1
|
Kerkman PF, de Vor L, van der Vaart TW, ten Doesschate T, Muts RM, Depelteau JS, Scheepmaker L, Ruyken M, de Haas CJ, Aerts PC, Marijnissen R, Schuurman J, Beurskens FJ, Gorlani A, Bardoel B, Rooijakkers SH. Single-cell Sequencing of Circulating Human Plasmablasts during Staphylococcus aureus Bacteremia. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024:ji2300858. [PMID: 39451041 PMCID: PMC7616744 DOI: 10.4049/jimmunol.2300858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 10/03/2024] [Indexed: 10/26/2024]
Abstract
Staphylococcus aureus is the major cause of healthcare-associated infections, including life-threatening conditions as bacteremia, endocarditis, and implant-associated infections. Despite adequate antibiotic treatment, the mortality of S. aureus bacteremia remains high. This calls for different strategies to treat this infection. In past years, sequencing of Ab repertoires from individuals previously exposed to a pathogen emerged as a successful method to discover novel therapeutic monoclonal Abs and understand circulating B cell diversity during infection. In this paper, we collected peripheral blood from 17 S. aureus bacteremia patients to study circulating plasmablast responses. Using single-cell transcriptome gene expression combined with sequencing of variable heavy and light Ig genes, we retrieved sequences from >400 plasmablasts revealing a high diversity with >300 unique variable heavy and light sequences. More than 200 variable sequences were synthesized to produce recombinant IgGs that were analyzed for binding to S. aureus whole bacterial cells. This revealed four novel monoclonal Abs that could specifically bind to the surface of S. aureus in the absence of Ig-binding surface SpA. Interestingly, three of four mAbs showed cross-reactivity with Staphylococcus epidermidis. Target identification revealed that the S. aureus-specific mAb BC153 targets wall teichoic acid, whereas cross-reactive mAbs BC019, BC020, and BC021 target lipoteichoic acid. All mAbs could induce Fc-dependent phagocytosis of staphylococci by human neutrophils. Altogether, we characterize the active B cell responses to S. aureus in infected patients and identify four functional mAbs against the S. aureus surface, of which three cross-react with S. epidermidis.
Collapse
Affiliation(s)
- Priscilla F. Kerkman
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Lisanne de Vor
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Thomas W. van der Vaart
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, The Netherlands
| | - Thijs ten Doesschate
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
- Department of Internal Medicine, Jeroen Bosch Hospital, Den Bosch, The Netherlands
| | - Remy M. Muts
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Jamie S. Depelteau
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Lisette Scheepmaker
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Maartje Ruyken
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Carla J.C. de Haas
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Piet C. Aerts
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | | | | | | | | | - Bart Bardoel
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Suzan H.M. Rooijakkers
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
2
|
García M, Carrasco García A, Weigel W, Christ W, Lira-Junior R, Wirth L, Tauriainen J, Maleki K, Vanoni G, Vaheri A, Mäkelä S, Mustonen J, Nordgren J, Smed-Sörensen A, Strandin T, Mjösberg J, Klingström J. Innate lymphoid cells are activated in HFRS, and their function can be modulated by hantavirus-induced type I interferons. PLoS Pathog 2024; 20:e1012390. [PMID: 39038044 PMCID: PMC11293681 DOI: 10.1371/journal.ppat.1012390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 08/01/2024] [Accepted: 07/03/2024] [Indexed: 07/24/2024] Open
Abstract
Hantaviruses cause the acute zoonotic diseases hemorrhagic fever with renal syndrome (HFRS) and hantavirus pulmonary syndrome (HPS). Infected patients show strong systemic inflammation and immune cell activation. NK cells are highly activated in HFRS, suggesting that also other innate lymphoid cells (ILCs) might be responding to infection. Here, we characterized peripheral ILC responses, and measured plasma levels of soluble factors and plasma viral load, in 17 Puumala virus (PUUV)-infected HFRS patients. This revealed an increased frequency of ILC2 in patients, in particular the ILC2 lineage-committed c-Kitlo ILC2 subset. Patients' ILCs showed an activated profile with increased proliferation and displayed altered expression of several homing markers. How ILCs are activated during viral infection is largely unknown. When analyzing PUUV-mediated activation of ILCs in vitro we observed that this was dependent on type I interferons, suggesting a role for type I interferons-produced in response to virus infection-in the activation of ILCs. Further, stimulation of naïve ILC2s with IFN-β affected ILC2 cytokine responses in vitro, causing decreased IL-5 and IL-13, and increased IL-10, CXCL10, and GM-CSF secretion. These results show that ILCs are activated in HFRS patients and suggest that the classical antiviral type I IFNs are involved in shaping ILC functions.
