissue residing memory cells as well as for stromal cells which were previously considered as innocent bystanders. The aim of this review is to summarize the evidence in the literature regarding the cell populations involved in the pathogenesis of GCA and especially in the context of an aged, immune system.
Collapse
Affiliation(s)
- Pavlos Stamatis
- Rheumatology, Department of Clinical Sciences, Lund University, Lund, Sweden
- Rheumatology, Sunderby Hospital, Luleå, Sweden
| | - Carl Turesson
- Rheumatology, Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden
| | - Despina Michailidou
- Division of Rheumatology, Department of Medicine, University of Washington, Seattle, WA, United States
| | - Aladdin J. Mohammad
- Rheumatology, Department of Clinical Sciences, Lund University, Lund, Sweden
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
26
|
Stock AT, Parsons S, Sharma VJ, James F, Starkey G, D'Costa R, Gordon CL, Wicks IP. Intimal macrophages develop from circulating monocytes during vasculitis. Clin Transl Immunology 2022; 11:e1412. [PMID: 35991774 PMCID: PMC9375838 DOI: 10.1002/cti2.1412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 07/12/2022] [Accepted: 07/29/2022] [Indexed: 11/26/2022] Open
Abstract
Objective Vasculitis is characterised by inflammation of the blood vessels. While all layers of the vessel can be affected, inflammation within the intimal layer can trigger thrombosis and arterial occlusion and is therefore of particular clinical concern. Given this pathological role, we have examined how intimal inflammation develops by exploring which (and how) macrophages come to populate this normally immune‐privileged site during vasculitis. Methods We have addressed this question for Kawasaki disease (KD), which is a type of vasculitis in children that typically involves the coronary arteries. We used confocal microscopy and flow cytometry to characterise the macrophages that populate the coronary artery intima in KD patient samples and in a mouse model of KD, and furthermore, have applied an adoptive transfer system to trace how these intimal macrophages develop. Results In KD patients, intimal hyperplasia coincided with marked macrophage infiltration of the coronary artery intima. Phenotypic analysis revealed that these ‘intimal macrophages’ did not express markers of resident cardiac macrophages, such as Lyve‐1, and instead, were uniformly positive for the chemokine receptor Ccr2, suggesting a monocytic lineage. In support of this origin, we show that circulating monocytes directly invade the intima via transluminal migration during established disease, coinciding with the activation of endothelial cells lining the coronary arteries. Conclusions During KD, intimal macrophages develop from circulating monocytes that infiltrate the inflamed coronary artery intima by transluminal migration.
Collapse
Affiliation(s)
- Angus T Stock
- Walter and Eliza Hall Institute of Medical Research Parkville VIC Australia
| | - Sarah Parsons
- Department of Forensic Medicine Monash University Melbourne VIC Australia.,Victorian Institute of Forensic Medicine Melbourne VIC Australia
| | - Varun J Sharma
- Liver & Intestinal Transplant Unit Austin Health Melbourne VIC Australia.,Department of Surgery The University of Melbourne, Austin Health Melbourne VIC Australia.,Department of Cardiac Surgery Austin Health Melbourne VIC Australia
| | - Fiona James
- Department of Infectious Diseases Austin Health Melbourne VIC Australia
| | - Graham Starkey
- Liver & Intestinal Transplant Unit Austin Health Melbourne VIC Australia.,Department of Surgery The University of Melbourne, Austin Health Melbourne VIC Australia
| | - Rohit D'Costa
- DonateLife Victoria Carlton VIC Australia.,Department of Intensive Care Medicine Melbourne Health Melbourne VIC Australia
| | - Claire L Gordon
- Department of Infectious Diseases Austin Health Melbourne VIC Australia.,Department of Microbiology and Immunology The Peter Doherty Institute for Infection and Immunity, The University of Melbourne Melbourne VIC Australia.,North Eastern Public Health Unit Austin Health Melbourne VIC Australia
| | - Ian P Wicks
- Walter and Eliza Hall Institute of Medical Research Parkville VIC Australia.,Rheumatology Unit The Royal Melbourne Hospital Melbourne VIC Australia.,Department of Medical Biology University of Melbourne Melbourne VIC Australia
| |
Collapse
|
27
|
Reitsema RD, Jiemy WF, Wekema L, Boots AMH, Heeringa P, Huitema MG, Abdulahad WH, van Sleen Y, Sandovici M, Roozendaal C, Diepstra A, Kwee T, Dasgupta B, Brouwer E, van der Geest KSM. Contribution of pathogenic T helper 1 and 17 cells to bursitis and tenosynovitis in polymyalgia rheumatica. Front Immunol 2022; 13:943574. [PMID: 36032100 PMCID: PMC9402989 DOI: 10.3389/fimmu.2022.943574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/22/2022] [Indexed: 11/13/2022] Open
Abstract
Background Although polymyalgia rheumatica (PMR) is a very common rheumatic inflammatory disease, current insight into the pathobiology of PMR is limited and largely based on studies in blood. We investigated T helper 1 (TH1) and T helper 17 (TH17) cell responses in blood, synovial fluid and bursa tissue of patients with PMR. Materials and methods Blood samples were collected from 18 patients with new-onset PMR and 32 healthy controls. Synovial fluid was aspirated from the inflamed shoulder bursae or biceps tendon sheath of 13 patients. Ultrasound-guided biopsies of the subacromial-subdeltoid (SASD) bursa were obtained from 11 patients. T cells were examined by flow cytometry, immunohistochemistry and immunofluorescence staining. Results Besides an increase of TH17 (CD4+IL-17+IFN-γ-) cells and T cytotoxic 17 (TC17; CD8+IL-17+IFN-γ-) cells, no other major changes were noted in the circulating T cell compartment of patients with PMR. Absolute numbers of CD4+ and CD8+ T cells were similar in blood and synovial fluid of patients with PMR. Synovial fluid T cells showed an effector-memory (CD45RO+CCR7-) phenotype. Percentages of TH1 (CD4+IFN-γ+IL-17-) cells and TH1/TH17 (CD4+IFN-γ+IL-17+) cells, but not TH17 or TC17 cells, were increased in the synovial fluid. Bursa tissue biopsies contained a small number of T cells, which were mostly CD8 negative. The majority of bursa tissue T cells produced IFN-γ but not IL-17. For comparison, B cells were scarcely detected in the bursa tissue. Conclusion Although the circulating TH17 cell pool is expanded in patients with PMR, our findings indicate that TH1 cells are involved in the inflammation of bursae and tendon sheaths in this condition. Our study points towards the TH1 cell pathway as a potential target for therapy in PMR.
