1
|
Giotakis AI, Dudas J, Glueckert R, Buechel E, Riechelmann H. Identification of neutrophils and eosinophils in upper airway mucosa with immunofluorescence multiplex image cytometry. Histochem Cell Biol 2024:10.1007/s00418-024-02284-y. [PMID: 38600336 DOI: 10.1007/s00418-024-02284-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/22/2024] [Indexed: 04/12/2024]
Abstract
Characterization of inflammation in chronic rhinosinusitis with (CRSwNP) and without nasal polyps (CRSsNP) is an ongoing research process. To overcome limitations of current cytologic techniques, we investigated whether immunofluorescence multiplex image cytometry could quantify intact neutrophils, eosinophils, and other immune cells in solid upper airway mucosa. We used a four-channel immunofluorescence-microscopy technique for the simultaneous detection of the leukocyte marker CD45, the neutrophil marker myeloperoxidase, two eosinophil markers, i.e., major basic protein and eosinophil peroxidase, and DAPI (4',6-diamidin-2-phenylindole), in formalin-fixed paraffin-embedded upper airway tissue samples of patients with CRSwNP and CRSsNP, as well as of patients free of CRS with inferior turbinate hypertrophy (controls). Image acquisition and analysis were performed with TissueFAXS and StrataQuest (TissueGnostics, Vienna, Austria), respectively. Positive and negative immunostaining were differentiated with a specific fluorescence signal/background signal ratio. Isotype controls were used as negative controls. In six controls, nine patients with CRSsNP, and 11 patients with CRSwNP, the median area scanned and median cell count per patient were 14.2 mm2 and 34,356, respectively. In CRSwNP, the number of eosinophils was three times higher (23%) than that of neutrophils (7%). Three times more immune cells were encountered in CRSwNP (33%) compared to CRSsNP (11%). In controls, inflammation was balanced between the epithelial layer and lamina propria, in contrast to CRS (three times more pronounced inflammation in the lamina propria). The quantification of intact neutrophils, eosinophils, and other immune cells in solid tissue with undisrupted architecture seems feasible with immunofluorescence multiplex image cytometry.
Collapse
Affiliation(s)
- Aris I Giotakis
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria.
| | - József Dudas
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Rudolf Glueckert
- University Clinics Innsbruck, Tirol Kliniken, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Elias Buechel
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Herbert Riechelmann
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| |
Collapse
|
2
|
Koga R, Maehara T, Aoyagi R, Munemura R, Murakami Y, Doi A, Kono M, Yamamoto H, Niiro H, Kiyoshima T, Tanabe M, Nakano T, Matsukuma Y, Kawano M, Stone JH, Pillai S, Nakamura S, Kawano S. Granzyme K- and amphiregulin-expressing cytotoxic T cells and activated extrafollicular B cells are potential drivers of IgG4-related disease. J Allergy Clin Immunol 2024; 153:1095-1112. [PMID: 38092138 DOI: 10.1016/j.jaci.2023.11.916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/06/2023] [Accepted: 11/08/2023] [Indexed: 01/06/2024]
Abstract
BACKGROUND IgG4-related disease (IgG4-RD), an example of a type I immune disease, is an immune-mediated fibrotic disorder characterized by dysregulated resolution of severe inflammation and wound healing. However, truly dominant or pathognomonic autoantibodies related to IgG4-RD are not identified. OBJECTIVE We sought to perform single-cell RNA sequencing and T-cell receptor and B-cell receptor sequencing to obtain a comprehensive, unbiased view of tissue-infiltrating T and B cells. METHODS We performed unbiased single-cell RNA-sequencing analysis for the transcriptome and T-cell receptor sequencing and B-cell receptor sequencing on sorted CD3+ T or CD19+ B cells from affected tissues of patients with IgG4-RD. We also conducted quantitative analyses of CD3+ T-cell and CD19+ B-cell subsets in 68 patients with IgG4-RD and 30 patients with Sjögren syndrome. RESULTS Almost all clonally expanded T cells in these lesions were either Granzyme K (GZMK)-expressing CD4+ cytotoxic T cells or GZMK+CD8+ T cells. These GZMK-expressing cytotoxic T cells also expressed amphiregulin and TGF-β but did not express immune checkpoints, and the tissue-infiltrating CD8+ T cells were phenotypically heterogeneous. MKI67+ B cells and IgD-CD27-CD11c-CXCR5- double-negative 3 B cells were clonally expanded and infiltrated affected tissue lesions. GZMK+CD4+ cytotoxic T cells colocalized with MKI67+ B cells in the extrafollicular area from affected tissue sites. CONCLUSIONS The above-mentioned cells likely participate in T-B collaborative events, suggesting possible avenues for targeted therapies. Our findings were validated using orthogonal approaches, including multicolor immunofluorescence and the use of comparator disease groups, to support the central role of cytotoxic CD4+ and CD8+ T cells expressing GZMK, amphiregulin, and TGF-β in the pathogenesis of inflammatory fibrotic disorders.
Collapse
Affiliation(s)
- Risako Koga
- Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Takashi Maehara
- Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, Fukuoka, Japan; Dento-craniofacial Development and Regeneration Research Center, Faculty of Dental Science, Kyushu University, Kyushu, Japan.
| | - Ryuichi Aoyagi
- Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Ryusuke Munemura
- Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Yuka Murakami
- Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | | | - Michihito Kono
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Hidetaka Yamamoto
- Graduate School of Medicine, Dentistry & Pharmaceutical Science, Okayama University, Okayama, Japan
| | - Hiroaki Niiro
- Department of Medical Education, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tamotsu Kiyoshima
- Laboratory of Oral Pathology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Mika Tanabe
- Department of Ophthalmology, Graduate School of Medicine Sciences, Kyushu University, Fukuoka, Japan
| | - Toshiaki Nakano
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yuta Matsukuma
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Mitsuhiro Kawano
- Division of Rheumatology, Department of Internal Medicine, Kanazawa University Hospital, Kanazawa, Japan
| | - John H Stone
- Division of Rheumatology, Allergy, and Immunology, Harvard Medical School, Boston, Mass
| | - Shiv Pillai
- Ragon Institute of MGH, MIT, and Harvard, Massachusetts General Hospital, Harvard Medical School, Boston, Mass
| | - Seiji Nakamura
- Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Shintaro Kawano
- Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| |
Collapse
|
3
|
Greier MDC, Runge A, Dudas J, Hartl R, Santer M, Dejaco D, Steinbichler TB, Federspiel J, Seifarth C, Konschake M, Sprung S, Sopper S, Randhawa A, Mayr M, Hofauer BG, Riechelmann H. Cytotoxic response of tumor-infiltrating lymphocytes of head and neck cancer slice cultures under mitochondrial dysfunction. Front Oncol 2024; 14:1364577. [PMID: 38515569 PMCID: PMC10954813 DOI: 10.3389/fonc.2024.1364577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 02/23/2024] [Indexed: 03/23/2024] Open
Abstract
Background Head and neck squamous cell carcinomas (HNSCC) are highly heterogeneous tumors. In the harsh tumor microenvironment (TME), metabolic reprogramming and mitochondrial dysfunction may lead to immunosuppressive phenotypes. Aerobic glycolysis is needed for the activation of cytotoxic T-cells and the absence of glucose may hamper the full effector functions of cytotoxic T-cells. To test the effect of mitochondrial dysfunction on cytotoxic T cell function, slice cultures (SC) of HNSCC cancer were cultivated under different metabolic conditions. Methods Tumor samples from 21 patients with HNSCC were collected, from which, SC were established and cultivated under six different conditions. These conditions included high glucose, T cell stimulation, and temporarily induced mitochondrial dysfunction (MitoDys) using FCCP and oligomycin A with or without additional T cell stimulation, high glucose and finally, a control medium. Over three days of cultivation, sequential T cell stimulation and MitoDys treatments were performed. Supernatant was collected, and SC were fixed and embedded. Granzyme B was measured in the supernatant and in the SC via immunohistochemistry (IHC). Staining of PD1, CD8/Ki67, and cleaved-caspase-3 (CC3) were performed in SC. Results Hematoxylin eosin stains showed that overall SC quality remained stable over 3 days of cultivation. T cell stimulation, both alone and combined with MitoDys, led to significantly increased granzyme levels in SC and in supernatant. Apoptosis following T cell stimulation was observed in tumor and stroma. Mitochondrial dysfunction alone increased apoptosis in tumor cell aggregates. High glucose concentration alone had no impact on T cell activity and apoptosis. Apoptosis rates were significantly lower under conditions with high glucose and MitoDys (p=0.03). Conclusion Stimulation of tumor-infiltrating lymphocytes in SC was feasible, which led to increased apoptosis in tumor cells. Induced mitochondrial dysfunction did not play a significant role in the activation and function of TILs in SC of HNSCC. Moreover, high glucose concentration did not promote cytotoxic T cell activity in HNSCC SC.
Collapse
Affiliation(s)
- Maria do Carmo Greier
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Annette Runge
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Jozsef Dudas
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Roland Hartl
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Matthias Santer
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Daniel Dejaco
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | | | - Julia Federspiel
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Christof Seifarth
- Institute for Clinical and Functional Anatomy, Medical University Innsbruck (MUI), Innsbruck, Austria
| | - Marko Konschake
- Institute for Clinical and Functional Anatomy, Medical University Innsbruck (MUI), Innsbruck, Austria
| | - Susanne Sprung
- INNPATH GmbH, Institute for Pathology, Innsbruck, Austria
| | - Sieghart Sopper
- Clinic for Internal Medicine V, Medical University Innsbruck, Innsbruck, Austria
| | - Avneet Randhawa
- Department of Otolaryngology, Rutgers University Medical School, Newark, NJ, United States
| | | | - Benedikt Gabriel Hofauer
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Herbert Riechelmann
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
4
|
Xie J, Huang QF, Zhang Z, Dong Y, Xu H, Cao Y, Sheng CS, Li Y, Wang C, Wang X, Wang JG. Angiotensin-converting enzyme 2 in human plasma and lung tissue. Blood Press 2023; 32:6-15. [PMID: 36495008 DOI: 10.1080/08037051.2022.2154745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE We investigated plasma angiotensin-converting enzyme 2 (ACE2) concentration in a population sample and the ACE2 expression quantitated with the diaminobenzidine mean intensity in the lung tissue in patients who underwent lung surgery. MATERIALS AND METHODS The study participants were recruited from a residential area in the suburb of Shanghai for the plasma ACE2 concentration study (n = 503) and the lung tissue samples were randomly selected from the storage in Ruijin Hospital (80 men and 78 age-matched women). RESULTS In analyses adjusted for covariables, men had a significantly higher plasma ACE2 concentration (1.21 vs. 0.98 ng/mL, p = 0.027) and the mean intensity of ACE2 in the lung tissue (55.1 vs. 53.9 a.u., p = 0.037) than women. With age increasing, plasma ACE2 concentration decreased (p = 0.001), while the mean intensity of ACE2 in the lung tissue tended to increase (p = 0.087). Plasma ACE2 concentration was higher in hypertension than normotension, especially treated hypertension (1.23 vs. 0.98 ng/mL, p = 0.029 vs. normotension), with no significant difference between users of RAS inhibitors and other classes of antihypertensive drugs (p = 0.64). There was no significance of the mean intensity of ACE2 in the lung tissue between patients taking and those not taking RAS inhibitors (p = 0.14). Neither plasma ACE2 concentration nor the mean intensity of ACE2 in the lung tissue differed between normoglycemia and diabetes (p ≥ 0.20). CONCLUSION ACE2 in the plasma and lung tissue showed divergent changes according to several major characteristics of patients.Plain language summary What is the context? • The primary physiological function of ACE2 is the degradation of angiotensin I and II to angiotensin 1-9 and 1-7, respectively. • ACE2 was found to behave as a mediator of the severe acute respiratory syndrome coronavirus (SARS) infection. • There is little research on ACE2 in humans, especially in the lung tissue. • In the present report, we investigated plasma ACE2 concentration and the ACE2 expression quantitated with the diaminobenzidine mean intensity in the lung tissue respectively in two study populations. What is new? • Our study investigated both circulating and tissue ACE2 in human subjects. The main findings were: • In men as well as women, plasma ACE2 concentration was higher in younger than older participants, whereas the mean intensity of ACE2 in the lung tissue increase with age increasing. • Compared with normotension, hypertensive patients had higher plasma ACE2 concentration but similar mean intensity of ACE2 in the lung tissue. • Neither plasma ACE2 concentration nor lung tissue ACE2 expression significantly differed between users of RAS inhibitors and other classes of antihypertensive drugs. What is the impact? • ACE2 in the plasma and lung tissue showed divergent changes according to several major characteristics, such as sex, age, and treated and untreated hypertension. • A major implication is that plasma ACE2 concentration might not be an appropriate surrogate for the ACE2 expression in the lung tissue, and hence not a good predictor of SARS-COV-2 infection or fatality.