Collapse
Affiliation(s)
- Marina García
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Anna Carrasco García
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Whitney Weigel
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Wanda Christ
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Ronaldo Lira-Junior
- Section of Oral Diagnostics and Surgery, Division of Oral Diagnostics and Rehabilitation, Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Lorenz Wirth
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
- Mechanistic & Structural Biology, Discovery Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Johanna Tauriainen
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Kimia Maleki
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Giulia Vanoni
- Institut Curie, PSL University, Inserm, Immunity and Cancer, Paris, France
| | - Antti Vaheri
- Department of Virology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Satu Mäkelä
- Department of Internal Medicine, Tampere University Hospital, Tampere, Finland
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Jukka Mustonen
- Department of Internal Medicine, Tampere University Hospital, Tampere, Finland
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Johan Nordgren
- Division of Molecular Medicine and Virology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Anna Smed-Sörensen
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Tomas Strandin
- Department of Virology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Jenny Mjösberg
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Jonas Klingström
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
- Division of Molecular Medicine and Virology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
3
|
Gröning R, Dernstedt A, Ahlm C, Normark J, Sundström P, Forsell MNE. Immune response to SARS-CoV-2 mRNA vaccination in multiple sclerosis patients after rituximab treatment interruption. Front Immunol 2023; 14:1219560. [PMID: 37575257 PMCID: PMC10413123 DOI: 10.3389/fimmu.2023.1219560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 06/28/2023] [Indexed: 08/15/2023] Open
Abstract
Peripheral B cell depletion via anti-CD20 treatment is a highly effective disease-modifying treatment for reducing new relapses in multiple sclerosis (MS) patients. A drawback of rituximab (RTX) and other anti-CD20 antibodies is a poor immune response to vaccination. While this can be mitigated by treatment interruption of at least six months prior to vaccination, the timing to resume treatment while maintaining subsequent vaccine responses remains undetermined. Here, we characterized SARS-CoV-2 S-directed antibody and B cell responses throughout three BNT162b2 mRNA vaccine doses in RTX-treated MS patients, with the first two doses given during treatment interruption. We examined B-cell mediated immune responses in blood samples from patients with RTX-treated MS throughout three BNT162b2 vaccine doses, compared to an age- and sex-matched healthy control group. The first vaccine dose was given 1.3 years (median) after the last RTX infusion, the second dose one month after the first, and the third dose four weeks after treatment re-initiation. We analyzed SARS-CoV-2 S-directed antibody levels using enzyme-linked immunosorbent assay (ELISA), and the neutralization capacity of patient serum against SARS-CoV-2 S-pseudotyped lentivirus using luciferase reporter assay. In addition, we assessed switched memory (CD19+CD20+CD27+IgD-), unswitched memory (CD19+CD20+CD27+IgD+), naïve (CD19+CD20+CD27-IgD+), and double negative (DN, CD19+CD20+CD27-IgD-) B cell frequencies, as well as their SARS-CoV-2 S-specific (CoV+) and Decay Accelerating Factor-negative (DAF-) subpopulations, using flow cytometry. After two vaccine doses, S-binding antibody levels and neutralization capacity in SARS-CoV-2-naïve MS patients were comparable to vaccinated healthy controls, albeit with greater variation. Higher antibody response levels and CoV+-DN B cell frequencies after the second vaccine dose were predictive of a boost effect after the third dose, even after re-initiation of rituximab treatment. MS patients also exhibited lower frequencies of DAF- memory B cells, a suggested proxy for germinal centre activity, than control individuals. S-binding antibody levels in RTX-treated MS patients after two vaccine doses could help determine which individuals would need to move up their next vaccine booster dose or postpone their next RTX infusion. Our findings also offer first indications on the potential importance of antigenic stimulation of DN B cells and long-term impairment of germinal centre activity in rituximab-treated MS patients.