Collapse
Affiliation(s)
- Rosanne D. Reitsema
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - William F. Jiemy
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Lieske Wekema
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Annemieke M. H. Boots
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Peter Heeringa
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Minke G. Huitema
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Wayel H. Abdulahad
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Yannick van Sleen
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Maria Sandovici
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Caroline Roozendaal
- Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Arjan Diepstra
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Thomas Kwee
- Medical Imaging Center, Department of Radiology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Bhaskar Dasgupta
- Department of Rheumatology, Southend University Hospital, Westcliff-on-Sea, United Kingdom
| | - Elisabeth Brouwer
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Kornelis S. M. van der Geest
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| |
Collapse
|
28
|
Rizzo C, La Barbera L, Miceli G, Tuttolomondo A, Guggino G. The innate face of Giant Cell Arteritis: Insight into cellular and molecular innate immunity pathways to unravel new possible biomarkers of disease. FRONTIERS IN MOLECULAR MEDICINE 2022; 2:933161. [PMID: 39086970 PMCID: PMC11285707 DOI: 10.3389/fmmed.2022.933161] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 07/11/2022] [Indexed: 08/02/2024]
Abstract
Giant cell arteritis (GCA) is an inflammatory chronic disease mainly occurring in elderly individuals. The pathogenesis of GCA is still far from being completely elucidated. However, in susceptible arteries, an aberrant immune system activation drives the occurrence of vascular remodeling which is mainly characterized by intimal hyperplasia and luminal obstruction. Vascular damage leads to ischemic manifestations involving extra-cranial branches of carotid arteries, mostly temporal arteries, and aorta. Classically, GCA was considered a pathological process resulting from the interaction between an unknown environmental trigger, such as an infectious agent, with local dendritic cells (DCs), activated CD4 T cells and effector macrophages. In the last years, the complexity of GCA has been underlined by robust evidence suggesting that several cell subsets belonging to the innate immunity can contribute to disease development and progression. Specifically, a role in driving tissue damage and adaptive immunity activation was described for dendritic cells (DCs), monocytes and macrophages, mast cells, neutrophils and wall components, such as endothelial cells (ECs) and vascular smooth muscle cells (VSMCs). In this regard, molecular pathways related to cytokines, chemokines, growth factors, vasoactive molecules and reactive oxygen species may contribute to the inflammatory process underlying GCA. Altogether, innate cellular and molecular pathways may clarify many pathogenetic aspects of the disease, paving the way for the identification of new biomarkers and for the development of new treatment targets for GCA. This review aims to deeply dissect past and new evidence on the innate immunological disruption behind GCA providing a comprehensive description of disease development from the innate perspective.
Collapse
Affiliation(s)
- Chiara Rizzo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, Rheumatology Section, University of Palermo, Palermo, Italy
| | - Lidia La Barbera
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, Rheumatology Section, University of Palermo, Palermo, Italy
| | - Giuseppe Miceli
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, Unit of Internal Medicine and Stroke Care, University of Palermo, Palermo, Italy
| | - Antonino Tuttolomondo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, Unit of Internal Medicine and Stroke Care, University of Palermo, Palermo, Italy
| | - Giuliana Guggino
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, Rheumatology Section, University of Palermo, Palermo, Italy
| |
Collapse
|
29
|
Watanabe R, Hashimoto M. Pathogenic role of monocytes/macrophages in large vessel vasculitis. Front Immunol 2022; 13:859502. [PMID: 35967455 PMCID: PMC9372263 DOI: 10.3389/fimmu.2022.859502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 07/11/2022] [Indexed: 11/21/2022] Open
Abstract
Vasculitis is an autoimmune vascular inflammation with an unknown etiology and causes vessel wall destruction. Depending on the size of the blood vessels, it is classified as large, medium, and small vessel vasculitis. A wide variety of immune cells are involved in the pathogenesis of vasculitis. Among these immune cells, monocytes and macrophages are functionally characterized by their capacity for phagocytosis, antigen presentation, and cytokine/chemokine production. After a long debate, recent technological advances have revealed the cellular origin of tissue macrophages in the vessel wall. Tissue macrophages are mainly derived from embryonic progenitor cells under homeostatic conditions, whereas bone marrow-derived circulating monocytes are recruited under inflammatory conditions, and then differentiate into macrophages in the arterial wall. Such macrophages infiltrate into an otherwise immunoprotected vascular site, digest tissue matrix with abundant proteolytic enzymes, and further recruit inflammatory cells through cytokine/chemokine production. In this way, macrophages amplify the inflammatory cascade and eventually cause tissue destruction. Recent studies have also demonstrated that monocytes/macrophages can be divided into several subpopulations based on the cell surface markers and gene expression. In this review, the subpopulations of circulating monocytes and the ontogeny of tissue macrophages in the artery are discussed. We also update the immunopathology of large vessel vasculitis, with a special focus on giant cell arteritis, and outline how monocytes/macrophages participate in the disease process of vascular inflammation. Finally, we discuss limitations of the current research and provide future research perspectives, particularly in humans. Through these processes, we explore the possibility of therapeutic strategies targeting monocytes/macrophages in vasculitis.
