1
|
Tian Y, Yan Z, Jiang L, Liu R, Liu B, Shao Y, Yang X, Liu M. Multiscale Models of CVD Process: Review and Prospective. MATERIALS (BASEL, SWITZERLAND) 2024; 17:5131. [PMID: 39459836 PMCID: PMC11509692 DOI: 10.3390/ma17205131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 10/17/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024]
Abstract
Chemical vapor deposition (CVD) is a crucial technique in the preparation of high-quality thin films and coatings, and is widely used in various industries including semiconductor, optics, and nuclear fuel, due to its operation simplicity and high growth rate. The complexity of the CVD process arises from numerous parameters, such as precursor chemistry, temperature, pressure, gas flow dynamics, and substrate characteristics. These multiscale parameters make the optimization of the CVD process a challenging task. Numerical simulations are widely used to model and analyze the CVD complex systems, and can be divided into nanoscale, mesoscale, and macroscale methods. Numerical simulation is aimed at optimizing the CVD process, but the inter-scale parameters still need to be extracted in modeling processes. However, multiscale coupling modeling becomes a powerful method to solve these challenges by providing a comprehensive framework that integrates phenomena occurring at different scales. This review presents an overview of the CVD process, the common critical parameters, and an in-depth analysis of CVD models in different scales. Then various multiscale models are discussed. This review highlights the models in different scales, integrates these models into multiscale frameworks, discusses typical multiscale coupling CVD models applied in practice, and summarizes the parameters that can transfer information between different scales. Finally, the schemes of multiscale coupling are given as a prospective view. By offering a comprehensive view of the current state of multiscale CVD models, this review aims to bridge the gap between theory and practice, and provide insights that could lead to a more efficient and precise control of the CVD process.
Collapse
Affiliation(s)
- Yu Tian
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
| | - Zefan Yan
- Hunan Valin Xiangtan Iron and Steel Co., Ltd., Xiangtan 411101, China
| | - Lin Jiang
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
| | - Rongzheng Liu
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
| | - Bing Liu
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
| | - Youlin Shao
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
| | - Xu Yang
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
| | - Malin Liu
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
| |
Collapse
|
2
|
Liu Y, Zhou C, Chen L, Du J, Li Q, Lu C, Tan L, Huang X, Liu J, Dong L. Self-standing membranes for separation: Achievements and opportunities. Adv Colloid Interface Sci 2024; 332:103269. [PMID: 39128434 DOI: 10.1016/j.cis.2024.103269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 05/28/2024] [Accepted: 08/03/2024] [Indexed: 08/13/2024]
Abstract
Supported membranes and mixed matrix membranes have a limitation of harming the mass transfer due to the incompatibility between the support layer or the matrix and the active components of the membrane. Self-standing membranes, which could structurally abandon the support layer, altogether avoid the adverse effect, thus greatly facilitating the transmembrane mass transfer process. However, the abandonment of the support layer also reduces the membrane's mechanical properties and formability. In this review, our emphasis will be on self-standing membranes within the realm of materials and separation engineering. We will explore the materials employed in the fabrication of self-standing membranes, highlighting their ability to simultaneously enhance membrane performance and promote self-standing characteristics. Additionally, we will delve into the diverse techniques utilized for crafting self-standing membranes, encompassing interfacial polymerization, filtration, solvent casting, Langmuir-Blodgett & layer-by-layer assembly, electrospinning, compression, etc. Throughout the discussion, the merits and drawbacks associated with each of these preparation methods were elucidated. We also provide a brief overview of the applications of self-standing membranes, including water purification, gas separation, organic solvent nanofiltration, electrochemistry, and membrane reactor, as well as a brief description of the general strategies for performance enhancement of self-standing membranes. Finally, the current status of self-standing membranes and the challenges they may encounter were discussed.
Collapse
Affiliation(s)
- Yunhao Liu
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, PR China
| | - Cailong Zhou
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, PR China.
| | - Li Chen
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, PR China
| | - Jingcheng Du
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230052, PR China
| | - Qun Li
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, PR China
| | - Chenyang Lu
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, PR China
| | - Luxi Tan
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, PR China.
| | - Xiaowei Huang
- Department of Pharmacy, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou 362000, PR China.
| | - Jiangtao Liu
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230052, PR China
| | - Lichun Dong
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, PR China
| |
Collapse
|
3
|
Maia KCB, Densy Dos Santos Francisco A, Moreira MP, Nascimento RSV, Grasseschi D. Advancements in Surfactant Carriers for Enhanced Oil Recovery: Mechanisms, Challenges, and Opportunities. ACS OMEGA 2024; 9:36874-36903. [PMID: 39246502 PMCID: PMC11375729 DOI: 10.1021/acsomega.4c04058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 07/04/2024] [Accepted: 07/09/2024] [Indexed: 09/10/2024]
Abstract
Enhanced oil recovery (EOR) techniques are crucial for maximizing the extraction of residual oil from mature reservoirs. This review explores the latest advancements in surfactant carriers for EOR, focusing on their mechanisms, challenges, and opportunities. We delve into the role of inorganic nanoparticles, carbon materials, polymers and polymeric surfactants, and supramolecular systems, highlighting their interactions with reservoir rocks and their potential to improve oil recovery rates. The discussion includes the formulation and behavior of nanofluids, the impact of surfactant adsorption on different rock types, and innovative approaches using environmentally friendly materials. Notably, the use of metal oxide nanoparticles, carbon nanotubes, graphene derivatives, and polymeric surfacants and the development of supramolecular complexes for managing surfacant delivery are examined. We address the need for further research to optimize these technologies and overcome current limitations, emphasizing the importance of sustainable and economically viable EOR methods. This review aims to provide a comprehensive understanding of the emerging trends and future directions in surfactant carriers for EOR.
Collapse
Affiliation(s)
- Kelly C B Maia
- Instituto de Química, Universidade Federal do Rio de Janeiro (UFRJ), 21941-909 Rio de Janeiro, Brazil
| | | | - Mateus Perissé Moreira
- Instituto de Química, Universidade Federal do Rio de Janeiro (UFRJ), 21941-909 Rio de Janeiro, Brazil
| | - Regina S V Nascimento
- Instituto de Química, Universidade Federal do Rio de Janeiro (UFRJ), 21941-909 Rio de Janeiro, Brazil
| | - Daniel Grasseschi
- Instituto de Química, Universidade Federal do Rio de Janeiro (UFRJ), 21941-909 Rio de Janeiro, Brazil
| |
Collapse
|
4
|
Bartoli M, Cardano F, Piatti E, Lettieri S, Fin A, Tagliaferro A. Interface properties of nanostructured carbon-coated biological implants: an overview. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2024; 15:1041-1053. [PMID: 39161465 PMCID: PMC11331541 DOI: 10.3762/bjnano.15.85] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 08/05/2024] [Indexed: 08/21/2024]
Abstract
The interfaces between medical implants and living tissues are of great complexity because of the simultaneous occurrence of a wide variety of phenomena. The engineering of implant surfaces represents a crucial challenge in material science, but the further improvement of implant properties remains a critical task. It can be achieved through several processes. Among them, the production of specialized coatings based on carbon-based materials stands very promising. The use of carbon coatings allows one to simultaneously fine-tune tribological, mechanical, and chemical properties. Here, we review applications of nanostructured carbon coatings (nanodiamonds, carbon nanotubes, and graphene-related materials) for the improvement of the overall properties of medical implants. We are focusing on biological interactions, improved corrosion resistance, and overall mechanical properties, trying to provide a complete overview within the field.
Collapse
Affiliation(s)
- Mattia Bartoli
- Center for Sustainable Future Technologies (CSFT), Istituto Italiano di Tecnologia (IIT), Via Livorno, 60, 10144, Torino, Italy
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), Via G. Giusti 9, 50121, Firenze, Italy
| | - Francesca Cardano
- Center for Sustainable Future Technologies (CSFT), Istituto Italiano di Tecnologia (IIT), Via Livorno, 60, 10144, Torino, Italy
- Department of Chemistry, University of Turin, Via P. Giuria 7, 10125 Torino, Italy
| | - Erik Piatti
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca Degli Abruzzi, 24, 10129, Torino, Italy
| | - Stefania Lettieri
- Center for Sustainable Future Technologies (CSFT), Istituto Italiano di Tecnologia (IIT), Via Livorno, 60, 10144, Torino, Italy
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca Degli Abruzzi, 24, 10129, Torino, Italy
| | - Andrea Fin
- Center for Sustainable Future Technologies (CSFT), Istituto Italiano di Tecnologia (IIT), Via Livorno, 60, 10144, Torino, Italy
- Department of Chemistry, University of Turin, Via P. Giuria 7, 10125 Torino, Italy
| | - Alberto Tagliaferro
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), Via G. Giusti 9, 50121, Firenze, Italy
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca Degli Abruzzi, 24, 10129, Torino, Italy
| |
Collapse
|
5
|
Semenov KN, Shemchuk OS, Ageev SV, Andoskin PA, Iurev GO, Murin IV, Kozhukhov PK, Maystrenko DN, Molchanov OE, Kholmurodova DK, Rizaev JA, Sharoyko VV. Development of Graphene-Based Materials with the Targeted Action for Cancer Theranostics. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:1362-1391. [PMID: 39245451 DOI: 10.1134/s0006297924080029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/11/2024] [Accepted: 07/13/2024] [Indexed: 09/10/2024]
Abstract
The review summarises the prospects in the application of graphene and graphene-based nanomaterials (GBNs) in nanomedicine, including drug delivery, photothermal and photodynamic therapy, and theranostics in cancer treatment. The application of GBNs in various areas of science and medicine is due to the unique properties of graphene allowing the development of novel ground-breaking biomedical applications. The review describes current approaches to the production of new targeting graphene-based biomedical agents for the chemotherapy, photothermal therapy, and photodynamic therapy of tumors. Analysis of publications and FDA databases showed that despite numerous clinical studies of graphene-based materials conducted worldwide, there is a lack of information on the clinical trials on the use of graphene-based conjugates for the targeted drug delivery and diagnostics. The review will be helpful for researchers working in development of carbon nanostructures, material science, medicinal chemistry, and nanobiomedicine.
Collapse
Affiliation(s)
- Konstantin N Semenov
- Pavlov First Saint Petersburg State Medical University, Saint Petersburg, 197022, Russia.
- Saint Petersburg State University, Saint Petersburg, 199034, Russia
- Granov Russian Research Centre for Radiology and Surgical Technologies, Saint Petersburg, 197758, Russia
| | - Olga S Shemchuk
- Pavlov First Saint Petersburg State Medical University, Saint Petersburg, 197022, Russia
- Saint Petersburg State University, Saint Petersburg, 199034, Russia
| | - Sergei V Ageev
- Pavlov First Saint Petersburg State Medical University, Saint Petersburg, 197022, Russia
- Saint Petersburg State University, Saint Petersburg, 199034, Russia
| | - Pavel A Andoskin
- Pavlov First Saint Petersburg State Medical University, Saint Petersburg, 197022, Russia
| | - Gleb O Iurev
- Pavlov First Saint Petersburg State Medical University, Saint Petersburg, 197022, Russia
| | - Igor V Murin
- Saint Petersburg State University, Saint Petersburg, 199034, Russia
| | | | - Dmitriy N Maystrenko
- Granov Russian Research Centre for Radiology and Surgical Technologies, Saint Petersburg, 197758, Russia
| | - Oleg E Molchanov
- Granov Russian Research Centre for Radiology and Surgical Technologies, Saint Petersburg, 197758, Russia
| | | | - Jasur A Rizaev
- Samarkand Medical University, Samarkand, 100400, Uzbekistan
| | - Vladimir V Sharoyko
- Pavlov First Saint Petersburg State Medical University, Saint Petersburg, 197022, Russia.
- Saint Petersburg State University, Saint Petersburg, 199034, Russia
- Granov Russian Research Centre for Radiology and Surgical Technologies, Saint Petersburg, 197758, Russia
| |
Collapse
|
6
|
Dong M, Sun Y, Dunstan DJ, Young RJ, Papageorgiou DG. Mechanical reinforcement from two-dimensional nanofillers: model, bulk and hybrid polymer nanocomposites. NANOSCALE 2024; 16:13247-13299. [PMID: 38940686 DOI: 10.1039/d4nr01356e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Thanks to their intrinsic properties, multifunctionality and unique geometrical features, two-dimensional nanomaterials have been used widely as reinforcements in polymer nanocomposites. The effective mechanical reinforcement of polymers is, however, a multifaceted problem as it depends not only on the intrinsic properties of the fillers and the matrix, but also upon a number of other important parameters. These parameters include the processing method, the interfacial properties, the aspect ratio, defects, orientation, agglomeration and volume fraction of the fillers. In this review, we summarize recent advances in the mechanical reinforcement of polymer nanocomposites from two-dimensional nanofillers with an emphasis on the mechanisms of reinforcement. Model, bulk and hybrid polymer nanocomposites are reviewed comprehensively. The use of Raman and photoluminescence spectroscopies is examined in light of the distinctive information they can yield upon stress transfer at interfaces. It is shown that the very diverse family of 2D nanofillers includes a number of materials that can attribute distrinctive features to a polymeric matrix, and we focus on the mechanical properties of both graphene and some of the most important 2D materials beyond graphene, including boron nitride, molybdenum disulphide, other transition metal dichalcogenides, MXenes and black phosphorous. In the first part of the review we evaluate the mechanical properties of 2D nanoplatelets in "model" nanocomposites. Next we examine how the performance of these materials can be optimised in bulk nanocomposites. Finally, combinations of these 2D nanofillers with other 2D nanomaterials or with nanofillers of other dimensions are assessed thoroughly, as such combinations can lead to additive or even synergistic mechanical effects. Existing unsolved problems and future perspectives are discussed.
