1
|
Ding Z, Zhou W, Wang D, Li L, Wang C, Wang C. MRI variables and peripheral inflammatory response biomarkers predict severity and prognosis in patients with acute cervical traumatic spinal cord injury. BMC Musculoskelet Disord 2024; 25:900. [PMID: 39533270 PMCID: PMC11558895 DOI: 10.1186/s12891-024-08038-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 11/06/2024] [Indexed: 11/16/2024] Open
Abstract
OBJECTIVE Traumatic spinal cord injury (TSCI) stands as one of the most profoundly damaging and debilitating conditions. This study aims to explore the potential of magnetic resonance imaging (MRI) variables and peripheral inflammatory indicators as promising biomarkers. It aims to understand their significance in evaluating the severity and predicting the prognosis of TSCI. Furthermore, the study aims to ascertain whether combining these indicators could enhance the accuracy of injury assessment and predictive prognostic ability. METHODS A multicentre retrospective cohort study was conducted to assess the severity and prognostic value of MRI variables and peripheral inflammatory response biomarkers in patients with acute cervical TSCI. The study involved 374 patients with acute cervical TSCI drawn from the First Affiliated Hospital of Nanchang University and the Second Affiliated Hospital of Nanchang University. The severity and prognosis of patients with acute cervical TSCI were assessed using the American Spinal Injury Association Impairment Scale (AIS). The correlation between MRI variables, peripheral inflammatory response biomarkers, admission severity, and the 1-year follow-up prognosis was analysed. RESULTS After the initial assessment using the AIS grade system, 169 (49.2%) patients fell into the severe category for cervical TSCI (AIS A-B), while 205 (50.8%) patients were classified as non-severe cases (AIS C-E). The MRI variables (intramedullary lesion length [IMLL], Brain and Spinal Injury Centre [BASIC], maximum spinal cord compression [MSCC], and maximum canal compromise [MCC]) and inflammatory response biomarkers (white blood cells [WBCs], neutrophils, and C-reactive protein [CRP]) exhibited a consistent decrease correlating with the severity grades noted upon admission. Among the 374 patients assessed, 147 (39.3%) experienced a poor prognosis, as indicated by the AIS grade during the 1-year follow-up. MRI variables and peripheral inflammatory response biomarkers declined in correspondence with the follow-up AIS grades. Sex (p < 0.001), IMLL (p < 0.001), MSCC (p < 0.001), MCC (p < 0.001), BASIC (p < 0.001), WBC (p < 0.001), neutrophils (p < 0.001), and CRP (p < 0.001) were statistically significant in predicting poor outcomes. Through multivariate logistic regression analysis, BASIC score and CRP emerged as independent predictors of poor prognosis. Notably, the model combining the BASIC score and CRP yielded a larger area under the curve compared to models using only the BASIC score or CRP individually. CONCLUSIONS The BASIC score and CRP are crucial biomarkers for evaluating the severity of cervical TSCI and predicting prognosis. Their combination proved to be a more robust determinant of injury severity and a better predictor of neurological recovery.
Collapse
Affiliation(s)
- Zihan Ding
- Department of Neurosurgery, The 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University, 17 Yongwai Street, Nanchang, Jiangxi, 330006, China
| | - Wu Zhou
- Department of Neurosurgery, The 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University, 17 Yongwai Street, Nanchang, Jiangxi, 330006, China
| | - Deliang Wang
- Department of Neurosurgery, The 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University, 17 Yongwai Street, Nanchang, Jiangxi, 330006, China
| | - Lin Li
- Department of Neurosurgery, The 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University, 17 Yongwai Street, Nanchang, Jiangxi, 330006, China
| | - Chengyun Wang
- Department of Neurosurgery, The 2st Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Chunliang Wang
- Department of Neurosurgery, The 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University, 17 Yongwai Street, Nanchang, Jiangxi, 330006, China.
| |
Collapse
|
2
|
Liu Y, Luo X, Le J, Wang C, Xu C. Prognostic Value of Magnetic Resonance Imaging Variables Combined with Neutrophil-to-Lymphocyte Ratio in Patients with Cervical Traumatic Spinal Cord Injury. World Neurosurg 2024; 190:e684-e693. [PMID: 39111659 DOI: 10.1016/j.wneu.2024.07.204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 07/29/2024] [Indexed: 09/02/2024]
Abstract
OBJECTIVE We aimed to explore the prognostic significance of preoperative magnetic resonance imaging (MRI) variables and novel inflammatory indicators in predicting neurological recovery post-cervical traumatic spinal cord injury (TSCI) in the study. METHODS We enrolled a total of 244 patients diagnosed with acute cervical TSCI from 2 hospitals and evaluated the prognostic value of MRI variables (intramedullary hemorrhage, intramedullary lesion length [IMLL], maximum spinal cord compression, and maximum canal compromise [MCC]) and novel inflammatory indicators (neutrophil-to-lymphocyte ratio [NLR], platelet-to-lymphocyte ratio, lymphocyte-to-monocyte ratio, and systemic immune-inflammatory index) in patients with acute cervical TSCI. RESULTS Among the 244 patients, 140 (57.38%) exhibited improved AIS grade conversion at 1-year follow-up. The results revealed intramedullary hemorrhage, IMLL, MCC, neutrophils, and NLR were significantly different compared with follow-up AIS grade. Furthermore, IMLL, MCC, white blood cells, neutrophils, NLR, and lymphocyte-to-monocyte ratio correlated with the follow-up AIS grade by Spearman's correlation analysis. Multivariate analysis showed IMLL, intramedullary hemorrhage, NLR, and admission AIS grade emerged as independent predictors of AIS grade conversion. The receiver operating characteristic curve analysis showed that the novel model (combination of MRI variables, NLR, and admission AIS grade) produced a larger area under the curve compared with using only intramedullary hemorrhage, IMLL, NLR, or admission AIS grade individually. CONCLUSION Intramedullary hemorrhage and IMLL and NLR are predictors of AIS grade conversion after cervical TSCI. Therefore, we suggest the combination of MRI variables and NLR for the prognostic prediction of AIS grade conversion in patients with cervical TSCI.
Collapse
Affiliation(s)
- Yihao Liu
- Department of Neurosurgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Xiaojuan Luo
- Department of Critical Care Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Jinggang Le
- Department of Neurosurgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Chengyun Wang
- Department of Neurosurgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Cong Xu
- Department of Neurosurgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China.
| |
Collapse
|
3
|
Naseri Alavi SA, Habibi MA, Naseri Alavi SH, Zamani M, Kobets AJ. The Neutrophil-to-Lymphocyte Ratio in Patients with Spinal Cord Injury: A Narrative Review Study. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1567. [PMID: 39459357 PMCID: PMC11509609 DOI: 10.3390/medicina60101567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/18/2024] [Accepted: 09/24/2024] [Indexed: 10/28/2024]
Abstract
Background and Objectives: Traumatic spinal cord injury (SCI) is a devastating condition that occurs in two phases: primary and secondary injury. These phases contribute to changes in blood vessels and the influx of inflammatory cells such as neutrophils and lymphocytes. The biomarker known as the neutrophil-to-lymphocyte ratio (NLR) has been suggested as being highly valuable in predicting outcomes for patients with traumatic brain injury, acute ischemic stroke, and traumatic spinal cord injury. Therefore, this review study aims to investigate the prognostic value of the NLR in predicting outcomes for patients with SCI. Materials and Methods: A thorough review of relevant articles was conducted using Mesh keywords in Medline via Embase, PubMed, Google Scholar, and Scopus from 2000 to 2023. The search was conducted using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) checklist. After reviewing the articles and applying inclusion and exclusion criteria, only relevant articles were included in the study. Results: In the initial search, 41 papers were identified. After applying exclusion criteria, only three clinical studies remained for review. It is still debatable whether the NLR can serve as a cost-effective, readily available, and independent predictive factor for both mortality and recovery outcomes in patients with traumatic spinal cord injuries. Conclusions: Our study demonstrates that NLR, a readily available and inexpensive marker, can serve as an independent predictor of both mortality and recovery outcomes in patients with traumatic spinal cord injury. To reach a conclusive decision, additional data are required.