Collapse
Affiliation(s)
- Remigius Gröning
- Department of Clinical Microbiology, Umeå University, Umeå, Sweden
| | - Andy Dernstedt
- Department of Clinical Microbiology, Umeå University, Umeå, Sweden
| | - Clas Ahlm
- Department of Clinical Microbiology, Umeå University, Umeå, Sweden
| | - Johan Normark
- Department of Clinical Microbiology, Umeå University, Umeå, Sweden
- Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine (WCMM), Umeå University, Umeå, Sweden
| | - Peter Sundström
- Department of Clinical Microbiology, Umeå University, Umeå, Sweden
- Department of Clinical Sciences, Neurosciences, Umeå University, Umeå, Sweden
| | | |
Collapse
|
4
|
Mittler E, Serris A, Esterman ES, Florez C, Polanco LC, O'Brien CM, Slough MM, Tynell J, Gröning R, Sun Y, Abelson DM, Wec AZ, Haslwanter D, Keller M, Ye C, Bakken RR, Jangra RK, Dye JM, Ahlm C, Rappazzo CG, Ulrich RG, Zeitlin L, Geoghegan JC, Bradfute SB, Sidoli S, Forsell MNE, Strandin T, Rey FA, Herbert AS, Walker LM, Chandran K, Guardado-Calvo P. Structural and mechanistic basis of neutralization by a pan-hantavirus protective antibody. Sci Transl Med 2023; 15:eadg1855. [PMID: 37315110 DOI: 10.1126/scitranslmed.adg1855] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 05/18/2023] [Indexed: 06/16/2023]
Abstract
Emerging rodent-borne hantaviruses cause severe diseases in humans with no approved vaccines or therapeutics. We recently isolated a monoclonal broadly neutralizing antibody (nAb) from a Puumala virus-experienced human donor. Here, we report its structure bound to its target, the Gn/Gc glycoprotein heterodimer comprising the viral fusion complex. The structure explains the broad activity of the nAb: It recognizes conserved Gc fusion loop sequences and the main chain of variable Gn sequences, thereby straddling the Gn/Gc heterodimer and locking it in its prefusion conformation. We show that the nAb's accelerated dissociation from the divergent Andes virus Gn/Gc at endosomal acidic pH limits its potency against this highly lethal virus and correct this liability by engineering an optimized variant that sets a benchmark as a candidate pan-hantavirus therapeutic.