Collapse
|
30
|
Giant Multinucleated Cells in Aging and Senescence-An Abridgement. BIOLOGY 2022; 11:biology11081121. [PMID: 35892977 PMCID: PMC9332840 DOI: 10.3390/biology11081121] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/07/2022] [Accepted: 07/25/2022] [Indexed: 11/17/2022]
Abstract
Simple Summary Aging is a progressive decline of an organism over time. In contrast, senescence occurs throughout an organism’s lifespan. It is a cell-cycle arrest preventing the proliferation of damaged cells. Cellular and molecular senescence timing is crucial for the pace of aging and disease development and progression. The accumulation of senescent cells during a lifespan leads to organismal senescence. Senescent multinucleated giant cells are present in many age-related diseases and cancer. Although senescence was assumed to be irreversible, studies now show that senescent multinucleated giant cells overcome senescence in various cancers, becoming the source of highly aggressive mononucleated stem-like cells, which divide and initiate tumor development and progression. Abstract This review introduces the subject of senescence, aging, and the formation of senescent multinucleated giant cells. We define senescence and aging and describe how molecular and cellular senescence leads to organismal senescence. We review the latest information on senescent cells’ cellular and molecular phenotypes. We describe molecular and cellular features of aging and senescence and the role of multinucleated giant cells in aging-related conditions and cancer. We explain how multinucleated giant cells form and their role in aging arteries and gonads. We also describe how multinucleated giant cells and the reversibility of senescence initiate cancer and lead to cancer progression and metastasis. We also describe molecules and pathways regulating aging and senescence in model systems and their applicability to clinical therapies in age-related diseases.
Collapse
|
31
|
Watanabe R, Hashimoto M. Vasculitogenic T Cells in Large Vessel Vasculitis. Front Immunol 2022; 13:923582. [PMID: 35784327 PMCID: PMC9240193 DOI: 10.3389/fimmu.2022.923582] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
Vasculitis is an autoimmune disease of unknown etiology that causes inflammation of the blood vessels. Large vessel vasculitis is classified as either giant cell arteritis (GCA), which occurs exclusively in the elderly, or Takayasu arteritis (TAK), which mainly affects young women. Various cell types are involved in the pathogenesis of large vessel vasculitis. Among these, dendritic cells located between the adventitia and the media initiate the inflammatory cascade as antigen-presenting cells, followed by activation of macrophages and T cells contributing to vessel wall destruction. In both diseases, naive CD4+ T cells are polarized to differentiate into Th1 or Th17 cells, whereas differentiation into regulatory T cells, which suppress vascular inflammation, is inhibited. Skewed T cell differentiation is the result of aberrant intracellular signaling, such as the mechanistic target of rapamycin (mTOR) or the Janus kinase signal transducer and activator of transcription (JAK-STAT) pathways. It has also become clear that tissue niches in the vasculature fuel activated T cells and maintain tissue-resident memory T cells. In this review, we outline the most recent understanding of the pathophysiology of large vessel vasculitis. Then, we provide a summary of skewed T cell differentiation in the vasculature and peripheral blood. Finally, new therapeutic strategies for correcting skewed T cell differentiation as well as aberrant intracellular signaling are discussed.
Collapse
|
32
|
van der Geest KSM, Sandovici M, Nienhuis PH, Slart RHJA, Heeringa P, Brouwer E, Jiemy WF. Novel PET Imaging of Inflammatory Targets and Cells for the Diagnosis and Monitoring of Giant Cell Arteritis and Polymyalgia Rheumatica. Front Med (Lausanne) 2022; 9:902155. [PMID: 35733858 PMCID: PMC9207253 DOI: 10.3389/fmed.2022.902155] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/13/2022] [Indexed: 12/26/2022] Open
Abstract
Giant cell arteritis (GCA) and polymyalgia rheumatica (PMR) are two interrelated inflammatory diseases affecting patients above 50 years of age. Patients with GCA suffer from granulomatous inflammation of medium- to large-sized arteries. This inflammation can lead to severe ischemic complications (e.g., irreversible vision loss and stroke) and aneurysm-related complications (such as aortic dissection). On the other hand, patients suffering from PMR present with proximal stiffness and pain due to inflammation of the shoulder and pelvic girdles. PMR is observed in 40-60% of patients with GCA, while up to 21% of patients suffering from PMR are also affected by GCA. Due to the risk of ischemic complications, GCA has to be promptly treated upon clinical suspicion. The treatment of both GCA and PMR still heavily relies on glucocorticoids (GCs), although novel targeted therapies are emerging. Imaging has a central position in the diagnosis of GCA and PMR. While [18F]fluorodeoxyglucose (FDG)-positron emission tomography (PET) has proven to be a valuable tool for diagnosis of GCA and PMR, it possesses major drawbacks such as unspecific uptake in cells with high glucose metabolism, high background activity in several non-target organs and a decrease of diagnostic accuracy already after a short course of GC treatment. In recent years, our understanding of the immunopathogenesis of GCA and, to some extent, PMR has advanced. In this review, we summarize the current knowledge on the cellular heterogeneity in the immunopathology of GCA/PMR and discuss how recent advances in specific tissue infiltrating leukocyte and stromal cell profiles may be exploited as a source of novel targets for imaging. Finally, we discuss prospective novel PET radiotracers that may be useful for the diagnosis and treatment monitoring in GCA and PMR.
Collapse
Affiliation(s)
- Kornelis S. M. van der Geest
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Maria Sandovici
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Pieter H. Nienhuis
- Department of Nuclear Medicine and Molecular Imaging, Medical Imaging Center, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Riemer H. J. A. Slart
- Department of Nuclear Medicine and Molecular Imaging, Medical Imaging Center, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- Department of Biomedical Photonic Imaging Group, University of Twente, Enschede, Netherlands
| | - Peter Heeringa
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Elisabeth Brouwer
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - William F. Jiemy
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| |
Collapse
|
33
|
New Insights into the Pathogenesis of Giant Cell Arteritis: Mechanisms Involved in Maintaining Vascular Inflammation. J Clin Med 2022; 11:jcm11102905. [PMID: 35629030 PMCID: PMC9143803 DOI: 10.3390/jcm11102905] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/16/2022] [Accepted: 05/19/2022] [Indexed: 02/04/2023] Open
Abstract
The giant cell arteritis (GCA) pathophysiology is complex and multifactorial, involving a predisposing genetic background, the role of immune aging and the activation of vascular dendritic cells by an unknown trigger. Once activated, dendritic cells recruit CD4 T cells and induce their activation, proliferation and polarization into Th1 and Th17, which produce interferon-gamma (IFN-γ) and interleukin-17 (IL-17), respectively. IFN-γ triggers the production of chemokines by vascular smooth muscle cells, which leads to the recruitment of additional CD4 and CD8 T cells and also monocytes that differentiate into macrophages. Recent data have shown that IL-17, IFN-γ and GM-CSF induce the differentiation of macrophage subpopulations, which play a role in the destruction of the arterial wall, in neoangiogenesis or intimal hyperplasia. Under the influence of different mediators, mainly endothelin-1 and PDGF, vascular smooth muscle cells migrate to the intima, proliferate and change their phenotype to become myofibroblasts that further proliferate and produce extracellular matrix proteins, increasing the vascular stenosis. In addition, several defects in the immune regulatory mechanisms probably contribute to chronic vascular inflammation in GCA: a defect in the PD-1/PD-L1 pathway, a quantitative and qualitative Treg deficiency, the implication of resident cells, the role of GM-CSF and IL-6, the implication of the NOTCH pathway and the role of mucosal‑associated invariant T cells and tissue‑resident memory T cells.