Collapse
Affiliation(s)
- Ming Dong
- School of Engineering and Materials Science, Queen Mary University of London, London E1 4NS, UK.
| | - Yiwei Sun
- School of Engineering and Materials Science, Queen Mary University of London, London E1 4NS, UK.
| | - David J Dunstan
- School of Physics and Chemical Sciences, Queen Mary University of London, London E1 4NS, UK
| | - Robert J Young
- National Graphene Institute, Department of Materials, School of Natural Sciences, The University of Manchester, Manchester M13 9PL, UK.
| | - Dimitrios G Papageorgiou
- School of Engineering and Materials Science, Queen Mary University of London, London E1 4NS, UK.
| |
Collapse
|
7
|
Jiwarawat N, Leukulwatanachai T, Subhakornphichan K, Limwathanagura S, Wanotayan S, Atthi N, Pankiew A, Pungetmongkol P. Electrochemical exfoliation of graphene from pencil lead. Sci Rep 2024; 14:15892. [PMID: 38987409 PMCID: PMC11236967 DOI: 10.1038/s41598-024-66825-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 07/04/2024] [Indexed: 07/12/2024] Open
Abstract
Addressing an ever-increasing demand for graphene in recent years, simple, accessible, and effective graphene synthesis methods are essential. One of such methods is to use a highly oriented pyrolytic graphite (HOPG) to perform an electrochemical exfoliation. While this is one of the simplest and most cost-effective methods, the limited availability and price of HOPG hinders its usage. Our study proposed a simple and economical electrochemical exfoliation of pencil lead, producing graphene with properties comparable to that produced from HOPG. The electrical properties are determined by depositing graphene onto a screen-printed electrode. Graphene from pencil leads can achieve an electrical resistance as low as 1.86 kΩ, marking over 80% improvement in electrical performance compared to bare electrodes. This finding provides an alternative for the synthesis of graphene, increasing its availability and the cost-effectiveness as well as contributing towards a potential commercialization of the method in the future.
Collapse
Affiliation(s)
- Natchanon Jiwarawat
- International School of Engineering, Nano-Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Thapan Leukulwatanachai
- International School of Engineering, Nano-Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Kunbhass Subhakornphichan
- International School of Engineering, Nano-Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Siwagorn Limwathanagura
- International School of Engineering, Nano-Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Sittinadh Wanotayan
- Department of Chemical Engineering, Bio-Circular-Green-economy Technology & Engineering Center, BCGeTEC, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Nithi Atthi
- Thai Microelectronics Center (TMEC), National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, 12120, Pathum Thani, Thailand
| | - Apirak Pankiew
- Thai Microelectronics Center (TMEC), National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, 12120, Pathum Thani, Thailand
| | - Porpin Pungetmongkol
- International School of Engineering, Nano-Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
8
|
Fang Y, Zhou K, Wei W, Zhang J, Sun J. Recent advances in batch production of transfer-free graphene. NANOSCALE 2024; 16:10522-10532. [PMID: 38739019 DOI: 10.1039/d4nr01339e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
Large-area transfer-free graphene films prepared via chemical vapor deposition have proved appealing for various applications, with exciting examples in electronics, photonics, and optoelectronics. To achieve their commercialisation, batch production is a prerequisite. Nevertheless, the prevailing scalable synthesis strategies that have been reported are still obstructed by production inefficiencies and non-uniformity. There has also been a lack of reviews in this realm. We present herein a comprehensive and timely summary of recent advances in the batch production of transfer-free graphene. Primary issues and promising approaches for improving the graphene growth rate are first addressed, followed by a discussion of the strategies to guarantee in-plane and batch uniformity for graphene grown on planar plates and wafer-scale substrates, with the design of the target equipment to meet productivity requirements. Finally, potential research directions are outlined, aiming to offer insights into guiding the scalable production of transfer-free graphene.
Collapse
Affiliation(s)
- Ye Fang
- College of Energy, SUDA-BGI Collaborative Innovation Centre, Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou 215006, China.
- Beijing Graphene Institute, Beijing 100095, China
| | - Kaixuan Zhou
- College of Energy, SUDA-BGI Collaborative Innovation Centre, Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou 215006, China.
- Beijing Graphene Institute, Beijing 100095, China
| | - Wenze Wei
- Beijing Graphene Institute, Beijing 100095, China
| | - Jincan Zhang
- College of Energy, SUDA-BGI Collaborative Innovation Centre, Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou 215006, China.
| | - Jingyu Sun
- College of Energy, SUDA-BGI Collaborative Innovation Centre, Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou 215006, China.
- Beijing Graphene Institute, Beijing 100095, China
| |
Collapse
|
9
|
Wu Y, Li Y, Zhang X. The Future of Graphene: Preparation from Biomass Waste and Sports Applications. Molecules 2024; 29:1825. [PMID: 38675644 PMCID: PMC11053808 DOI: 10.3390/molecules29081825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/11/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
At present, the main raw material for producing graphene is graphite ore. However, researchers actively seek alternative resources due to their high cost and environmental problems. Biomass waste has attracted much attention due to its carbon-rich structure and renewability, emerging as a potential raw material for graphene production to be used in sports equipment. However, further progress is required on the quality of graphene produced from waste biomass. This paper, therefore, summarizes the properties, structures, and production processes of graphene and its derivatives, as well as the inherent advantages of biomass waste-derived graphene. Finally, this paper reviews graphene's importance and application prospects in sports since this wonder material has made sports equipment available with high-strength and lightweight quality. Moreover, its outstanding thermal and electrical conductivity is exploited to prepare wearable sensors to collect more accurate sports data, thus helping to improve athletes' training levels and competitive performance. Although the large-scale production of biomass waste-derived graphene has yet to be realized, it is expected that its application will expand to various other fields due to the associated low cost and environmental friendliness of the preparation technique.
Collapse
Affiliation(s)
- Yueting Wu
- Graduate School, Harbin Sport University, Harbin 150008, China; (Y.W.)
| | - Yanlong Li
- Academic Theory Research Department, Harbin Sport University, Harbin 150008, China
| | - Xiangyang Zhang
- Graduate School, Harbin Sport University, Harbin 150008, China; (Y.W.)
| |
Collapse
|
10
|
Pirabul K, Zhao Q, Pan ZZ, Liu H, Itoh M, Izawa K, Kawai M, Crespo-Otero R, Di Tommaso D, Nishihara H. Silicon Radical-Induced CH 4 Dissociation for Uniform Graphene Coating on Silica Surface. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306325. [PMID: 38032161 DOI: 10.1002/smll.202306325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 11/05/2023] [Indexed: 12/01/2023]
Abstract
Due to the manufacturability of highly well-defined structures and wide-range versatility in its microstructure, SiO2 is an attractive template for synthesizing graphene frameworks with the desired pore structure. However, its intrinsic inertness constrains the graphene formation via methane chemical vapor deposition. This work overcomes this challenge by successfully achieving uniform graphene coating on a trimethylsilyl-modified SiO2 (denote TMS-MPS). Remarkably, the onset temperature for graphene growth dropped to 720 °C for the TMS-MPS, as compared to the 885 °C of the pristine SiO2. This is found to be mainly from the Si radicals formed from the decomposition of the surface TMS groups. Both experimental and computational results suggest a strong catalytic effect of the Si radicals on the CH4 dissociation. The surface engineering of SiO2 templates facilitates the synthesis of high-quality graphene sheets. As a result, the graphene-coated SiO2 composite exhibits a high electrical conductivity of 0.25 S cm-1. Moreover, the removal of the TMP-MPS template has released a graphene framework that replicates the parental TMS-MPS template on both micro- and nano- scales. This study provides tremendous insights into graphene growth chemistries as well as establishes a promising methodology for synthesizing graphene-based materials with pre-designed microstructures and porosity.
Collapse
Affiliation(s)
- Kritin Pirabul
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi, 980-8577, Japan
| | - Qi Zhao
- Department of Chemistry, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| | - Zheng-Ze Pan
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi, 980-8577, Japan
| | - Hongyu Liu
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi, 980-8577, Japan
| | - Mutsuhiro Itoh
- Fuji Silysia Chemical Ltd., 2-1846 Kozoji-cho, Kasugai, Aichi, 487-0013, Japan
| | - Kenichi Izawa
- Fuji Silysia Chemical Ltd., 2-1846 Kozoji-cho, Kasugai, Aichi, 487-0013, Japan
| | - Makoto Kawai
- Fuji Silysia Chemical Ltd., 2-1846 Kozoji-cho, Kasugai, Aichi, 487-0013, Japan
| | - Rachel Crespo-Otero
- Department of Chemistry, University College London, 2020 Gordon St., London, WC1H 0AJ, UK
| | - Devis Di Tommaso
- Department of Chemistry, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| | - Hirotomo Nishihara
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi, 980-8577, Japan
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi, 980-8577, Japan
| |
Collapse
|
11
|
Jain P, Rajput RS, Kumar S, Sharma A, Jain A, Bora BJ, Sharma P, Kumar R, Shahid M, Rajhi AA, Alsubih M, Shah MA, Bhowmik A. Recent Advances in Graphene-Enabled Materials for Photovoltaic Applications: A Comprehensive Review. ACS OMEGA 2024; 9:12403-12425. [PMID: 38524428 PMCID: PMC10955600 DOI: 10.1021/acsomega.3c07994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 02/14/2024] [Accepted: 02/23/2024] [Indexed: 03/26/2024]
Abstract
Graphene's two-dimensional structural arrangement has sparked a revolutionary transformation in the domain of conductive transparent devices, presenting a unique opportunity in the renewable energy sector. This comprehensive Review critically evaluates the most recent advances in graphene production and its employment in solar cells, focusing on dye-sensitized, organic, and perovskite devices for bulk heterojunction (BHJ) designs. This comprehensive investigation discovered the following captivating results: graphene integration resulted in a notable 20.3% improvement in energy conversion rates in graphene-perovskite photovoltaic cells. In comparison, BHJ cells saw a laudable 10% boost. Notably, graphene's 2D internal architecture emerges as a protector for photovoltaic devices, guaranteeing long-term stability against various environmental challenges. It acts as a transportation facilitator and charge extractor to the electrodes in photovoltaic cells. Additionally, this Review investigates current research highlighting the role of graphene derivatives and their products in solar PV systems, illuminating the way forward. The study elaborates on the complexities, challenges, and promising prospects underlying the use of graphene, revealing its reflective implications for the future of solar photovoltaic applications.
Collapse
Affiliation(s)
- Pragyan Jain
- Deptartment
of Mechanical Engineering, University Institute
of Technology, Rajiv Gandhi Proudyogiki Vishwavidyalaya, Bhopal, Madhya Pradesh 462033, India
| | - R. S. Rajput
- Department
of Mechanical Engineering, Rajiv Gandhi
Proudyogiki Vishwavidyalaya, Bhopal, Madhya Pradesh 462033, India
| | - Sunil Kumar
- Department
of Mechanical Engineering, Rajiv Gandhi
Proudyogiki Vishwavidyalaya, Bhopal, Madhya Pradesh 462033, India
| | - Arti Sharma
- Department
of Physics and Electronics, Rani Durgavati
Vishwavidyalaya, Jabalpur, Madhya Pradesh 482001, India
| | - Akshay Jain
- Energy
Institute Bengaluru, A Centre of Rajiv Gandhi
Institute of Petroleum Technology, Bengaluru, Karnataka 562157, India
| | - Bhaskor Jyoti Bora
- Energy
Institute Bengaluru, A Centre of Rajiv Gandhi
Institute of Petroleum Technology, Bengaluru, Karnataka 562157, India
| | - Prabhakar Sharma
- Department
of Mechanical Engineering, Delhi Skill and
Entrepreneurship University, Delhi 110089, India
| | - Raman Kumar
- Department
of Mechanical and Production Engineering, Guru Nanak Dev Engineering College, Ludhiana, Punjab 141006, India
| | - Mohammad Shahid
- Department
of Electrical Engineering, Galgotias College
of Engineering and Technology, 1, Knowledge Park, Phase II, Greater Noida, Uttar Pradesh 201306, India
| | - Ali A. Rajhi
- Department
of Mechanical Engineering, College of Engineering, King Khalid University, Abha 61421, Saudi Arabia
| | - Majed Alsubih
- Civil
Engineering Department, College of Engineering, King Khalid University, Abha 61421, Saudi Arabia
| | - Mohd Asif Shah
- Department
of Economics, Kebri Dehar University, Kebri Dehar 250, Ethiopia
- Centre
of Research Impact and Outcome, Chitkara
University Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab 140401, India
- Division
of Research and Development, Lovely Professional
University, Phagwara, Punjab 144001, India
| | - Abhijit Bhowmik
- Mechanical
Engineering Department, Dream Institute
of Technology, Kolkata 700104, India
- Chitkara
Centre for Research and Development, Chitkara
University, Himachal Pradesh 174103, India
| |
Collapse
|
12
|
Yamamoto M, Goto S, Tang R, Yamazaki K. Toward three-dimensionally ordered nanoporous graphene materials: template synthesis, structure, and applications. Chem Sci 2024; 15:1953-1965. [PMID: 38332834 PMCID: PMC10848746 DOI: 10.1039/d3sc05022j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 12/23/2023] [Indexed: 02/10/2024] Open
Abstract
Precise template synthesis will realize three-dimensionally ordered nanoporous graphenes (NPGs) with a spatially controlled seamless graphene structure and fewer edges. These structural features result in superelastic nature, high electrochemical stability, high electrical conductivity, and fast diffusion of gases and ions at the same time. Such innovative 3D graphene materials are conducive to solving energy-related issues for a better future. To further improve the attractive properties of NPGs, we review the template synthesis and its mechanism by chemical vapor deposition of hydrocarbons, analysis of the nanoporous graphene structure, and applications in electrochemical and mechanical devices.