Collapse
Affiliation(s)
- Seyed Ahmad Naseri Alavi
- Department of Neurological Surgery, School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Mohammad Amin Habibi
- Department of Neurosurgery, Shariati Hospital, Tehran University of Sciences, Tehran 1441987566, Iran;
| | - Seyed Hamed Naseri Alavi
- Faculty of Medicine, Guilan University of Medical Sciences, Rasht 4144666949, Iran; (S.H.N.A.); (M.Z.)
| | - Mahsa Zamani
- Faculty of Medicine, Guilan University of Medical Sciences, Rasht 4144666949, Iran; (S.H.N.A.); (M.Z.)
| | - Andrew J. Kobets
- Department of Neurological Surgery, Montefiore Medical, Bronx, NY 10467, USA;
| |
Collapse
|
4
|
Garcia-Ovejero D, Beyerer E, Mach O, Leister I, Strowitzki M, Wutte C, Maier D, Kramer JL, Aigner L, Arevalo-Martin A, Grassner L. Untargeted blood serum proteomics identifies novel proteins related to neurological recovery after human spinal cord injury. J Transl Med 2024; 22:666. [PMID: 39020346 PMCID: PMC11256486 DOI: 10.1186/s12967-024-05344-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 05/24/2024] [Indexed: 07/19/2024] Open
Abstract
BACKGROUND The discovery of new prognostic biomarkers following spinal cord injury (SCI) is a rapidly growing field that could help uncover the underlying pathological mechanisms of SCI and aid in the development of new therapies. To date, this search has largely focused on the initial days after the lesion. However, during the subacute stage of SCI (weeks to months after the injury), there remains potential for sensorimotor recovery, and numerous secondary events develop in various organs. Additionally, the confounding effects of early interventions after the injury are less likely to interfere with the results. METHODS In this study, we conducted an untargeted proteomics analysis to identify biomarkers of recovery in blood serum samples during the subacute phase of SCI patients, comparing those with strong recovery to those with no recovery between 30 and 120 days. We analyzed the fraction of serum that is depleted of the most abundant proteins to unmask proteins that would otherwise go undetected. Linear models were used to identify peptides and proteins related to neurological recovery and we validated changes in some of these proteins using Enzyme-linked Immunosorbent Assay (ELISA). RESULTS Our findings reveal that differences in subacute recovery after SCI (from 30 to 120 days) are associated with an enrichment in proteins involved in inflammation, coagulation, and lipid metabolism. Technical validation using commercial ELISAs further confirms that high levels of SERPINE1 and ARHGAP35 are associated with strong neurological recovery, while high levels of CD300a and DEFA1 are associated with a lack of recovery. CONCLUSIONS Our study identifies new candidates for biomarkers of neurological recovery and for novel therapeutic targets after SCI.
Collapse
Affiliation(s)
- Daniel Garcia-Ovejero
- Laboratory of Neuroinflammation, Hospital Nacional de Paraplejicos, SESCAM, Toledo, Spain
| | - Evelyn Beyerer
- Institute of Molecular Regenerative Medicine, Paracelsus Medical University, Salzburg, Austria
| | - Orpheus Mach
- Spinal Cord Injury Center, BG Trauma Center, Murnau, Germany
- ParaMove, SCI Research Unit, BG Tauma Center Murnau, Germany and Paracelsus Medical University Salzburg, Salzburg, Austria
| | - Iris Leister
- Institute of Molecular Regenerative Medicine, Paracelsus Medical University, Salzburg, Austria
- Spinal Cord Injury Center, BG Trauma Center, Murnau, Germany
- ParaMove, SCI Research Unit, BG Tauma Center Murnau, Germany and Paracelsus Medical University Salzburg, Salzburg, Austria
| | | | - Christof Wutte
- Department of Neurosurgery, BG Trauma Center, Murnau, Germany
| | - Doris Maier
- Spinal Cord Injury Center, BG Trauma Center, Murnau, Germany
- ParaMove, SCI Research Unit, BG Tauma Center Murnau, Germany and Paracelsus Medical University Salzburg, Salzburg, Austria
| | - John Lk Kramer
- International Collaboration on Repair Discoveries, ICORD, University of British Columbia, Vancouver, Canada
- Department of Anesthesiology, Pharmacology & Therapeutics, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - Ludwig Aigner
- Institute of Molecular Regenerative Medicine, Paracelsus Medical University, Salzburg, Austria
- ParaMove, SCI Research Unit, BG Tauma Center Murnau, Germany and Paracelsus Medical University Salzburg, Salzburg, Austria
| | - Angel Arevalo-Martin
- Laboratory of Neuroinflammation, Hospital Nacional de Paraplejicos, SESCAM, Toledo, Spain.
| | - Lukas Grassner
- Institute of Molecular Regenerative Medicine, Paracelsus Medical University, Salzburg, Austria.
- Spinal Cord Injury Center, BG Trauma Center, Murnau, Germany.
- ParaMove, SCI Research Unit, BG Tauma Center Murnau, Germany and Paracelsus Medical University Salzburg, Salzburg, Austria.
- Department of Neurosurgery, Christian Doppler Clinic, Paracelsus Medical University, Salzburg, Austria.
| |
Collapse
|
5
|
Wang C, Chen M, Wang T, Wang Y, Zhu Y, Cui T, Hao Z, Wang D, He C. Prognostic value of the systemic inflammatory index (SII) and systemic inflammatory response index (SIRI) in patients with traumatic spinal cord injury. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2024; 33:1245-1255. [PMID: 38212411 DOI: 10.1007/s00586-023-08114-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/17/2023] [Accepted: 12/18/2023] [Indexed: 01/13/2024]
Abstract
PURPOSE The overwhelming inflammatory response plays a critical role in the secondary injury cascade of traumatic spinal cord injury (tSCI). The systemic immune inflammatory index (SII) and systemic inflammatory response index (SIRI) are two novel inflammatory biomarkers. The SII was calculated based on lymphocyte, neutrophil, and platelet counts, while the SIRI was calculated based on lymphocyte, neutrophil, and monocyte counts. Their prognostic value in patients with tSCI remains unclear. METHODS Patients with tSCI admitted within 24 h of trauma were retrospectively and consecutively enrolled. Peripheral blood samples were collected on admission. The primary outcome was American Spinal Injury Association Impairment Scale (AIS) grade conversion at discharge. Multivariable logistic regression analysis was performed to determine the relationship between SII and SIRI and AIS grade conversion. We performed receiver operating characteristic curve (ROC) analysis to assess the discriminative ability of SII, and SIRI in predicting AIS grade conversion. RESULTS Among 280 included patients, 77 (27.5%) had improved AIS grade conversion at discharge. After adjustment for confounders, SII was independently associated with AIS grade conversion (per SD, odds ratio [OR], 0.68; 95% confidence interval [CI] 0.47-0.98, p = 0.040), while the association between SIRI and AIS grade conversion was insignificant (per 1 SD, OR, 0.77; 95% CI 0.55-1.08, p = 0.130). The ROC analysis revealed that the SII had the best predictive value for AIS grade conversion (area under curve: 0.608, 95% CI 0.536-0.678). CONCLUSIONS Increased SII was independently associated with a decreased likelihood of improved AIS grade conversion.
Collapse
Affiliation(s)
- Changyi Wang
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, No.37 Guoxue Xiang, Chengdu, 610041, Sichuan, China
| | - Mingxi Chen
- Department of Neurology, West China Hospital, Sichuan University, No.37 Guoxue Xiang, Chengdu, 610041, Sichuan, China
| | - Tiantian Wang
- Department of Neurology, West China Hospital, Sichuan University, No.37 Guoxue Xiang, Chengdu, 610041, Sichuan, China
| | - Yihan Wang
- West China School of Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Yuyi Zhu
- Department of Neurology, West China Hospital, Sichuan University, No.37 Guoxue Xiang, Chengdu, 610041, Sichuan, China
| | - Ting Cui
- Department of Neurology, West China Hospital, Sichuan University, No.37 Guoxue Xiang, Chengdu, 610041, Sichuan, China
| | - Zilong Hao
- Department of Neurology, West China Hospital, Sichuan University, No.37 Guoxue Xiang, Chengdu, 610041, Sichuan, China.
| | - Deren Wang
- Department of Neurology, West China Hospital, Sichuan University, No.37 Guoxue Xiang, Chengdu, 610041, Sichuan, China.
| | - Chengqi He
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, No.37 Guoxue Xiang, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
6
|
Gillespie ER, Grice LF, Courtney IG, Lao HW, Jung W, Ramkomuth S, Xie J, Brown DA, Walsham J, Radford KJ, Nguyen QH, Ruitenberg MJ. Single-cell RNA sequencing reveals peripheral blood leukocyte responses to spinal cord injury in mice with humanised immune systems. J Neuroinflammation 2024; 21:63. [PMID: 38429643 PMCID: PMC10908016 DOI: 10.1186/s12974-024-03048-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 02/14/2024] [Indexed: 03/03/2024] Open
Abstract
Next-generation humanised mouse models and single-cell RNA sequencing (scRNAseq) approaches enable in-depth studies into human immune cell biology. Here we used NSG-SGM3 mice engrafted with human umbilical cord haematopoietic stem cells to investigate how human immune cells respond to and/or are changed by traumatic spinal cord injury (SCI). We hypothesised that the use of such mice could help advance our understanding of spinal cord injury-induced immune depression syndrome (SCI-IDS), and also how human leukocytes change as they migrate from the circulation into the lesion site. Our scRNAseq experiments, supplemented by flow cytometry, demonstrate the existence of up to 11 human immune cell (sub-) types and/or states across the blood and injured spinal cord (7 days post-SCI) of humanised NSG-SGM3 mice. Further comparisons of human immune cell transcriptomes between naïve, sham-operated and SCI mice identified a total of 579 differentially expressed genes, 190 of which were 'SCI-specific' (that is, genes regulated only in response to SCI but not sham surgery). Gene ontology analysis showed a prominent downregulation of immune cell function under SCI conditions, including for T cell receptor signalling and antigen presentation, confirming the presence of SCI-IDS and the transcriptional signature of human leukocytes in association with this phenomenon. We also highlight the activating influence of the local spinal cord lesion microenvironment by comparing the transcriptomes of circulating versus infiltrated human immune cells; those isolated from the lesion site were enriched for genes relating to both immune cell activity and function (e.g., oxidative phosphorylation, T cell proliferation and antigen presentation). We lastly applied an integrated bioinformatics approach to determine where immune responses in humanised NSG-SGM3 mice appear congruent to the native responses of human SCI patients, and where they diverge. Collectively, our study provides a valuable resource and methodological framework for the use of these mice in translational research.