Collapse
|
34
|
Corbera-Bellalta M, Alba-Rovira R, Muralidharan S, Espígol-Frigolé G, Ríos-Garcés R, Marco-Hernández J, Denuc A, Kamberovic F, Pérez-Galán P, Joseph A, D'Andrea A, Bondensgaard K, Cid MC, Paolini JF. Blocking GM-CSF receptor α with mavrilimumab reduces infiltrating cells, pro-inflammatory markers and neoangiogenesis in ex vivo cultured arteries from patients with giant cell arteritis. Ann Rheum Dis 2022; 81:524-536. [PMID: 35045965 PMCID: PMC8921590 DOI: 10.1136/annrheumdis-2021-220873] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 11/08/2021] [Indexed: 12/26/2022]
Abstract
BACKGROUND Effective and safe therapies are needed for the treatment of patients with giant cell arteritis (GCA). Emerging as a key cytokine in inflammation, granulocyte-macrophage colony stimulating factor (GM-CSF) may play a role in promoting inflammation in GCA. OBJECTIVES To investigate expression of GM-CSF and its receptor in arterial lesions from patients with GCA. To analyse activation of GM-CSF receptor-associated signalling pathways and expression of target genes. To evaluate the effects of blocking GM-CSF receptor α with mavrilimumab in ex vivo cultured arteries from patients with GCA. METHODS Quantitative real time PCR, in situ RNA hybridisation, immunohistochemistry, immunofluorescence and confocal microscopy, immunoassay, western blot and ex vivo temporal artery culture. RESULTS GM-CSF and GM-CSF receptor α mRNA and protein were increased in GCA lesions; enhanced JAK2/STAT5A expression/phosphorylation as well as increased expression of target genes CD83 and Spi1/PU.1 were observed. Treatment of ex vivo cultured GCA arteries with mavrilimumab resulted in decreased transcripts of CD3ε, CD20, CD14 and CD16 cell markers, and reduction of infiltrating CD16 and CD3ε cells was observed by immunofluorescence. Mavrilimumab reduced expression of molecules relevant to T cell activation (human leukocyte antigen-DR [HLA-DR]) and Th1 differentiation (interferon-γ), the pro-inflammatory cytokines: interleukin 6 (IL-6), tumour necrosis factor α (TNFα) and IL-1β, as well as molecules related to vascular injury (matrix metalloprotease 9, lipid peroxidation products and inducible nitric oxide synthase [iNOS]). Mavrilimumab reduced CD34 + cells and neoangiogenesis in GCA lesions. CONCLUSION The inhibitory effects of mavrilimumab on multiple steps in the GCA pathogenesis cascade in vitro are consistent with the clinical observation of reduced GCA flares in a phase 2 trial and support its development as a therapeutic option for patients with GCA.
Collapse
Affiliation(s)
- Marc Corbera-Bellalta
- Vasculitis Research Group, Department of Autoimmune Diseases, Hospital Clínic, University of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Roser Alba-Rovira
- Vasculitis Research Group, Department of Autoimmune Diseases, Hospital Clínic, University of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | | | - Georgina Espígol-Frigolé
- Vasculitis Research Group, Department of Autoimmune Diseases, Hospital Clínic, University of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Roberto Ríos-Garcés
- Vasculitis Research Group, Department of Autoimmune Diseases, Hospital Clínic, University of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Javier Marco-Hernández
- Vasculitis Research Group, Department of Autoimmune Diseases, Hospital Clínic, University of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | | | - Farah Kamberovic
- Vasculitis Research Group, Department of Autoimmune Diseases, Hospital Clínic, University of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | | | | | | | | | - Maria C Cid
- Vasculitis Research Group, Department of Autoimmune Diseases, Hospital Clínic, University of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - John F Paolini
- Kiniksa Pharmaceuticals Corp, Lexington, Massachusetts, USA
| |
Collapse
|
35
|
Cid MC, Unizony SH, Blockmans D, Brouwer E, Dagna L, Dasgupta B, Hellmich B, Molloy E, Salvarani C, Trapnell BC, Warrington KJ, Wicks I, Samant M, Zhou T, Pupim L, Paolini JF. Efficacy and safety of mavrilimumab in giant cell arteritis: a phase 2, randomised, double-blind, placebo-controlled trial. Ann Rheum Dis 2022; 81:653-661. [PMID: 35264321 PMCID: PMC8995812 DOI: 10.1136/annrheumdis-2021-221865] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 02/04/2022] [Indexed: 01/11/2023]
Abstract
Objectives Granulocyte-macrophage colony-stimulating factor (GM-CSF) is implicated in pathogenesis of giant cell arteritis. We evaluated the efficacy of the GM-CSF receptor antagonist mavrilimumab in maintaining disease remission. Methods This phase 2, double-blind, placebo-controlled trial enrolled patients with biopsy-confirmed or imaging-confirmed giant cell arteritis in 50 centres (North America, Europe, Australia). Active disease within 6 weeks of baseline was required for inclusion. Patients in glucocorticoid-induced remission were randomly assigned (3:2 ratio) to mavrilimumab 150 mg or placebo injected subcutaneously every 2 weeks. Both groups received a 26-week prednisone taper. The primary outcome was time to adjudicated flare by week 26. A prespecified secondary efficacy outcome was sustained remission at week 26 by Kaplan-Meier estimation. Safety was also assessed. Results Of 42 mavrilimumab recipients, flare occurred in 19% (n=8). Of 28 placebo recipients, flare occurred in 46% (n=13). Median time to flare (primary outcome) was 25.1 weeks in the placebo group, but the median was not reached in the mavrilimumab group (HR 0.38; 95% CI 0.15 to 0.92; p=0.026). Sustained remission at week 26 was 83% for mavrilimumab and 50% for placebo recipients (p=0.0038). Adverse events occurred in 78.6% (n=33) of mavrilimumab and 89.3% (n=25) of placebo recipients. No deaths or vision loss occurred in either group. Conclusions Mavrilimumab plus 26 weeks of prednisone was superior to placebo plus 26 weeks of prednisone for time to flare by week 26 and sustained remission in patients with giant cell arteritis. Longer treatment is needed to determine response durability and quantify the glucocorticoid-sparing potential of mavrilimumab. Trial registration number ClinicalTrials.gov number: NCT03827018, Europe (EUdraCT number: 2018-001003-36), and Australia (CT-2018-CTN-01 865-1).