Collapse
Affiliation(s)
- Masanori Yamamoto
- Department of Chemical Science and Engineering, Tokyo Institute of Technology Ookayama 2-12-1 Meguro Tokyo 152-8550 Japan
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University 2-1-1 Katahira, Aoba Sendai 980-8577 Japan
| | - Shunsuke Goto
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University 2-1-1 Katahira, Aoba Sendai 980-8577 Japan
| | - Rui Tang
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University 2-1-1 Katahira, Aoba Sendai 980-8577 Japan
| | - Kaoru Yamazaki
- RIKEN Center for Advanced Photonics, RIKEN 2-1 Hirosawa Wako Saitama 351-0198 Japan
- Institute for Materials Research, Tohoku University 2-1-1 Katahira, Aoba Sendai 980-8577 Japan
| |
Collapse
|
13
|
Vishal B, Reguig A, Bahabri M, Costa PMFJ. Graphene nanowalls formation investigated by Electron Energy Loss Spectroscopy. Sci Rep 2024; 14:1658. [PMID: 38238363 PMCID: PMC10796779 DOI: 10.1038/s41598-023-51106-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 12/30/2023] [Indexed: 01/22/2024] Open
Abstract
The properties of layered materials are significantly dependent on their lattice orientations. Thus, the growth of graphene nanowalls (GNWs) on Cu through PECVD has been increasingly studied, yet the underlying mechanisms remain unclear. In this study, we examined the GNWs/Cu interface and investigated the evolution of their microstructure using advanced Scanning transmission electron microscopy and Electron Energy Loss Spectroscopy (STEM-EELS). GNWs interface and initial root layers of comprise graphitic carbon with horizontal basal graphene (BG) planes that conform well to the catalyst surface. In the vertical section, the walls show a mix of graphitic and turbostratic carbon, while the latter becomes more noticeable close to the top edges of the GMWs film. Importantly, we identified growth process began with catalysis at Cu interface forming BG, followed by defect induction and bending at 'coalescence points' of neighboring BG, which act as nucleation sites for vertical growth. We reported that although classical thermal CVD mechanism initially dominates, growth of graphene later deviates a few nanometers from the interface to form GNWs. Nascent walls are no longer subjected to the catalytic action of Cu, and their development is dominated by the stitching of charged carbon species originating in the plasma with basal plane edges.
Collapse
Affiliation(s)
- Badri Vishal
- Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Jeddah, Saudi Arabia.
| | - Abdeldjalil Reguig
- Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Jeddah, Saudi Arabia
| | - Mohammed Bahabri
- Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Jeddah, Saudi Arabia
| | - Pedro M F J Costa
- Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Jeddah, Saudi Arabia.
| |
Collapse
|
14
|
Vaezi M, Nejat Pishkenari H. Toward steering the motion of surface rolling molecular machines by straining graphene substrate. Sci Rep 2023; 13:20816. [PMID: 38012233 PMCID: PMC10682032 DOI: 10.1038/s41598-023-48214-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 11/23/2023] [Indexed: 11/29/2023] Open
Abstract
The surface rolling molecular machines are proposed to perform tasks and carrying molecular payloads on the substrates. As a result, controlling the surface motion of these molecular machines is of interest for the design of nano-transportation systems. In this study, we evaluate the motion of the nanocar on the graphene nanoribbons with strain gradient, through the molecular dynamics (MD) simulations, and theoretical relations. The nanocar indicates directed motion from the maximum strained part of the graphene to the unstrained end of the substrate. The strain gradient induced driving force and diffusion coefficients of nanocars are analyzed from the simulation and theoretical points of view. To obtain the optimum directed motion of nanocar, we consider the effects of temperature, strain average, and magnitude of strain gradient on the directionality of the motion. Moreover, the mechanism of the motion of nanocar is studied by evaluating the direction of the nanocar's chassis and the rotation of wheels around the axles. Ultimately, the programmable motion of nanocar is shown by adjusting the strain gradient of graphene substrate.
Collapse
Affiliation(s)
- Mehran Vaezi
- Center for Nanoscience and Nanotechnology, Institute for Convergence Science & Technology , Sharif University of Technology, Tehran, Iran
| | - Hossein Nejat Pishkenari
- Nano Robotics Laboratory, Mechanical Engineering Department, Sharif University of Technology, Tehran, Iran.
| |
Collapse
|
15
|
Li B, Zhang S, Xu L, Su Q, Du B. Emerging Robust Polymer Materials for High-Performance Two-Terminal Resistive Switching Memory. Polymers (Basel) 2023; 15:4374. [PMID: 38006098 PMCID: PMC10675020 DOI: 10.3390/polym15224374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/07/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
Facing the era of information explosion and the advent of artificial intelligence, there is a growing demand for information technologies with huge storage capacity and efficient computer processing. However, traditional silicon-based storage and computing technology will reach their limits and cannot meet the post-Moore information storage requirements of ultrasmall size, ultrahigh density, flexibility, biocompatibility, and recyclability. As a response to these concerns, polymer-based resistive memory materials have emerged as promising candidates for next-generation information storage and neuromorphic computing applications, with the advantages of easy molecular design, volatile and non-volatile storage, flexibility, and facile fabrication. Herein, we first summarize the memory device structures, memory effects, and memory mechanisms of polymers. Then, the recent advances in polymer resistive switching materials, including single-component polymers, polymer mixtures, 2D covalent polymers, and biomacromolecules for resistive memory devices, are highlighted. Finally, the challenges and future prospects of polymer memory materials and devices are discussed. Advances in polymer-based memristors will open new avenues in the design and integration of high-performance switching devices and facilitate their application in future information technology.
Collapse
Affiliation(s)
- Bixin Li
- School of Physics and Chemistry, Hunan First Normal University, Changsha 410205, China; (B.L.)
- Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), Xi’an 710072, China
- School of Physics, Central South University, 932 South Lushan Road, Changsha 410083, China
| | - Shiyang Zhang
- School of Physics and Chemistry, Hunan First Normal University, Changsha 410205, China; (B.L.)
| | - Lan Xu
- School of Physics and Chemistry, Hunan First Normal University, Changsha 410205, China; (B.L.)
| | - Qiong Su
- School of Physics and Chemistry, Hunan First Normal University, Changsha 410205, China; (B.L.)
| | - Bin Du
- School of Materials Science and Engineering, Xi’an Polytechnic University, Xi’an 710048, China
| |
Collapse
|
16
|
Lee S, Jang BC, Kim M, Lim SH, Ko E, Kim HH, Yoo H. Machine Learning Attacks-Resistant Security by Mixed-Assembled Layers-Inserted Graphene Physically Unclonable Function. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302604. [PMID: 37587782 PMCID: PMC10602573 DOI: 10.1002/advs.202302604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/09/2023] [Indexed: 08/18/2023]
Abstract
Mixed layers of octadecyltrichlorosilane (ODTS) and 1H,1H,2H,2H-perfluorooctyltriethoxysilane (FOTS) on an active layer of graphene are used to induce a disordered doping state and form a robust defense system against machine-learning attacks (ML attacks). The resulting security key is formed from a 12 × 12 array of currents produced at a low voltage of 100 mV. The uniformity and inter-Hamming distance (HD) of the security key are 50.0 ± 12.3% and 45.5 ± 16.7%, respectively, indicating higher security performance than other graphene-based security keys. Raman spectroscopy confirmed the uniqueness of the 10,000 points, with the degree of shift of the G peak distinguishing the number of carriers. The resulting defense system has a 10.33% ML attack accuracy, while a FOTS-inserted graphene device is easily predictable with a 44.81% ML attack accuracy.
Collapse
Affiliation(s)
- Subin Lee
- Department of Electronic Engineering Gachon University1342 Seongnam‐daeroSeongnam13120Republic of Korea
| | - Byung Chul Jang
- School of Electronics EngineeringKyungpook National University80 Daehakro, BukguDaegu41566Republic of Korea
- School of Electronics and Electrical EngineeringKyungpook National University80 Daehakro, BukguDaegu41566Republic of Korea
| | - Minseo Kim
- Department of Electronic Engineering Gachon University1342 Seongnam‐daeroSeongnam13120Republic of Korea
| | - Si Heon Lim
- Department of Energy Engineering Convergence & School of Materials Science and EngineeringKumoh National Institute of Technology61 DaehakroGumi‐siGumi39177Republic of Korea
| | - Eunbee Ko
- Department of Energy Engineering Convergence & School of Materials Science and EngineeringKumoh National Institute of Technology61 DaehakroGumi‐siGumi39177Republic of Korea
| | - Hyun Ho Kim
- Department of Energy Engineering Convergence & School of Materials Science and EngineeringKumoh National Institute of Technology61 DaehakroGumi‐siGumi39177Republic of Korea
| | - Hocheon Yoo
- Department of Electronic Engineering Gachon University1342 Seongnam‐daeroSeongnam13120Republic of Korea
| |
Collapse
|
17
|
Yamamoto S, Motoyama M, Suzuki M, Sakakibara R, Ishigaki N, Kumatani A, Norimatsu W, Iriyama Y. Electrochemical Li + Insertion/Extraction Reactions at LiPON/Epitaxial Graphene Interfaces. ACS NANO 2023; 17:16448-16460. [PMID: 37603298 DOI: 10.1021/acsnano.3c00158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
Redox reactions of the Li+ insertion/extraction from one to two interlayers of graphene (Gr) on area-defined single-crystalline SiC substrates are investigated using lithium phosphorus oxynitride glass (LiPON) as the solid-state electrolyte. Unlike an organic liquid electrolyte, this glassy electrolyte does not induce a reduction current and excludes the desolvation reaction of Li+. Gr electrodes with less than two Gr layers show a single reduction peak and one or two oxidation peaks below +0.21 V (vs Li+/Li), differing distinctly from those of graphite and multilayer Gr, which display multiple peaks (multiple stage transitions). However, this finding aligns with the conventional understanding that graphite stage structure transitions proceed with stepwise increases or decreases in the number of Gr layers between adjacent Li-inserted interlayers. Cyclic voltammetry measurements indicate the presence of surface capacity due to Li+ adsorption/desorption at the LiPON/Gr interface. Moreover, Li+ insertion and extraction induce different charge transfer resistances at the level of a single interlayer. These sensitive measurements are achieved using high-quality epitaxial Gr and LiPON electrolyte, which prevent the formation of a solid electrolyte interphase and the desolvation reaction of Li+. Similar measurements using bilayer Gr produced by chemical vapor deposition coupled with a Gr transfer method and an ethylene carbonate/dimethyl carbonate liquid electrolyte are not reliable. Thus, the proposed method is effective for electrochemical measurement of Gr electrodes with a controlled number of layers.