Collapse
Affiliation(s)
- Jing Xie
- Department of Pathology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Qi-Fang Huang
- Department of Cardiovascular Medicine, Center for Epidemiological Studies and Clinical Trials and Center for Vascular Evaluations, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zhihan Zhang
- Department of Pathology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yihan Dong
- Department of Pathology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Haimin Xu
- Department of Pathology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yanan Cao
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, National Clinical Research Centre for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission, Shanghai Key Laboratory for Endocrine Tumors, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Research Center for Translational Medicine, National Key Scientific Infrastructure for Translational Medicine (Shanghai), Shanghai Jiao Tong University, Shanghai, China
| | - Chang-Sheng Sheng
- Department of Cardiovascular Medicine, Center for Epidemiological Studies and Clinical Trials and Center for Vascular Evaluations, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yan Li
- Department of Cardiovascular Medicine, Center for Epidemiological Studies and Clinical Trials and Center for Vascular Evaluations, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Chaofu Wang
- Department of Pathology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xuefeng Wang
- Department of Clinical Laboratory, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Ji-Guang Wang
- Department of Cardiovascular Medicine, Center for Epidemiological Studies and Clinical Trials and Center for Vascular Evaluations, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
5
|
Giotakis AI, Runge A, Dudas J, Glueckert R, Gottfried T, Schartinger VH, Klarer J, Randhawa A, Caimmi E, Riechelmann H. Analysis of cells of epithelial, connective tissue and immune differentiation in HPV-positive-, HPV-negative oropharyngeal carcinoma and normal oropharyngeal tissue by immunofluorescence multiplex image cytometry: a preliminary report. BMC Cancer 2023; 23:1154. [PMID: 38012597 PMCID: PMC10683252 DOI: 10.1186/s12885-023-11440-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 09/24/2023] [Indexed: 11/29/2023] Open
Abstract
BACKGROUND Epithelial, connective tissue and immune cells contribute in various ways to the pathophysiology of HPV positive (HPV+) and HPV negative (HPV-) oropharyngeal squamous cell carcinoma (OPSCC). We aimed to investigate the abundance of these cell lineages and their coexpression patterns in patients with HPV + and HPV- OPSCC. METHODS We used a 4-channel immunofluorescence-microscopy technique for the simultaneous detection of three direct-conjugated antibodies (pancytokeratin, vimentin and CD45/CD18) and DAPI (4',6-Diamidin-2-phenylindole) in formalin fixed paraffin-embedded tissue samples (FFPE) of patients with HPV + and HPV- OPSCC, and of control patients. Image acquisition and analysis were performed with TissueFAXS and StrataQuest (TissueGnostics, Vienna, Austria), respectively, in tumor cell clusters/stroma in OPSCC specimens and epithelial layer/lamina propria in control specimens. Cell populations were created based on antibodies' coexpression patterns. Isotype and positive controls were examined for plausibility. RESULTS The proportion of cells of epithelial differentiation in tumor cell clusters was higher in HPV + OPSCC (55%) than in HPV- OPSCC samples (44%). The proportion of connective tissue cells in tumor cell cluster was lower in HPV + OPSCC patients (18%) than in HPV- OPSCC patients (26%). The proportion of immune cells in tumor cell clusters was higher in HPV + OPSCC patients (25%) than in HPV- OPSCC patients (18%). The percentage of anaplastic, potentially de-differentiated cells, was 2% in control patients, and it was higher in HPV- OPSCC (21%) than in HPV + OPSCC samples (6%). CONCLUSIONS This study provided the first quantitative data for the abundance of cells of epithelial, connective tissue and immune differentiation, in patients with OPSCC and control patients. The abundance of these different crucial cell populations was consistently originating from the same tissue sample. De-differentiation of tumor cells was higher in HPV- OPSCC than in HPV + OPSCC. In tumor cells clusters, the antitumoral host immune response was higher in HPV + OPSCC than in HPV- OPSCC, whereas the fibroblast response was higher in HPV- OPSCC than in HPV + OPSCC. This study contributed to the understanding of histopathologic differences between HPV + OPSCC and HPV- OPSCC patients.
Collapse
Affiliation(s)
- Aris I Giotakis
- Department of Otorhinolaryngology - Head & Neck Surgery, Medical University of Innsbruck, Anichstrasse 35, Innsbruck, 6020, Austria
| | - Annette Runge
- Department of Otorhinolaryngology - Head & Neck Surgery, Medical University of Innsbruck, Anichstrasse 35, Innsbruck, 6020, Austria.
| | - József Dudas
- Department of Otorhinolaryngology - Head & Neck Surgery, Medical University of Innsbruck, Anichstrasse 35, Innsbruck, 6020, Austria
| | - Rudolf Glueckert
- University Clinics Innsbruck, Tirol Kliniken, Anichstrasse 35, Innsbruck, 6020, Austria
| | - Timo Gottfried
- Department of Otorhinolaryngology - Head & Neck Surgery, Medical University of Innsbruck, Anichstrasse 35, Innsbruck, 6020, Austria
| | - Volker H Schartinger
- Department of Otorhinolaryngology - Head & Neck Surgery, Medical University of Innsbruck, Anichstrasse 35, Innsbruck, 6020, Austria
| | - Johanna Klarer
- Department of Otorhinolaryngology - Head & Neck Surgery, Medical University of Innsbruck, Anichstrasse 35, Innsbruck, 6020, Austria
| | - Avneet Randhawa
- Department of Otolaryngology, Rutgers University, New Jersey Medical School, Newark, NJ, USA
| | - Eleonora Caimmi
- Department of Otorhinolaryngology - Head & Neck Surgery, Medical University of Innsbruck, Anichstrasse 35, Innsbruck, 6020, Austria
| | - Herbert Riechelmann
- Department of Otorhinolaryngology - Head & Neck Surgery, Medical University of Innsbruck, Anichstrasse 35, Innsbruck, 6020, Austria
| |
Collapse
|
6
|
Rivera-Concha R, Moya C, León M, Uribe P, Schulz M, Prado A, Taubert A, Hermosilla C, Sánchez R, Zambrano F. Effect of different sperm populations on neutrophils extracellular traps (NETs) formation in cattle. Res Vet Sci 2023; 164:105028. [PMID: 37804665 DOI: 10.1016/j.rvsc.2023.105028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/17/2023] [Accepted: 09/21/2023] [Indexed: 10/09/2023]
Abstract
In cattle, clinical and subclinical inflammation in the bovine female reproductive tract (FRT) significantly reduces fertility. PMN participate in this FRT-associated inflammation by eliminating pathogens by eliciting various defense mechanisms, with the release of neutrophil extracellular traps NETs) being the latest process discovered. Consistently, human-, bovine- and porcine-derived spermatozoa induce release of NETs in exposed PMN of the same species origin, and thereby decreasing sperm motility through NETs-mediated entrapment. The release of NETs in the presence of different sperm sub-populations is evaluated in this work. Cryopreserved bovine sperm were selected and different sperm populations were used: viable sperm, sperm with oxidative stress, capacitated sperm, and sperm with loss of viability. Isolated PMN of dairy cows were co-incubated with these sperm populations for 4 h. Neutrophil elastase (NE) and DNA were detected by fluorescence microscopy analysis. It was noted that exposed bovine PMN released NETs in the presence of sperm. Moreover, sperm-triggered NETosis resulted different phenotypes of NETs, i. e. spread NETs (sprNETs), diffused NETs (diffNETs) and aggregated NETs (aggNETs). Viable/motile spermatozoa induced a higher proportion of NETotic cells at 15, 60 and 120 min in comparison to controls. In conclusion, all bovine sperm populations in co-culture with PMN generated NETs extrusion while viable sperm activated NETotic cells to a greater extent. With this being an early event in the activation of bovine PMN.
Collapse
Affiliation(s)
- Rodrigo Rivera-Concha
- Center of Excellence in Translational Medicine-Scientific and Technological Bioresource Nucleus (CEMT-BIOREN), Faculty of Medicine, Universidad de La Frontera, Temuco 4780000, Chile; Ph.D. Program in Medical Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco 4780000, Chile.
| | - Claudia Moya
- Center of Excellence in Translational Medicine-Scientific and Technological Bioresource Nucleus (CEMT-BIOREN), Faculty of Medicine, Universidad de La Frontera, Temuco 4780000, Chile.
| | - Marion León
- Center of Excellence in Translational Medicine-Scientific and Technological Bioresource Nucleus (CEMT-BIOREN), Faculty of Medicine, Universidad de La Frontera, Temuco 4780000, Chile.
| | - Pamela Uribe
- Center of Excellence in Translational Medicine-Scientific and Technological Bioresource Nucleus (CEMT-BIOREN), Faculty of Medicine, Universidad de La Frontera, Temuco 4780000, Chile; Department of Internal Medicine, Faculty of Medicine, Universidad de La Frontera, Temuco 4780000, Chile.
| | - Mabel Schulz
- Center of Excellence in Translational Medicine-Scientific and Technological Bioresource Nucleus (CEMT-BIOREN), Faculty of Medicine, Universidad de La Frontera, Temuco 4780000, Chile; Department of Preclinical Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco 4780000, Chile.
| | - Aurora Prado
- Center of Excellence in Translational Medicine-Scientific and Technological Bioresource Nucleus (CEMT-BIOREN), Faculty of Medicine, Universidad de La Frontera, Temuco 4780000, Chile.
| | - Anja Taubert
- Institute of Parasitology, Justus Liebig University Giessen, 35392 Giessen, Germany.
| | - Carlos Hermosilla
- Institute of Parasitology, Justus Liebig University Giessen, 35392 Giessen, Germany.
| | - Raúl Sánchez
- Center of Excellence in Translational Medicine-Scientific and Technological Bioresource Nucleus (CEMT-BIOREN), Faculty of Medicine, Universidad de La Frontera, Temuco 4780000, Chile; Department of Preclinical Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco 4780000, Chile.
| | - Fabiola Zambrano
- Center of Excellence in Translational Medicine-Scientific and Technological Bioresource Nucleus (CEMT-BIOREN), Faculty of Medicine, Universidad de La Frontera, Temuco 4780000, Chile; Department of Preclinical Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco 4780000, Chile.
| |
Collapse
|
7
|
Allard-Chamard H, Kaneko N, Bertocchi A, Sun N, Boucau J, Kuo HH, Farmer JR, Perugino C, Mahajan VS, Murphy SJH, Premo K, Diefenbach T, Ghebremichael M, Yuen G, Kotta A, Akman Z, Lichterfeld M, Walker BD, Yu XG, Moriyama M, Maehara T, Nakamura S, Stone JH, Padera RF, Pillai S. Extrafollicular IgD -CD27 -CXCR5 -CD11c - DN3 B cells infiltrate inflamed tissues in autoimmune fibrosis and in severe COVID-19. Cell Rep 2023; 42:112630. [PMID: 37300833 PMCID: PMC10227203 DOI: 10.1016/j.celrep.2023.112630] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 04/30/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
Although therapeutic B cell depletion dramatically resolves inflammation in many diseases in which antibodies appear not to play a central role, distinct extrafollicular pathogenic B cell subsets that accumulate in disease lesions have hitherto not been identified. The circulating immunoglobulin D (IgD)-CD27-CXCR5-CD11c+ DN2 B cell subset has been previously studied in some autoimmune diseases. A distinct IgD-CD27-CXCR5-CD11c- DN3 B cell subset accumulates in the blood both in IgG4-related disease, an autoimmune disease in which inflammation and fibrosis can be reversed by B cell depletion, and in severe COVID-19. These DN3 B cells prominently accumulate in the end organs of IgG4-related disease and in lung lesions in COVID-19, and double-negative B cells prominently cluster with CD4+ T cells in these lesions. Extrafollicular DN3 B cells may participate in tissue inflammation and fibrosis in autoimmune fibrotic diseases, as well as in COVID-19.
Collapse
Affiliation(s)
- Hugues Allard-Chamard
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA; Division of Rheumatology, Faculté de médecine et des sciences de la santé de l'Université de Sherbrooke et Centre de Recherche Clinique Étienne-Le Bel, Sherbrooke, QC J1K 2R1, Canada
| | - Naoki Kaneko
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA; Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Alice Bertocchi
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Na Sun
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Julie Boucau
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Hsiao-Hsuan Kuo
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Jocelyn R Farmer
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Cory Perugino
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA; Division of Rheumatology Allergy and Immunology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Vinay S Mahajan
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA; Department of Pathology, Brigham and Women's Hospital, Boston, MA 02115, USA
| | | | - Katherine Premo
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | | | | | - Grace Yuen
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Alekhya Kotta
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Zafer Akman
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Mathias Lichterfeld
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA; Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Bruce D Walker
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA; Department of Biology and Institute of Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Xu G Yu
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Masafumi Moriyama
- Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Takashi Maehara
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA; Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Seiji Nakamura
- Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - John H Stone
- Division of Rheumatology Allergy and Immunology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Robert F Padera
- Department of Pathology, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Shiv Pillai
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA.
| |
Collapse
|
8
|
André O, Kumra Ahnlide J, Norlin N, Swaminathan V, Nordenfelt P. Data-driven microscopy allows for automated context-specific acquisition of high-fidelity image data. CELL REPORTS METHODS 2023; 3:100419. [PMID: 37056378 PMCID: PMC10088093 DOI: 10.1016/j.crmeth.2023.100419] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 12/20/2022] [Accepted: 02/10/2023] [Indexed: 04/15/2023]
Abstract
Light microscopy is a powerful single-cell technique that allows for quantitative spatial information at subcellular resolution. However, unlike flow cytometry and single-cell sequencing techniques, microscopy has issues achieving high-quality population-wide sample characterization while maintaining high resolution. Here, we present a general framework, data-driven microscopy (DDM) that uses real-time population-wide object characterization to enable data-driven high-fidelity imaging of relevant phenotypes based on the population context. DDM combines data-independent and data-dependent steps to synergistically enhance data acquired using different imaging modalities. As a proof of concept, we develop and apply DDM with plugins for improved high-content screening and live adaptive microscopy for cell migration and infection studies that capture events of interest, rare or common, with high precision and resolution. We propose that DDM can reduce human bias, increase reproducibility, and place single-cell characteristics in the context of the sample population when interpreting microscopy data, leading to an increase in overall data fidelity.