Collapse
Affiliation(s)
- Eva Mittler
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Alexandra Serris
- Institut Pasteur, Université Paris Cité, CNRS UMR3569, Structural Virology Unit, F-75015 Paris, France
| | | | - Catalina Florez
- U.S. Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD 21702, USA
- The Geneva Foundation, Tacoma, WA 98402, USA
| | - Laura C Polanco
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Cecilia M O'Brien
- U.S. Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD 21702, USA
- The Geneva Foundation, Tacoma, WA 98402, USA
| | - Megan M Slough
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Janne Tynell
- Department of Clinical Microbiology, Umeå University, 90187 Umeå, Sweden
- Zoonosis Unit, Department of Virology, Medical Faculty, University of Helsinki, 00290 Helsinki, Finland
| | - Remigius Gröning
- Department of Clinical Microbiology, Umeå University, 90187 Umeå, Sweden
| | - Yan Sun
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | | - Denise Haslwanter
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Markus Keller
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, 17493 Greifswald-Insel Riems, Germany
| | - Chunyan Ye
- Center for Global Health, Department of Internal Medicine, University of New Mexico Health Science Center, Albuquerque, NM 87131, USA
| | - Russel R Bakken
- U.S. Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD 21702, USA
| | - Rohit K Jangra
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - John M Dye
- U.S. Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD 21702, USA
| | - Clas Ahlm
- Department of Clinical Microbiology, Umeå University, 90187 Umeå, Sweden
| | | | - Rainer G Ulrich
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, 17493 Greifswald-Insel Riems, Germany
- Partner site: Hamburg-Lübeck-Borstel-Riems, German Centre for Infection Research (DZIF), 17493 Greifswald-Insel Riems, Germany
| | - Larry Zeitlin
- Mapp Biopharmaceutical Inc., San Diego, CA 92121, USA
| | | | - Steven B Bradfute
- Center for Global Health, Department of Internal Medicine, University of New Mexico Health Science Center, Albuquerque, NM 87131, USA
| | - Simone Sidoli
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | - Tomas Strandin
- Zoonosis Unit, Department of Virology, Medical Faculty, University of Helsinki, 00290 Helsinki, Finland
| | - Felix A Rey
- Institut Pasteur, Université Paris Cité, CNRS UMR3569, Structural Virology Unit, F-75015 Paris, France
| | - Andrew S Herbert
- U.S. Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD 21702, USA
| | | | - Kartik Chandran
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Pablo Guardado-Calvo
- Institut Pasteur, Université Paris Cité, CNRS UMR3569, Structural Virology Unit, F-75015 Paris, France
| |
Collapse
|
5
|
Courey-Ghaouzi AD, Kleberg L, Sundling C. Alternative B Cell Differentiation During Infection and Inflammation. Front Immunol 2022; 13:908034. [PMID: 35812395 PMCID: PMC9263372 DOI: 10.3389/fimmu.2022.908034] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/30/2022] [Indexed: 01/02/2023] Open
Abstract
Long-term protective immunity to infectious disease depends on cell-mediated and humoral immune responses. Induction of a strong humoral response relies on efficient B cell activation and differentiation to long-lived plasma cells and memory B cells. For many viral or bacterial infections, a single encounter is sufficient to induce such responses. In malaria, the induction of long-term immunity can take years of pathogen exposure to develop, if it occurs at all. This repeated pathogen exposure and suboptimal immune response coincide with the expansion of a subset of B cells, often termed atypical memory B cells. This subset is present at low levels in healthy individuals as well but it is observed to expand in an inflammatory context during acute and chronic infection, autoimmune diseases or certain immunodeficiencies. Therefore, it has been proposed that this subset is exhausted, dysfunctional, or potentially autoreactive, but its actual role has remained elusive. Recent reports have provided new information regarding both heterogeneity and expansion of these cells, in addition to indications on their potential role during normal immune responses to infection or vaccination. These new insights encourage us to rethink how and why they are generated and better understand their role in our complex immune system. In this review, we will focus on recent advances in our understanding of these enigmatic cells and highlight the remaining gaps that need to be filled.