Collapse
Affiliation(s)
- Ellen R Gillespie
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Laura F Grice
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, 4072, Australia
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Isabel G Courtney
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Hong Wa Lao
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Woncheol Jung
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Sonny Ramkomuth
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Jacky Xie
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, 4072, Australia
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - David A Brown
- Neuroinflammation Research Group, Centre for Immunology and Allergy Research, Westmead Institute for Medical Research, Sydney, Australia
- Centre for Immunology and Allergy Research, Westmead Institute for Medical Research, The University of Sydney, Sydney, Australia
- Institute for Clinical Pathology, New South Wales Health Pathology, Sydney, Australia
| | - James Walsham
- Intensive Care Unit, Princess Alexandra Hospital, Brisbane, Australia
- Medical School, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - Kristen J Radford
- Mater Research Institute, The University of Queensland, Translational Research Institute, Brisbane, Australia
| | - Quan H Nguyen
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Marc J Ruitenberg
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, 4072, Australia.
| |
Collapse
|
7
|
Chen X, Zhou YQ, Chen C, Cao Y. Neutrophil-to-lymphocyte ratio at admission for early diagnosis, severity assessment, and prognosis of acute traumatic spinal cord injury. Spinal Cord 2024; 62:59-64. [PMID: 38146000 DOI: 10.1038/s41393-023-00949-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 11/29/2023] [Accepted: 12/07/2023] [Indexed: 12/27/2023]
Abstract
STUDY DESIGN A retrospective study. OBJECTIVE This study examined the value of neutrophil-to-lymphocyte ratio at admission for early diagnosis, severity assessment, and prognosis of acute traumatic SCI. SETTING The First People's Hospital of Neijiang, China. METHODS This was a single-center, retrospective, cohort study of patients treated within 12 h of acute SCI between January 2018 and October 2022. Ninety-four SCI patients were selected as the Observation group, including 26 with complete injury (AIS grade A) and 68 with incomplete injury (AIS grade B-D), while 94 patients with simple spinal fracture were randomly selected as the Control group. Eighty-one observation group patients underwent surgical treatment, of which 33 had a higher AIS grade (Good prognosis subgroup) and 48 a lower or equal grade post-surgery (Poor prognosis subgroup). Univariate and multivariate analyses were performed to assess predictors of early diagnosis, severity, and 6-month outcome. RESULTS Initial white blood cell count, neutrophil count, monocyte count, and NLR were higher in the Observation group than the Control group, while lymphocyte count was lower in the Observation group. Multivariate logistic regression analysis identified NLR as an independent predictor of early diagnosis. Spinal canal encroachment ≥50%, neutrophil count, and NLR were higher in the complete injury subgroup, and spinal canal encroachment ≥50% was an independent predictor of complete injury, while NLR was not. The NLR was higher in the poor prognosis subgroup and was an independent risk factor. CONCLUSIONS Peripheral blood NLR is useful for early diagnosis of acute SCI and is predictive of clinical outcome.
Collapse
Affiliation(s)
- Xiao Chen
- Department of Orthopedic Surgery, The First people's Hospital of Neijiang, Neijiang, China.
| | - Yong-Qiang Zhou
- Department of Orthopedic Surgery, The First people's Hospital of Neijiang, Neijiang, China
| | - Chang Chen
- Department of Orthopedic Surgery, The First people's Hospital of Neijiang, Neijiang, China
| | - Yuan Cao
- Department of Orthopedic Surgery, The First people's Hospital of Neijiang, Neijiang, China
| |
Collapse
|
8
|
DiSabato DJ, Marion CM, Mifflin KA, Alfredo AN, Rodgers KA, Kigerl KA, Popovich PG, McTigue DM. System failure: Systemic inflammation following spinal cord injury. Eur J Immunol 2024; 54:e2250274. [PMID: 37822141 PMCID: PMC10919103 DOI: 10.1002/eji.202250274] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 10/06/2023] [Accepted: 10/10/2023] [Indexed: 10/13/2023]
Abstract
Spinal cord injury (SCI) affects hundreds of thousands of people in the United States, and while some effects of the injury are broadly recognized (deficits to locomotion, fine motor control, and quality of life), the systemic consequences of SCI are less well-known. The spinal cord regulates systemic immunological and visceral functions; this control is often disrupted by the injury, resulting in viscera including the gut, spleen, liver, bone marrow, and kidneys experiencing local tissue inflammation and physiological dysfunction. The extent of pathology depends on the injury level, severity, and time post-injury. In this review, we describe immunological and metabolic consequences of SCI across several organs. Since infection and metabolic disorders are primary reasons for reduced lifespan after SCI, it is imperative that research continues to focus on these deleterious aspects of SCI to improve life span and quality of life for individuals with SCI.
Collapse
Affiliation(s)
- Damon J. DiSabato
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, Ohio, USA
- Belford Center for Spinal Cord Injury, College of Medicine, The Ohio State University, Columbus, Ohio, USA
- Center for Brain and Spinal Cord Repair, The Ohio State University, Columbus, Ohio, USA
| | - Christina M. Marion
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, Ohio, USA
- Belford Center for Spinal Cord Injury, College of Medicine, The Ohio State University, Columbus, Ohio, USA
- Center for Brain and Spinal Cord Repair, The Ohio State University, Columbus, Ohio, USA
| | - Katherine A. Mifflin
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, Ohio, USA
- Belford Center for Spinal Cord Injury, College of Medicine, The Ohio State University, Columbus, Ohio, USA
- Center for Brain and Spinal Cord Repair, The Ohio State University, Columbus, Ohio, USA
| | - Anthony N. Alfredo
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Kyleigh A. Rodgers
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Kristina A. Kigerl
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, Ohio, USA
- Belford Center for Spinal Cord Injury, College of Medicine, The Ohio State University, Columbus, Ohio, USA
- Center for Brain and Spinal Cord Repair, The Ohio State University, Columbus, Ohio, USA
| | - Phillip G. Popovich
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, Ohio, USA
- Belford Center for Spinal Cord Injury, College of Medicine, The Ohio State University, Columbus, Ohio, USA
- Center for Brain and Spinal Cord Repair, The Ohio State University, Columbus, Ohio, USA
| | - Dana M. McTigue
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, Ohio, USA
- Belford Center for Spinal Cord Injury, College of Medicine, The Ohio State University, Columbus, Ohio, USA
- Center for Brain and Spinal Cord Repair, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
9
|
Morrison D, Pinpin C, Lee A, Sison C, Chory A, Gregersen PK, Forrest G, Kirshblum S, Harkema SJ, Boakye M, Harrop JS, Bryce TN, Schwab JM, Kwon BK, Stein AB, Bank MA, Bloom O. Profiling Immunological Phenotypes in Individuals During the First Year After Traumatic Spinal Cord Injury: A Longitudinal Analysis. J Neurotrauma 2023; 40:2621-2637. [PMID: 37221869 PMCID: PMC10722895 DOI: 10.1089/neu.2022.0500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023] Open
Abstract
Abstract Individuals with SCI are severely affected by immune system changes, resulting in increased risk of infections and persistent systemic inflammation. While recent data support that immunological changes after SCI differ in the acute and chronic phases of living with SCI, only limited immunological phenotyping in humans is available. To characterize dynamic molecular and cellular immune phenotypes over the first year, we assess RNA (bulk-RNA sequencing), protein, and flow cytometry (FACS) profiles of blood samples from 12 individuals with SCI at 0-3 days and at 3, 6, and 12 months post injury (MPI) compared to 23 uninjured individuals (controls). We identified 967 differentially expressed (DE) genes in individuals with SCI (FDR <0.001) compared to controls. Within the first 6 MPI we detected a reduced expression of NK cell genes, consistent with reduced frequencies of CD56bright, CD56dim NK cells present at 12 MPI. Over 6MPI, we observed increased and prolonged expression of genes associated with inflammation (e.g. HMGB1, Toll-like receptor signaling) and expanded frequencies of monocytes acutely. Canonical T-cell related DE genes (e.g. FOXP3, TCF7, CD4) were upregulated during the first 6 MPI and increased frequencies of activated T cells at 3-12 MPI. Neurological injury severity was reflected in distinct whole blood gene expression profiles at any time after SCI, verifying a persistent 'neurogenic' imprint. Overall, 2876 DE genes emerge when comparing motor complete to motor incomplete SCI (ANOVA, FDR <0.05), including those related to neutrophils, inflammation, and infection. In summary, we identify a dynamic immunological phenotype in humans, including molecular and cellular changes which may provide potential targets to reduce inflammation, improve immunity, or serve as candidate biomarkers of injury severity.