Collapse
Affiliation(s)
- Oscar André
- Department of Clinical Sciences, Faculty of Medicine, Lund University, Lund, Sweden
| | | | - Nils Norlin
- Department of Experimental Medical Science, Lund University, Lund, Sweden
- Lund University Bioimaging Centre, Lund, Sweden
| | - Vinay Swaminathan
- Department of Clinical Sciences, Wallenberg Centre for Molecular Medicine, Division of Oncology, Lund University, Lund, Sweden
| | - Pontus Nordenfelt
- Department of Clinical Sciences, Faculty of Medicine, Lund University, Lund, Sweden
| |
Collapse
|
9
|
Gao Y, Xiao J, Chen Z, Ma Y, Liu X, Yang D, Leo HL, Yu H, Kong J, Guo Q. Engineering orthotopic tumor spheroids with organ-specific vasculatures for local chemoembolization evaluation. Biomater Sci 2023; 11:2115-2128. [PMID: 36723179 DOI: 10.1039/d2bm01632j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Developing a three-dimensional (3D) in vitro tumor model with vasculature systems suitable for testing endovascular interventional therapies remains a challenge. Here we develop an orthotopic liver tumor spheroid model that captures the organ-level complexity of vasculature systems and the extracellular matrix to evaluate transcatheter arterial chemoembolization (TACE) treatment. The orthotopic tumor spheroids are derived by seeding HepG2 cell colonies with controlled size and location surrounding the portal triads in a decellularized rat liver matrix and are treated by clinically relevant drug-eluting beads embolized in a portal vein vasculature while maintaining dynamic physiological conditions with nutrient and oxygen supplies through the hepatic vein vasculature. The orthotopic tumor model exhibits strong drug retention inside the spheroids and embolization location-dependent cellular apoptosis responses in an analogous manner to in vivo conditions. Such a tumor spheroid model built in a decellularized scaffold containing organ-specific vasculatures, which closely resembles the unique tumor microenvironment, holds the promise to efficiently assess various diagnostic and therapeutic strategies for endovascular therapies.
Collapse
Affiliation(s)
- Yanan Gao
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China.
| | - Jingyu Xiao
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China.
| | - Zijian Chen
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China. .,Department of Biomedical Engineering, National University of Singapore, Singapore, 117583, Singapore
| | - Yutao Ma
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China.
| | - Xiaoya Liu
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China.
| | - Dishuang Yang
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China.
| | - Hwa Liang Leo
- Department of Biomedical Engineering, National University of Singapore, Singapore, 117583, Singapore
| | - Hanry Yu
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore.,Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore.,Institute of Bioengineering and Nanotechnology, Agency for Science, Technology and Research, Singapore 138669, Singapore.,Singapore-MIT Alliance for Research and Technology, Singapore 138602, Singapore
| | - Jian Kong
- Department of Interventional Radiology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, 518020, China.
| | - Qiongyu Guo
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China.
| |
Collapse
|
10
|
Gazinska P, Milton C, Iacovacci J, Ward J, Buus R, Alaguthurai T, Graham R, Akarca A, Lips E, Naidoo K, Wesseling J, Marafioti T, Cheang M, Gillett C, Wu Y, Khan A, Melcher A, Salgado R, Dowsett M, Tutt A, Roxanis I, Haider S, Irshad S. Dynamic Changes in the NK-, Neutrophil-, and B-cell Immunophenotypes Relevant in High Metastatic Risk Post Neoadjuvant Chemotherapy-Resistant Early Breast Cancers. Clin Cancer Res 2022; 28:4494-4508. [PMID: 36161312 PMCID: PMC9561554 DOI: 10.1158/1078-0432.ccr-22-0543] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 05/12/2022] [Accepted: 08/12/2022] [Indexed: 01/07/2023]
Abstract
PURPOSE To identify potential immune targets in post-neoadjuvant chemotherapy (NAC)-resistant triple-negative breast cancer (TNBC) and ER+HER2- breast cancer disease. EXPERIMENTAL DESIGN Following pathology review, 153 patients were identified as having residual cancer burden (RCB) II/III disease (TNBC n = 80; ER+HER2-n = 73). Baseline pre-NAC samples were available for evaluation for 32 of 80 TNBC and 36 of 73 ER+HER2- cases. Bright-field hematoxylin and eosin assessment allowed for tumor-infiltrating lymphocyte (TIL) evaluation in all cases. Multiplexed immunofluorescence was used to identify the abundance and distribution of immune cell subsets. Levels of checkpoints including PD-1/PD-L1 expression were also quantified. Findings were then validated using expression profiling of cancer and immune-related genes. Cytometry by time-of-flight characterized the dynamic changes in circulating immune cells with NAC. RESULTS RCB II/III TNBC and ER+HER2- breast cancer were immunologically "cold" at baseline and end of NAC. Although the distribution of immune cell subsets across subtypes was similar, the mRNA expression profiles were both subtype- and chemotherapy-specific. TNBC RCB II/III disease was enriched with genes related to neutrophil degranulation, and displayed strong interplay across immune and cancer pathways. We observed similarities in the dynamic changes in B-cell biology following NAC irrespective of subtype. However, NAC induced changes in the local and circulating tumor immune microenvironment (TIME) that varied by subtype and response. Specifically, in TNBC residual disease, we observed downregulation of stimulatory (CD40/OX40L) and inhibitory (PD-L1/PD-1) receptor expression and an increase in NK cell populations (especially non-cytolytic, exhausted CD56dimCD16-) within both the local TIME and peripheral white cell populations. CONCLUSIONS This study identifies several potential immunologic pathways in residual disease, which may be targeted to benefit high-risk patients.
Collapse
Affiliation(s)
- Patrycja Gazinska
- Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
| | - Charlotte Milton
- School of Cancer and Pharmaceutical Sciences, King's College London, UK
| | - Jacopo Iacovacci
- Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
| | - Joseph Ward
- Targeted Therapy Team, The Institute of Cancer Research, Chester Beatty Laboratories, London, UK
| | - Richard Buus
- Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
| | - Thanussuyah Alaguthurai
- Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
- Breast Cancer Now Research Unit, King's College London, London, UK
| | - Rosalind Graham
- School of Cancer and Pharmaceutical Sciences, King's College London, UK
| | - Ayse Akarca
- Department of Cellular Pathology, University College London, London, UK
| | - Esther Lips
- Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Kalnisha Naidoo
- Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
| | - Jelle Wesseling
- Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
- Department of Pathology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | | | - Maggie Cheang
- Clinical Trials and Statistics Unit, The Institute of Cancer Research, London, UK
| | - Cheryl Gillett
- Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
| | - Yin Wu
- School of Cancer and Pharmaceutical Sciences, King's College London, UK
| | - Aadil Khan
- Targeted Therapy Team, The Institute of Cancer Research, Chester Beatty Laboratories, London, UK
| | - Alan Melcher
- Division of Radiotherapy and Imaging, Institute of Cancer Research, London, UK
| | - Roberto Salgado
- Division of Research, Peter MacCallum Cancer Centre, Melbourne, Australia; Department of Pathology, GZA-ZNA Hospitals, Antwerp, Belgium
| | - Mitch Dowsett
- Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
- Ralph Lauren Centre for Breast Cancer Research, Royal Marsden Hospital NHS Foundation Trust, London, UK
| | - Andrew Tutt
- Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
- Breast Cancer Now Research Unit, King's College London, London, UK
- Oncology and Haematology Directorate, Guy's and St Thomas’ NHS Foundation Trust, London, UK
| | - Ioannis Roxanis
- Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
| | - Syed Haider
- Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
| | - Sheeba Irshad
- School of Cancer and Pharmaceutical Sciences, King's College London, UK
- Breast Cancer Now Research Unit, King's College London, London, UK
- Oncology and Haematology Directorate, Guy's and St Thomas’ NHS Foundation Trust, London, UK
- Cancer Research UK (CRUK) Clinician Scientist, London, UK
| |
Collapse
|
11
|
Cytotoxic CD8 + T cells may be drivers of tissue destruction in Sjögren's syndrome. Sci Rep 2022; 12:15427. [PMID: 36104369 PMCID: PMC9475031 DOI: 10.1038/s41598-022-19397-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 08/29/2022] [Indexed: 01/14/2023] Open
Abstract
Sjögren's syndrome is a chronic autoimmune disorder whose pathogenesis is poorly understood and that lacks effective therapies. Detailed quantitative and spatial analyses of tissues affected by Sjögren's syndrome were undertaken, including the quantitation of the frequency of selected cell-cell interactions in the disease milieu. Quantitative analyses of CD4+ T cell subsets and of CD8+ T cells in the labial salivary glands from untreated patients with primary Sjögren's syndrome revealed that activated CD8+ cytotoxic T cells (CD8+CTLs) were the most prominent T cells in these infiltrates. An accumulation of apoptotic glandular epithelial cells, mainly ductal and acinar cells, was observed, consistent with the impaired salivary secretion often observed in patients with this disease. FasL expressing activated CD8+ T cells were seen to accumulate around Fas expressing apoptotic epithelial cells. Quantitative analyses of apoptotic cell types and of conjugates between cytotoxic T cells and epithelial cells undergoing apoptosis suggest that Sjögren's syndrome is primarily driven by CD8+CTL mediated execution of epithelial cells mainly represented by ductal and acinar cells.
Collapse
|
12
|
Wang Z, Zhu T, Simpson DJ, Gänzle MG. Supercharged MPNs? Automated Determination of High-Throughput Most Probable Number (htMPN) Using Chip-Based 3D Digital PCR. Appl Environ Microbiol 2022; 88:e0082222. [PMID: 35856687 PMCID: PMC9361819 DOI: 10.1128/aem.00822-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 07/10/2022] [Indexed: 01/22/2023] Open
Abstract
Surface plating on agar and most probable number (MPN) are the standard methods for determining bacterial viability but both have limitations. Here we present a novel cell count method, high-throughput MPN (htMPN), that uses a chip-based digital PCR instrument to accelerate and to improve the quantification of viable or sublethally injured cells. This method tracks growth of up to 20,000 individual bacterial cells on a single chip. Single cells were grown in the individual wells of the chip at their optimal temperature until the cell density was high enough to detect the fluorescent signal with cell-permeant or cell-impermeant DNA-intercalating fluorescent dyes. This method based on microfluidic devices implemented in digital PCR equipment was equivalent to surface plating in determining cell counts of Escherichia coli, Salmonella enterica serovar Typhimurium, Fructilactobacillus sanfranciscensis, Pseudomonas putida, and vegetative cells but not spores of Bacillus subtilis. Viable E. coli could be enumerated within 7 h. Culture of strict aerobes was restricted to strains that are capable of nitrate respiration; organisms requiring complex media that also contain double-stranded DNA were detected after treatment of growth media with DNase before inoculation. Our approach not only monitors the frequency distribution of bacterial growth and determines cell counts with high reliability but also detected heat-injured cells of S. Typhimurium that escaped detection by the surface plating. Overall, the method accelerates detection of viable bacterial cells, facilitates automation, and offers new possibilities for the analysis of individual bacterial cells. IMPORTANCE htMPN uses chip-based fluorescence acquisition and is a simple and compact tool for automatic viable cell enumeration with applications in microbiological research. This method applies to a wide range of anaerobic or facultative anaerobic species and improves accuracy by reducing the number of pipetting steps. In addition, the method offers an additional tool for single-cell microbiology. The single cell time-to-detection times have been used as an important criterion for the physiological state of bacterial cells after sublethal stress, and htMPNs support the acquisition of such data with an unprecedented number of cells. In particular, htMPN provides an anaerobic environment and enables a long incubation time to increase the recovery rate of sublethally injured cells. Given its reproducibility and reliability, our approach can potentially be applied to quantify viable cells in samples from environmental, clinical, or food samples to reduce the risk of underestimation of the number of viable bacterial cells.
Collapse
Affiliation(s)
- Zhiying Wang
- University of Alberta, Department of Agricultural, Food and Nutritional Science, Edmonton, Alberta, Canada
| | - Tongbo Zhu
- University of Alberta, Department of Agricultural, Food and Nutritional Science, Edmonton, Alberta, Canada
| | - David J. Simpson
- University of Alberta, Department of Agricultural, Food and Nutritional Science, Edmonton, Alberta, Canada
| | - Michael G. Gänzle
- University of Alberta, Department of Agricultural, Food and Nutritional Science, Edmonton, Alberta, Canada
| |
Collapse
|
13
|
Narzt MS, Kremslehner C, Golabi B, Nagelreiter IM, Malikovic J, Hussein AM, Plasenzotti R, Korz V, Lubec G, Gruber F, Lubec J. Molecular species of oxidized phospholipids in brain differentiate between learning- and memory impaired and unimpaired aged rats. Amino Acids 2022; 54:1311-1326. [PMID: 35817992 PMCID: PMC9372013 DOI: 10.1007/s00726-022-03183-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 06/17/2022] [Indexed: 02/08/2023]
Abstract
Loss of cognitive function is a typical consequence of aging in humans and rodents. The extent of decline in spatial memory performance of rats, assessed by a hole-board test, reaches from unimpaired and comparable to young individuals to severely memory impaired. Recently, proteomics identified peroxiredoxin 6, an enzyme important for detoxification of oxidized phospholipids, as one of several synaptosomal proteins discriminating between aged impaired and aged unimpaired rats. In this study, we investigated several components of the epilipidome (modifications of phospholipids) of the prefrontal cortex of young, aged memory impaired (AI) and aged unimpaired (AU) rats. We observed an age-related increase in phospholipid hydroperoxides and products of phospholipid peroxidation, including reactive aldehydophospholipids. This increase went in hand with cortical lipofuscin autofluorescence. The memory impairment, however, was paralleled by additional specific changes in the aged rat brain epilipidome. There was a profound increase in phosphocholine hydroxides, and a significant decrease in phosphocholine-esterified azelaic acid. As phospholipid-esterified fatty acid hydroxides, and especially those deriving from arachidonic acid are both markers and effectors of inflammation, the findings suggest that in addition to age-related reactive oxygen species (ROS) accumulation, age-related impairment of spatial memory performance has an additional and distinct (neuro-) inflammatory component.