Collapse
Affiliation(s)
- Satoshi Yamamoto
- Department of Materials Design Innovation Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603, Japan
| | - Munekazu Motoyama
- Department of Materials Design Innovation Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603, Japan
- Kyushu University Platform of Inter-/Transdisciplinary Energy Research, Kyushu University, Kasuga, Fukuoka 816-8580 Japan
| | - Masahiko Suzuki
- National Institute for Materials Science, 1-2-1, Sengen, Tsukuba, Ibaraki 305-0047 Japan
| | - Ryotaro Sakakibara
- Department of Chemical Systems Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603, Japan
| | - Norikazu Ishigaki
- Department of Materials Design Innovation Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603, Japan
| | - Akichika Kumatani
- Institute of Engineering Innovation, School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
- Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), Saitama 332-0012, Japan
- WPI-Advanced Institute for Materials Research (AIMR), Tohoku University, Sendai, Miyagi 980-8577, Japan
- Graduate School of Environmental Studies, Tohoku University, Sendai, Miyagi 980-8579, Japan
- Center for Science and Innovation in Spintronics, Tohoku University, Sendai, Miyagi 980-8577, Japan
| | - Wataru Norimatsu
- Department of Chemical Systems Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603, Japan
- Faculty of Science and Engineering, Waseda University, Tokyo 169-8555, Japan
| | - Yasutoshi Iriyama
- Department of Materials Design Innovation Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603, Japan
| |
Collapse
|
18
|
Meškinis Š, Gudaitis R, Vasiliauskas A, Guobienė A, Jankauskas Š, Stankevič V, Keršulis S, Stirkė A, Andriukonis E, Melo W, Vertelis V, Žurauskienė N. Biosensor Based on Graphene Directly Grown by MW-PECVD for Detection of COVID-19 Spike (S) Protein and Its Entry Receptor ACE2. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2373. [PMID: 37630958 PMCID: PMC10458353 DOI: 10.3390/nano13162373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/09/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023]
Abstract
Biosensors based on graphene field-effect transistors (G-FET) for detecting COVID-19 spike S protein and its receptor ACE2 were reported. The graphene, directly synthesized on SiO2/Si substrate by microwave plasma-enhanced chemical vapor deposition (MW-PECVD), was used for FET biosensor fabrication. The commercial graphene, CVD-grown on a copper substrate and subsequently transferred onto a glass substrate, was applied for comparison purposes. The graphene structure and surface morphology were studied by Raman scattering spectroscopy and atomic force microscope. Graphene surfaces were functionalized by an aromatic molecule PBASE (1-pyrenebutanoic acid succinimidyl ester), and subsequent immobilization of the receptor angiotensin-converting enzyme 2 (ACE2) was performed. A microfluidic system was developed, and transfer curves of liquid-gated FET were measured after each graphene surface modification procedure to investigate ACE2 immobilization by varying its concentration and subsequent spike S protein detection. The directly synthesized graphene FET sensitivity to the receptor ACE2, evaluated in terms of the Dirac voltage shift, exceeded the sensitivity of the transferred commercial graphene-based FET. The concentration of the spike S protein was detected in the range of 10 ag/mL up to 10 μg/mL by using a developed microfluidic system and measuring the transfer characteristics of the liquid-gated G-FETs. It was found that the shift of the Dirac voltage depends on the spike S concentration and was 27 mV with saturation at 10 pg/mL for directly synthesized G-FET biosensor, while for transferred G-FET, the maximal shift of 70 mV was obtained at 10 μg/mL with a tendency of saturation at 10 ng/mL. The detection limit as low as 10 ag/mL was achieved for both G-FETs. The sensitivity of the biosensors at spike S concentration of 10 pg/mL measured as relative current change at a constant gate voltage corresponding to the highest transconductance of the G-FETs was found at 5.6% and 8.8% for directly synthesized and transferred graphene biosensors, respectively. Thus, MW-PECVD-synthesized graphene-based biosensor demonstrating high sensitivity and low detection limit has excellent potential for applications in COVID-19 diagnostics.
Collapse
Affiliation(s)
- Šarunas Meškinis
- Institute of Materials Science, Kaunas University of Technology, K. Baršausko St. 59, LT-51423 Kaunas, Lithuania; (R.G.); (A.V.); (A.G.); (Š.J.)
| | - Rimantas Gudaitis
- Institute of Materials Science, Kaunas University of Technology, K. Baršausko St. 59, LT-51423 Kaunas, Lithuania; (R.G.); (A.V.); (A.G.); (Š.J.)
| | - Andrius Vasiliauskas
- Institute of Materials Science, Kaunas University of Technology, K. Baršausko St. 59, LT-51423 Kaunas, Lithuania; (R.G.); (A.V.); (A.G.); (Š.J.)
| | - Asta Guobienė
- Institute of Materials Science, Kaunas University of Technology, K. Baršausko St. 59, LT-51423 Kaunas, Lithuania; (R.G.); (A.V.); (A.G.); (Š.J.)
| | - Šarūnas Jankauskas
- Institute of Materials Science, Kaunas University of Technology, K. Baršausko St. 59, LT-51423 Kaunas, Lithuania; (R.G.); (A.V.); (A.G.); (Š.J.)
| | - Voitech Stankevič
- Department of Functional Materials and Electronics, Center for Physical Sciences and Technology, Saulėtekio Ave. 3, LT-10257 Vilnius, Lithuania; (V.S.); (S.K.); (A.S.); (E.A.); (W.M.); (V.V.); (N.Ž.)
| | - Skirmantas Keršulis
- Department of Functional Materials and Electronics, Center for Physical Sciences and Technology, Saulėtekio Ave. 3, LT-10257 Vilnius, Lithuania; (V.S.); (S.K.); (A.S.); (E.A.); (W.M.); (V.V.); (N.Ž.)
| | - Arūnas Stirkė
- Department of Functional Materials and Electronics, Center for Physical Sciences and Technology, Saulėtekio Ave. 3, LT-10257 Vilnius, Lithuania; (V.S.); (S.K.); (A.S.); (E.A.); (W.M.); (V.V.); (N.Ž.)
| | - Eivydas Andriukonis
- Department of Functional Materials and Electronics, Center for Physical Sciences and Technology, Saulėtekio Ave. 3, LT-10257 Vilnius, Lithuania; (V.S.); (S.K.); (A.S.); (E.A.); (W.M.); (V.V.); (N.Ž.)
| | - Wanessa Melo
- Department of Functional Materials and Electronics, Center for Physical Sciences and Technology, Saulėtekio Ave. 3, LT-10257 Vilnius, Lithuania; (V.S.); (S.K.); (A.S.); (E.A.); (W.M.); (V.V.); (N.Ž.)
| | - Vilius Vertelis
- Department of Functional Materials and Electronics, Center for Physical Sciences and Technology, Saulėtekio Ave. 3, LT-10257 Vilnius, Lithuania; (V.S.); (S.K.); (A.S.); (E.A.); (W.M.); (V.V.); (N.Ž.)
| | - Nerija Žurauskienė
- Department of Functional Materials and Electronics, Center for Physical Sciences and Technology, Saulėtekio Ave. 3, LT-10257 Vilnius, Lithuania; (V.S.); (S.K.); (A.S.); (E.A.); (W.M.); (V.V.); (N.Ž.)
| |
Collapse
|
19
|
Esmaeilpour M, Bügel P, Fink K, Studt F, Wenzel W, Kozlowska M. Multiscale Model of CVD Growth of Graphene on Cu(111) Surface. Int J Mol Sci 2023; 24:ijms24108563. [PMID: 37239915 DOI: 10.3390/ijms24108563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/04/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
Due to its outstanding properties, graphene has emerged as one of the most promising 2D materials in a large variety of research fields. Among the available fabrication protocols, chemical vapor deposition (CVD) enables the production of high quality single-layered large area graphene. To better understand the kinetics of CVD graphene growth, multiscale modeling approaches are sought after. Although a variety of models have been developed to study the growth mechanism, prior studies are either limited to very small systems, are forced to simplify the model to eliminate the fast process, or they simplify reactions. While it is possible to rationalize these approximations, it is important to note that they have non-trivial consequences on the overall growth of graphene. Therefore, a comprehensive understanding of the kinetics of graphene growth in CVD remains a challenge. Here, we introduce a kinetic Monte Carlo protocol that permits, for the first time, the representation of relevant reactions on the atomic scale, without additional approximations, while still reaching very long time and length scales of the simulation of graphene growth. The quantum-mechanics-based multiscale model, which links kinetic Monte Carlo growth processes with the rates of occurring chemical reactions, calculated from first principles makes it possible to investigate the contributions of the most important species in graphene growth. It permits the proper investigation of the role of carbon and its dimer in the growth process, thus indicating the carbon dimer to be the dominant species. The consideration of hydrogenation and dehydrogenation reactions enables us to correlate the quality of the material grown within the CVD control parameters and to demonstrate an important role of these reactions in the quality of the grown graphene in terms of its surface roughness, hydrogenation sites, and vacancy defects. The model developed is capable of providing additional insights to control the graphene growth mechanism on Cu(111), which may guide further experimental and theoretical developments.
Collapse
Affiliation(s)
- Meysam Esmaeilpour
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Patrick Bügel
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Karin Fink
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Felix Studt
- Institute of Catalysis Research and Technology (IKFT), Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
- Institute for Chemical Technology and Polymer Chemistry (ITCP), Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Wolfgang Wenzel
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Mariana Kozlowska
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
20
|
Elkodous MA, Olojede SO, Sahoo S, Kumar R. Recent advances in modification of novel carbon-based composites: Synthesis, properties, and biotechnological/ biomedical applications. Chem Biol Interact 2023; 379:110517. [PMID: 37149208 DOI: 10.1016/j.cbi.2023.110517] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 03/12/2023] [Accepted: 04/26/2023] [Indexed: 05/08/2023]
Abstract
Nowadays, carbon-based materials owing to great interest in biomedical science/biotechnology and applied for effective diagnosis and treatment of disease. To enhance the effectiveness of carbon nanotubes (CNTs)/graphene-based materials for bio-medical science/technology applications, different kinds of surface modification/functionalization were developed for the attachment of metal oxides nanostructures, biomolecules and polymers. The attachment of pharmaceutical agents with CNTs/graphene, make it a favorable candidate in research field of bio-medical science/technology applications. Surface modified/functionalized CNTs and graphene derivatives materials integrated with pharmaceutical agents has been developed for the purpose of cancer therapy, antibacterial action, pathogens bio detection, drug and gene delivery. Surface modification or functionalization of CNT/graphene materials provides good platform for pharmaceutical agents attachment with improved surface Raman scattering, fluorescence and its quenching capability. Graphene-based biosensing and bioimaging technologies are widely applied to identify numerous trace level analytes. These fluorescent and electrochemical sensors are utilized primarily for detecting organic, inorganic, and biomolecules. In this article, we highlights and summarized overview of the current research progress concerned on the CNTs/graphene-based materials as a new generation materials for detection and treatment of diseases.
Collapse
Affiliation(s)
- M Abd Elkodous
- Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, Aichi, 441-8580, Japan; Center for Nanotechnology (CNT), School of Engineering and Applied Sciences, Nile University, Sheikh Zayed, Giza, 16453, Egypt
| | - Samuel Oluwaseun Olojede
- Nanotechnology Platforms, Discipline of Clinical Anatomy, School of Laboratory Medicine & Medical Sciences, Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Sumanta Sahoo
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan, Gyeongbuk, 38541, Republic of Korea.
| | - Rajesh Kumar
- Department of Mechanical Engineering, Indian Institute of Technology, Kanpur, 208016, Uttar Pradesh, India.
| |
Collapse
|
21
|
Kim YJ, Kim YH, Ahn S. Selective Blocking of Graphene Defects Using Polyvinyl Alcohol through Hydrophilicity Difference. MATERIALS (BASEL, SWITZERLAND) 2023; 16:2001. [PMID: 36903122 PMCID: PMC10004167 DOI: 10.3390/ma16052001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 02/20/2023] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
Defects on graphene over a micrometer in size were selectively blocked using polyvinyl alcohol through the formation of hydrogen bonding with defects. Because this hydrophilic PVA does not prefer to be located on the hydrophobic graphene surface, PVA selectively filled hydrophilic defects on graphene after the process of deposition through the solution. The mechanism of the selective deposition via hydrophilic-hydrophilic interactions was also supported by scanning tunneling microscopy and atomic force microscopy analysis of selective deposition of hydrophobic alkanes on hydrophobic graphene surface and observation of PVA initial growth at defect edges.
Collapse
Affiliation(s)
- Yoon-jeong Kim
- Institute of Advanced Composite Materials, Korea Institute of Science and Technology (KIST), Jeonbuk 55324, Republic of Korea
| | - Yang Hui Kim
- Institute of Advanced Composite Materials, Korea Institute of Science and Technology (KIST), Jeonbuk 55324, Republic of Korea
- School of Semiconductor and Chemical Engineering, Jeonbuk National University, Jeonbuk 54896, Republic of Korea
| | - Seokhoon Ahn
- Institute of Advanced Composite Materials, Korea Institute of Science and Technology (KIST), Jeonbuk 55324, Republic of Korea
| |
Collapse
|
22
|
Amato F, Motta A, Giaccari L, Di Pasquale R, Scaramuzzo FA, Zanoni R, Marrani AG. One-pot carboxyl enrichment fosters water-dispersibility of reduced graphene oxide: a combined experimental and theoretical assessment. NANOSCALE ADVANCES 2023; 5:893-906. [PMID: 36756527 PMCID: PMC9890975 DOI: 10.1039/d2na00771a] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 01/09/2023] [Indexed: 06/18/2023]
Abstract
Graphene, one of the allotropic forms of carbon, has attracted enormous interest in the last few years due to its unique properties. Reduced graphene oxide (RGO) is known as the nanomaterial most similar to graphene in terms of electronic, chemical, mechanical, and optical properties. It is prepared from graphene oxide (GO) in the presence of different types of reducing agents. Nevertheless, the application of RGO is still limited, owing to its tendency to irreversibly aggregate in an aqueous medium. Herein, we disclosed the preparation of water-dispersible RGO from GO previously enriched with additional carboxyl functional groups through a one-pot reaction, followed by chemical reduction. This novel and unprecedentedly reported reactivity of GO toward the acylating agent succinic anhydride (SA) was experimentally investigated through XPS, Raman, FT-IR, and UV-Vis, and corroborated by DFT calculations, which have shown a peculiar involvement in the functionalization reaction of both epoxide and hydroxyl functional groups. This proposed synthetic protocol avoids use of sodium cyanide, previously reported for carboxylation of graphene, and focuses on the sustainable and scalable preparation of a water-dispersible RGO, paving the way for its application in many fields where the colloidal stability in aqueous medium is required.