Collapse
Affiliation(s)
- Debra Morrison
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, New York, USA
| | - Camille Pinpin
- Donald and Barbara Zucker School of Medicine at Hofstra Northwell, Hempstead, New York, USA
| | - Annette Lee
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, New York, USA
- Donald and Barbara Zucker School of Medicine at Hofstra Northwell, Hempstead, New York, USA
| | - Cristina Sison
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, New York, USA
- Donald and Barbara Zucker School of Medicine at Hofstra Northwell, Hempstead, New York, USA
| | - Ashley Chory
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, New York, USA
| | - Peter K. Gregersen
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, New York, USA
- Donald and Barbara Zucker School of Medicine at Hofstra Northwell, Hempstead, New York, USA
| | - Gail Forrest
- Tim and Caroline Reynolds Center for Spinal Stimulation, Center for Mobility and Human Engineering Research, West Orange, New Jersey, USA
- Department of Physical Medicine and Rehabilitation, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Steven Kirshblum
- Tim and Caroline Reynolds Center for Spinal Stimulation, Center for Mobility and Human Engineering Research, West Orange, New Jersey, USA
- Department of Physical Medicine and Rehabilitation, Rutgers New Jersey Medical School, Newark, New Jersey, USA
- Kessler Institute for Rehabilitation. West Orange, New Jersey, USA
| | - Susan J. Harkema
- Kentucky Spinal Injury Research Center, School of Medicine, University of Louisville, Louisville, Kentucky, USA
- Department of Neurosurgery, School of Medicine, University of Louisville, Louisville, Kentucky, USA
| | - Maxwell Boakye
- Kentucky Spinal Injury Research Center, School of Medicine, University of Louisville, Louisville, Kentucky, USA
- Department of Neurosurgery, School of Medicine, University of Louisville, Louisville, Kentucky, USA
| | - James S. Harrop
- Department of Neurosurgery, Thomas Jefferson University Hospitals, Philadelphia, Pennsylvania, USA
| | - Thomas N. Bryce
- Department of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai Hospital, New York, New York, USA
| | - Jan M. Schwab
- The Belford Center for Spinal Cord Injury, Spinal Cord Division, Wexner Medical Center, The Ohio State University, Columbus, Ohio, USA
- Department of Neurology, Spinal Cord Division, Wexner Medical Center, The Ohio State University, Columbus, Ohio, USA
| | - Brian K. Kwon
- International Collaboration on Repair Discoveries (ICORD), Department of Orthopaedics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Adam B. Stein
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, New York, USA
- Donald and Barbara Zucker School of Medicine at Hofstra Northwell, Hempstead, New York, USA
| | - Matthew A. Bank
- Donald and Barbara Zucker School of Medicine at Hofstra Northwell, Hempstead, New York, USA
- North Shore University Hospital, Manhasset, New York, USA
| | - Ona Bloom
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, New York, USA
- Donald and Barbara Zucker School of Medicine at Hofstra Northwell, Hempstead, New York, USA
| |
Collapse
|
10
|
Naseri Alavi SA, Kobets AJ, Rezakhah A, Habibi MA, Rezvani K, Emami Sigaroudi F. Can Neutrophil to Lymphocyte Ratio Predict Early Outcome in Patients with Spinal Cord Injury? World Neurosurg 2023; 180:e243-e249. [PMID: 37741330 DOI: 10.1016/j.wneu.2023.09.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/10/2023] [Accepted: 09/11/2023] [Indexed: 09/25/2023]
Abstract
BACKGROUND Spinal cord injury is a frequent debilitating neurologic condition with increasing prevalence and related morbidity over the last decades. The neutrophil-to-lymphocyte ratio is a promising biomarker for determining different medical conditions' disease course and outcome such as traumatic brain injury (TBI). This study aimed to investigate the predictive value of neutrophil to lymphocyte ratio (NLR) in the outcome of SCI. METHOD In a retrospective cross-sectional study from April 2019 to April 2022, all patients 18 to 65 years old, following spinal cord injury who were referred to Imam Khomeini Hospital and met inclusion and exclusion criteria enrolled in the study. A checklist including demographic data, lab, and clinical findings at admission, 24h, 48 h, and discharge were recorded. IBM SPSS Statistics software was used to analyze the data. A P-value of less than 0.05 was considered significant. RESULTS Six hundred patients met our inclusion criteria and enrolled in the study. The mean age of the patients was 40.93 ± 12.77, with 75% male and 25% female. There was a significant correlation between the N/L ratio at different time points (p.value=0.001), injury type, and ASIA score at admission and discharge (0.001). Furthermore, the NLR had approached significant value alone to predict outcomes in patients enrolled in the study (0.06). CONCLUSIONS A high NLR is unequivocally linked with poor outcomes in patients suffering from acute SCI and should be considered a negative prognostic factor; however, the NLR had approached significant predicting value in patients enrolled in the study.
Collapse
Affiliation(s)
| | - Andrew J Kobets
- Department of Neurological Surgery, Montefiore Medical, Bronx, New York, USA
| | - Amir Rezakhah
- Department of Neurosurgery, Urmia University of Medical Sciences, Urmia, Iran
| | - Mohammad Amin Habibi
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Clinical Research Development Center, Qom University of Medical Sciences, Qom, Iran
| | - Khashayar Rezvani
- Department of Neurosurgery, Urmia University of Medical Sciences, Urmia, Iran
| | | |
Collapse
|
11
|
Valido E, Boehl G, Krebs J, Pannek J, Stojic S, Atanasov AG, Glisic M, Stoyanov J. Immune Status of Individuals with Traumatic Spinal Cord Injury: A Systematic Review and Meta-Analysis. Int J Mol Sci 2023; 24:16385. [PMID: 38003575 PMCID: PMC10670917 DOI: 10.3390/ijms242216385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/06/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
Individuals with spinal cord injury (SCI) have higher infection rates compared to those without SCI. In this review, the immune status difference between individuals with and without traumatic SCI is investigated by examining their peripheral immune cells and markers. PubMed, Cochrane, EMBASE, and Ovid MEDLINE were searched without language or date restrictions. Studies reporting peripheral immune markers' concentration and changes in functional capabilities of immune cells that compared individuals with and without SCI were included. Studies with participants with active infection, immune disease, and central nervous system (CNS) immune markers were excluded. The review followed the PRISMA guidelines. Effect estimates were measured by Weighted Mean Difference (WMD) using a random-effects model. Study quality was assessed using the National Heart, Lung, and Blood Institute Quality Assessment Tool. Fifty-four studies (1813 with SCI and 1378 without SCI) contributed to the meta-analysis. Leukocytes (n = 23, WMD 0.78, 95% CI 0.17; 1.38, I2 83%), neutrophils (n = 11, WMD 0.76, 95% CI 0.09; 1.42, I2 89%), C-reactive protein (CRP) (n = 12, WMD 2.25, 95% CI 1.14; 3.56, I2 95%), and IL6 (n = 13, WMD 2.33, 95% CI 1.20; 3.49, I2 97%) were higher in individuals with SCI vs. without SCI. Clinical factors (phase of injury, completeness of injury, sympathetic innervation impairment, age, sex) and study-related factors (sample size, study design, and serum vs. plasma) partially explained heterogeneity. Immune cells exhibited lower functional capability in individuals with SCI vs. those without SCI. Most studies (75.6%) had a moderate risk of bias. The immune status of individuals with SCI differs from those without SCI and is clinically influenced by the phase of injury, completeness of injury, sympathetic innervation impairment, age, and sex. These results provide information that is vital for monitoring and management strategies to effectively improve the immune status of individuals with SCI.
Collapse
Affiliation(s)
- Ezra Valido
- Swiss Paraplegic Research, 6207 Nottwil, Switzerland
- Faculty of Health Sciences and Medicine, University of Lucerne, 6003 Lucerne, Switzerland
| | | | - Jörg Krebs
- Clinical Trial Unit, Swiss Paraplegic Center, 6207 Nottwil, Switzerland
| | - Jürgen Pannek
- Neuro-Urology, Swiss Paraplegic Center, 6207 Nottwil, Switzerland
- Department of Urology, Inselspital, Bern University Hospital, University of Bern, 3012 Bern, Switzerland
| | - Stevan Stojic
- Swiss Paraplegic Research, 6207 Nottwil, Switzerland
| | - Atanas G. Atanasov
- Ludwig Boltzman Institute for Digital Health and Patient Safety, Medical University of Vienna, 1090 Vienna, Austria
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, 05-552 Magdalenka, Poland
| | - Marija Glisic
- Swiss Paraplegic Research, 6207 Nottwil, Switzerland
- Institute of Social and Preventive Medicine (ISPM), University of Bern, 3012 Bern, Switzerland
| | - Jivko Stoyanov
- Swiss Paraplegic Research, 6207 Nottwil, Switzerland
- Institute of Social and Preventive Medicine (ISPM), University of Bern, 3012 Bern, Switzerland
| |
Collapse
|
12
|
Hu X, Xu W, Ren Y, Wang Z, He X, Huang R, Ma B, Zhao J, Zhu R, Cheng L. Spinal cord injury: molecular mechanisms and therapeutic interventions. Signal Transduct Target Ther 2023; 8:245. [PMID: 37357239 DOI: 10.1038/s41392-023-01477-6] [Citation(s) in RCA: 119] [Impact Index Per Article: 59.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 03/22/2023] [Accepted: 05/07/2023] [Indexed: 06/27/2023] Open
Abstract
Spinal cord injury (SCI) remains a severe condition with an extremely high disability rate. The challenges of SCI repair include its complex pathological mechanisms and the difficulties of neural regeneration in the central nervous system. In the past few decades, researchers have attempted to completely elucidate the pathological mechanism of SCI and identify effective strategies to promote axon regeneration and neural circuit remodeling, but the results have not been ideal. Recently, new pathological mechanisms of SCI, especially the interactions between immune and neural cell responses, have been revealed by single-cell sequencing and spatial transcriptome analysis. With the development of bioactive materials and stem cells, more attention has been focused on forming intermediate neural networks to promote neural regeneration and neural circuit reconstruction than on promoting axonal regeneration in the corticospinal tract. Furthermore, technologies to control physical parameters such as electricity, magnetism and ultrasound have been constantly innovated and applied in neural cell fate regulation. Among these advanced novel strategies and technologies, stem cell therapy, biomaterial transplantation, and electromagnetic stimulation have entered into the stage of clinical trials, and some of them have already been applied in clinical treatment. In this review, we outline the overall epidemiology and pathophysiology of SCI, expound on the latest research progress related to neural regeneration and circuit reconstruction in detail, and propose future directions for SCI repair and clinical applications.