Collapse
Affiliation(s)
- Marie-Sophie Narzt
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Center, Linz/Vienna, Austria
| | | | - Bahar Golabi
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Ionela-Mariana Nagelreiter
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
- Center for Brain Research, Department of Molecular Neurosciences, Medical University of Vienna, Vienna, Austria
| | - Jovana Malikovic
- Department of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Ahmed M Hussein
- Department of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, Vienna, Austria
- Programme for Proteomics, Paracelsus Private Medical University, Salzburg, Austria
- Department of Zoology, Faculty of Science, Al-Azhar University, Assiut, Egypt
| | - Roberto Plasenzotti
- Center for Biomedical Research, Division of Laboratory Animal Science and Genetics, Medical University of Vienna, Himberg, Austria
| | - Volker Korz
- Programme for Proteomics, Paracelsus Private Medical University, Salzburg, Austria
| | - Gert Lubec
- Programme for Proteomics, Paracelsus Private Medical University, Salzburg, Austria
| | - Florian Gruber
- Department of Dermatology, Medical University of Vienna, Vienna, Austria.
| | - Jana Lubec
- Programme for Proteomics, Paracelsus Private Medical University, Salzburg, Austria.
| |
Collapse
|
14
|
Munemura R, Maehara T, Murakami Y, Koga R, Aoyagi R, Kaneko N, Doi A, Perugino CA, Della-Torre E, Saeki T, Sato Y, Yamamoto H, Kiyoshima T, Stone JH, Pillai S, Nakamura S. Distinct disease-specific Tfh cell populations in two different fibrotic diseases: IgG4-related disease and Kimura's disease. J Allergy Clin Immunol 2022; 150:440-455.e17. [PMID: 35568079 PMCID: PMC10369367 DOI: 10.1016/j.jaci.2022.03.034] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 03/01/2022] [Accepted: 03/21/2022] [Indexed: 11/18/2022]
Abstract
BACKGROUND How T follicular (Tfh) cells contribute to many different B-cell class-switching events during T cell-dependent immune responses has been unclear. Diseases with polarized isotype switching offer a unique opportunity for the exploration of Tfh subsets. Secondary and tertiary lymphoid organs (SLOs and TLOs) in patients with elevated tissue expression levels of IgE (Kimura's disease, KD) and those of IgG4 (IgG4-related disease, IgG4-RD) can provide important insights regarding cytokine expression by Tfh cells. OBJECTIVE To identify disease-specific Tfh cell subsets in SLOs and TLOs expressing IL-10 or IL-13 and thus identify different cellular drivers of class switching in two distinct types of fibrotic disorders: allergic fibrosis (driven by type 2 immune cells) and inflammatory fibrosis (driven by cytotoxic T lymphocytes). METHODS Single-cell RNA-sequencing, in situ sequencing, and multi-color immunofluorescence analysis was used to investigate B cells, Tfh cells and infiltrating type 2 cells in lesion tissues from patients with KD or IgG4-RD. RESULTS Infiltrating Tfh cells in TLOs from IgG4-RD were divided into six main clusters. We encountered abundant infiltrating IL-10-expressing LAG3+ Tfh cells in patients with IgG4-RD. Furthermore, we found that infiltrating AID+CD19+B cells expressing IL-4, IL-10, and IL-21 receptors correlated with IgG4 expression. In contrast, we found that infiltrating IL-13-expressing Tfh cells were abundant in affected tissues from patients with KD. Moreover, we observed few infiltrating IL-13-expressing Tfh cells in tissues from patients with IgG4-RD, despite high serum levels of IgE (but low IgE in the disease lesions). Cytotoxic T cells were abundant in IgG4-RD, and in contrast Type 2 immune cells were abundant in KD. CONCLUSIONS This single-cell dataset revealed a novel subset of IL10+LAG3+Tfh cells infiltrating the affected organs of IgG4-RD patients. In contrast, IL13+Tfh cells and type 2 immune cells infiltrated those of KD patients.
Collapse
Affiliation(s)
- Ryusuke Munemura
- Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Takashi Maehara
- Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, Fukuoka, Japan; Dento-craniofacial Development and Regeneration Research Center, Faculty of Dental Science, Kyushu University, Fukuoka, Japan.
| | - Yuka Murakami
- Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Risako Koga
- Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Ryuichi Aoyagi
- Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Naoki Kaneko
- Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | | | - Cory A Perugino
- Division of Rheumatology, Allergy, and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, Mass; Ragon Institute of MGH, MIT, and Harvard, Massachusetts General Hospital, Harvard Medical School, Boston, Mass
| | - Emanuel Della-Torre
- Unit of Immunology, Rheumatology, Allergy, and Rare Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Takako Saeki
- Department of Internal Medicine, Nagaoka Red Cross Hospital, Nagaoka, Japan
| | - Yasuharu Sato
- Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Hidetaka Yamamoto
- Division of Diagnostic Pathology, Kyushu University Hospital, Fukuoka, Japan
| | - Tamotsu Kiyoshima
- Laboratory of Oral Pathology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - John H Stone
- Division of Rheumatology, Allergy, and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, Mass
| | - Shiv Pillai
- Ragon Institute of MGH, MIT, and Harvard, Massachusetts General Hospital, Harvard Medical School, Boston, Mass
| | - Seiji Nakamura
- Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| |
Collapse
|
15
|
Kaneko N, Boucau J, Kuo HH, Perugino C, Mahajan VS, Farmer JR, Liu H, Diefenbach TJ, Piechocka-Trocha A, Lefteri K, Waring MT, Premo KR, Walker BD, Li JZ, Gaiha G, Yu XG, Lichterfeld M, Padera RF, Pillai S. Temporal changes in T cell subsets and expansion of cytotoxic CD4+ T cells in the lungs in severe COVID-19. Clin Immunol 2022; 237:108991. [PMID: 35364330 PMCID: PMC8961941 DOI: 10.1016/j.clim.2022.108991] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 03/25/2022] [Indexed: 01/08/2023]
Abstract
Many studies have been performed in severe COVID-19 on immune cells in the circulation and on cells obtained by bronchoalveolar lavage. Most studies have tended to provide relative information rather than a quantitative view, and it is a combination of approaches by various groups that is helping the field build a picture of the mechanisms that drive severe lung disease. Approaches employed to date have not revealed information on lung parenchymal T cell subsets in severe COVID-19. Therefore, we sought to examine early and late T cell subset alterations in the lungs and draining lymph nodes in severe COVID-19 using a rapid autopsy protocol and quantitative imaging approaches. Here, we have established that cytotoxic CD4+ T cells (CD4 + CTLs) increase in the lungs, draining lymph nodes and blood as COVID-19 progresses. CD4 + CTLs are prominently expanded in the lung parenchyma in severe COVID-19. In contrast CD8+ T cells are not prominent, exhibit increased PD-1 expression, and no obvious increase is seen in the number of Granzyme B+ CD8+ T cells in the lung parenchyma in severe COVID-19. Based on quantitative evidence for re-activation in the lung milieu, CD4 + CTLs may be as likely to drive viral clearance as CD8+ T cells and may also be contributors to lung inflammation and eventually to fibrosis in severe COVID-19.
Collapse
Affiliation(s)
- Naoki Kaneko
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA; Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Julie Boucau
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Hsiao-Hsuan Kuo
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Cory Perugino
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA; Division of Rheumatology Allergy and Immunology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Vinay S Mahajan
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA; Department of Pathology, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Jocelyn R Farmer
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA; Division of Rheumatology Allergy and Immunology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Hang Liu
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | | | - Alicja Piechocka-Trocha
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, Chevy Chase, MD, 20815, USA
| | - Kristina Lefteri
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Michael T Waring
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | | | - Bruce D Walker
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, Chevy Chase, MD, 20815, USA; Department of Biology and Institute of Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jonathan Z Li
- Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Gaurav Gaiha
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA; Gastrointestinal Unit, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Xu G Yu
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Mathias Lichterfeld
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA; Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Robert F Padera
- Department of Pathology, Brigham and Women's Hospital, Boston, MA 02115, USA.
| | - Shiv Pillai
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA.
| |
Collapse
|
16
|
Winfree S, Al Hasan M, El-Achkar TM. Profiling Immune Cells in the Kidney Using Tissue Cytometry and Machine Learning. KIDNEY360 2022; 3:968-978. [PMID: 36128490 PMCID: PMC9438423 DOI: 10.34067/kid.0006802020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 02/09/2021] [Indexed: 01/10/2023]
Abstract
The immune system governs key functions that maintain renal homeostasis through various effector cells that reside in or infiltrate the kidney. These immune cells play an important role in shaping adaptive or maladaptive responses to local or systemic stress and injury. We increasingly recognize that microenvironments within the kidney are characterized by a unique distribution of immune cells, the function of which depends on this unique spatial localization. Therefore, quantitative profiling of immune cells in intact kidney tissue becomes essential, particularly at a scale and resolution that allow the detection of differences between the various "nephro-ecosystems" in health and disease. In this review, we discuss advancements in tissue cytometry of the kidney, performed through multiplexed confocal imaging and analysis using the Volumetric Tissue Exploration and Analysis (VTEA) software. We highlight how this tool has improved our understanding of the role of the immune system in the kidney and its relevance in the pathobiology of renal disease. We also discuss how the field is increasingly incorporating machine learning to enhance the analytic potential of imaging data and provide unbiased methods to explore and visualize multidimensional data. Such novel analytic methods could be particularly relevant when applied to profiling immune cells. Furthermore, machine-learning approaches applied to cytometry could present venues for nonexhaustive exploration and classification of cells from existing data and improving tissue economy. Therefore, tissue cytometry is transforming what used to be a qualitative assessment of the kidney into a highly quantitative, imaging-based "omics" assessment that complements other advanced molecular interrogation technologies.
Collapse
Affiliation(s)
- Seth Winfree
- Division of Nephrology, Department of Medicine, Indiana University, Indianapolis, Indiana
| | - Mohammad Al Hasan
- Department of Computer Science, Indiana University–Purdue University, Indianapolis, Indiana
| | - Tarek M. El-Achkar
- Division of Nephrology, Department of Medicine, Indiana University, Indianapolis, Indiana,Indianapolis Veterans Affairs Medical Center, Indianapolis, Indiana,Correspondence: Dr. Tarek M. El-Achkar (Ashkar), Division of Nephrology, Department of Medicine, Indiana University, 950 W Walnut St., R2-202, Indianapolis, IN 46202.
| |
Collapse
|
17
|
Scherthan H, Wagner SQ, Grundhöfer J, Matejka N, Müller J, Müller S, Rudigkeit S, Sammer M, Schoof S, Port M, Reindl J. Planar Proton Minibeam Irradiation Elicits Spatially Confined DNA Damage in a Human Epidermis Model. Cancers (Basel) 2022; 14:cancers14061545. [PMID: 35326696 PMCID: PMC8946044 DOI: 10.3390/cancers14061545] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/10/2022] [Accepted: 03/14/2022] [Indexed: 12/12/2022] Open
Abstract
Purpose: High doses of ionizing radiation in radiotherapy can elicit undesirable side effects to the skin. Proton minibeam radiotherapy (pMBRT) may circumvent such limitations due to tissue-sparing effects observed at the macro scale. Here, we mapped DNA damage dynamics in a 3D tissue context at the sub-cellular level. Methods: Epidermis models were irradiated with planar proton minibeams of 66 µm, 408 µm and 920 µm widths and inter-beam-distances of 2.5 mm at an average dose of 2 Gy using the scanning-ion-microscope SNAKE in Garching, GER. γ-H2AX + 53BP1 and cleaved-caspase-3 immunostaining revealed dsDNA damage and cell death, respectively, in time courses from 0.5 to 72 h after irradiation. Results: Focused 66 µm pMBRT induced sharply localized severe DNA damage (pan-γ-H2AX) in cells at the dose peaks, while damage in the dose valleys was similar to sham control. pMBRT with 408 µm and 920 µm minibeams induced DSB foci in all cells. At 72 h after irradiation, DNA damage had reached sham levels, indicating successful DNA repair. Increased frequencies of active-caspase-3 and pan-γ-H2AX-positive cells revealed incipient cell death at late time points. Conclusions: The spatially confined distribution of DNA damage appears to underlie the tissue-sparing effect after focused pMBRT. Thus, pMBRT may be the method of choice in radiotherapy to reduce side effects to the skin.