Collapse
Affiliation(s)
- Maria C Cid
- Department of Autoimmune Diseases, Hospital Clinic de Barcelona. University of Barcelona. Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Sebastian H Unizony
- Vasculitis and Glomerulonephritis Center, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Daniel Blockmans
- Clinical department of General Internal Medicine Department, Research Department of Microbiology and Immunology, Laboratory of Clinical Infectious and Inflammatory Disorders, Katholieke Universiteit Leuven Universitaire Ziekenhuizen Leuven, Leuven, Belgium
| | - Elisabeth Brouwer
- Rheumatology and Clinical Immunology, Universitair Medisch Centrum Groningen afdeling Reumatologie & Klinische Immunologie, Groningen, The Netherlands
| | - Lorenzo Dagna
- Vita-Salute San Raffaele University, Milano, Italy.,Unit of Immunology, Rheumatology, Allergy and Rare Diseases (UnIRAR), IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Bhaskar Dasgupta
- Rheumatology, Mid & South Essex University Hospitals NHS Foundation Trust, Southend University Hospital, Basildon, UK
| | - Bernhard Hellmich
- Klinik für Innere Medizin, Rheumatolgie und Immunologie, Medius KLINIKEN gemeinnutzige GmbH, Kirchheim unter Teck, Germany
| | - Eamonn Molloy
- Bone and Joint Unit, Saint Vincent's University Hospital, Dublin, Ireland
| | - Carlo Salvarani
- Unit of Rheumatology, Azienda USL - IRCCS di Reggio Emilia, Reggio Emilia, Italy.,Department of Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, Universita degli Studi di Modena e Reggio Emilia, Modena, Italy
| | - Bruce C Trapnell
- Translational Pulmonary Science Center, Cincinnati Children's Hospital, Cincinnati, Ohio, USA
| | | | - Ian Wicks
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia.,Rheumatology Unit, Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Manoj Samant
- Kiniksa Pharmaceuticals Corp, Lexington, Massachusetts, USA
| | - Teresa Zhou
- Kiniksa Pharmaceuticals Corp, Lexington, Massachusetts, USA
| | - Lara Pupim
- Kiniksa Pharmaceuticals Corp, Lexington, Massachusetts, USA
| | - John F Paolini
- Kiniksa Pharmaceuticals Corp, Lexington, Massachusetts, USA
| | | |
Collapse
|
36
|
van Sleen Y, Therkildsen P, Nielsen BD, van der Geest KSM, Hansen I, Heeringa P, Posthumus MD, Sandovici M, Toonen EJM, Zijlstra J, Boots AMH, Hauge EM, Brouwer E. Angiopoietin-2/-1 ratios and MMP-3 levels as an early warning sign for the presence of giant cell arteritis in patients with polymyalgia rheumatica. Arthritis Res Ther 2022; 24:65. [PMID: 35255968 PMCID: PMC8900446 DOI: 10.1186/s13075-022-02754-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 02/01/2022] [Indexed: 11/29/2022] Open
Abstract
Background Diagnosing patients with giant cell arteritis (GCA) remains difficult. Due to its non-specific symptoms, it is challenging to identify GCA in patients presenting with symptoms of polymyalgia rheumatica (PMR), which is a more common disease. Also, commonly used acute-phase markers CRP and ESR fail to discriminate GCA patients from PMR and (infectious) mimicry patients. Therefore, we investigated biomarkers reflecting vessel wall inflammation for their utility in the accurate diagnosis of GCA in two international cohorts. Methods Treatment-naïve GCA patients participated in the Aarhus AGP cohort (N = 52) and the Groningen GPS cohort (N = 48). The AGP and GPS biomarker levels and symptoms were compared to patients presenting phenotypically as isolated PMR, infectious mimicry controls and healthy controls (HCs). Serum/plasma levels of 12 biomarkers were measured by ELISA or Luminex. Results In both the AGP and the GPS cohort, we found that weight loss, elevated erythrocyte sedimentation rate (ESR) and higher angiopoietin-2/-1 ratios but lower matrix metalloproteinase (MMP)-3 levels identify concomitant GCA in PMR patients. In addition, we confirmed that elevated platelet counts are characteristic of GCA but not of GCA mimicry controls and that low MMP-3 and proteinase 3 (PR3) levels may help to discriminate GCA from infections. Conclusion This study, performed in two independent international cohorts, consistently shows the potential of angiopoietin-2/-1 ratios and MMP-3 levels to identify GCA in patients presenting with PMR. These biomarkers may be used to select which PMR patients require further diagnostic workup. Platelet counts may be used to discriminate GCA from GCA look-alike patients. Supplementary Information The online version contains supplementary material available at 10.1186/s13075-022-02754-5.