Collapse
Affiliation(s)
- Alan-Dine Courey-Ghaouzi
- Division of Infectious Diseases, Department of Medicine Solna and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Linn Kleberg
- Division of Infectious Diseases, Department of Medicine Solna and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Christopher Sundling
- Division of Infectious Diseases, Department of Medicine Solna and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
- *Correspondence: Christopher Sundling,
| |
Collapse
|
6
|
Mittler E, Wec AZ, Tynell J, Guardado-Calvo P, Wigren-Byström J, Polanco LC, O’Brien CM, Slough MM, Abelson DM, Serris A, Sakharkar M, Pehau-Arnaudet G, Bakken RR, Geoghegan JC, Jangra RK, Keller M, Zeitlin L, Vapalahti O, Ulrich RG, Bornholdt ZA, Ahlm C, Rey FA, Dye JM, Bradfute SB, Strandin T, Herbert AS, Forsell MN, Walker LM, Chandran K. Human antibody recognizing a quaternary epitope in the Puumala virus glycoprotein provides broad protection against orthohantaviruses. Sci Transl Med 2022; 14:eabl5399. [PMID: 35294259 PMCID: PMC9805701 DOI: 10.1126/scitranslmed.abl5399] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The rodent-borne hantavirus Puumala virus (PUUV) and related agents cause hemorrhagic fever with renal syndrome (HFRS) in humans. Other hantaviruses, including Andes virus (ANDV) and Sin Nombre virus, cause a distinct zoonotic disease, hantavirus cardiopulmonary syndrome (HCPS). Although these infections are severe and have substantial case fatality rates, no FDA-approved hantavirus countermeasures are available. Recent work suggests that monoclonal antibodies may have therapeutic utility. We describe here the isolation of human neutralizing antibodies (nAbs) against tetrameric Gn/Gc glycoprotein spikes from PUUV-experienced donors. We define a dominant class of nAbs recognizing the "capping loop" of Gn that masks the hydrophobic fusion loops in Gc. A subset of nAbs in this class, including ADI-42898, bound Gn/Gc complexes but not Gn alone, strongly suggesting that they recognize a quaternary epitope encompassing both Gn and Gc. ADI-42898 blocked the cell entry of seven HCPS- and HFRS-associated hantaviruses, and single doses of this nAb could protect Syrian hamsters and bank voles challenged with the highly virulent HCPS-causing ANDV and HFRS-causing PUUV, respectively. ADI-42898 is a promising candidate for clinical development as a countermeasure for both HCPS and HFRS, and its mode of Gn/Gc recognition informs the development of broadly protective hantavirus vaccines.
Collapse
Affiliation(s)
- Eva Mittler
- Department of Microbiology and Immunology, Albert Einstein College of Medicine; Bronx, NY 10461, USA
| | | | - Janne Tynell
- Department of Clinical Microbiology, Umeå University; Umeå, Sweden.,Zoonosis Unit, Department of Virology, University of Helsinki; Helsinki, Finland
| | - Pablo Guardado-Calvo
- Structural Virology Unit, Department of Virology, Institut Pasteur; Paris 75724, France
| | | | - Laura C. Polanco
- Department of Microbiology and Immunology, Albert Einstein College of Medicine; Bronx, NY 10461, USA
| | - Cecilia M. O’Brien
- U.S. Army Medical Research Institute of Infectious Diseases; Fort Detrick, MD 21702, USA.,The Geneva Foundation; Tacoma, WA 98402, USA
| | - Megan M. Slough
- Department of Microbiology and Immunology, Albert Einstein College of Medicine; Bronx, NY 10461, USA
| | | | - Alexandra Serris
- Structural Virology Unit, Department of Virology, Institut Pasteur; Paris 75724, France
| | | | - Gerard Pehau-Arnaudet
- Structural Virology Unit, Department of Virology, Institut Pasteur; Paris 75724, France
| | - Russell R. Bakken
- U.S. Army Medical Research Institute of Infectious Diseases; Fort Detrick, MD 21702, USA
| | | | - Rohit K. Jangra