Collapse
Affiliation(s)
- Harry Scherthan
- Institut für Radiobiologie der Bundeswehr in Verb. mit der Universität Ulm, Neuherbergstr. 11, 80937 München, Germany; (S.-Q.W.); (J.M.); (S.M.); (S.S.); (M.P.)
- Correspondence: (H.S.); (J.R.)
| | - Stephanie-Quinta Wagner
- Institut für Radiobiologie der Bundeswehr in Verb. mit der Universität Ulm, Neuherbergstr. 11, 80937 München, Germany; (S.-Q.W.); (J.M.); (S.M.); (S.S.); (M.P.)
| | - Jan Grundhöfer
- Angewandte Physik und Messtechnik, Universität der Bundeswehr München, Werner-Heisenberg-Weg 39, 85577 Neubiberg, Germany; (N.M.); (J.G.); (S.R.); (M.S.)
| | - Nicole Matejka
- Angewandte Physik und Messtechnik, Universität der Bundeswehr München, Werner-Heisenberg-Weg 39, 85577 Neubiberg, Germany; (N.M.); (J.G.); (S.R.); (M.S.)
| | - Jessica Müller
- Institut für Radiobiologie der Bundeswehr in Verb. mit der Universität Ulm, Neuherbergstr. 11, 80937 München, Germany; (S.-Q.W.); (J.M.); (S.M.); (S.S.); (M.P.)
| | - Steffen Müller
- Institut für Radiobiologie der Bundeswehr in Verb. mit der Universität Ulm, Neuherbergstr. 11, 80937 München, Germany; (S.-Q.W.); (J.M.); (S.M.); (S.S.); (M.P.)
| | - Sarah Rudigkeit
- Angewandte Physik und Messtechnik, Universität der Bundeswehr München, Werner-Heisenberg-Weg 39, 85577 Neubiberg, Germany; (N.M.); (J.G.); (S.R.); (M.S.)
| | - Matthias Sammer
- Angewandte Physik und Messtechnik, Universität der Bundeswehr München, Werner-Heisenberg-Weg 39, 85577 Neubiberg, Germany; (N.M.); (J.G.); (S.R.); (M.S.)
| | - Sarah Schoof
- Institut für Radiobiologie der Bundeswehr in Verb. mit der Universität Ulm, Neuherbergstr. 11, 80937 München, Germany; (S.-Q.W.); (J.M.); (S.M.); (S.S.); (M.P.)
| | - Matthias Port
- Institut für Radiobiologie der Bundeswehr in Verb. mit der Universität Ulm, Neuherbergstr. 11, 80937 München, Germany; (S.-Q.W.); (J.M.); (S.M.); (S.S.); (M.P.)
| | - Judith Reindl
- Angewandte Physik und Messtechnik, Universität der Bundeswehr München, Werner-Heisenberg-Weg 39, 85577 Neubiberg, Germany; (N.M.); (J.G.); (S.R.); (M.S.)
- Correspondence: (H.S.); (J.R.)
| |
Collapse
|
18
|
Wharton KA, Wood D, Manesse M, Maclean KH, Leiss F, Zuraw A. Tissue Multiplex Analyte Detection in Anatomic Pathology - Pathways to Clinical Implementation. Front Mol Biosci 2021; 8:672531. [PMID: 34386519 PMCID: PMC8353449 DOI: 10.3389/fmolb.2021.672531] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 07/14/2021] [Indexed: 12/12/2022] Open
Abstract
Background: Multiplex tissue analysis has revolutionized our understanding of the tumor microenvironment (TME) with implications for biomarker development and diagnostic testing. Multiplex labeling is used for specific clinical situations, but there remain barriers to expanded use in anatomic pathology practice. Methods: We review immunohistochemistry (IHC) and related assays used to localize molecules in tissues, with reference to United States regulatory and practice landscapes. We review multiplex methods and strategies used in clinical diagnosis and in research, particularly in immuno-oncology. Within the framework of assay design and testing phases, we examine the suitability of multiplex immunofluorescence (mIF) for clinical diagnostic workflows, considering its advantages and challenges to implementation. Results: Multiplex labeling is poised to radically transform pathologic diagnosis because it can answer questions about tissue-level biology and single-cell phenotypes that cannot be addressed with traditional IHC biomarker panels. Widespread implementation will require improved detection chemistry, illustrated by InSituPlex technology (Ultivue, Inc., Cambridge, MA) that allows coregistration of hematoxylin and eosin (H&E) and mIF images, greater standardization and interoperability of workflow and data pipelines to facilitate consistent interpretation by pathologists, and integration of multichannel images into digital pathology whole slide imaging (WSI) systems, including interpretation aided by artificial intelligence (AI). Adoption will also be facilitated by evidence that justifies incorporation into clinical practice, an ability to navigate regulatory pathways, and adequate health care budgets and reimbursement. We expand the brightfield WSI system “pixel pathway” concept to multiplex workflows, suggesting that adoption might be accelerated by data standardization centered on cell phenotypes defined by coexpression of multiple molecules. Conclusion: Multiplex labeling has the potential to complement next generation sequencing in cancer diagnosis by allowing pathologists to visualize and understand every cell in a tissue biopsy slide. Until mIF reagents, digital pathology systems including fluorescence scanners, and data pipelines are standardized, we propose that diagnostic labs will play a crucial role in driving adoption of multiplex tissue diagnostics by using retrospective data from tissue collections as a foundation for laboratory-developed test (LDT) implementation and use in prospective trials as companion diagnostics (CDx).
Collapse
|
19
|
Mungenast F, Fernando A, Nica R, Boghiu B, Lungu B, Batra J, Ecker RC. Next-Generation Digital Histopathology of the Tumor Microenvironment. Genes (Basel) 2021; 12:538. [PMID: 33917241 PMCID: PMC8068063 DOI: 10.3390/genes12040538] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 03/30/2021] [Accepted: 04/01/2021] [Indexed: 12/11/2022] Open
Abstract
Progress in cancer research is substantially dependent on innovative technologies that permit a concerted analysis of the tumor microenvironment and the cellular phenotypes resulting from somatic mutations and post-translational modifications. In view of a large number of genes, multiplied by differential splicing as well as post-translational protein modifications, the ability to identify and quantify the actual phenotypes of individual cell populations in situ, i.e., in their tissue environment, has become a prerequisite for understanding tumorigenesis and cancer progression. The need for quantitative analyses has led to a renaissance of optical instruments and imaging techniques. With the emergence of precision medicine, automated analysis of a constantly increasing number of cellular markers and their measurement in spatial context have become increasingly necessary to understand the molecular mechanisms that lead to different pathways of disease progression in individual patients. In this review, we summarize the joint effort that academia and industry have undertaken to establish methods and protocols for molecular profiling and immunophenotyping of cancer tissues for next-generation digital histopathology-which is characterized by the use of whole-slide imaging (brightfield, widefield fluorescence, confocal, multispectral, and/or multiplexing technologies) combined with state-of-the-art image cytometry and advanced methods for machine and deep learning.
Collapse
Affiliation(s)
- Felicitas Mungenast
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
- TissueGnostics GmbH, 1020 Vienna, Austria;
| | - Achala Fernando
- Translational Research Institute, 37 Kent Street, Woolloongabba, QLD 4102, Australia; (A.F.); (J.B.)
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD 4059, Australia
| | | | - Bogdan Boghiu
- TissueGnostics SRL, 700028 Iasi, Romania; (B.B.); (B.L.)
| | - Bianca Lungu
- TissueGnostics SRL, 700028 Iasi, Romania; (B.B.); (B.L.)
| | - Jyotsna Batra
- Translational Research Institute, 37 Kent Street, Woolloongabba, QLD 4102, Australia; (A.F.); (J.B.)
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD 4059, Australia
| | - Rupert C. Ecker
- TissueGnostics GmbH, 1020 Vienna, Austria;
- Translational Research Institute, 37 Kent Street, Woolloongabba, QLD 4102, Australia; (A.F.); (J.B.)
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD 4059, Australia
| |
Collapse
|
20
|
Kaneko N, Boucau J, Kuo HH, Perugino C, Mahajan VS, Farmer JR, Liu H, Diefenbach TJ, Piechocka-Trocha A, Lefteri K, Waring MT, Premo KR, Walker BD, Li JZ, Gaiha G, Yu XG, Lichterfeld M, Padera RF, Pillai S. Expansion of Cytotoxic CD4+ T cells in the lungs in severe COVID-19. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2021. [PMID: 33791730 DOI: 10.1101/2021.03.23.21253885] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The contributions of T cells infiltrating the lungs to SARS-CoV-2 clearance and disease progression are poorly understood. Although studies of CD8+ T cells in bronchoalveolar lavage and blood have suggested that these cells are exhausted in severe COVID-19, CD4+ T cells have not been systematically interrogated within the lung parenchyma. We establish here that cytotoxic CD4+ T cells (CD4+CTLs) are prominently expanded in the COVID-19 lung infiltrate. CD4+CTL numbers in the lung increase with disease severity and progression is accompanied by widespread HLA-DR expression on lung epithelial and endothelial cells, increased apoptosis of epithelial cells and tissue remodeling. Based on quantitative evidence for re-activation in the lung milieu, CD4+ CTLs are as likely to drive viral clearance as CD8+ T cells and may also be contributors to lung inflammation and eventually to fibrosis in severe COVID-19. In Brief In severe COVID-19 cytotoxic CD4+ T cells accumulate in draining lymph nodes and in the lungs during the resolving phase of the disease. Re-activated cytotoxic CD4+ T cells and cytotoxic CD8+ T cells are present in roughly equivalent numbers in the lungs at this stage and these cells likely collaborate to eliminate virally infected cells and potentially induce fibrosis. A large fraction of epithelial and endothelial cells in the lung express HLA class II in COVID-19 and there is temporal convergence between CD4+CTL accumulation and apoptosis in the lung. Highlights In severe COVID-19, activated CD4+ CTLs accumulate in the lungs late in diseaseThese cells likely participate in SARS-CoV-2 clearance, collaborating with CD8+ T cells many of which exhibit an exhausted phenotypeT cells likely contribute to the late exacerbation of inflammationCD4+CTLs have been linked to fibrosis in many disorders and could also be responsible for the eventual induction of fibrosis in a subset of COVID-19 patients. Summary The contributions of T cells infiltrating the lungs to SARS-CoV-2 clearance and disease progression are poorly understood. Although studies of CD8+ T cells in bronchoalveolar lavage and blood have suggested that these cells are exhausted in severe COVID-19, CD4+ T cells have not been systematically interrogated within the lung parenchyma. We establish here that cytotoxic CD4+ T cells (CD4+CTLs) are prominently expanded in the COVID-19 lung infiltrate. CD4+CTL numbers in the lung increase with disease severity and progression is accompanied by widespread HLA-DR expression on lung epithelial and endothelial cells, increased apoptosis of epithelial cells and tissue remodeling. Based on quantitative evidence for re-activation in the lung milieu, CD4+ CTLs are as likely to drive viral clearance as CD8+ T cells and may also be contributors to lung inflammation and eventually to fibrosis in severe COVID-19.
Collapse
|
21
|
Giotakis AI, Dudas J, Glueckert R, Dejaco D, Ingruber J, Fleischer F, Innerhofer V, Pinggera L, Bektic-Tadic L, Gabriel SAM, Riechelmann H. Characterization of epithelial cells, connective tissue cells and immune cells in human upper airway mucosa by immunofluorescence multichannel image cytometry: a pilot study. Histochem Cell Biol 2021; 155:405-421. [PMID: 33251550 PMCID: PMC8021535 DOI: 10.1007/s00418-020-01945-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/10/2020] [Indexed: 12/30/2022]
Abstract
Epithelial, connective tissue and immune cells contribute in various ways to the pathophysiology of chronic rhinosinusitis (CRS). However, data of their distribution in upper airway mucosa are sparse. We aimed to provide quantitative, purely informative data on the distribution of these cell lineages and their coexpression patterns, which might help identifying, e.g., cells in the epithelium undergoing through epithelial-mesenchymal transition (EMT). For this purpose, we used immunofluorescence multichannel image cytometry (IMIC). We examined fixed paraffin-embedded tissue samples (FFPE) of six patients with chronic rhinosinusitis (CRS) and of three patients without CRS (controls). The direct-conjugated antibodies pancytokeratin, vimentin and CD45/CD18 were used for coexpression analysis in epithelial layer and lamina propria. Image acquisition and analysis were performed with TissueFAXS and StrataQuest, respectively. To distinguish positive from negative expression, a ratio between cell-specific immunostaining intensity and background was developed. Isotype controls were used as negative controls. Per patient, a 4.5-mm2 tissue area was scanned and a median of 14,875 cells was recognized. The most common cell types were cytokeratin-single-positive (26%), vimentin-single-positive (13%) and CD45/CD18-single-positive with CD45/CD18-vimentin-double-positive cells (29%). In the patients with CRS, CD45/CD18-single-positive cells were 3-6 times higher compared to the control patients. In the epithelial layer, cytokeratin-vimentin-double-positive EMT cells were observed 3-5 times higher in the patients with CRS than in the control patients. This study provided quantitative data for the distribution of crucial cell types in CRS. Future studies may focus on the distribution and coexpression patterns of different immune cells in CRS or even cancer tissue.