Collapse
Affiliation(s)
- Yannick van Sleen
- Department of Rheumatology and Clinical Immunology, University Medical Center Groningen, Hanzeplein 1, Groningen, 9700 RB, the Netherlands.
| | - Philip Therkildsen
- Department of Rheumatology, Aarhus University Hospital, Aarhus N, Denmark
| | - Berit Dalsgaard Nielsen
- Department of Rheumatology, Aarhus University Hospital, Aarhus N, Denmark.,Department of Medicine, Horsens Regional Hospital, Horsens, Denmark
| | - Kornelis S M van der Geest
- Department of Rheumatology and Clinical Immunology, University Medical Center Groningen, Hanzeplein 1, Groningen, 9700 RB, the Netherlands
| | - Ib Hansen
- Department of Rheumatology, Aarhus University Hospital, Aarhus N, Denmark
| | - Peter Heeringa
- Department of Pathology and Medical Biology, University Medical Center Groningen, Groningen, the Netherlands
| | - Marcel D Posthumus
- Department of Orthopaedic Surgery, Martini Hospital, Groningen, the Netherlands
| | - Maria Sandovici
- Department of Rheumatology and Clinical Immunology, University Medical Center Groningen, Hanzeplein 1, Groningen, 9700 RB, the Netherlands
| | | | - Jannik Zijlstra
- Department of Rheumatology and Clinical Immunology, University Medical Center Groningen, Hanzeplein 1, Groningen, 9700 RB, the Netherlands
| | - Annemieke M H Boots
- Department of Rheumatology and Clinical Immunology, University Medical Center Groningen, Hanzeplein 1, Groningen, 9700 RB, the Netherlands
| | | | - Elisabeth Brouwer
- Department of Rheumatology and Clinical Immunology, University Medical Center Groningen, Hanzeplein 1, Groningen, 9700 RB, the Netherlands
| |
Collapse
|
37
|
Sandovici M, van der Geest N, van Sleen Y, Brouwer E. Need and value of targeted immunosuppressive therapy in giant cell arteritis. RMD Open 2022; 8:e001652. [PMID: 35149602 PMCID: PMC8845325 DOI: 10.1136/rmdopen-2021-001652] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 01/17/2022] [Indexed: 11/30/2022] Open
Abstract
Despite the heterogeneity of the giant cell arteritis (GCA) at the level of clinical manifestations and the cellular and molecular players involved in its pathogenesis, GCA is still treated with standardised regimens largely based on glucocorticoids (GC). Long-term use of high dosages of GC as required in GCA are associated with many clinically relevant side effects. In the recent years, the interleukin-6 receptor blocker tocilizumab has become available as the only registered targeted immunosuppressive agent in GCA. However, immunological heterogeneity may require different pathways to be targeted in order to achieve a clinical, immunological and vascular remission in GCA. The advances in the targeted blockade of various molecular pathways involved in other inflammatory and autoimmune diseases have catalyzed the research on targeted therapy in GCA. This article gives an overview of the studies with targeted immunosuppressive treatments in GCA, with a focus on their clinical value, including their effects at the level of vascular inflammation.
Collapse
Affiliation(s)
- Maria Sandovici
- Department of Rheumatology and Clinical Immunology, University Medical Centre Groningen, Groningen, Netherlands
| | - Niels van der Geest
- Department of Rheumatology and Clinical Immunology, University Medical Centre Groningen, Groningen, Netherlands
| | - Yannick van Sleen
- Department of Rheumatology and Clinical Immunology, University Medical Centre Groningen, Groningen, Netherlands
| | - Elisabeth Brouwer
- Department of Rheumatology and Clinical Immunology, University Medical Centre Groningen, Groningen, Netherlands
| |
Collapse
|
38
|
van der Geest KS, Jamar F, Brouwer E, Slart RH, Gheysens O. PET imaging in vasculitis. Nucl Med Mol Imaging 2022. [DOI: 10.1016/b978-0-12-822960-6.00060-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
39
|
Abstract
Two vasculitides, giant cell arteritis (GCA) and Takayasu arteritis (TAK), are recognized as autoimmune and autoinflammatory diseases that manifest exclusively within the aorta and its large branches. In both entities, the age of the affected host is a critical risk factor. TAK manifests during the 2nd-4th decade of life, occurring while the immune system is at its height of performance. GCA is a disease of older individuals, with infrequent cases during the 6th decade and peak incidence during the 8th decade of life. In both vasculitides, macrophages and T cells infiltrate into the adventitia and media of affected vessels, induce granulomatous inflammation, cause vessel wall destruction, and reprogram vascular cells to drive adventitial and neointimal expansion. In GCA, abnormal immunity originates in an aged immune system and evolves within the aged vascular microenvironment. One hallmark of the aging immune system is the preferential loss of CD8+ T cell function. Accordingly, in GCA but not in TAK, CD8+ effector T cells play a negligible role and anti-inflammatory CD8+ T regulatory cells are selectively impaired. Here, we review current evidence of how the process of immunosenescence impacts the risk for GCA and how fundamental differences in the age of the immune system translate into differences in the granulomatous immunopathology of TAK versus GCA.
Collapse
|
40
|
Ciccia F, Macaluso F, Mauro D, Nicoletti GF, Croci S, Salvarani C. New insights into the pathogenesis of giant cell arteritis: are they relevant for precision medicine? THE LANCET. RHEUMATOLOGY 2021; 3:e874-e885. [PMID: 38287633 DOI: 10.1016/s2665-9913(21)00253-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/15/2021] [Accepted: 07/28/2021] [Indexed: 02/06/2023]
Abstract
Giant cell arteritis is a primary granulomatous vasculitis characterised by a strict tissue tropism for large and medium-size vessels, occurring in people older than 50 years. Although considerable progress in understanding some of the pathophysiological mechanisms involved in the pathogenesis of giant cell arteritis has been made in the past 10 years, specific triggers of disease and mechanisms of chronic damage have not yet been identified. The definition of a specific pro-inflammatory hierarchy between the multiple cell types and the different cytokines or chemokines involved in the inflammatory process are still unexplored areas of study. The overall goal of precision medicine is to identify the best possible therapeutic approach for an individual or group of individuals with a given disease. The fundamental prerequisite of this approach is the identification, at baseline, of clinical and imaging findings and of molecular biomarkers that allow a precise stratification of patients and an adequate prediction of the therapeutic response. In this regard, the possibility of obtaining temporal artery biopsies for diagnostic purposes offers incredible exploratory possibilities to define different disease pathotypes potentially susceptible to different therapeutic interventions. In this Series paper, we will describe the most recent evidence relating to the pathogenesis of giant cell arteritis, trying to define, if possible, a new pathogenetic-centred approach to patients with giant cell arteritis.