Collapse
Affiliation(s)
- Francesco Amato
- Dipartimento di Chimica, Università di Roma La Sapienza p.le A. Moro 5 I-00185 Rome Italy +39 0649913568 +39 0649913316
| | - Alessandro Motta
- Dipartimento di Chimica, Università di Roma La Sapienza p.le A. Moro 5 I-00185 Rome Italy +39 0649913568 +39 0649913316
- Consorzio INSTM, UdR Roma "La Sapienza" p.le A. Moro 5 I-00185 Rome Italy
| | - Leonardo Giaccari
- Dipartimento di Chimica, Università di Roma La Sapienza p.le A. Moro 5 I-00185 Rome Italy +39 0649913568 +39 0649913316
| | - Roberto Di Pasquale
- Dipartimento di Chimica, Università di Roma La Sapienza p.le A. Moro 5 I-00185 Rome Italy +39 0649913568 +39 0649913316
| | - Francesca Anna Scaramuzzo
- Dipartimento di Scienze di Base e Applicate per l'Ingegneria (S.B.A.I.), Università di Roma La Sapienza Via del Castro Laurenziano 7 I-00161 Rome Italy
| | - Robertino Zanoni
- Dipartimento di Chimica, Università di Roma La Sapienza p.le A. Moro 5 I-00185 Rome Italy +39 0649913568 +39 0649913316
| | - Andrea Giacomo Marrani
- Dipartimento di Chimica, Università di Roma La Sapienza p.le A. Moro 5 I-00185 Rome Italy +39 0649913568 +39 0649913316
| |
Collapse
|
23
|
Lu M, Ji H, Zhao Y, Chen Y, Tao J, Ou Y, Wang Y, Huang Y, Wang J, Hao G. Machine Learning-Assisted Synthesis of Two-Dimensional Materials. ACS APPLIED MATERIALS & INTERFACES 2023; 15:1871-1878. [PMID: 36574361 DOI: 10.1021/acsami.2c18167] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Two-dimensional (2D) materials have intriguing physical and chemical properties, which exhibit promising applications in the fields of electronics, optoelectronics, as well as energy storage. However, the controllable synthesis of 2D materials is highly desirable but remains challenging. Machine learning (ML) facilitates the development of insights and discoveries from a large amount of data in a short time for the materials synthesis, which can significantly reduce the computational costs and shorten the development cycles. Based on this, taking the 2D material MoS2 as an example, the parameters of successfully synthesized materials by chemical vapor deposition (CVD) were explored through four ML algorithms: XGBoost, Support Vector Machine (SVM), Naïve Bayes (NB), and Multilayer Perceptron (MLP). Recall, specificity, accuracy, and other metrics were used to assess the performance of these four models. By comparison, XGBoost was the best performing model among all the models, with an average prediction accuracy of over 88% and a high area under the receiver operating characteristic (AUROC) reaching 0.91. And these findings showed that the reaction temperature (T) had a crucial influence on the growth of MoS2. Furthermore, the importance of the features in the growth mechanism of MoS2 was optimized, such as the reaction temperature (T), Ar gas flow rate (Rf), reaction time (t), and so on. The results demonstrated that ML assisted materials preparation can significantly minimize the time spent on exploration and trial-and-error, which provided perspectives in the preparation of 2D materials.
Collapse
Affiliation(s)
- Mingying Lu
- School of Physics and Optoelectronics, Xiangtan University, Xiangtan, Hunan 411105, P. R. China
| | - Haining Ji
- School of Physics and Optoelectronics, Xiangtan University, Xiangtan, Hunan 411105, P. R. China
| | - Yong Zhao
- School of Physics and Optoelectronics, Xiangtan University, Xiangtan, Hunan 411105, P. R. China
| | - Yongxing Chen
- School of Physics and Optoelectronics, Xiangtan University, Xiangtan, Hunan 411105, P. R. China
| | - Jundong Tao
- School of Physics and Optoelectronics, Xiangtan University, Xiangtan, Hunan 411105, P. R. China
| | - Yangyong Ou
- School of Physics and Optoelectronics, Xiangtan University, Xiangtan, Hunan 411105, P. R. China
| | - Yi Wang
- School of Physics and Optoelectronics, Xiangtan University, Xiangtan, Hunan 411105, P. R. China
| | - Yan Huang
- School of Physics and Optoelectronics, Xiangtan University, Xiangtan, Hunan 411105, P. R. China
| | - Junlong Wang
- School of Physics and Optoelectronics, Xiangtan University, Xiangtan, Hunan 411105, P. R. China
| | - Guolin Hao
- School of Physics and Optoelectronics, Xiangtan University, Xiangtan, Hunan 411105, P. R. China
| |
Collapse
|
24
|
Bansal K, Singh J, Dhaliwal AS. Green synthesis and characterization of superparamagnetic nanocomposite based on reduced graphene oxide/Fe 3O 4 prepared using leaf extract of Azadirachta indica. INORG NANO-MET CHEM 2023. [DOI: 10.1080/24701556.2023.2165688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Karan Bansal
- Department of Physics, Sant Longowal Institute of Engineering and Technology, Longowal (Sangrur), Punjab, India
| | - Jagdeep Singh
- Department of Physics, Sant Longowal Institute of Engineering and Technology, Longowal (Sangrur), Punjab, India
| | - A. S. Dhaliwal
- Department of Physics, Sant Longowal Institute of Engineering and Technology, Longowal (Sangrur), Punjab, India
| |
Collapse
|
25
|
Burton OJ, Winter Z, Watanabe K, Taniguchi T, Beschoten B, Stampfer C, Hofmann S. Putting High-Index Cu on the Map for High-Yield, Dry-Transferred CVD Graphene. ACS NANO 2023; 17:1229-1238. [PMID: 36594782 PMCID: PMC9878973 DOI: 10.1021/acsnano.2c09253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 12/15/2022] [Indexed: 06/17/2023]
Abstract
Reliable, clean transfer and interfacing of 2D material layers are technologically as important as their growth. Bringing both together remains a challenge due to the vast, interconnected parameter space. We introduce a fast-screening descriptor approach to demonstrate holistic data-driven optimization across the entirety of process steps for the graphene-Cu model system. We map the crystallographic dependences of graphene chemical vapor deposition, interfacial Cu oxidation to decouple graphene, and its dry delamination across inverse pole figures. Their overlay enables us to identify hitherto unexplored (168) higher index Cu orientations as overall optimal orientations. We show the effective preparation of such Cu orientations via epitaxial close-space sublimation and achieve mechanical transfer with a very high yield (>95%) and quality of graphene domains, with room-temperature electron mobilities in the range of 40000 cm2/(V s). Our approach is readily adaptable to other descriptors and 2D material systems, and we discuss the opportunities of such a holistic optimization.
Collapse
Affiliation(s)
- Oliver J. Burton
- Department
of Engineering, University of Cambridge, CambridgeCB3 0FA, United Kingdom
| | - Zachary Winter
- 2nd
Institute of Physics A and JARA-FIT, RWTH
Aachen University, 52074Aachen, Germany
| | - Kenji Watanabe
- Research
Center for Functional Materials, National
Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki305-0044, Japan
| | - Takashi Taniguchi
- International
Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki305-0044, Japan
| | - Bernd Beschoten
- 2nd
Institute of Physics A and JARA-FIT, RWTH
Aachen University, 52074Aachen, Germany
| | - Christoph Stampfer
- 2nd
Institute of Physics A and JARA-FIT, RWTH
Aachen University, 52074Aachen, Germany
- Peter
Grünberg Institute (PGI-9), Forschungszentrum
Jülich, 52425Jülich, Germany
| | - Stephan Hofmann
- Department
of Engineering, University of Cambridge, CambridgeCB3 0FA, United Kingdom
| |
Collapse
|
26
|
Bahri M, Gebre SH, Elaguech MA, Dajan FT, Sendeku MG, Tlili C, Wang D. Recent advances in chemical vapour deposition techniques for graphene-based nanoarchitectures: From synthesis to contemporary applications. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
27
|
Alatzoglou C, Patila M, Giannakopoulou A, Spyrou K, Yan F, Li W, Chalmpes N, Polydera AC, Rudolf P, Gournis D, Stamatis H. Development of a Multi-Enzymatic Biocatalytic System through Immobilization on High Quality Few-Layer bio-Graphene. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 13:nano13010127. [PMID: 36616038 PMCID: PMC9824680 DOI: 10.3390/nano13010127] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/23/2022] [Accepted: 12/25/2022] [Indexed: 06/02/2023]
Abstract
In this work, we report the green production of few-layer bio-Graphene (bG) through liquid exfoliation of graphite in the presence of bovine serum albumin. Microscopic characterization evaluated the quality of the produced nanomaterial, showing the presence of 3-4-layer graphene. Moreover, spectroscopic techniques also confirmed the quality of the resulted bG, as well as the presence of bovine serum albumin on the graphene sheets. Next, for the first time, bG was used as support for the simultaneous covalent co-immobilization of three enzymes, namely β-glucosidase, glucose oxidase, and horseradish peroxidase. The three enzymes were efficiently co-immobilized on bG, demonstrating high immobilization yields and activity recoveries (up to 98.5 and 90%, respectively). Co-immobilization on bG led to an increase of apparent KM values and a decrease of apparent Vmax values, while the stability of the nanobiocatalysts prevailed compared to the free forms of the enzymes. Co-immobilized enzymes exhibited high reusability, preserving a significant part of their activity (up to 72%) after four successive catalytic cycles at 30 °C. Finally, the tri-enzymatic nanobiocatalytic system was applied in three-step cascade reactions, involving, as the first step, the hydrolysis of p-Nitrophenyl-β-D-Glucopyranoside and cellobiose.
Collapse
Affiliation(s)
- Christina Alatzoglou
- Laboratory of Biotechnology, Department of Biological Applications and Technology, University of Ioannina, 45110 Ioannina, Greece
| | - Michaela Patila
- Laboratory of Biotechnology, Department of Biological Applications and Technology, University of Ioannina, 45110 Ioannina, Greece
| | - Archontoula Giannakopoulou
- Laboratory of Biotechnology, Department of Biological Applications and Technology, University of Ioannina, 45110 Ioannina, Greece
| | - Konstantinos Spyrou
- Department of Materials Science & Engineering, University of Ioannina, 45110 Ioannina, Greece
| | - Feng Yan
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Wenjian Li
- Engineering and Technology Institute Groningen, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Nikolaos Chalmpes
- Department of Materials Science & Engineering, University of Ioannina, 45110 Ioannina, Greece
| | - Angeliki C. Polydera
- Laboratory of Biotechnology, Department of Biological Applications and Technology, University of Ioannina, 45110 Ioannina, Greece
| | - Petra Rudolf
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Dimitrios Gournis
- Department of Materials Science & Engineering, University of Ioannina, 45110 Ioannina, Greece
| | - Haralambos Stamatis
- Laboratory of Biotechnology, Department of Biological Applications and Technology, University of Ioannina, 45110 Ioannina, Greece
| |
Collapse
|
28
|
Kaur H, Garg R, Singh S, Jana A, Bathula C, Kim HS, Kumbar SG, Mittal M. Progress and challenges of graphene and its congeners for biomedical applications. J Mol Liq 2022; 368:120703. [PMID: 38130892 PMCID: PMC10735213 DOI: 10.1016/j.molliq.2022.120703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Nanomaterials by virtue of their small size and enhanced surface area, present unique physicochemical properties that enjoy widespread applications in bioengineering, biomedicine, biotechnology, disease diagnosis, and therapy. In recent years, graphene and its derivatives have attracted a great deal of attention in various applications, including photovoltaics, electronics, energy storage, catalysis, sensing, and biotechnology owing to their exceptional structural, optical, thermal, mechanical, and electrical. Graphene is a two-dimensional sheet of sp2 hybridized carbon atoms of atomic thickness, which are arranged in a honeycomb crystal lattice structure. Graphene derivatives are graphene oxide (GO) and reduced graphene oxide (rGO), which are highly oxidized and less oxidized forms of graphene, respectively. Another form of graphene is graphene quantum dots (GQDs), having a size of less than 20 nm. Contemporary graphene research focuses on using graphene nanomaterials for biomedical purposes as they have a large surface area for loading biomolecules and medicine and offer the potential for the conjugation of fluorescent dyes or quantum dots for bioimaging. The present review begins with the synthesis, purification, structure, and properties of graphene nanomaterials. Then, we focussed on the biomedical application of graphene nanomaterials with special emphasis on drug delivery, bioimaging, biosensing, tissue engineering, gene delivery, and chemotherapy. The implications of graphene nanomaterials on human health and the environment have also been summarized due to their exposure to their biomedical applications. This review is anticipated to offer useful existing understanding and inspire new concepts to advance secure and effective graphene nanomaterials-based biomedical devices.