Collapse
Affiliation(s)
- Aris I Giotakis
- Department of Otorhinolaryngology, Medical University of Innsbruck, Innsbruck, Austria.
| | - Jozsef Dudas
- Department of Otorhinolaryngology, Medical University of Innsbruck, Innsbruck, Austria
| | - Rudolf Glueckert
- University Clinics Innsbruck, Tirol Kliniken, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Daniel Dejaco
- Department of Otorhinolaryngology, Medical University of Innsbruck, Innsbruck, Austria
| | - Julia Ingruber
- Department of Otorhinolaryngology, Medical University of Innsbruck, Innsbruck, Austria
| | - Felix Fleischer
- Department of Otorhinolaryngology, Medical University of Innsbruck, Innsbruck, Austria
| | - Veronika Innerhofer
- Department of Otorhinolaryngology, Medical University of Innsbruck, Innsbruck, Austria
| | - Leyla Pinggera
- Department of Otorhinolaryngology, Medical University of Innsbruck, Innsbruck, Austria
| | - Ljilja Bektic-Tadic
- Department of Otorhinolaryngology, Medical University of Innsbruck, Innsbruck, Austria
| | - Sarah A M Gabriel
- Department of Otorhinolaryngology, Medical University of Innsbruck, Innsbruck, Austria
| | - Herbert Riechelmann
- Department of Otorhinolaryngology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
22
|
Allard-Chamard H, Alsufyani F, Kaneko N, Xing K, Perugino C, Mahajan VS, Wheat JL, Deepe GS, Loyd J, Pillai S. CD4 +CTLs in Fibrosing Mediastinitis Linked to Histoplasma capsulatum. THE JOURNAL OF IMMUNOLOGY 2020; 206:524-530. [PMID: 33328214 DOI: 10.4049/jimmunol.2000433] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 11/13/2020] [Indexed: 12/24/2022]
Abstract
Although fibrotic disorders are frequently assumed to be linked to TH2 cells, quantitative tissue interrogation studies have rarely been performed to establish this link and certainly many fibrotic diseases do not fall within the type 2/allergic disease spectrum. We have previously linked two human autoimmune fibrotic diseases, IgG4-related disease and systemic sclerosis, to the clonal expansion and lesional accumulation of CD4+CTLs. In both these diseases TH2 cell accumulation was found to be sparse. Fibrosing mediastinitis linked to Histoplasma capsulatum infection histologically resembles IgG4-related disease in terms of the inflammatory infiltrate and fibrosis, and it provides an example of a fibrotic disease of infectious origin in which the potentially profibrotic T cells may be induced and reactivated by fungal Ags. We show in this study that, in this human disease, CD4+CTLs accumulate in the blood, are clonally expanded, infiltrate into disease lesions, and can be reactivated in vitro by H. capsulatum Ags. TH2 cells are relatively sparse at lesional sites. These studies support a general role for CD4+CTLs in inflammatory fibrosis and suggest that fibrosing mediastinitis is an Ag-driven disease that may provide important mechanistic insights into the pathogenesis of idiopathic fibrotic diseases.
Collapse
Affiliation(s)
- Hugues Allard-Chamard
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139.,Division de Rhumatologie, Faculté de Médecine et des Sciences de la Santé de l'Université de Sherbrooke et Centre de Recherche Clinique Étienne-Le Bel, Sherbrooke, Québec J1K 2R1, Canada
| | - Faisal Alsufyani
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139.,King Fahad Specialist Hospital, Dammam 32253, Saudi Arabia
| | - Naoki Kaneko
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139.,Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, Fukuoka 814-0133, Japan
| | - Kelly Xing
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139
| | - Cory Perugino
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139.,Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Boston, MA 02114
| | - Vinay S Mahajan
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139.,Division of Pathology, Brigham and Women's Hospital, Boston, MA 02115
| | | | - George S Deepe
- Division of Infectious Diseases, University of Cincinnati College of Medicine, Cincinnati, OH 45267; and
| | - James Loyd
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Shiv Pillai
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139;
| |
Collapse
|
23
|
Kaneko N, Kuo HH, Boucau J, Farmer JR, Allard-Chamard H, Mahajan VS, Piechocka-Trocha A, Lefteri K, Osborn M, Bals J, Bartsch YC, Bonheur N, Caradonna TM, Chevalier J, Chowdhury F, Diefenbach TJ, Einkauf K, Fallon J, Feldman J, Finn KK, Garcia-Broncano P, Hartana CA, Hauser BM, Jiang C, Kaplonek P, Karpell M, Koscher EC, Lian X, Liu H, Liu J, Ly NL, Michell AR, Rassadkina Y, Seiger K, Sessa L, Shin S, Singh N, Sun W, Sun X, Ticheli HJ, Waring MT, Zhu AL, Alter G, Li JZ, Lingwood D, Schmidt AG, Lichterfeld M, Walker BD, Yu XG, Padera RF, Pillai S. Loss of Bcl-6-Expressing T Follicular Helper Cells and Germinal Centers in COVID-19. Cell 2020; 183:143-157.e13. [PMID: 32877699 PMCID: PMC7437499 DOI: 10.1016/j.cell.2020.08.025] [Citation(s) in RCA: 518] [Impact Index Per Article: 129.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/24/2020] [Accepted: 08/14/2020] [Indexed: 01/08/2023]
Abstract
Humoral responses in coronavirus disease 2019 (COVID-19) are often of limited durability, as seen with other human coronavirus epidemics. To address the underlying etiology, we examined post mortem thoracic lymph nodes and spleens in acute SARS-CoV-2 infection and observed the absence of germinal centers and a striking reduction in Bcl-6+ germinal center B cells but preservation of AID+ B cells. Absence of germinal centers correlated with an early specific block in Bcl-6+ TFH cell differentiation together with an increase in T-bet+ TH1 cells and aberrant extra-follicular TNF-α accumulation. Parallel peripheral blood studies revealed loss of transitional and follicular B cells in severe disease and accumulation of SARS-CoV-2-specific "disease-related" B cell populations. These data identify defective Bcl-6+ TFH cell generation and dysregulated humoral immune induction early in COVID-19 disease, providing a mechanistic explanation for the limited durability of antibody responses in coronavirus infections, and suggest that achieving herd immunity through natural infection may be difficult.
Collapse
Affiliation(s)
- Naoki Kaneko
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Hsiao-Hsuan Kuo
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Julie Boucau
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Jocelyn R Farmer
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Hugues Allard-Chamard
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA; Division of Rheumatology, Faculté de Médecine et des Sciences de la Santé de l'Université de Sherbrooke et Centre de Recherche Clinique Étienne-Le Bel, Sherbrooke, QC J1K 2R1, Canada
| | - Vinay S Mahajan
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA; Department of Pathology, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Alicja Piechocka-Trocha
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Kristina Lefteri
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Matthew Osborn
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Julia Bals
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Yannic C Bartsch
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Nathalie Bonheur
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | | | - Josh Chevalier
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Fatema Chowdhury
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | | | - Kevin Einkauf
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Jon Fallon
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Jared Feldman
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Kelsey K Finn
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | | | | | - Blake M Hauser
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Chenyang Jiang
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Paulina Kaplonek
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Marshall Karpell
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Eric C Koscher
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Xiaodong Lian
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Hang Liu
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Jinqing Liu
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Ngoc L Ly
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Ashlin R Michell
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | | | - Kyra Seiger
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Libera Sessa
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Sally Shin
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Nishant Singh
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Weiwei Sun
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Xiaoming Sun
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Hannah J Ticheli
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Michael T Waring
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Alex L Zhu
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Galit Alter
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Jonathan Z Li
- Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Daniel Lingwood
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Aaron G Schmidt
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA; Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
| | - Mathias Lichterfeld
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA; Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Bruce D Walker
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA; Department of Biology and Institute of Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Xu G Yu
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA; Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Robert F Padera
- Department of Pathology, Brigham and Women's Hospital, Boston, MA 02115, USA.
| | - Shiv Pillai
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA.
| | | |
Collapse
|
24
|
Imaging of metabolic activity adaptations to UV stress, drugs and differentiation at cellular resolution in skin and skin equivalents - Implications for oxidative UV damage. Redox Biol 2020; 37:101583. [PMID: 32713735 PMCID: PMC7767734 DOI: 10.1016/j.redox.2020.101583] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 05/12/2020] [Accepted: 05/13/2020] [Indexed: 12/29/2022] Open
Abstract
The epidermis is a multi-layered epithelium that consists mainly of keratinocytes which proliferate in its basal layer and then differentiate to form the stratum corneum, the skin's ultimate barrier to the environment. During differentiation keratinocyte function, chemical composition, physical properties, metabolism and secretion are profoundly changed. Extrinsic or intrinsic stressors, like ultraviolet (UV) radiation thus may differently affect the epidermal keratinocytes, depending on differentiation stage. Exposure to UV elicits the DNA damage responses, activation of pathways which detoxify or repair damage or induction of programmed cell death when the damage was irreparable. Recently, rapid diversion of glucose flux into the pentose phosphate pathway (PPP) was discovered as additional mechanism by which cells rapidly generate reduction equivalents and precursors for nucleotides - both being in demand after UV damage. There is however little known about the correlation of such metabolic activity with differentiation state, cell damage and tissue localization of epidermal cells. We developed a method to correlate the activity of G6PD, the first and rate-limiting enzyme of this metabolic UV response, at cellular resolution to cell type, differentiation state, and cell damage in human skin and in organotypic reconstructed epidermis. We thereby could verify rapid activation of G6PD as an immediate UVB response not only in basal but also in differentiating epidermal keratinocytes and found increased activity in cells which initiated DNA damage responses. When keratinocytes had been UVB irradiated before organotypic culture, their distribution within the skin equivalent was abnormal and the G6PD activity was reduced compared to neighboring cells. Finally, we found that the anti-diabetic and potential anti-aging drug metformin strongly induced G6PD activity throughout reconstructed epidermis. Activation of the protective pentose phosphate pathway may be useful to enhance the skin's antioxidant defense systems and DNA damage repair capacity on demand.
Collapse
|
25
|
Arnaud-Sampaio VF, Rabelo ILA, Bento CA, Glaser T, Bezerra J, Coutinho-Silva R, Ulrich H, Lameu C. Using Cytometry for Investigation of Purinergic Signaling in Tumor-Associated Macrophages. Cytometry A 2020; 97:1109-1126. [PMID: 32633884 DOI: 10.1002/cyto.a.24035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 02/25/2020] [Accepted: 04/01/2020] [Indexed: 02/06/2023]
Abstract
Tumor-associated macrophages are widely recognized for their importance in guiding pro-tumoral or antitumoral responses. Mediating inflammation or immunosuppression, these cells support many key events in cancer progression: cell growth, chemotaxis, invasiveness, angiogenesis and cell death. The communication between cells in the tumor microenvironment strongly relies on the secretion and recognition of several molecules, including damage-associated molecular patterns (DAMPs), such as adenosine triphosphate (ATP). Extracellular ATP (eATP) and its degradation products act as signaling molecules and have extensively described roles in immune response and inflammation, as well as in cancer biology. These multiple functions highlight the purinergic system as a promising target to investigate the interplay between macrophages and cancer cells. Here, we reviewed purinergic signaling pathways connecting cancer cells and macrophages, a yet poorly investigated field. Finally, we present a new tool for the characterization of macrophage phenotype within the tumor. Image cytometry emerges as a cutting-edge tool, capable of providing a broad set of information on cell morphology, expression of specific markers, and its cellular or subcellular localization, preserving cell-cell interactions within the tumor section and providing high statistical strength in small-sized experiments. Thus, image cytometry allows deeper investigation of tumor heterogeneity and interactions between these cells. © 2020 International Society for Advancement of Cytometry.
Collapse
Affiliation(s)
| | - Izadora L A Rabelo
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Carolina A Bento
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Talita Glaser
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Jean Bezerra
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Robson Coutinho-Silva
- Laboratory of Immunophysiology, Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Henning Ulrich
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Claudiana Lameu
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
26
|
CD4 + and CD8 + cytotoxic T lymphocytes may induce mesenchymal cell apoptosis in IgG 4-related disease. J Allergy Clin Immunol 2020; 147:368-382. [PMID: 32485263 DOI: 10.1016/j.jaci.2020.05.022] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 05/08/2020] [Accepted: 05/18/2020] [Indexed: 12/18/2022]
Abstract
BACKGROUND IgG4-related disease (IgG4-RD) is an immune-mediated fibrotic disorder that has been linked to CD4+ cytotoxic T lymphocytes (CD4+CTLs). The effector phenotype of CD4+CTLs and the relevance of both CD8+ cytotoxic T lymphocytes (CD8+CTLs) and apoptotic cell death remain undefined in IgG4-RD. OBJECTIVE We sought to define CD4+CTL heterogeneity, characterize the CD8+CTL response in the blood and in lesions, and determine whether enhanced apoptosis may contribute to the pathogenesis of IgG4-RD. METHODS Blood analyses were undertaken using flow cytometry, cell sorting, transcriptomic analyses at the population and single-cell levels, and next-generation sequencing for the TCR repertoire. Tissues were interrogated using multicolor immunofluorescence. Results were correlated with clinical data. RESULTS We establish that among circulating CD4+CTLs in IgG4-RD, CD27loCD28loCD57hi cells are the dominant effector subset, exhibit marked clonal expansion, and differentially express genes relevant to cytotoxicity, activation, and enhanced metabolism. We also observed prominent infiltration of granzyme A-expressing CD8+CTLs in disease tissues and clonal expansion in the blood of effector/memory CD8+ T cells with an activated and cytotoxic phenotype. Tissue studies revealed an abundance of cells undergoing apoptotic cell death disproportionately involving nonimmune, nonendothelial cells of mesenchymal origin. Apoptotic cells showed significant upregulation of HLA-DR. CONCLUSIONS CD4+CTLs and CD8+CTLs may induce apoptotic cell death in tissues of patients with IgG4-RD with preferential targeting of nonendothelial, nonimmune cells of mesenchymal origin.