Collapse
Affiliation(s)
- Xiao Hu
- Division of Spine, Department of Orthopaedics, Tongji Hospital, Tongji University School of Medicine, 200065, Shanghai, China
- Key Laboratory of Spine and Spinal cord Injury Repair and Regeneration (Tongji University), Ministry of Education, 200065, Shanghai, China
- Clinical Center For Brain And Spinal Cord Research, Tongji University, 200065, Shanghai, China
| | - Wei Xu
- Division of Spine, Department of Orthopaedics, Tongji Hospital, Tongji University School of Medicine, 200065, Shanghai, China
- Key Laboratory of Spine and Spinal cord Injury Repair and Regeneration (Tongji University), Ministry of Education, 200065, Shanghai, China
- Clinical Center For Brain And Spinal Cord Research, Tongji University, 200065, Shanghai, China
| | - Yilong Ren
- Division of Spine, Department of Orthopaedics, Tongji Hospital, Tongji University School of Medicine, 200065, Shanghai, China
- Key Laboratory of Spine and Spinal cord Injury Repair and Regeneration (Tongji University), Ministry of Education, 200065, Shanghai, China
- Clinical Center For Brain And Spinal Cord Research, Tongji University, 200065, Shanghai, China
| | - Zhaojie Wang
- Division of Spine, Department of Orthopaedics, Tongji Hospital, Tongji University School of Medicine, 200065, Shanghai, China
- Key Laboratory of Spine and Spinal cord Injury Repair and Regeneration (Tongji University), Ministry of Education, 200065, Shanghai, China
- Clinical Center For Brain And Spinal Cord Research, Tongji University, 200065, Shanghai, China
| | - Xiaolie He
- Division of Spine, Department of Orthopaedics, Tongji Hospital, Tongji University School of Medicine, 200065, Shanghai, China
- Key Laboratory of Spine and Spinal cord Injury Repair and Regeneration (Tongji University), Ministry of Education, 200065, Shanghai, China
- Clinical Center For Brain And Spinal Cord Research, Tongji University, 200065, Shanghai, China
| | - Runzhi Huang
- Division of Spine, Department of Orthopaedics, Tongji Hospital, Tongji University School of Medicine, 200065, Shanghai, China
- Key Laboratory of Spine and Spinal cord Injury Repair and Regeneration (Tongji University), Ministry of Education, 200065, Shanghai, China
- Clinical Center For Brain And Spinal Cord Research, Tongji University, 200065, Shanghai, China
| | - Bei Ma
- Division of Spine, Department of Orthopaedics, Tongji Hospital, Tongji University School of Medicine, 200065, Shanghai, China
- Key Laboratory of Spine and Spinal cord Injury Repair and Regeneration (Tongji University), Ministry of Education, 200065, Shanghai, China
- Clinical Center For Brain And Spinal Cord Research, Tongji University, 200065, Shanghai, China
| | - Jingwei Zhao
- Division of Spine, Department of Orthopaedics, Tongji Hospital, Tongji University School of Medicine, 200065, Shanghai, China
- Key Laboratory of Spine and Spinal cord Injury Repair and Regeneration (Tongji University), Ministry of Education, 200065, Shanghai, China
- Clinical Center For Brain And Spinal Cord Research, Tongji University, 200065, Shanghai, China
| | - Rongrong Zhu
- Division of Spine, Department of Orthopaedics, Tongji Hospital, Tongji University School of Medicine, 200065, Shanghai, China.
- Key Laboratory of Spine and Spinal cord Injury Repair and Regeneration (Tongji University), Ministry of Education, 200065, Shanghai, China.
- Clinical Center For Brain And Spinal Cord Research, Tongji University, 200065, Shanghai, China.
| | - Liming Cheng
- Division of Spine, Department of Orthopaedics, Tongji Hospital, Tongji University School of Medicine, 200065, Shanghai, China.
- Key Laboratory of Spine and Spinal cord Injury Repair and Regeneration (Tongji University), Ministry of Education, 200065, Shanghai, China.
- Clinical Center For Brain And Spinal Cord Research, Tongji University, 200065, Shanghai, China.
| |
Collapse
|
13
|
Wang C, Yu X, Wang T, Ding M, Ran L, Wang L, Sun X, Wei Q, He C. Association between neutrophil percentage-to-albumin ratio and pneumonia in patients with traumatic spinal cord injury. Spinal Cord 2023; 61:106-110. [PMID: 35945428 DOI: 10.1038/s41393-022-00844-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 11/09/2022]
Abstract
STUDY DESIGN Retrospective cohort study. OBJECTIVES To investigate the association between neutrophil percentage-to-albumin ratio (NPAR) and pneumonia in patients with SCI. SETTING Department of Rehabilitation Medicine Center, West China Hospital, Sichuan University. METHODS SCI patients admitted to West China Hospital within 24 h of injury were consecutively enrolled. Blood samples were collected on admission. Pneumonia was diagnosed based on chest radiography and clinician records of patient symptoms and laboratory tests. Multivariable logistic regression analysis was performed to determine the relationship between NPAR and pneumonia. Receiver operating characteristic (ROC) curves were generated to assess the predictive value of NPAR. RESULTS A total of 264 SCI patients were included, of whom 65 (24.6%) developed pneumonia. NPAR was positively correlated with pneumonia (OR 2.66, 95% CI, 1.06-6.71, p = 0.038). Patients in the upper NPAR tertile (2.35-3.71) had a higher risk of pneumonia than patients in the lower tertile (1.66-2.12) after adjustment for potential confounders (OR 2.55, 95% CI, 1.05-6.19, p = 0.039). The risk of pneumonia increased stepwise across NPAR tertiles (p for trend = 0.031). The optimal cutoff value of NPAR for predicting pneumonia was 2.17 with a sensitivity of 0.82 and a specificity of 0.50. There was a significant interaction between NPAR and neurological level of injury (p for interaction = 0.034), with no significant association between NPAR and pneumonia in patients with cervical SCI. CONCLUSIONS A higher NPAR was independently associated with higher risk of pneumonia in a dose-dependent manner in patients with non-cervical SCI.
Collapse
Affiliation(s)
- Changyi Wang
- Department of Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China.,Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xi Yu
- Department of Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China.,Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Tiantian Wang
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Mingfu Ding
- Department of Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Liyu Ran
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Lu Wang
- Department of Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China.,Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xin Sun
- Department of Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China.,Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Quan Wei
- Department of Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China.,Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Chengqi He
- Department of Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China. .,Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
14
|
Ayala C, Fishman M, Noyelle M, Bassiri H, Young W. Species Differences in Blood Lymphocyte Responses After Spinal Cord Injury. J Neurotrauma 2023; 40:807-819. [PMID: 36367185 PMCID: PMC10150731 DOI: 10.1089/neu.2022.0122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
People with spinal cord injury (SCI) get recurrent infections, such as urinary tract infections (UTIs) and pneumonias, that cause mortality and worsen neurological recovery. Over the past decades, researchers have proposed that post-SCI lymphopenia and decreased lymphocyte function increase susceptibility to infections and worsen neurological outcome in humans, leading to a condition called SCI-induced immune depression syndrome (SCI-IDS). In this review, we explore how SCI affects blood lymphocyte homeostasis and function in humans and rodents. Understanding how SCI affects blood lymphocytes will help the management of recurrent infections in spinal cord injured people and shed light on the clinical translation of findings in animal models to humans.