Collapse
Affiliation(s)
- Harshdeep Kaur
- Department of Chemistry, University institute of science, Chandigarh University, Gharuan, Punjab 140413, India
| | - Rahul Garg
- Department of Chemical Engineering, Indian Institute of Technology Ropar, Nangal Rd, Hussainpur, Rupnagar, Punjab 140001, India
| | - Sajan Singh
- AMBER/School of Chemistry, Trinity College of Dublin, Ireland
| | - Atanu Jana
- Division of Physics and Semiconductor Science, Dongguk University-Seoul, Seoul 04620, South Korea
| | - Chinna Bathula
- Division of Electronics and Electrical Engineering, Dongguk University-Seoul, Seoul 04620, South Korea
| | - Hyun-Seok Kim
- Division of Electronics and Electrical Engineering, Dongguk University-Seoul, Seoul 04620, South Korea
| | - Sangamesh G. Kumbar
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, USA
| | - Mona Mittal
- Department of Chemistry, University institute of science, Chandigarh University, Gharuan, Punjab 140413, India
- Department of Chemistry, Galgotia college of engineering, Knowledge Park, I, Greater Noida, Uttar Pradesh 201310, India
| |
Collapse
|
29
|
Wu S, Li H, Futaba DN, Chen G, Chen C, Zhou K, Zhang Q, Li M, Ye Z, Xu M. Structural Design and Fabrication of Multifunctional Nanocarbon Materials for Extreme Environmental Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2201046. [PMID: 35560664 DOI: 10.1002/adma.202201046] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/27/2022] [Indexed: 06/15/2023]
Abstract
Extreme environments represent numerous harsh environmental conditions, such as temperature, pressure, corrosion, and radiation. The tolerance of applications in extreme environments exemplifies significant challenges to both materials and their structures. Given the superior mechanical strength, electrical conductivity, thermal stability, and chemical stability of nanocarbon materials, such as carbon nanotubes (CNTs) and graphene, they are widely investigated as base materials for extreme environmental applications and have shown numerous breakthroughs in the fields of wide-temperature structural-material construction, low-temperature energy storage, underwater sensing, and electronics operated at high temperatures. Here, the critical aspects of structural design and fabrication of nanocarbon materials for extreme environments are reviewed, including a description of the underlying mechanism supporting the performance of nanocarbon materials against extreme environments, the principles of structural design of nanocarbon materials for the optimization of extreme environmental performances, and the fabrication processes developed for the realization of specific extreme environmental applications. Finally, perspectives on how CNTs and graphene can further contribute to the development of extreme environmental applications are presented.
Collapse
Affiliation(s)
- Sijia Wu
- School of Materials Science and Engineering, State Key Laboratory of Material Processing and Die and Mould Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Huajian Li
- School of Materials Science and Engineering, State Key Laboratory of Material Processing and Die and Mould Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Don N Futaba
- Nano Carbon Device Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, 305-8565, Japan
| | - Guohai Chen
- Nano Carbon Device Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, 305-8565, Japan
| | - Chen Chen
- School of Materials Science and Engineering, State Key Laboratory of Material Processing and Die and Mould Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Kechen Zhou
- School of Materials Science and Engineering, State Key Laboratory of Material Processing and Die and Mould Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Qifan Zhang
- School of Materials Science and Engineering, State Key Laboratory of Material Processing and Die and Mould Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Miao Li
- School of Materials Science and Engineering, State Key Laboratory of Material Processing and Die and Mould Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Zonglin Ye
- School of Materials Science and Engineering, State Key Laboratory of Material Processing and Die and Mould Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Ming Xu
- School of Materials Science and Engineering, State Key Laboratory of Material Processing and Die and Mould Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| |
Collapse
|
30
|
Navarro F, Segura R, Godoy F, Martí AA, Mascayano C, Aguirre MJ, Flores E, Pizarro J. Fast and Simple Preparation of a Sensor Based on Electrochemically Reduced Graphene Oxide (rGO) for the Determination of Zopiclone in Pharmaceutical Dosage by Square Wave Adsorptive Stripping Voltammetry (SWAdSV). ELECTROANAL 2022. [DOI: 10.1002/elan.202200357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Freddy Navarro
- Departamento de Química de los Materiales Facultad de Química y Biología Universidad de Santiago de Chile (USACH) Santiago Chile
| | - Rodrigo Segura
- Departamento de Química de los Materiales Facultad de Química y Biología Universidad de Santiago de Chile (USACH) Santiago Chile
| | - Fernando Godoy
- Departamento de Química de los Materiales Facultad de Química y Biología Universidad de Santiago de Chile (USACH) Santiago Chile
| | - Angel A. Martí
- Department of Chemistry Materials Science and Nanoengineering Bioengineering Smalley-Curl Institute for Nanoscale Science and Technology Rice University Houston TX 77005 United States
| | - Carolina Mascayano
- Departamento Ciencias del Ambiente Facultad de Química y Biología Universidad de Santiago de Chile (USACH) Santiago Chile
| | - Maria J. Aguirre
- Departamento de Química de los Materiales Facultad de Química y Biología Universidad de Santiago de Chile (USACH) Santiago Chile
- Millenium Institute on Green Ammonia as Energy Vector MIGA, ANID/Millenium Science Initiative Program/ICN2021_023
| | - Erick Flores
- Departamento de Química de los Materiales Facultad de Química y Biología Universidad de Santiago de Chile (USACH) Santiago Chile
| | - Jaime Pizarro
- Departamento de Química de los Materiales Facultad de Química y Biología Universidad de Santiago de Chile (USACH) Santiago Chile
| |
Collapse
|
31
|
Lee Y, Kim SM, Kim K, Kim SY, Lee HI, Kwon H, Lee HW, Kim C, Some S, Hwang HJ, Lee BH. Dual-channel P-type ternary DNTT–graphene barristor. Sci Rep 2022; 12:19423. [DOI: 10.1038/s41598-022-23669-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 11/03/2022] [Indexed: 11/13/2022] Open
Abstract
AbstractP-type ternary switch devices are crucial elements for the practical implementation of complementary ternary circuits. This report demonstrates a p-type ternary device showing three distinct electrical output states with controllable threshold voltage values using a dual-channel dinaphtho[2,3-b:2′,3′-f]thieno[3,2-b]-thiophene–graphene barristor structure. To obtain transfer characteristics with distinctively separated ternary states, novel structures called contact-resistive and contact-doping layers were developed. The feasibility of a complementary standard ternary inverter design around 1 V was demonstrated using the experimentally calibrated ternary device model.
Collapse
|
32
|
Graphene-based electrode materials used for some pesticide’s detection in food samples: A review. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
33
|
Wang Z, Sun C, Bai X, Wang Z, Yu X, Tong X, Wang Z, Zhang H, Pang H, Zhou L, Wu W, Liang Y, Khosla A, Zhao Z. Facile Synthesis of Carbon Nanobelts Decorated with Cu and Pd for Nitrate Electroreduction to Ammonia. ACS APPLIED MATERIALS & INTERFACES 2022; 14:30969-30978. [PMID: 35763305 DOI: 10.1021/acsami.2c09357] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The electrocatalytic nitrate conversion of ammonia at ambient conditions provides not only a solution for restoring the imbalance in the global nitrogen cycle but also a sustainable alternative for the Haber-Bosch process. However, large-scale and efficient application of electrocatalytic denitrification has been limited by the lack of active catalysts with a high selectivity of nitrate reduction to N2. In this work, we present a one-step solution processed synthetic strategy at low temperature to prepare carbon-nanobelts-supported uniform Cu and Pd nanoclusters. It is found that Cu catalyzed the formation of carbon nanobelts. The prepared samples were used for the green synthesis of ammonia from nitrate by electrocatalysis. For the nitrate reduction reaction (NO3RR), Cu-Pd/C nanobelts show higher activity than Cu/C nanobelts, achieving a high yield of ammonia of 220.8 μg mgcat-1 h-1 with a Faradaic efficiency (FE) of 62.3% at -0.4 V vs RHE (reversible hydrogen electrode), while for the nitrite reduction reaction (NO2RR), a high FE of 95% at -0.2 V vs RHE can be obtained for Cu/C nanobelts with the yield of ammonia increased with the negative shift of the applied potentials. Theoretical calculations demonstrated that Pd and Cu are responsible for hydrogen evolution reaction (HER) and NO3RR, respectively.
Collapse
Affiliation(s)
- Zhe Wang
- Department of Applied Chemistry, School of Advanced Materials and Nanotechnology, Xidian University, Xi'an 710126, Shaanxi, China
| | - Congcong Sun
- Department of Applied Chemistry, School of Advanced Materials and Nanotechnology, Xidian University, Xi'an 710126, Shaanxi, China
| | - Xiaoxia Bai
- Department of Applied Chemistry, School of Advanced Materials and Nanotechnology, Xidian University, Xi'an 710126, Shaanxi, China
| | - Zhenni Wang
- Department of Applied Chemistry, School of Advanced Materials and Nanotechnology, Xidian University, Xi'an 710126, Shaanxi, China
| | - Xin Yu
- Institute for Advanced Interdisciplinary Research, University of Jinan, Jinan 250022, Shandong, China
| | - Xin Tong
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Zheng Wang
- Department of Applied Chemistry, School of Advanced Materials and Nanotechnology, Xidian University, Xi'an 710126, Shaanxi, China
| | - Hui Zhang
- Department of Applied Chemistry, School of Advanced Materials and Nanotechnology, Xidian University, Xi'an 710126, Shaanxi, China
| | - Haili Pang
- Department of Applied Chemistry, School of Advanced Materials and Nanotechnology, Xidian University, Xi'an 710126, Shaanxi, China
| | - Lijun Zhou
- Department of Applied Chemistry, School of Advanced Materials and Nanotechnology, Xidian University, Xi'an 710126, Shaanxi, China
| | - Weiwei Wu
- Department of Applied Chemistry, School of Advanced Materials and Nanotechnology, Xidian University, Xi'an 710126, Shaanxi, China
| | - Yanping Liang
- Department of Applied Chemistry, School of Advanced Materials and Nanotechnology, Xidian University, Xi'an 710126, Shaanxi, China
| | - Ajit Khosla
- Department of Applied Chemistry, School of Advanced Materials and Nanotechnology, Xidian University, Xi'an 710126, Shaanxi, China
| | - Zhenhuan Zhao
- Department of Applied Chemistry, School of Advanced Materials and Nanotechnology, Xidian University, Xi'an 710126, Shaanxi, China
| |
Collapse
|
34
|
Marguet B, Reis FDAA, Pierre-Louis O. Interface collisions with diffusive mass transport. Phys Rev E 2022; 106:014802. [PMID: 35974503 DOI: 10.1103/physreve.106.014802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 06/23/2022] [Indexed: 06/15/2023]
Abstract
We report on a linear Langevin model that describes the evolution of the roughness of two interfaces that move towards each other and are coupled by a diffusion field. This model aims at describing the closing of the gap between two 2D material domains during growth, and the subsequent formation of a rough grain boundary. We assume that deposition occurs in the gap between the two domains and that the growth units diffuse and may attach to the edges of the domains. These units can also detach from edges, diffuse, and reattach elsewhere. For slow growth, the edge roughness increases monotonously and then saturates at some equilibrium value. For fast growth, the roughness exhibits a maximum just before the collision between the two interfaces, which is followed by a minimum. The peak of the roughness can be dominated by statistical fluctuations or by edge instabilities. A phase diagram with three regimes is obtained: Slow growth without peak, peak dominated by statistical fluctuations, and peak dominated by instabilities. These results reproduce the main features observed in kinetic Monte Carlo simulations.