Collapse
Affiliation(s)
- Francesco Ciccia
- Department of Precision Medicine, Section of Rheumatology, Università della Campania L Vanvitelli, Naples, Italy.
| | - Federica Macaluso
- Department of Precision Medicine, Section of Rheumatology, Università della Campania L Vanvitelli, Naples, Italy; Dipartimento Specialità Mediche, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Daniele Mauro
- Department of Precision Medicine, Section of Rheumatology, Università della Campania L Vanvitelli, Naples, Italy
| | - Giovanni Francesco Nicoletti
- Dipartimento Multidisciplinare di Specialità Medico-Chirurgiche e Odontoiatriche, Università della Campania L Vanvitelli, Naples, Italy
| | - Stefania Croci
- Autoimmunità, Allergologia e Biotecnologie Innovative, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Carlo Salvarani
- Dipartimento Specialità Mediche, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Reggio Emilia, Italy; Dipartimento Chirurgico, Medico, Odontoiatrico e di Scienze Morfologiche con interesse Trapiantologico, Oncologico e di Medicina Rigenerativa, Università di Modena e Reggio Emilia, Modena, Italy.
| |
Collapse
|
41
|
Functionally Heterogenous Macrophage Subsets in the Pathogenesis of Giant Cell Arteritis: Novel Targets for Disease Monitoring and Treatment. J Clin Med 2021; 10:jcm10214958. [PMID: 34768479 PMCID: PMC8585092 DOI: 10.3390/jcm10214958] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/20/2021] [Accepted: 10/23/2021] [Indexed: 12/19/2022] Open
Abstract
Giant cell arteritis (GCA) is a granulomatous large-vessel vasculitis that affects adults above 50 years of age. In GCA, circulating monocytes are recruited to the inflamed arteries. With cues from the vascular microenvironment, they differentiate into macrophages and play important roles in the pathogenesis of GCA via pro-inflammatory cytokine production and vascular remodeling. However, a deeper understanding of macrophage heterogeneity in GCA pathogenesis is needed to assist the development of novel diagnostic tools and targeted therapies. Here, we review the current knowledge on macrophage heterogeneity and diverse functions of macrophage subsets in the pathogenesis of GCA. We next discuss the possibility to exploit their heterogeneity as a source of novel biomarkers and as targets for nuclear imaging. Finally, we discuss novel macrophage-targeted therapies and future directions for targeting these cells in GCA.
Collapse
|
42
|
van Sleen Y, Jiemy WF, Pringle S, van der Geest KSM, Abdulahad WH, Sandovici M, Brouwer E, Heeringa P, Boots AMH. A Distinct Macrophage Subset Mediating Tissue Destruction and Neovascularization in Giant Cell Arteritis: Implication of the YKL-40 - IL-13 Receptor α2 Axis. Arthritis Rheumatol 2021; 73:2327-2337. [PMID: 34105308 PMCID: PMC9298326 DOI: 10.1002/art.41887] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 05/27/2021] [Indexed: 11/17/2022]
Abstract
Objective Macrophages mediate inflammation, angiogenesis, and tissue destruction in giant cell arteritis (GCA). Serum levels of the macrophage‐associated protein YKL‐40 (chitinase 3–like protein 1), previously linked to angiogenesis and tissue remodeling, remain elevated in GCA despite glucocorticoid treatment. This study was undertaken to investigate the contribution of YKL‐40 to vasculopathy in GCA. Methods Immunohistochemistry was performed on GCA temporal artery biopsy specimens (n = 12) and aortas (n = 10) for detection of YKL‐40, its receptor interleukin‐13 receptor α2 (IL‐13Rα2), macrophage markers PU.1 and CD206, and the tissue‐destructive protein matrix metalloproteinase 9 (MMP‐9). Ten noninflamed temporal artery biopsy specimens served as controls. In vitro experiments with granulocyte–macrophage colony‐stimulating factor (GM‐CSF)– or macrophage colony‐stimulating factor (M‐CSF)–skewed monocyte‐derived macrophages were conducted to study the dynamics of YKL‐40 production. Next, small interfering RNA–mediated knockdown of YKL‐40 in GM‐CSF–skewed macrophages was performed to study its effect on MMP‐9 production. Finally, the angiogenic potential of YKL‐40 was investigated by tube formation experiments using human microvascular endothelial cells (HMVECs). Results YKL‐40 was abundantly expressed by a CD206+MMP‐9+ macrophage subset in inflamed temporal arteries and aortas. GM‐CSF–skewed macrophages from GCA patients, but not healthy controls, released significantly higher levels of YKL‐40 compared to M‐CSF–skewed macrophages (P = 0.039). In inflamed temporal arteries, IL‐13Rα2 was expressed by macrophages and endothelial cells. Functionally, knockdown of YKL‐40 led to a 10–50% reduction in MMP‐9 production by macrophages, whereas exposure of HMVECS to YKL‐40 led to significantly increased tube formation. Conclusion In GCA, a GM‐CSF–skewed, CD206+MMP‐9+ macrophage subset expresses high levels of YKL‐40 which may stimulate tissue destruction and angiogenesis through IL‐13Rα2 signaling. Targeting YKL‐40 or GM‐CSF may inhibit macrophages that are currently insufficiently suppressed by glucocorticoids.