Collapse
Affiliation(s)
- Carlos Ayala
- W.M. Keck Center for Collaborative Neuroscience, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA.,New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey, USA
| | - Morgan Fishman
- W.M. Keck Center for Collaborative Neuroscience, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
| | - Margot Noyelle
- W.M. Keck Center for Collaborative Neuroscience, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
| | - Hamid Bassiri
- Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Wise Young
- W.M. Keck Center for Collaborative Neuroscience, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
| |
Collapse
|
15
|
Lorrey SJ, Waibl Polania J, Wachsmuth LP, Hoyt-Miggelbrink A, Tritz ZP, Edwards R, Wolf DM, Johnson AJ, Fecci PE, Ayasoufi K. Systemic immune derangements are shared across various CNS pathologies and reflect novel mechanisms of immune privilege. Neurooncol Adv 2023; 5:vdad035. [PMID: 37207119 PMCID: PMC10191195 DOI: 10.1093/noajnl/vdad035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2023] Open
Abstract
Background The nervous and immune systems interact in a reciprocal manner, both under physiologic and pathologic conditions. Literature spanning various CNS pathologies including brain tumors, stroke, traumatic brain injury and de-myelinating diseases describes a number of associated systemic immunologic changes, particularly in the T-cell compartment. These immunologic changes include severe T-cell lymphopenia, lymphoid organ contraction, and T-cell sequestration within the bone marrow. Methods We performed an in-depth systematic review of the literature and discussed pathologies that involve brain insults and systemic immune derangements. Conclusions In this review, we propose that the same immunologic changes hereafter termed 'systemic immune derangements', are present across CNS pathologies and may represent a novel, systemic mechanism of immune privilege for the CNS. We further demonstrate that systemic immune derangements are transient when associated with isolated insults such as stroke and TBI but persist in the setting of chronic CNS insults such as brain tumors. Systemic immune derangements have vast implications for informed treatment modalities and outcomes of various neurologic pathologies.
Collapse
Affiliation(s)
- Selena J Lorrey
- Department of Immunology, Duke University, Durham, NC, USA
- Brain Tumor Immunotherapy Program, Duke University, Durham, NC, USA
| | - Jessica Waibl Polania
- Brain Tumor Immunotherapy Program, Duke University, Durham, NC, USA
- Department of Pathology, Duke University, Durham, NC, USA
| | - Lucas P Wachsmuth
- Brain Tumor Immunotherapy Program, Duke University, Durham, NC, USA
- Department of Pathology, Duke University, Durham, NC, USA
- Medical Scientist Training Program, Duke University, Durham, NC, USA
| | - Alexandra Hoyt-Miggelbrink
- Brain Tumor Immunotherapy Program, Duke University, Durham, NC, USA
- Department of Pathology, Duke University, Durham, NC, USA
| | | | - Ryan Edwards
- Brain Tumor Immunotherapy Program, Duke University, Durham, NC, USA
| | - Delaney M Wolf
- Department of Immunology, Mayo Clinic, Rochester, MN, USA
| | | | - Peter E Fecci
- Department of Immunology, Duke University, Durham, NC, USA
- Brain Tumor Immunotherapy Program, Duke University, Durham, NC, USA
- Department of Pathology, Duke University, Durham, NC, USA
- Department of Neurosurgery, Duke University, Durham, NC, USA
| | | |
Collapse
|
16
|
Zhen-Gang L, Fan Y, Jingwei S, Pengyu C, Shengman Y, Bo-Yin Z. Revisiting the immune landscape post spinal cord injury: More than black and white. Front Aging Neurosci 2022; 14:963539. [PMID: 36570540 PMCID: PMC9768195 DOI: 10.3389/fnagi.2022.963539] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 11/10/2022] [Indexed: 12/12/2022] Open
Abstract
Spinal cord injury (SCI) induced catastrophic neurological disability is currently incurable, especially in elderly patients. Due to the limited axon regeneration capacity and hostile microenvironment in the lesion site, essential neural network reconstruction remains challenging. Owing to the blood-spinal cord barrier (BSCB) created immune cells and cytokines isolation, the immune elements were incorrectly recognized as innocent bystanders during the SCI pathological process traditionally. Emerging evidence demonstrated that the central nervous system (CNS) is an "immunological quiescent" rather than "immune privileged" area, and the CNS-associated immune response played mixed roles which dedicate beneficial and detrimental contributions throughout the SCI process. Consequently, coordinating double-edged immunomodulation is vital to promote tissue repair and neurological recovery post-SCI. The comprehensive exploration and understanding of the immune landscape post-SCI are essential in establishing new avenues for further basic and clinical studies. In this context, this review summarizes the recent significant breakthroughs in key aspects of SCI-related immunomodulation, including innate and adaptive immune response, immune organ changes, and holistic immune status modification. Moreover, the currently existing immune-oriented therapies for SCI will be outlined.
Collapse
Affiliation(s)
- Liu Zhen-Gang
- Department of Orthopaedics, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yang Fan
- Department of Orthopaedics, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Shi Jingwei
- Department of Laboratory Medicine Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Chang Pengyu
- Radiotherapy Department, The First Bethune Hospital of Jilin University, Changchun, China
| | - Yu Shengman
- School of Laboratory Medicine, Beihua University, Jilin, China
| | - Zhang Bo-Yin
- Department of Orthopaedics, China-Japan Union Hospital of Jilin University, Changchun, China,*Correspondence: Zhang Bo-Yin
| |
Collapse
|
17
|
Grassner L, Klein B, Garcia-Ovejero D, Mach O, Scheiblhofer S, Weiss R, Vargas-Baquero E, Kramer JLK, Leister I, Rohde E, Oeller M, Molina-Holgado E, Griessenauer CJ, Maier D, Aigner L, Arevalo-Martin A. Systemic Immune Profile Predicts the Development of Infections in Patients with Spinal Cord Injuries. J Neurotrauma 2022; 39:1678-1686. [PMID: 35607859 DOI: 10.1089/neu.2021.0448] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Patients with spinal cord injury (SCI) frequently develop infections that may affect quality of life, be life-threatening, and impair their neurological recovery in the acute and subacute injury phases. Therefore, identifying patients with SCI at risk for developing infections in this stage is of utmost importance. We determined the systemic levels of immune cell populations, cytokines, chemokines, and growth factors in 81 patients with traumatic SCI at 4 weeks after injury and compared them with those of 26 age-matched healthy control subjects. Patients who developed infections between 4 and 16 weeks after injury exhibited higher numbers of neutrophils and eosinophils, as well as lower numbers of lymphocytes and eotaxin-1 (CCL11) levels. Accordingly, lasso logistic regression showed that incomplete lesions (American Spinal Injury Association Impairment Scale [AIS] C and D grades), the levels of eotaxin-1, and the number of lymphocytes, basophils, and monocytes are predictive of lower odds for infections. On the other hand, the number of neutrophils and eosinophils as well as, in a lesser extent, the levels of IP-10 (CXCL10), MCP-1 (CCL2), BDNF [brain-derived neurotrophic factor], and vascular endothelial growth factor [VEGF]-A, are predictors of increased susceptibility for developing infections. Overall, our results point to systemic immune disbalance after SCI as predictors of infection in a period when infections may greatly interfere with neurological and functional recovery and suggest new pathways and players to further explore novel therapeutic strategies.
Collapse
Affiliation(s)
- Lukas Grassner
- Institute of Molecular Regenerative Medicine, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria.,Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria.,ParaMove, SCI Research Unit, BG Trauma Center Murnau, Murnau, Germany, and Paracelsus Medical University, Salzburg, Austria.,Spinal Cord Injury Center, BG Trauma Center Murnau, Murnau, Germany
| | - Barbara Klein
- Institute of Molecular Regenerative Medicine, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria.,Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Daniel Garcia-Ovejero
- Laboratory of Neuroinflammation, Hospital Nacional de Paraplejicos, SESCAM, Toledo, Spain
| | - Orpheus Mach
- ParaMove, SCI Research Unit, BG Trauma Center Murnau, Murnau, Germany, and Paracelsus Medical University, Salzburg, Austria.,Spinal Cord Injury Center, BG Trauma Center Murnau, Murnau, Germany
| | - Sandra Scheiblhofer
- Division of Allergy and Immunology, Department of Molecular Biology, University of Salzburg, Salzburg, Austria
| | - Richard Weiss
- Division of Allergy and Immunology, Department of Molecular Biology, University of Salzburg, Salzburg, Austria
| | | | - John L K Kramer
- International Collaboration on Repair Discoveries (ICORD), Pharmacology, and Therapeutics, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Anesthesiology, Pharmacology, and Therapeutics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Iris Leister
- Institute of Molecular Regenerative Medicine, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria.,Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria.,ParaMove, SCI Research Unit, BG Trauma Center Murnau, Murnau, Germany, and Paracelsus Medical University, Salzburg, Austria.,Spinal Cord Injury Center, BG Trauma Center Murnau, Murnau, Germany
| | - Eva Rohde
- Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria.,Department for Transfusion Medicine, University Hospital of Salzburg (SALK), University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Michaela Oeller
- Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria.,Department for Transfusion Medicine, University Hospital of Salzburg (SALK), University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Eduardo Molina-Holgado
- Laboratory of Neuroinflammation, Hospital Nacional de Paraplejicos, SESCAM, Toledo, Spain
| | - Christoph J Griessenauer
- Department of Neurosurgery, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Doris Maier
- ParaMove, SCI Research Unit, BG Trauma Center Murnau, Murnau, Germany, and Paracelsus Medical University, Salzburg, Austria.,Spinal Cord Injury Center, BG Trauma Center Murnau, Murnau, Germany
| | - Ludwig Aigner
- Institute of Molecular Regenerative Medicine, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria.,Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria.,ParaMove, SCI Research Unit, BG Trauma Center Murnau, Murnau, Germany, and Paracelsus Medical University, Salzburg, Austria
| | - Angel Arevalo-Martin
- Laboratory of Neuroinflammation, Hospital Nacional de Paraplejicos, SESCAM, Toledo, Spain
| |
Collapse
|
18
|
Pathophysiology, Classification and Comorbidities after Traumatic Spinal Cord Injury. J Pers Med 2022; 12:jpm12071126. [PMID: 35887623 PMCID: PMC9323191 DOI: 10.3390/jpm12071126] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/26/2022] [Accepted: 06/27/2022] [Indexed: 12/25/2022] Open
Abstract
The spinal cord is a conduit within the central nervous system (CNS) that provides ongoing communication between the brain and the rest of the body, conveying complex sensory and motor information necessary for safety, movement, reflexes, and optimization of autonomic function. After a spinal cord injury (SCI), supraspinal influences on the spinal segmental control system and autonomic nervous system (ANS) are disrupted, leading to spastic paralysis, pain and dysesthesia, sympathetic blunting and parasympathetic dominance resulting in cardiac dysrhythmias, systemic hypotension, bronchoconstriction, copious respiratory secretions and uncontrolled bowel, bladder, and sexual dysfunction. This article outlines the pathophysiology of traumatic SCI, current and emerging methods of classification, and its influence on sensory/motor function, and introduces the probable comorbidities associated with SCI that will be discussed in more detail in the accompanying manuscripts of this special issue.