Collapse
|
27
|
Wills JW, Robertson J, Summers HD, Miniter M, Barnes C, Hewitt RE, Keita ÅV, Söderholm JD, Rees P, Powell JJ. Image-Based Cell Profiling Enables Quantitative Tissue Microscopy in Gastroenterology. Cytometry A 2020; 97:1222-1237. [PMID: 32445278 DOI: 10.1002/cyto.a.24042] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 04/29/2020] [Accepted: 05/04/2020] [Indexed: 12/18/2022]
Abstract
Immunofluorescence microscopy is an essential tool for tissue-based research, yet data reporting is almost always qualitative. Quantification of images, at the per-cell level, enables "flow cytometry-type" analyses with intact locational data but achieving this is complex. Gastrointestinal tissue, for example, is highly diverse: from mixed-cell epithelial layers through to discrete lymphoid patches. Moreover, different species (e.g., rat, mouse, and humans) and tissue preparations (paraffin/frozen) are all commonly studied. Here, using field-relevant examples, we develop open, user-friendly methodology that can encompass these variables to provide quantitative tissue microscopy for the field. Antibody-independent cell labeling approaches, compatible across preparation types and species, were optimized. Per-cell data were extracted from routine confocal micrographs, with semantic machine learning employed to tackle densely packed lymphoid tissues. Data analysis was achieved by flow cytometry-type analyses alongside visualization and statistical definition of cell locations, interactions and established microenvironments. First, quantification of Escherichia coli passage into human small bowel tissue, following Ussing chamber incubations exemplified objective quantification of rare events in the context of lumen-tissue crosstalk. Second, in rat jejenum, precise histological context revealed distinct populations of intraepithelial lymphocytes between and directly below enterocytes enabling quantification in context of total epithelial cell numbers. Finally, mouse mononuclear phagocyte-T cell interactions, cell expression and significant spatial cell congregations were mapped to shed light on cell-cell communication in lymphoid Peyer's patch. Accessible, quantitative tissue microscopy provides a new window-of-insight to diverse questions in gastroenterology. It can also help combat some of the data reproducibility crisis associated with antibody technologies and over-reliance on qualitative microscopy. © 2020 The Authors. Cytometry Part A published by Wiley Periodicals LLC. on behalf of International Society for Advancement of Cytometry.
Collapse
Affiliation(s)
- John W Wills
- Biominerals Research, Cambridge University Department of Veterinary Medicine, School of Biological Sciences, Cambridge, UK
| | - Jack Robertson
- Biominerals Research, Cambridge University Department of Veterinary Medicine, School of Biological Sciences, Cambridge, UK
| | - Huw D Summers
- Centre for Nanohealth, Swansea University College of Engineering, Swansea, UK
| | - Michelle Miniter
- Biominerals Research, Cambridge University Department of Veterinary Medicine, School of Biological Sciences, Cambridge, UK
| | - Claire Barnes
- Centre for Nanohealth, Swansea University College of Engineering, Swansea, UK
| | - Rachel E Hewitt
- Biominerals Research, Cambridge University Department of Veterinary Medicine, School of Biological Sciences, Cambridge, UK
| | - Åsa V Keita
- Department of Surgery and Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Johan D Söderholm
- Department of Surgery and Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Paul Rees
- Centre for Nanohealth, Swansea University College of Engineering, Swansea, UK.,Broad Institute of MIT and Harvard, Cambridge, Massachusetts, 02142, USA
| | - Jonathan J Powell
- Biominerals Research, Cambridge University Department of Veterinary Medicine, School of Biological Sciences, Cambridge, UK
| |
Collapse
|
28
|
Maehara T, Kaneko N, Perugino CA, Mattoo H, Kers, J, Allard-Chamard H, Mahajan VS, Liu H, Murphy SJ, Ghebremichael M, Fox D, Payne AS, Lafyatis R, Stone JH, Khanna D, Pillai S. Cytotoxic CD4+ T lymphocytes may induce endothelial cell apoptosis in systemic sclerosis. J Clin Invest 2020; 130:2451-2464. [PMID: 31990684 PMCID: PMC7190971 DOI: 10.1172/jci131700] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 01/23/2020] [Indexed: 12/18/2022] Open
Abstract
Systemic sclerosis (SSc) is an autoimmune fibrotic disease whose pathogenesis is poorly understood and lacks effective therapies. We undertook quantitative analyses of T cell infiltrates in the skin of 35 untreated patients with early diffuse SSc and here show that CD4+ cytotoxic T cells and CD8+ T cells contribute prominently to these infiltrates. We also observed an accumulation of apoptotic cells in SSc tissues, suggesting that recurring cell death may contribute to tissue damage and remodeling in this fibrotic disease. HLA-DR-expressing endothelial cells were frequent targets of apoptosis in SSc, consistent with the prominent vasculopathy seen in patients with this disease. A circulating effector population of cytotoxic CD4+ T cells, which exhibited signatures of enhanced metabolic activity, was clonally expanded in patients with systemic sclerosis. These data suggest that cytotoxic T cells may induce the apoptotic death of endothelial and other cells in systemic sclerosis. Cell loss driven by immune cells may be followed by overly exuberant tissue repair processes that lead to fibrosis and tissue dysfunction.
Collapse
Affiliation(s)
- Takashi Maehara
- Ragon Institute, Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Boston, Massachusetts, USA
- Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Naoki Kaneko
- Ragon Institute, Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Boston, Massachusetts, USA
- Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Cory A. Perugino
- Ragon Institute, Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Boston, Massachusetts, USA
- Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Hamid Mattoo
- Ragon Institute, Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Boston, Massachusetts, USA
- Immunology and Inflammation Therapeutic Area, Sanofi, Cambridge Massachusetts, USA
| | - Jesper Kers,
- Ragon Institute, Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Boston, Massachusetts, USA
- Amsterdam Infection & Immunity Institute (AI&II) and
- Amsterdam Cardiovascular Sciences (ACS), Amsterdam University Medical Centers, and
- Van ‘t Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Amsterdam, Netherlands
| | - Hugues Allard-Chamard
- Ragon Institute, Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Boston, Massachusetts, USA
- Division of Rheumatology, Faculté de médecine et des sciences de la santé, Université de Sherbrooke et Centre de Recherche Clinique Étienne-Le Bel, Sherbrooke, Québec, Canada
| | - Vinay S. Mahajan
- Ragon Institute, Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Boston, Massachusetts, USA
- Department of Pathology, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Hang Liu
- Ragon Institute, Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Boston, Massachusetts, USA
- Department of Rheumatology and Immunology, First Affiliated Hospital of China, Shenyang, China
| | - Samuel J.H. Murphy
- Ragon Institute, Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Boston, Massachusetts, USA
| | - Musie Ghebremichael
- Ragon Institute, Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Boston, Massachusetts, USA
| | - David Fox
- Division of Rheumatology, Medical School, University of Michigan, Ann Arbor, Michigan, USA
| | - Aimee S. Payne
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Robert Lafyatis
- Division of Rheumatology and Clinical Immunology, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - John H. Stone
- Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Dinesh Khanna
- Division of Rheumatology, Medical School, University of Michigan, Ann Arbor, Michigan, USA
| | - Shiv Pillai
- Ragon Institute, Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Boston, Massachusetts, USA
| |
Collapse
|
29
|
Niu J, An G, Gu Z, Li P, Liu Q, Bai R, Sun J, Du Q. Analysis of sensitivity and specificity: precise recognition of neutrophils during regeneration of contused skeletal muscle in rats. Forensic Sci Res 2020; 7:228-237. [PMID: 35784418 PMCID: PMC9245985 DOI: 10.1080/20961790.2020.1713432] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
In this report, we applied the TissueFAXS 200 digital pathological analysis system to rapidly and accurately identify neutrophils during regeneration of contused skeletal muscle, and to provide information for follow-up studies on neutrophils to estimate wound age. Rat injury model was established, and skeletal muscle samples were obtained from the control group and contusion groups at 1, 1.5, 2, 3, 4, and 6 h, as well as at 1, 3, 5, and 15 d post-injury (n = 5 per group). The expression of nuclei and neutrophils was detected by hematoxylin and eosin (HE) staining and immunohistochemical (IHC) staining. A total of 20 injury site areas of 0.25 mm2 (0.5 mm × 0.5 mm) were then randomly selected at all time points. A TissueFAXS 200 digital pathological analysis system was used to identify the positive and negative numbers. Knowledge of five professional medical workers were considered the gold standard to measure the false positive rate (FPR), false negative rate (FNR), sensitivity, specificity, and area under the curve (AUC) of receiver operating characteristic (ROC) curves. As a result, with a staining area of neutrophils from 8 µm2 to 15 µm2, the FPR was 4.28%–12.14%, the FNR was 12.42%–64.08%, the sensitivity was 35.92%–87.58%, the specificity was 87.86%–95.72%, the Youden index was 0.316–0.754, the accuracy was 82.80%–88.30%, and the AUC was 0.771–0.826. The AUC was largest when the cut-off value of the staining area was 12 µm2. Our results show that this software-based method is more accurate than the human eye in evaluating neutrophil infiltration. Based on the sensitivity and specificity, neutrophils can be accurately identified during regeneration of contused skeletal muscle. The TissueFAXS 200 digital pathological analysis system can also be used to optimize conditions for different cell types under various injury conditions to determine the optimal cut-off value of the staining area and provide optimal conditions for further study. Furthermore, it will provide evidence for forensic pathology cases.
Collapse
Affiliation(s)
- Jiajia Niu
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, China
| | - Guoshuai An
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, China
| | - Zhen Gu
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, China
| | - Peng Li
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, China
| | - Qiqing Liu
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, China
- Criminal Investigation Brigade, Zhuji Public Security Bureau, Zhuji, China
| | - Rufeng Bai
- 2011 Cooperative Innovation Center of Judicial Civilization, Beijing, China
- Key Laboratory of Evidence Science, China University of Political Science and Law, Ministry of Education, Beijing, China
| | - Junhong Sun
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, China
| | - Qiuxiang Du
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, China
| |
Collapse
|
30
|
Husna N, Gascoigne NRJ, Tey HL, Ng LG, Tan Y. Reprint of "Multi-modal image cytometry approach - From dynamic to whole organ imaging". Cell Immunol 2020; 350:104086. [PMID: 32169249 DOI: 10.1016/j.cellimm.2020.104086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 06/18/2019] [Accepted: 06/18/2019] [Indexed: 12/13/2022]
Abstract
Optical imaging is a valuable tool to visualise biological processes in the context of the tissue. Each imaging modality provides the biologist with different types of information - cell dynamics and migration over time can be tracked with time-lapse imaging (e.g. intra-vital imaging); an overview of whole tissues can be acquired using optical clearing in conjunction with light sheet microscopy; finer details such as cellular morphology and fine nerve tortuosity can be imaged at higher resolution using the confocal microscope. Multi-modal imaging combined with image cytometry - a form of quantitative analysis of image datasets - provides an objective basis for comparing between sample groups. Here, we provide an overview of technical aspects to look out for in an image cytometry workflow, and discuss issues related to sample preparation, image post-processing and analysis for intra-vital and whole organ imaging.
Collapse
Affiliation(s)
- Nazihah Husna
- Singapore Immunology Network (SIgN), A*STAR (Agency for Science, Technology and Research), Biopolis, 8A Biomedical Grove, Singapore 138648, Singapore; Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Singapore 117545, Singapore
| | - Nicholas R J Gascoigne
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Singapore 117545, Singapore
| | - Hong Liang Tey
- National Skin Centre, 1 Mandalay Road, Singapore 308205, Singapore; Lee Kong Chian School of Medicine, Nanyang Technological University, 11 Mandalay Road, Singapore 308232, Singapore; Yong Loo Lin School of Medicine, National University of Singapore, 10 Medical Dr, Singapore 117597, Singapore
| | - Lai Guan Ng
- Singapore Immunology Network (SIgN), A*STAR (Agency for Science, Technology and Research), Biopolis, 8A Biomedical Grove, Singapore 138648, Singapore; Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Singapore 117545, Singapore.
| | - Yingrou Tan
- Singapore Immunology Network (SIgN), A*STAR (Agency for Science, Technology and Research), Biopolis, 8A Biomedical Grove, Singapore 138648, Singapore; National Skin Centre, 1 Mandalay Road, Singapore 308205, Singapore.
| |
Collapse
|
31
|
Husna N, Gascoigne NR, Tey HL, Ng LG, Tan Y. Multi-modal image cytometry approach – From dynamic to whole organ imaging. Cell Immunol 2019; 344:103946. [DOI: 10.1016/j.cellimm.2019.103946] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 06/18/2019] [Accepted: 06/18/2019] [Indexed: 12/27/2022]
|
32
|
Della-Torre E, Rigamonti E, Perugino C, Baghai-Sain S, Sun N, Kaneko N, Maehara T, Rovati L, Ponzoni M, Milani R, Lanzillotta M, Mahajan V, Mattoo H, Molineris I, Deshpande V, Stone JH, Falconi M, Manfredi AA, Pillai S. B lymphocytes directly contribute to tissue fibrosis in patients with IgG 4-related disease. J Allergy Clin Immunol 2019; 145:968-981.e14. [PMID: 31319101 DOI: 10.1016/j.jaci.2019.07.004] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 05/31/2019] [Accepted: 07/09/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND IgG4-related disease (IgG4-RD) is a fibroinflammatory condition marked by rapid clinical improvement after selective depletion of B lymphocytes with rituximab. This feature suggests that B cells might participate in fibrogenesis and wound healing. OBJECTIVE In the present work we aimed to demonstrate that B lymphocytes contribute directly to tissue fibrosis in patients with IgG4-RD. METHODS Total circulating CD19+ B lymphocytes, naive B cells, memory B cells, or plasmablasts from patients with IgG4-RD were cultivated with human fibroblasts. Profibrotic soluble factors and collagen production in cocultures were assessed by using ELISAs and Luminex assays. RNA sequencing and quantitative RT-PCR were used to assess fibroblast activation in the presence of B cells, as well as induction of profibrotic pathways in B-cell subsets. Relevant profibrotic and inflammatory molecules were confirmed in vitro by using functional experiments and on IgG4-RD tissue sections by using multicolor immunofluorescence studies. RESULTS B cells from patients with IgG4-RD (1) produced the profibrotic molecule platelet-derived growth factor B and stimulated collagen production by fibroblasts; (2) expressed enzymes implicated in extracellular matrix remodeling, such as lysyl oxidase homolog 2; (3) produced the chemotactic factors CCL4, CCL5, and CCL11; and (4) induced production of these same chemokines by activated fibroblasts. Plasmablasts expressed sets of genes implicated in fibroblast activation and proliferation and therefore represent cells with intrinsic profibrotic properties. CONCLUSION We have demonstrated that B cells contribute directly to tissue fibrosis in patients with IgG4-RD. These unanticipated profibrotic properties of B lymphocytes, particularly plasmablasts, might be relevant for fibrogenesis in patients with other fibroinflammatory disorders and for wound-healing processes in physiologic conditions.