Collapse
Affiliation(s)
- Bastien Marguet
- Institut Lumière Matière, UMR5306 Université Lyon 1-CNRS, Université de Lyon, 69622 Villeurbanne, France
| | - F D A Aarão Reis
- Instituto de Física, Universidade Federal Fluminense, Avenida Litorânea s/n, 24210-340 Niterói RJ, Brazil
| | - Olivier Pierre-Louis
- Institut Lumière Matière, UMR5306 Université Lyon 1-CNRS, Université de Lyon, 69622 Villeurbanne, France
| |
Collapse
|
35
|
Yamamoto M, Zhao Q, Goto S, Gu Y, Toriyama T, Yamamoto T, Nishihara H, Aziz A, Crespo-Otero R, Di Tommaso D, Tamura M, Tomishige K, Kyotani T, Yamazaki K. Porous nanographene formation on γ-alumina nanoparticles via transition-metal-free methane activation. Chem Sci 2022; 13:3140-3146. [PMID: 35414888 PMCID: PMC8926170 DOI: 10.1039/d1sc06578e] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 02/22/2022] [Indexed: 11/24/2022] Open
Abstract
γ-Al2O3 nanoparticles promote pyrolytic carbon deposition of CH4 at temperatures higher than 800 °C to give single-walled nanoporous graphene (NPG) materials without the need for transition metals as reaction centers. To accelerate the development of efficient reactions for NPG synthesis, we have investigated early-stage CH4 activation for NPG formation on γ-Al2O3 nanoparticles via reaction kinetics and surface analysis. The formation of NPG was promoted at oxygen vacancies on (100) surfaces of γ-Al2O3 nanoparticles following surface activation by CH4. The kinetic analysis was well corroborated by a computational study using density functional theory. Surface defects generated as a result of surface activation by CH4 make it kinetically feasible to obtain single-layered NPG, demonstrating the importance of precise control of oxygen vacancies for carbon growth. Oxygen vacancies on the (100) surface of γ-Al2O3 nanoparticles catalyse CH4-CVD for single-layered nanoporous graphenes with no transition metal reaction centre. The rate-limiting step is the proton transfer (PT) in the activation of CH4 on them.![]()
Collapse
Affiliation(s)
- Masanori Yamamoto
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University 2-1-1 Katahira, Aoba Sendai 980-8577 Japan
| | - Qi Zhao
- Department of Chemistry, Queen Mary University of London Mile End Road London E1 4NS UK
| | - Shunsuke Goto
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University 2-1-1 Katahira, Aoba Sendai 980-8577 Japan
| | - Yu Gu
- Graduate School of Engineering, Tohoku University 6-6-07 Aramaki, Aoba Sendai 980-8579 Japan
| | - Takaaki Toriyama
- The Ultramicroscopy Research Center, Kyushu University Motooka 744, Nishi Fukuoka 819-0395 Japan
| | - Tomokazu Yamamoto
- The Ultramicroscopy Research Center, Kyushu University Motooka 744, Nishi Fukuoka 819-0395 Japan
| | - Hirotomo Nishihara
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University 2-1-1 Katahira, Aoba Sendai 980-8577 Japan
| | - Alex Aziz
- Department of Chemistry, Queen Mary University of London Mile End Road London E1 4NS UK
| | - Rachel Crespo-Otero
- Department of Chemistry, Queen Mary University of London Mile End Road London E1 4NS UK
| | - Devis Di Tommaso
- Department of Chemistry, Queen Mary University of London Mile End Road London E1 4NS UK
| | - Masazumi Tamura
- Graduate School of Engineering, Tohoku University 6-6-07 Aramaki, Aoba Sendai 980-8579 Japan
| | - Keiichi Tomishige
- Graduate School of Engineering, Tohoku University 6-6-07 Aramaki, Aoba Sendai 980-8579 Japan
| | - Takashi Kyotani
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University 2-1-1 Katahira, Aoba Sendai 980-8577 Japan
| | - Kaoru Yamazaki
- Institute for Materials Research, Tohoku University 2-1-1 Katahira, Aoba Sendai 980-8577 Japan
| |
Collapse
|
36
|
Lee JU, Lee JH, Lee CW, Cho SC, Hong SM, Ma YW, Jeong SY, Shin BS. Green Synthesis of Laser-Induced Graphene with Copper Oxide Nanoparticles for Deicing Based on Photo-Electrothermal Effect. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:960. [PMID: 35335776 PMCID: PMC8951176 DOI: 10.3390/nano12060960] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/07/2022] [Accepted: 03/11/2022] [Indexed: 12/28/2022]
Abstract
Homogenously dispersed Cu oxide nanoparticles on laser-induced graphene (LIG) were fabricated using a simple two-step laser irradiation. This work emphasized the synergetic photo-electrothermal effect in Cu oxide particles embedded in LIG. Our flexible hybrid composites exhibited high mechanical durability and excellent thermal properties. Moreover, the Cu oxide nanoparticles in the carbon matrix of LIG enhanced the light trapping and multiple electron internal scattering for the electrothermal effect. The best conditions for deicing devices were also studied by controlling the amount of Cu solution. The deicing performance of the sample was demonstrated, and the results indicate that the developed method could be a promising strategy for maintaining lightness, efficiency, excellent thermal performance, and eco-friendly 3D processing capabilities.
Collapse
Affiliation(s)
- Jun-Uk Lee
- Department of Cogno-Mechatronics Engineering, Pusan National University, Pusan 46241, Korea; (J.-U.L.); (J.-h.L.); (C.-W.L.); (S.-C.C.)
| | - Jeong-hoon Lee
- Department of Cogno-Mechatronics Engineering, Pusan National University, Pusan 46241, Korea; (J.-U.L.); (J.-h.L.); (C.-W.L.); (S.-C.C.)
| | - Chan-Woo Lee
- Department of Cogno-Mechatronics Engineering, Pusan National University, Pusan 46241, Korea; (J.-U.L.); (J.-h.L.); (C.-W.L.); (S.-C.C.)
| | - Su-Chan Cho
- Department of Cogno-Mechatronics Engineering, Pusan National University, Pusan 46241, Korea; (J.-U.L.); (J.-h.L.); (C.-W.L.); (S.-C.C.)
| | - Sung-Moo Hong
- Interdisciplinary Department for Advanced Innovative Manufacturing Engineering, Pusan National University, Pusan 46241, Korea; (S.-M.H.); (Y.-w.M.)
| | - Yong-won Ma
- Interdisciplinary Department for Advanced Innovative Manufacturing Engineering, Pusan National University, Pusan 46241, Korea; (S.-M.H.); (Y.-w.M.)
| | - Sung-Yeob Jeong
- Department of Mechanical Engineering, The University of Tokyo, Tokyo 113-8656, Japan;
| | - Bo-Sung Shin
- Department of Optics and Mechatronics Engineering, Pusan National University, Pusan 46241, Korea
| |
Collapse
|
37
|
Toto E, Laurenzi S, Santonicola MG. Recent Trends in Graphene/Polymer Nanocomposites for Sensing Devices: Synthesis and Applications in Environmental and Human Health Monitoring. Polymers (Basel) 2022; 14:1030. [PMID: 35267853 PMCID: PMC8914833 DOI: 10.3390/polym14051030] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 02/28/2022] [Accepted: 03/03/2022] [Indexed: 02/04/2023] Open
Abstract
Graphene-based nanocomposites are largely explored for the development of sensing devices due to the excellent electrical and mechanical properties of graphene. These properties, in addition to its large specific surface area, make graphene attractive for a wide range of chemical functionalization and immobilization of (bio)molecules. Several techniques based on both top-down and bottom-up approaches are available for the fabrication of graphene fillers in pristine and functionalized forms. These fillers can be further modified to enhance their integration with polymeric matrices and substrates and to tailor the sensing efficiency of the overall nanocomposite material. In this review article, we summarize recent trends in the design and fabrication of graphene/polymer nanocomposites (GPNs) with sensing properties that can be successfully applied in environmental and human health monitoring. Functional GPNs with sensing ability towards gas molecules, humidity, and ultraviolet radiation can be generated using graphene nanosheets decorated with metallic or metal oxide nanoparticles. These nanocomposites were shown to be effective in the detection of ammonia, benzene/toluene gases, and water vapor in the environment. In addition, biological analytes with broad implications for human health, such as nucleic bases or viral genes, can also be detected using sensitive, graphene-based polymer nanocomposites. Here, the role of the biomolecules that are immobilized on the graphene nanomaterial as target for sensing is reviewed.
Collapse
Affiliation(s)
- Elisa Toto
- Department of Chemical Engineering Materials Environment, Sapienza University of Rome, Via del Castro Laurenziano 7, 00161 Rome, Italy;
| | - Susanna Laurenzi
- Department of Astronautical Electrical and Energy Engineering, Sapienza University of Rome, Via Salaria 851-881, 00138 Rome, Italy;
| | - Maria Gabriella Santonicola
- Department of Chemical Engineering Materials Environment, Sapienza University of Rome, Via del Castro Laurenziano 7, 00161 Rome, Italy;
| |
Collapse
|
38
|
Bhowmik S, Govind Rajan A. Chemical vapor deposition of 2D materials: A review of modeling, simulation, and machine learning studies. iScience 2022; 25:103832. [PMID: 35243221 PMCID: PMC8857588 DOI: 10.1016/j.isci.2022.103832] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Chemical vapor deposition (CVD) is extensively used to produce large-area two-dimensional (2D) materials. Current research is aimed at understanding mechanisms underlying the nucleation and growth of various 2D materials, such as graphene, hexagonal boron nitride (hBN), and transition metal dichalcogenides (e.g., MoS2/WSe2). Herein, we survey the vast literature regarding modeling and simulation of the CVD growth of 2D materials and their heterostructures. We also focus on newer materials, such as silicene, phosphorene, and borophene. We discuss how density functional theory, kinetic Monte Carlo, and reactive molecular dynamics simulations can shed light on the thermodynamics and kinetics of vapor-phase synthesis. We explain how machine learning can be used to develop insights into growth mechanisms and outcomes, as well as outline the open knowledge gaps in the literature. Our work provides consolidated theoretical insights into the CVD growth of 2D materials and presents opportunities for further understanding and improving such processes
Collapse
|
39
|
Marzana M, Morsada Z, Faruk MO, Ahmed A, Khan MMA, Jalil MA, Hossain MM, Rahman MM. Nanostructured Carbons: towards Soft-Bioelectronics, Biosensing and Theraputic Applications. CHEM REC 2022; 22:e202100319. [PMID: 35189015 DOI: 10.1002/tcr.202100319] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/05/2022] [Accepted: 02/07/2022] [Indexed: 12/17/2022]
Abstract
Recently, nanostructured carbon-based soft bioelectronics and biosensors have received tremendous attention due to their outstanding physical and chemical properties. The ultrahigh specific surface area, high flexibility, lightweight, high electrical conductivity, and biocompatibility of 1D and 2D nanocarbons, such as carbon nanotubes (CNT) and graphene, are advantageous for bioelectronics applications. These materials improve human life by delivering therapeutic advancements in gene, tumor, chemo, photothermal, immune, radio, and precision therapies. They are also utilized in biosensing platforms, including optical and electrochemical biosensors to detect cholesterol, glucose, pathogenic bacteria (e. g., coronavirus), and avian leucosis virus. This review summarizes the most recent advancements in bioelectronics and biosensors by exploiting the outstanding characteristics of nanocarbon materials. The synthesis and biocompatibility of nanocarbon materials are briefly discussed. In the following sections, applications of graphene and CNTs for different therapies and biosensing are elaborated. Finally, the key challenges and future perspectives of nanocarbon materials for biomedical applications are highlighted.
Collapse
Affiliation(s)
- Maliha Marzana
- Department of Plant and Soil Science, Fiber and Biopolymer Research Institute, Texas Tech University, Lubbock, TX 79403, USA
| | - Zinnat Morsada
- Department of Textile Engineering, University of South Asia, Dhaka, 1213, Bangladesh
| | - Md Omar Faruk
- Department of Materials Science and Engineering, Binghamton University, State University of New York at Binghamton, Binghamton, NY 13902, USA
| | - Abbas Ahmed
- Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, CT 06269, USA
| | - Md Manirul Alam Khan
- Department of Electrical and Computer Engineering, University of Memphis, Tennessee, 38152, USA
| | - Mohammad Abdul Jalil
- Department of Textile Engineering, Khulna University of Engineering and Technology, Khulna, 9203, Bangladesh
| | - Md Milon Hossain
- Department of Textile Engineering, Chemistry and Science, North Carolina State University, North Carolina, 27606, USA
| | - Mohammed Muzibur Rahman
- Center of Excellence for Advanced Materials Research (CEAMR) & Department of Chemistry, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia
| |
Collapse
|
40
|
Alfieri A, Anantharaman SB, Zhang H, Jariwala D. Nanomaterials for Quantum Information Science and Engineering. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022:e2109621. [PMID: 35139247 DOI: 10.1002/adma.202109621] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 02/04/2022] [Indexed: 06/14/2023]
Abstract
Quantum information science and engineering (QISE)-which entails the use of quantum mechanical states for information processing, communications, and sensing-and the area of nanoscience and nanotechnology have dominated condensed matter physics and materials science research in the 21st century. Solid-state devices for QISE have, to this point, predominantly been designed with bulk materials as their constituents. This review considers how nanomaterials (i.e., materials with intrinsic quantum confinement) may offer inherent advantages over conventional materials for QISE. The materials challenges for specific types of qubits, along with how emerging nanomaterials may overcome these challenges, are identified. Challenges for and progress toward nanomaterials-based quantum devices are condidered. The overall aim of the review is to help close the gap between the nanotechnology and quantum information communities and inspire research that will lead to next-generation quantum devices for scalable and practical quantum applications.