Collapse
|
19
|
Tang D, Wang X, Chen Y, Yang X, Hu S, Song N, Wang J, Cheng J, Wu S. Treadmill training improves respiratory function in rats after spinal cord injury by inhibiting the HMGB1/TLR-4/NF-κB signaling pathway. Neurosci Lett 2022; 782:136686. [PMID: 35595191 DOI: 10.1016/j.neulet.2022.136686] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 04/08/2022] [Accepted: 05/16/2022] [Indexed: 11/17/2022]
Abstract
OBJECTIVE To investigate the effects of treadmill training on lung injury and HMGB1/TLR4/NF-κB after spinal cord injury (SCI) in rats. METHODS A total of 108 female SD rats were randomly divided into three groups: sham operation group, SCI brake group, and SCI exercise group. The rats in the SCI exercise group began treadmill running training on the 3rd day after the operation. The rats in the SCI brake group underwent braking treatment. The lung tissues were obtained on the 3rd, 7th, and 14th days after exercise. Locomotor functional recovery was determined using the BBB scores and inclined plane test. Respiratory function was determined via abdominal aortic blood gas analysis. HE staining was used to detect pathological changes in rat lung tissue. RNA sequencing was used to identify differentially expressed genes at different phases in each group of lung tissues. HMGB1, TLR4, and NF-κB in lung tissue were detected using immunohistochemistry and immunofluorescence. Detection of HMGB1 levels in serum, spinal cord tissues and lung tissues by ELISA. HMGB1, TLR4, NF-κB, IL-1β, IL-6, TNF-α mRNA, and protein expression levels were detected via qRT PCR and western blot. RESULTS Motor and respiratory functions significantly decreased after SCI (P<0.05). However, locomotion and respiratory functions were significantly improved after treadmill training intervention (P < 0.05). HE staining showed that interstitial thickening, inflammatory cells, and erythrocyte infiltration occurred in lung tissue of rats after SCI (P<0.05). Moreover, inflammatory reaction in lung tissue was significantly reduced after treadmill training intervention (P<0.05). A total of 428 differentially expressed mRNAs [(|log2(FC)| > 2, P < 0.05)] were identified in the intersection of the three groups. KEGG analysis identified five enriched signal pathways, including NF-kappa B. ELISA results showed that treadmill training could significantly reduce the levels of HMGB1 in serum, spinal cord tissue and lung tissue that were elevated after SCI (P < 0.05). Immunohistochemistry, immunofluorescence, qRT PCR, and Western blot showed that HMGB1, TLR4, IL-1β, IL-6, TNF-α, and NF-κB expressions were significantly up-regulated at the 3rd, 7th and 14th days after SCI, compared with the sham operation group. Besides, inflammatory cytokines were significantly lower in the SCI exercise group than in the SCI brake group at all time points after intervention (P < 0.05). CONCLUSION Treadmill training alleviates lung tissue inflammation and promotes recovery of motor and respiratory functions by inhibiting the HMGB1/TLR4/NF-κB signaling pathway after SCI in rats.
Collapse
Affiliation(s)
- Dan Tang
- Guizhou Medical University, 9 Beijing Street, Yunyan District, Guiyang, Guizhou, China
| | - Xianbin Wang
- Guizhou Medical University, 9 Beijing Street, Yunyan District, Guiyang, Guizhou, China; Affiliated Hospital of Guizhou Medical University, 28 Guiyi Street, Yunyan District, Guiyang, Guizhou, China
| | - Yuan Chen
- Affiliated Hospital of Guizhou Medical University, 28 Guiyi Street, Yunyan District, Guiyang, Guizhou, China
| | - Xianglian Yang
- Guizhou Medical University, 9 Beijing Street, Yunyan District, Guiyang, Guizhou, China
| | - Shouxing Hu
- Guizhou Medical University, 9 Beijing Street, Yunyan District, Guiyang, Guizhou, China
| | - Ning Song
- Guizhou Medical University, 9 Beijing Street, Yunyan District, Guiyang, Guizhou, China
| | - Jia Wang
- Guizhou Medical University, 9 Beijing Street, Yunyan District, Guiyang, Guizhou, China
| | - Jiawen Cheng
- Guizhou Medical University, 9 Beijing Street, Yunyan District, Guiyang, Guizhou, China
| | - Shuang Wu
- Guizhou Medical University, 9 Beijing Street, Yunyan District, Guiyang, Guizhou, China; Affiliated Hospital of Guizhou Medical University, 28 Guiyi Street, Yunyan District, Guiyang, Guizhou, China.
| |
Collapse
|
20
|
Alexander KA, Tseng HW, Kulina I, Fleming W, Vaquette C, Genêt F, Ruitenberg MJ, Lévesque JP. Lymphocytes Are Not Required for Neurogenic Heterotopic Ossification Development after Spinal Cord Injury. Neurotrauma Rep 2022; 3:87-96. [PMID: 35317305 PMCID: PMC8935476 DOI: 10.1089/neur.2021.0072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Neurogenic heterotopic ossifications (NHOs) are incapacitating complications of traumatic brain and spinal cord injuries (SCI) that manifest as abnormal bone formation in periarticular muscles. Using a unique model of NHO after SCI in genetically unmodified mice, we have previously established that the innate immune system plays a key driving role in NHO pathogenesis. The role of adaptive immune cells in NHO pathogenesis, however, remains unexplored in this model. Here we established that B lymphocytes were reduced in the spleen and blood after SCI and increased in muscles of mice in which NHO develops, whereas minimal changes in T cell frequencies were noted. Interestingly, Rag1-/- mice lacking mature T and B lymphocytes, developed NHO, similar to wild-type mice. Finally, mice that underwent splenectomy before SCI and muscle damage also developed NHO to the same extent as non-splenectomized SCI controls. Overall, our findings show that functional T and B lymphocytes have minimal influence or dispensable contributions to NHO development after experimental SCI in mice.
Collapse
Affiliation(s)
- Kylie A. Alexander
- Mater Research Institute, The University of Queensland, Translational Research Institute, Woolloongabba, Queensland, Australia
| | - Hsu-Wen Tseng
- Mater Research Institute, The University of Queensland, Translational Research Institute, Woolloongabba, Queensland, Australia
| | - Irina Kulina
- Mater Research Institute, The University of Queensland, Translational Research Institute, Woolloongabba, Queensland, Australia
| | - Whitney Fleming
- Mater Research Institute, The University of Queensland, Translational Research Institute, Woolloongabba, Queensland, Australia
| | - Cedryck Vaquette
- School of Dentistry, The University of Queensland, Herston, QLD, Australia
| | - François Genêt
- UPOH (Unité Péri Opératoire du Handicap, Perioperative Disability Unit), Physical and Rehabilitation Medicine department, Raymond-Poincaré Hospital, Assistance Publique–Hôpitaux de Paris (AP-HP), Garches, France
- Versailles Saint-Quentin-en-Yvelines University (UVSQ); UFR Simone Veil—Santé, END: ICAP, Inserm U1179, Montigny-le-Bretonneux, France
| | | | - Jean-Pierre Lévesque
- Mater Research Institute, The University of Queensland, Translational Research Institute, Woolloongabba, Queensland, Australia
| |
Collapse
|
21
|
McCreedy DA, Abram CL, Hu Y, Min SW, Platt ME, Kirchhoff MA, Reid SK, Jalufka FL, Lowell CA. Spleen tyrosine kinase facilitates neutrophil activation and worsens long-term neurologic deficits after spinal cord injury. J Neuroinflammation 2021; 18:302. [PMID: 34952603 PMCID: PMC8705173 DOI: 10.1186/s12974-021-02353-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 12/14/2021] [Indexed: 12/14/2022] Open
Abstract
Background Spinal cord injury elicits widespread inflammation that can exacerbate long-term neurologic deficits. Neutrophils are the most abundant immune cell type to invade the spinal cord in the early acute phase after injury, however, their role in secondary pathogenesis and functional recovery remains unclear. We have previously shown that neutrophil functional responses during inflammation are augmented by spleen tyrosine kinase, Syk, a prominent intracellular signaling enzyme. In this study, we evaluated the contribution of Syk towards neutrophil function and long-term neurologic deficits after spinal cord injury. Methods Contusive spinal cord injury was performed at thoracic vertebra level 9 in mice with conditional deletion of Syk in neutrophils (Sykf/fMRP8-Cre). Hindlimb locomotor recovery was evaluated using an open-field test for 35 days following spinal cord injury. Long-term white matter sparing was assessed using eriochrome cyanide staining. Blood-spinal cord barrier disruption was evaluated by immunoblotting. Neutrophil infiltration, activation, effector functions, and cell death were determined by flow cytometry. Cytokine and chemokine expression in neutrophils was assessed using a gene array. Results Syk deficiency in neutrophils improved long-term functional recovery after spinal cord injury, but did not promote long-term white matter sparing. Neutrophil activation, cytokine expression, and cell death in the acutely injured spinal cord were attenuated by the genetic loss of Syk while neutrophil infiltration and effector functions were not affected. Acute blood-spinal cord barrier disruption was also unaffected by Syk deficiency in neutrophils. Conclusions Syk facilitates specific neutrophil functional responses to spinal cord injury including activation, cytokine expression, and cell death. Long-term neurologic deficits are exacerbated by Syk signaling in neutrophils independent of acute blood-spinal cord barrier disruption and long-term white matter sparing. These findings implicate Syk in pathogenic neutrophil activities that worsen long-term functional recovery after spinal cord injury.