Collapse
Affiliation(s)
- Yannick van Sleen
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - William F Jiemy
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.,Faculty of Applied Science, UCSI University, UCSI Heights, Cheras Kuala Lumpur, Malaysia
| | - Sarah Pringle
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Kornelis S M van der Geest
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Wayel H Abdulahad
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Maria Sandovici
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Elisabeth Brouwer
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Peter Heeringa
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Annemieke M H Boots
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
43
|
Simioni C, Conti I, Varano G, Brenna C, Costanzi E, Neri LM. The Complexity of the Tumor Microenvironment and Its Role in Acute Lymphoblastic Leukemia: Implications for Therapies. Front Oncol 2021; 11:673506. [PMID: 34026651 PMCID: PMC8131840 DOI: 10.3389/fonc.2021.673506] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 03/30/2021] [Indexed: 12/15/2022] Open
Abstract
The microenvironment that surrounds a tumor, in addition to the tumor itself, plays an important role in the onset of resistance to molecularly targeted therapies. Cancer cells and their microenvironment interact closely between them by means of a molecular communication that mutually influences their biological characteristics and behavior. Leukemia cells regulate the recruitment, activation and program of the cells of the surrounding microenvironment, including those of the immune system. Studies on the interactions between the bone marrow (BM) microenvironment and Acute Lymphoblastic Leukemia (ALL) cells have opened a scenario of potential therapeutic targets which include cytokines and their receptors, signal transduction networks, and hypoxia-related proteins. Hypoxia also enhances the formation of new blood vessels, and several studies show how angiogenesis could have a key role in the pathogenesis of ALL. Knowledge of the molecular mechanisms underlying tumor-microenvironment communication and angiogenesis could contribute to the early diagnosis of leukemia and to personalized molecular therapies. This article is part of a Special Issue entitled: Innovative Multi-Disciplinary Approaches for Precision Studies in Leukemia edited by Sandra Marmiroli (University of Modena and Reggio Emilia, Modena, Italy) and Xu Huang (University of Glasgow, Glasgow, United Kingdom).
Collapse
Affiliation(s)
- Carolina Simioni
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy.,Laboratory for Technologies of Advanced Therapies (LTTA) - Electron Microscopy Center, University of Ferrara, Ferrara, Italy
| | - Ilaria Conti
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Gabriele Varano
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Cinzia Brenna
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Eva Costanzi
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Luca M Neri
- Laboratory for Technologies of Advanced Therapies (LTTA) - Electron Microscopy Center, University of Ferrara, Ferrara, Italy.,Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| |
Collapse
|
44
|
Akiyama M, Ohtsuki S, Berry GJ, Liang DH, Goronzy JJ, Weyand CM. Innate and Adaptive Immunity in Giant Cell Arteritis. Front Immunol 2021; 11:621098. [PMID: 33717054 PMCID: PMC7947610 DOI: 10.3389/fimmu.2020.621098] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 12/24/2020] [Indexed: 12/15/2022] Open
Abstract
Autoimmune diseases can afflict every organ system, including blood vessels that are critically important for host survival. The most frequent autoimmune vasculitis is giant cell arteritis (GCA), which causes aggressive wall inflammation in medium and large arteries and results in vaso-occlusive wall remodeling. GCA shares with other autoimmune diseases that it occurs in genetically predisposed individuals, that females are at higher risk, and that environmental triggers are suspected to beget the loss of immunological tolerance. GCA has features that distinguish it from other autoimmune diseases and predict the need for tailored diagnostic and therapeutic approaches. At the core of GCA pathology are CD4+ T cells that gain access to the protected tissue niche of the vessel wall, differentiate into cytokine producers, attain tissue residency, and enforce macrophages differentiation into tissue-destructive effector cells. Several signaling pathways have been implicated in initiating and sustaining pathogenic CD4+ T cell function, including the NOTCH1-Jagged1 pathway, the CD28 co-stimulatory pathway, the PD-1/PD-L1 co-inhibitory pathway, and the JAK/STAT signaling pathway. Inadequacy of mechanisms that normally dampen immune responses, such as defective expression of the PD-L1 ligand and malfunction of immunosuppressive CD8+ T regulatory cells are a common theme in GCA immunopathology. Recent studies are providing a string of novel mechanisms that will permit more precise pathogenic modeling and therapeutic targeting in GCA and will fundamentally inform how abnormal immune responses in blood vessels lead to disease.
Collapse
Affiliation(s)
- Mitsuhiro Akiyama
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Shozo Ohtsuki
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Gerald J Berry
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, United States
| | - David H Liang
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Jörg J Goronzy
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Cornelia M Weyand
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
45
|
Chung NPY, Khan KMF, Kaner RJ, O'Beirne SL, Crystal RG. HIV induces airway basal progenitor cells to adopt an inflammatory phenotype. Sci Rep 2021; 11:3988. [PMID: 33597552 PMCID: PMC7889866 DOI: 10.1038/s41598-021-82143-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 01/13/2021] [Indexed: 02/07/2023] Open
Abstract
Despite the introduction of anti-retroviral therapy, chronic HIV infection is associated with an increased incidence of other comorbidities such as COPD. Based on the knowledge that binding of HIV to human airway basal stem/progenitor cells (BC) induces a destructive phenotype by increased MMP-9 expression through MAPK signaling pathways, we hypothesized that HIV induces the BC to express inflammatory mediators that contribute to the pathogenesis of emphysema. Our data demonstrate that airway BC isolated from HAART-treated HIV+ nonsmokers spontaneously release inflammatory mediators IL-8, IL-1β, ICAM-1 and GM-CSF. Similarly, exposure of normal BC to HIV in vitro up-regulates expression of the same inflammatory mediators. These HIV-BC derived mediators induce migration of alveolar macrophages (AM) and neutrophils and stimulate AM proliferation. This HIV-induced inflammatory phenotype likely contributes to lung inflammation in HIV+ individuals and provides explanation for the increased incidence of COPD in HIV+ individuals.
Collapse
Affiliation(s)
- Nancy P Y Chung
- Department of Genetic Medicine, Weill Cornell Medical College, 1300 York Avenue, Box 164, New York, NY, 10065, USA
| | - K M Faisal Khan
- Department of Genetic Medicine, Weill Cornell Medical College, 1300 York Avenue, Box 164, New York, NY, 10065, USA
| | - Robert J Kaner
- Department of Genetic Medicine, Weill Cornell Medical College, 1300 York Avenue, Box 164, New York, NY, 10065, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Sarah L O'Beirne
- Department of Genetic Medicine, Weill Cornell Medical College, 1300 York Avenue, Box 164, New York, NY, 10065, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Ronald G Crystal
- Department of Genetic Medicine, Weill Cornell Medical College, 1300 York Avenue, Box 164, New York, NY, 10065, USA.
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA.
| |
Collapse
|