Collapse
Affiliation(s)
- Adam Alfieri
- Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Surendra B Anantharaman
- Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Huiqin Zhang
- Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Deep Jariwala
- Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| |
Collapse
|
41
|
Abdelhalim AO, Semenov KN, Nerukh DA, Murin IV, Maistrenko DN, Molchanov OE, Sharoyko VV. Functionalisation of graphene as a tool for developing nanomaterials with predefined properties. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118368] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
42
|
Carvalho AF, Kulyk B, Fernandes AJS, Fortunato E, Costa FM. A Review on the Applications of Graphene in Mechanical Transduction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2101326. [PMID: 34288155 DOI: 10.1002/adma.202101326] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 04/26/2021] [Indexed: 05/26/2023]
Abstract
A pressing need to develop low-cost, environmentally friendly, and sensitive sensors has arisen with the advent of the always-connected paradigm of the internet-of-things (IoT). In particular, mechanical sensors have been widely studied in recent years for applications ranging from health monitoring, through mechanical biosignals, to structure integrity analysis. On the other hand, innovative ways to implement mechanical actuation have also been the focus of intense research in an attempt to close the circle of human-machine interaction, and move toward applications in flexible electronics. Due to its potential scalability, disposability, and outstanding properties, graphene has been thoroughly studied in the field of mechanical transduction. The applications of graphene in mechanical transduction are reviewed here. An overview of sensor and actuator applications is provided, covering different transduction mechanisms such as piezoresistivity, capacitive sensing, optically interrogated displacement, piezoelectricity, triboelectricity, electrostatic actuation, chemomechanical and thermomechanical actuation, as well as thermoacoustic emission. A critical review of the main approaches is presented within the scope of a wider discussion on the future of this so-called wonder material in the field of mechanical transduction.
Collapse
Affiliation(s)
- Alexandre F Carvalho
- I3N-Aveiro, Department of Physics, University of Aveiro, Aveiro, 3810-193, Portugal
| | - Bohdan Kulyk
- I3N-Aveiro, Department of Physics, University of Aveiro, Aveiro, 3810-193, Portugal
| | | | - Elvira Fortunato
- I3N/CENIMAT, Materials Science Department, Faculty of Sciences and Technology, Universidade NOVA de Lisboa and CEMOP/UNINOVA, Caparica, 2829-516, Portugal
| | - Florinda M Costa
- I3N-Aveiro, Department of Physics, University of Aveiro, Aveiro, 3810-193, Portugal
| |
Collapse
|
43
|
The Performance of Graphene-Enhanced THz Grating: Impact of the Gold Layer Imperfectness. MATERIALS 2022; 15:ma15030786. [PMID: 35160731 PMCID: PMC8837126 DOI: 10.3390/ma15030786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/29/2021] [Accepted: 01/11/2022] [Indexed: 02/01/2023]
Abstract
We report the performance of a graphene-enhanced THz grating fabricated by depositing a gold layer on the femtosecond micromachined SiO2 substrate. The morphology of the gold plated patterned substrate was studied by scanning electron microscopy (SEM) and atomic force microscopy (AFM), while the quality of the chemical vapor deposition (CVD) graphene was evaluated by Raman spectroscopy. The electromagnetic (EM) response of the metasurface comprising the graphene sheet and the gold plated substrate was studied by THz time domain spectroscopy in the 100 GHz–1 THz frequency range. We employed the finite elements method (FEM) to model the metasurface EM response by adjusting the ac conductivity of the gold layer covering the patterned SiO2 substrate to reproduce the measured transmission/reflection spectra. The results of the numerical simulation reveal the impact of the imperfectness of the gold layer on the performance of the THz metasurface. The experimental results are well described in terms of the Drude–Smith model of metal conductivity that takes into account the anisotropic scattering of the carriers in thin metal films.
Collapse
|
44
|
Kant T, Shrivas K, Karbhal I, Monisha, Yadav S, Tikeshwari, Sahu S, Mahipal YK, Ganesan V. A graphene-printed paper electrode for determination of H 2O 2 in municipal wastewater during the COVID-19 pandemic. NEW J CHEM 2022. [DOI: 10.1039/d1nj05763d] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Graphene prepared through exfoliation process was printed on paper substrate using inkjet-printer and then printed paper electrode was used as an electrochemical sensor for analysis of H2O2 in cyclic voltammetry.
Collapse
Affiliation(s)
- Tushar Kant
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur-492010, Chhattisgarh, India
| | - Kamlesh Shrivas
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur-492010, Chhattisgarh, India
| | - Indrapal Karbhal
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur-492010, Chhattisgarh, India
| | - Monisha
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur-492010, Chhattisgarh, India
| | - Sanjay Yadav
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur-492010, Chhattisgarh, India
| | - Tikeshwari
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur-492010, Chhattisgarh, India
| | - Sushama Sahu
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur-492010, Chhattisgarh, India
| | - Yugal Kishor Mahipal
- School of Studies in Physics and Astrophysics, Pt. Ravishanakar Shukla University, Raipur-492010, Chhattisgarh, India
| | - Vellaichamy Ganesan
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi-221005, Uttar Pradesh, India
| |
Collapse
|
45
|
Kumar AM, Ehsan MA, Suleiman RK, Hakeem AS. AACVD processed binary amorphous NiVOx coatings on Cu substrates: Surface characterization and corrosion resistant performance in saline medium. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.127893] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
46
|
Graphene Growth Directly on SiO 2/Si by Hot Filament Chemical Vapor Deposition. NANOMATERIALS 2021; 12:nano12010109. [PMID: 35010059 PMCID: PMC8746613 DOI: 10.3390/nano12010109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 10/21/2021] [Accepted: 10/26/2021] [Indexed: 11/17/2022]
Abstract
We report the first direct synthesis of graphene on SiO2/Si by hot-filament chemical vapor deposition. Graphene deposition was conducted at low pressures (35 Torr) with a mixture of methane/hydrogen and a substrate temperature of 970 °C followed by spontaneous cooling to room temperature. A thin copper-strip was deposited in the middle of the SiO2/Si substrate as catalytic material. Raman spectroscopy mapping and atomic force microscopy measurements indicate the growth of few-layers of graphene over the entire SiO2/Si substrate, far beyond the thin copper-strip, while X-ray photoelectron spectroscopy and energy-dispersive X-ray spectroscopy showed negligible amounts of copper next to the initially deposited strip. The scale of the graphene nanocrystal was estimated by Raman spectroscopy and scanning electron microscopy.
Collapse
|
47
|
Cho KW, Sunwoo SH, Hong YJ, Koo JH, Kim JH, Baik S, Hyeon T, Kim DH. Soft Bioelectronics Based on Nanomaterials. Chem Rev 2021; 122:5068-5143. [PMID: 34962131 DOI: 10.1021/acs.chemrev.1c00531] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Recent advances in nanostructured materials and unconventional device designs have transformed the bioelectronics from a rigid and bulky form into a soft and ultrathin form and brought enormous advantages to the bioelectronics. For example, mechanical deformability of the soft bioelectronics and thus its conformal contact onto soft curved organs such as brain, heart, and skin have allowed researchers to measure high-quality biosignals, deliver real-time feedback treatments, and lower long-term side-effects in vivo. Here, we review various materials, fabrication methods, and device strategies for flexible and stretchable electronics, especially focusing on soft biointegrated electronics using nanomaterials and their composites. First, we summarize top-down material processing and bottom-up synthesis methods of various nanomaterials. Next, we discuss state-of-the-art technologies for intrinsically stretchable nanocomposites composed of nanostructured materials incorporated in elastomers or hydrogels. We also briefly discuss unconventional device design strategies for soft bioelectronics. Then individual device components for soft bioelectronics, such as biosensing, data storage, display, therapeutic stimulation, and power supply devices, are introduced. Afterward, representative application examples of the soft bioelectronics are described. A brief summary with a discussion on remaining challenges concludes the review.
Collapse
Affiliation(s)
- Kyoung Won Cho
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.,Interdisciplinary Program for Bioengineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Sung-Hyuk Sunwoo
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.,School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Yongseok Joseph Hong
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.,School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Ja Hoon Koo
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
| | - Jeong Hyun Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
| | - Seungmin Baik
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.,School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Taeghwan Hyeon
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.,Interdisciplinary Program for Bioengineering, Seoul National University, Seoul 08826, Republic of Korea.,School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Dae-Hyeong Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.,Interdisciplinary Program for Bioengineering, Seoul National University, Seoul 08826, Republic of Korea.,School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea.,Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
48
|
Islam F, Tahmasebi A, Moghtaderi B, Yu J. Structural Investigation of the Synthesized Few-Layer Graphene from Coal under Microwave. NANOMATERIALS 2021; 12:nano12010057. [PMID: 35010007 PMCID: PMC8746775 DOI: 10.3390/nano12010057] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/17/2021] [Accepted: 12/21/2021] [Indexed: 11/27/2022]
Abstract
This study focused on the structural investigation of few-layer graphene (FLG) synthesis from bituminous coal through a catalytic process under microwave heat treatment (MW). The produced FLG has been examined by Raman spectroscopy, XRD, TEM, and AFM. Coal was activated using the potassium hydroxide activation process. The FLG synthesis processing duration was much faster requiring only 20 min under the microwave radiation. To analyse few-layer graphene samples, we considered the three bands, i.e., D, G, and 2D, of Raman spectra. At 1300 °C, the P10% Fe sample resulted in fewer defects than the other catalyst percentages sample. The catalyst percentages affected the structural change of the FLG composite materials. In addition, the Raman mapping showed that the catalyst loaded sample was homogeneously distributed and indicated a few-layer graphene sheet. In addition, the AFM technique measured the FLG thickness around 4.5 nm. Furthermore, the HRTEM images of the P10% Fe sample contained a unique morphology with 2–7 graphitic layers of graphene thin sheets. This research reported the structural revolution with latent feasibility of FLG synthesis from bituminous coal in a wide range.
Collapse
Affiliation(s)
- Faridul Islam
- Department of Chemical Engineering, School of Engineering, The University of Newcastle, Callaghan, NSW 2308, Australia; (F.I.); (A.T.); (B.M.)
| | - Arash Tahmasebi
- Department of Chemical Engineering, School of Engineering, The University of Newcastle, Callaghan, NSW 2308, Australia; (F.I.); (A.T.); (B.M.)
| | - Behdad Moghtaderi
- Department of Chemical Engineering, School of Engineering, The University of Newcastle, Callaghan, NSW 2308, Australia; (F.I.); (A.T.); (B.M.)
| | - Jianglong Yu
- Department of Chemical Engineering, School of Engineering, The University of Newcastle, Callaghan, NSW 2308, Australia; (F.I.); (A.T.); (B.M.)
- Monash Research Institute of Science and Technology (Suzhou Industrial Park), Southeast University—Monash University Joint Graduate School, Suzhou 215000, China
- Correspondence:
| |
Collapse
|
49
|
Tajik S, Beitollahi H, Dourandish Z, Mohammadzadeh Jahania P, Sheikhshoaie I, Askari MB, Salarizadeh P, Garkani Nejad F, Kim D, Kim SY, Varma RS, Shokouhimehr M. Non‐precious transition metal oxide nanomaterials: Synthesis, characterization, and electrochemical applications. ELECTROANAL 2021. [DOI: 10.1002/elan.202100393] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
| | - Hadi Beitollahi
- Research Institute of Environmental Sciences, International Center for Sciences, High Technology and Environmental Sciences IRAN, ISLAMIC REPUBLIC OF
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Zhao GQ, Hu J, Long X, Zou J, Yu JG, Jiao FP. A Critical Review on Black Phosphorus-Based Photocatalytic CO 2 Reduction Application. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2102155. [PMID: 34309180 DOI: 10.1002/smll.202102155] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/22/2021] [Indexed: 06/13/2023]
Abstract
Energy shortages and greenhouse effects are two unavoidable problems that need to be solved. Photocatalytically converting CO2 into a series of valuable chemicals is considered to be an effective means of solving the above dilemmas. Among these photocatalysts, the utilization of black phosphorus for CO2 photocatalytic reduction deserves a lightspot not only for its excellent catalytic activity through different reaction routes, but also on account of the great preponderance of this relatively cheap catalyst. Herein, this review offers a summary of the recent advances in synthesis, structure, properties, and application for CO2 photocatalytic reduction. In detail, the review starts from the basic principle of CO2 photocatalytic reduction. In the following section, the synthesis, structure, and properties, as well as CO2 photocatalytic reduction process of black phosphorus-based photocatalyst are discussed. In addition, some possible influencing factors and reaction mechanism are also summarized. Finally, a summary and the possible future perspectives of black phosphorus-based photocatalyst for CO2 reduction are established.
Collapse
Affiliation(s)
- Guo-Qing Zhao
- School of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, P. R. China
| | - Jun Hu
- School of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, P. R. China
| | - Xuan Long
- School of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, P. R. China
| | - Jiao Zou
- School of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, P. R. China
| | - Jin-Gang Yu
- School of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, P. R. China
| | - Fei-Peng Jiao
- School of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, P. R. China
| |
Collapse
|