Collapse
Affiliation(s)
- Dylan A McCreedy
- Department of Biology, Texas A&M University, 301 Old Main Dr, ILSB 3128, College Station, TX, 77843, USA. .,Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX, 77843, USA. .,Department of Laboratory Medicine and Immunology Program, University of California, San Francisco, CA, 94143, USA.
| | - Clare L Abram
- Department of Laboratory Medicine and Immunology Program, University of California, San Francisco, CA, 94143, USA
| | - Yongmei Hu
- Department of Laboratory Medicine and Immunology Program, University of California, San Francisco, CA, 94143, USA
| | - Sun Won Min
- Department of Biology, Texas A&M University, 301 Old Main Dr, ILSB 3128, College Station, TX, 77843, USA
| | - Madison E Platt
- Department of Biology, Texas A&M University, 301 Old Main Dr, ILSB 3128, College Station, TX, 77843, USA
| | - Megan A Kirchhoff
- Department of Biology, Texas A&M University, 301 Old Main Dr, ILSB 3128, College Station, TX, 77843, USA
| | - Shelby K Reid
- Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX, 77843, USA
| | - Frank L Jalufka
- Department of Biology, Texas A&M University, 301 Old Main Dr, ILSB 3128, College Station, TX, 77843, USA
| | - Clifford A Lowell
- Department of Laboratory Medicine and Immunology Program, University of California, San Francisco, CA, 94143, USA
| |
Collapse
|
22
|
Wang Q, Li T, Fang C, Zhang B. Bioinformatics analysis of the wheel treadmill test on motor function recovery after spinal cord injury. IBRAIN 2021; 7:265-277. [PMID: 37786556 PMCID: PMC10529348 DOI: 10.1002/ibra.12006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 02/05/2023]
Abstract
This study aimed to explore the possible target and mechanism of the wheel treadmill (WTM) test for motor function recovery of spinal cord injury (SCI). Rats were divided into sham, control and WTM groups to establish an SCI mode. Rats in the WTM group were trained on the WTM test, and Basso-Beattie-Bresnahan (BBB) scores were determined. The samples were collected, and mRNA sequencing was conducted to determine the changes in gene expression. The coexpressed genes were screened to construct a protein-protein interaction (PPI), followed by the Kyoto Encyclopedia of Genes and Genomes pathway and Gene Ontology function enrichment analysis, and the differentially expressed genes (DEGs) volcano map and hub gene expression heat map were constructed using R language. The BBB scores in the control and WTM groups increased with time, with the WTM group scoring higher than the control group. The results of rat spinal cord tissue sequencing showed that a total of 1679 DEGs were screened in the sham and control groups; 928 DEGs and 731 overlapping genes were screened in the WTM and control groups. The key genes were identified by PPI analysis. One hundred and thirty-three genes were found to be overlapping by combined analysis of spinal cord sequencing data and BBB scores of rats at Week 7. The top 10 DEGs from high to low were Tyrobp, Rac2, Cd68, C1qb, Aif1, Cd74, Spi1, Fcer1g, RT1-DA, and Ccl4. The terms with the highest enrichment scores were microglia-mediated positive regulation of cytotoxicity and major histocompatibility complex class II protein complexes. Treatment with the WTM test promotes recovery of motor function after SCI in rats by modulating intercellular communication and immune function.
Collapse
Affiliation(s)
- Qiu‐Lin Wang
- School of AnesthesiologySouthwest Medical UniversityLuzhouSichuanChina
| | - Ting‐Ting Li
- Department of Anesthesiology, Institute of Neurological Disease, West China HospitalSichuan UniversityChengduChina
| | - Chang‐Le Fang
- School of AnesthesiologySouthwest Medical UniversityLuzhouSichuanChina
| | - Bao‐Lei Zhang
- Department of Experimental ZoologyKunming Medical UniversityKunmingYunnanChina
| |
Collapse
|
23
|
Jogia T, Kopp MA, Schwab JM, Ruitenberg MJ. Peripheral white blood cell responses as emerging biomarkers for patient stratification and prognosis in acute spinal cord injury. Curr Opin Neurol 2021; 34:796-803. [PMID: 34608075 PMCID: PMC8631147 DOI: 10.1097/wco.0000000000000995] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
PURPOSE OF REVIEW To date, prognostication of patients after acute traumatic spinal cord injury (SCI) mostly relies on the neurological assessment of residual function attributed to lesion characteristics. With emerging treatment candidates awaiting to be tested in early clinical trials, there is a need for wholistic high-yield prognostic biomarkers that integrate both neurogenic and nonneurogenic SCI pathophysiology as well as premorbid patient characteristics. RECENT FINDINGS It is becoming clearer that effective prognostication after acute SCI would benefit from integrating an assessment of pathophysiological changes on a systemic level, and with that, extend from a lesion-centric approach. Immunological markers mirror tissue injury as well as host immune function and are easily accessible through routine blood sampling. New studies have highlighted the value of circulating white blood cells, neutrophils and lymphocytes in particular, as prognostic systemic indicators of SCI severity and outcomes. SUMMARY We survey recent advances in methods and approaches that may allow for a more refined diagnosis and better prognostication after acute SCI, discuss how these may help deepen our understanding of SCI pathophysiology, and be of use in clinical trials.
Collapse
Affiliation(s)
- Trisha Jogia
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Marcel A. Kopp
- Spinal Cord Injury Research (Neuroparaplegiology), Department of Neurology and Experimental Neurology, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Jan M. Schwab
- Spinal Cord Injury Research (Neuroparaplegiology), Department of Neurology and Experimental Neurology, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Department of Neurology, Belford Center for Spinal Cord Injury, Departments of Neuroscience and Physical Medicine and Rehabilitation, The Neurological Institute, The Ohio State University, Wexner Medical Center, Columbus, Ohio, USA
| | - Marc J. Ruitenberg
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
24
|
Hu H, Wang H, Liu W. Effect of ganglioside combined with Chip Jiaji electro-acupuncture on Nogo-NgR signal pathway in SCI rats. Saudi J Biol Sci 2021; 28:4132-4136. [PMID: 34354392 PMCID: PMC8324963 DOI: 10.1016/j.sjbs.2021.02.031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 02/05/2021] [Accepted: 02/07/2021] [Indexed: 02/02/2023] Open
Abstract
At present, the effect of ganglioside combined with Jiaji electroacupuncture (Jiaji EA) on SCI still remains unclear. This study explores the effect of ganglioside combined with electroacupuncture on Nogo/NgR signal pathway in spinal cord tissue of spinal cord injury (SCI) rats. Basso Beattie Bresnahan (BBB) score was used to evaluate spinal cord function after modeling and 14 days post ganglioside and electroacupuncture treatment. RT-qPCR and western blot were performed to evaluate the expression levels of targets in spinal cord tissue. After 14 days of treatment, the BBB scores of Jiaji EA group, ganglioside group and combination group were all improved. The expression levels of IL-1β, IL-6 and TNF-α in Jiaji EA group, ganglioside group and combination group were significantly lower than those in model group. Both of mRNA and protein expression levels of Nogo-A, NgR and LINGO-1 in the model group were significantly higher than those in the Jiaji EA group, ganglioside group and combination group. Ganglioside combined with Jiaji EA has a stronger effect on promoting the recovery of nerve function. Its mechanism of action may be related to its inhibition of the expression of proinflammatory cytokines such as IL-1β, IL-6 and TNF-α and Nogo-NgR signal pathway to promote neuronal growth. Our results will provide fundamental information for further SCI studies.
Collapse
Affiliation(s)
- Hongfeng Hu
- Department of Neurolog, Jingmen NO.1 People's Hospital, Jingmen, Hubei 448000, China
| | - Hui Wang
- Department of Neurolog, The 966 Hospital of Dandong PLA, Dandong, Liaoning 118000, China
| | - Wei Liu
- Department of Neurolog, Jingmen NO.1 People's Hospital, Jingmen, Hubei 448000, China
| |
Collapse
|