- Department of Microbiology and Immunology, Albert Einstein College of Medicine; Bronx, NY 10461, USA
| | - Markus Keller
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health; 17493 Greifswald-Insel Riems, Germany
| | - Larry Zeitlin
- Mapp Biopharmaceutical, Inc.; San Diego, CA 92121, USA
| | - Olli Vapalahti
- Zoonosis Unit, Department of Virology, University of Helsinki; Helsinki, Finland.,Veterinary Biosciences, Veterinary Faculty, University of Helsinki; Helsinki, Finland
| | - Rainer G. Ulrich
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health; 17493 Greifswald-Insel Riems, Germany.,Deutsches Zentrum für Infektionsforschung, Partner site Hamburg-Lübeck-Borstel-Riems; Greifswald-Insel Riems, Germany
| | | | - Clas Ahlm
- Department of Clinical Microbiology, Umeå University; Umeå, Sweden
| | - Felix A. Rey
- Structural Virology Unit, Department of Virology, Institut Pasteur; Paris 75724, France
| | - John M. Dye
- U.S. Army Medical Research Institute of Infectious Diseases; Fort Detrick, MD 21702, USA
| | - Steven B. Bradfute
- University of New Mexico Health Science Center, Center for Global Health, Department of Internal Medicine; Albuquerque, NM 87131, USA
| | - Tomas Strandin
- Zoonosis Unit, Department of Virology, University of Helsinki; Helsinki, Finland.,Correspondence: (T.S.), (A.S.H.), (M.N.E.F.), (L.M.W.), (K.C.)
| | - Andrew S. Herbert
- U.S. Army Medical Research Institute of Infectious Diseases; Fort Detrick, MD 21702, USA.,The Geneva Foundation; Tacoma, WA 98402, USA.,Correspondence: (T.S.), (A.S.H.), (M.N.E.F.), (L.M.W.), (K.C.)
| | - Mattias N.E. Forsell
- Department of Clinical Microbiology, Umeå University; Umeå, Sweden.,Correspondence: (T.S.), (A.S.H.), (M.N.E.F.), (L.M.W.), (K.C.)
| | - Laura M. Walker
- Adimab, LLC; Lebanon, NH 03766, USA.,Adagio Therapeutics, Inc.; Waltham, MA 02451, USA.,Correspondence: (T.S.), (A.S.H.), (M.N.E.F.), (L.M.W.), (K.C.)
| | - Kartik Chandran
- Department of Microbiology and Immunology, Albert Einstein College of Medicine; Bronx, NY 10461, USA.,Correspondence: (T.S.), (A.S.H.), (M.N.E.F.), (L.M.W.), (K.C.)
| |
Collapse
|
7
|
Lindeman I, Sollid LM. Single-cell approaches to dissect adaptive immune responses involved in autoimmunity: the case of celiac disease. Mucosal Immunol 2022; 15:51-63. [PMID: 34531547 DOI: 10.1038/s41385-021-00452-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 02/04/2023]
Abstract
Single-cell analysis is a powerful technology that has found widespread use in recent years. For diseases with involvement of adaptive immunity, single-cell analysis of antigen-specific T cells and B cells is particularly informative. In autoimmune diseases, the adaptive immune system is obviously at play, yet the ability to identify the culprit T and B cells recognizing disease-relevant antigen can be difficult. Celiac disease, a widespread disorder with autoimmune components, is unique in that disease-relevant antigens for both T cells and B cells are well defined. Furthermore, the celiac disease gut lesion is readily accessible allowing for sampling of tissue-resident cells. Thus, disease-relevant T cells and B cells from the gut and blood can be studied at the level of single cells. Here we review single-cell studies providing information on such adaptive immune cells and outline some future perspectives in the area of single-cell analysis in autoimmune diseases.
Collapse
Affiliation(s)
- Ida Lindeman
- KG Jebsen Coeliac Disease Research Centre, University of Oslo, Oslo, Norway.,Department of Immunology, Oslo University Hospital, Oslo, Norway
| | - Ludvig M Sollid
- KG Jebsen Coeliac Disease Research Centre, University of Oslo, Oslo, Norway. .,Department of Immunology, Oslo University Hospital, Oslo, Norway. .,Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
| |
Collapse
|