Collapse
Affiliation(s)
- Emanuel Della-Torre
- Università Vita-Salute San Raffaele, IRCCS San Raffaele Scientific Institute, Milan, Italy; Ragon Institute of MGH, MIT, and Harvard, Massachusetts General Hospital, Harvard Medical School, Boston, Mass; Unit of Immunology, Rheumatology, Allergy, and Rare Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| | - Elena Rigamonti
- Università Vita-Salute San Raffaele, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Cory Perugino
- Ragon Institute of MGH, MIT, and Harvard, Massachusetts General Hospital, Harvard Medical School, Boston, Mass; Division of Rheumatology, Allergy, and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, Mass
| | - Simona Baghai-Sain
- Center for Translational Genomics and Bioinformatics, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Na Sun
- Ragon Institute of MGH, MIT, and Harvard, Massachusetts General Hospital, Harvard Medical School, Boston, Mass
| | - Naoki Kaneko
- Ragon Institute of MGH, MIT, and Harvard, Massachusetts General Hospital, Harvard Medical School, Boston, Mass; Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Takashi Maehara
- Ragon Institute of MGH, MIT, and Harvard, Massachusetts General Hospital, Harvard Medical School, Boston, Mass; Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Lucrezia Rovati
- Università Vita-Salute San Raffaele, IRCCS San Raffaele Scientific Institute, Milan, Italy; Ragon Institute of MGH, MIT, and Harvard, Massachusetts General Hospital, Harvard Medical School, Boston, Mass
| | - Maurilio Ponzoni
- Università Vita-Salute San Raffaele, IRCCS San Raffaele Scientific Institute, Milan, Italy; Pathology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Raffaella Milani
- Immunohematology and Transfusion Medicine Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Marco Lanzillotta
- Università Vita-Salute San Raffaele, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Vinay Mahajan
- Ragon Institute of MGH, MIT, and Harvard, Massachusetts General Hospital, Harvard Medical School, Boston, Mass
| | - Hamid Mattoo
- Immunology and Inflammation Therapeutic Area, Sanofi, Cambridge, Mass
| | - Ivan Molineris
- Center for Translational Genomics and Bioinformatics, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Vikram Deshpande
- Department of Pathology, Massachusetts General Hospital, Boston, Mass
| | - John H Stone
- Division of Rheumatology, Allergy, and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, Mass
| | - Massimo Falconi
- Università Vita-Salute San Raffaele, IRCCS San Raffaele Scientific Institute, Milan, Italy; Division of Pancreatic Surgery, Pancreas Translational and Clinical Research Center, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Angelo A Manfredi
- Università Vita-Salute San Raffaele, IRCCS San Raffaele Scientific Institute, Milan, Italy; Unit of Immunology, Rheumatology, Allergy, and Rare Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Shiv Pillai
- Ragon Institute of MGH, MIT, and Harvard, Massachusetts General Hospital, Harvard Medical School, Boston, Mass
| |
Collapse
|
33
|
Blenman KRM, Bosenberg MW. Immune Cell and Cell Cluster Phenotyping, Quantitation, and Visualization Using In Silico Multiplexed Images and Tissue Cytometry. Cytometry A 2018; 95:399-410. [PMID: 30468565 DOI: 10.1002/cyto.a.23668] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 10/02/2018] [Accepted: 10/15/2018] [Indexed: 11/11/2022]
Abstract
Phenotyping immune cells and cell clusters in situ, including their activation state and function, can aid in interpretation of spatial relationships within the tissue microenvironment. Immune cell phenotypes require multiple biomarkers. However, conventional microscopy setups can only image up to four biomarkers at one time. In this report, we describe and give an example of a workflow to phenotype, quantitate, and visualize greater than four biomarkers in silico utilizing multiplexed fluorescence histology and the TissueFAXS quantitative imaging system with a conventional microscopy setup. Biomarkers were conjugated to Cy3 or Cy5. Multiplexed staining was performed on formalin-fixed paraffin-embedded tissue sections. We imaged the slides, inactivated the dyes, and repeated the process until all biomarkers were stained. Phenotype profiles were built based on in silico combinations of the biomarkers. We used algorithms that aligned all images to create a composite image, isolated each cell in the image, and identified biomarker positive cells in the image. The in silico phenotypes were quantitated and displayed through flow cytometry-like histograms and dot scatterplots in addition to backgating into the tissue images. The advantage of our workflow is that it provides visual verification of cell isolation and identification as well as highlight characteristics of cells and cell clusters. © 2018 International Society for Advancement of Cytometry.
Collapse
Affiliation(s)
- Kim R M Blenman
- Department of Dermatology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Marcus W Bosenberg
- Department of Dermatology, Yale University School of Medicine, New Haven, Connecticut, USA.,Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA.,Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
34
|
Tan Y, Li JLY, Goh CC, Lee BTK, Kwok IWH, Ng WJ, Evrard M, Poidinger M, Tey HL, Ng LG. Streamlining volumetric multi-channel image cytometry using hue-saturation-brightness-based surface creation. Commun Biol 2018; 1:136. [PMID: 30272015 PMCID: PMC6127105 DOI: 10.1038/s42003-018-0139-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 08/13/2018] [Indexed: 12/23/2022] Open
Abstract
Image cytometry is the process of converting image data to flow cytometry-style plots, and it usually requires computer-aided surface creation to extract out statistics for cells or structures. One way of dealing with structures stained with multiple markers in three-dimensional images, is carrying out multiple rounds of channel co-localization and image masking before surface creation, which is cumbersome and laborious. We propose the application of the hue-saturation-brightness color space to streamline this process, which produces complete surfaces, and allows the user to have a global view of the data before flexibly defining cell subsets. Spectral compensation can also be performed after surface creation to accurately resolve different signals. We demonstrate the utility of this workflow in static and dynamic imaging datasets of a needlestick injury on the mouse ear, and we believe this scalable and intuitive approach will improve the ease of performing histocytometry on biological samples. Yingrou Tan et al. present a method streamlining surface creation in 3D imaging by applying the hue-saturation-brightness transformed channels simultaneously. They show the utility of this approach by imaging ear skin following needlestick injury, observing immune cell infiltration.
Collapse
Affiliation(s)
- Yingrou Tan
- Singapore Immunology Network (SIgN), A*STAR (Agency for Science, Technology and Research), Biopolis, 138648, Singapore, Singapore. .,National Skin Centre, 1 Mandalay Road, 308205, Singapore, Singapore.
| | - Jackson Liang Yao Li
- Singapore Immunology Network (SIgN), A*STAR (Agency for Science, Technology and Research), Biopolis, 138648, Singapore, Singapore.
| | - Chi Ching Goh
- Singapore Immunology Network (SIgN), A*STAR (Agency for Science, Technology and Research), Biopolis, 138648, Singapore, Singapore
| | - Bernett Teck Kwong Lee
- Singapore Immunology Network (SIgN), A*STAR (Agency for Science, Technology and Research), Biopolis, 138648, Singapore, Singapore
| | - Immanuel Weng Han Kwok
- Singapore Immunology Network (SIgN), A*STAR (Agency for Science, Technology and Research), Biopolis, 138648, Singapore, Singapore
| | - Wei Jie Ng
- National University of Singapore, 21 Lower Kent Ridge Rd, Singapore, Singapore, 119077
| | - Maximilien Evrard
- Singapore Immunology Network (SIgN), A*STAR (Agency for Science, Technology and Research), Biopolis, 138648, Singapore, Singapore
| | - Michael Poidinger
- Singapore Immunology Network (SIgN), A*STAR (Agency for Science, Technology and Research), Biopolis, 138648, Singapore, Singapore
| | - Hong Liang Tey
- National Skin Centre, 1 Mandalay Road, 308205, Singapore, Singapore
| | - Lai Guan Ng
- Singapore Immunology Network (SIgN), A*STAR (Agency for Science, Technology and Research), Biopolis, 138648, Singapore, Singapore.
| |
Collapse
|
35
|
Maehara T, Mattoo H, Mahajan VS, Murphy SJ, Yuen GJ, Ishiguro N, Ohta M, Moriyama M, Saeki T, Yamamoto H, Yamauchi M, Daccache J, Kiyoshima T, Nakamura S, Stone JH, Pillai S. The expansion in lymphoid organs of IL-4 + BATF + T follicular helper cells is linked to IgG4 class switching in vivo. Life Sci Alliance 2018; 1. [PMID: 29984361 PMCID: PMC6034714 DOI: 10.26508/lsa.201800050] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Distinct T follicular helper (TFH) subsets that influence specific class-switching events are assumed to exist, but the accumulation of isotype-specific TFH subsets in secondary lymphoid organs (SLOs) and tertiary lymphoid organs has not been hitherto demonstrated. IL-4-expressing TFH cells are surprisingly sparse in human SLOs. In contrast, in IgG4-related disease (IgG4-RD), a disorder characterized by polarized Ig class switching, most TFH cells in tertiary and SLOs make IL-4. Human IL-4+ TFH cells do not express GATA-3 but express nuclear BATF, and the transcriptomes of IL-4-secreting TFH cells differ from both PD1hi TFH cells that do not secrete IL-4 and IL-4-secreting non-TFH cells. Unlike IgG4-RD, IL-4+ TFH cells are rarely found in tertiary lymphoid organs in Sjögren's syndrome, a disorder in which IgG4 is not elevated. The proportion of CD4+IL-4+BATF+ T cells and CD4+IL-4+CXCR5+ T cells in IgG4-RD tissues correlates tightly with tissue IgG4 plasma cell numbers and plasma IgG4 levels in patients but not with the total plasma levels of other isotypes. These data describe a disease-related TFH subpopulation in human tertiary lymphoid organs and SLOs that is linked to IgG4 class switching.
Collapse
Affiliation(s)
- Takashi Maehara
- Ragon Institute of MGH, MIT, and Harvard, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Hamid Mattoo
- Ragon Institute of MGH, MIT, and Harvard, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Vinay S Mahajan
- Ragon Institute of MGH, MIT, and Harvard, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Samuel Jh Murphy
- Ragon Institute of MGH, MIT, and Harvard, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Grace J Yuen
- Ragon Institute of MGH, MIT, and Harvard, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Noriko Ishiguro
- Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Miho Ohta
- Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Masafumi Moriyama
- Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Takako Saeki
- Department of Internal Medicine, Nagaoka Red Cross Hospital, Nagaoka, Japan
| | - Hidetaka Yamamoto
- Division of Diagnostic Pathology, Kyushu University Hospital, Fukuoka, Japan.,Department of Anatomic Pathology, Kyushu University, Fukuoka, Japan
| | - Masaki Yamauchi
- Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Joe Daccache
- Ragon Institute of MGH, MIT, and Harvard, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Tamotsu Kiyoshima
- Laboratory of Oral Pathology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Seiji Nakamura
- Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - John H Stone
- Division of Rheumatology, Allergy, and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Shiv Pillai
- Ragon Institute of MGH, MIT, and Harvard, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
36
|
Miller A, Nagy C, Knapp B, Laengle J, Ponweiser E, Groeger M, Starkl P, Bergmann M, Wagner O, Haschemi A. Exploring Metabolic Configurations of Single Cells within Complex Tissue Microenvironments. Cell Metab 2017; 26:788-800.e6. [PMID: 28889950 DOI: 10.1016/j.cmet.2017.08.014] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 05/26/2017] [Accepted: 08/11/2017] [Indexed: 01/08/2023]
Abstract
Over the past years, plenty of evidence has emerged illustrating how metabolism supports many aspects of cellular function and how metabolic reprogramming can drive cell differentiation and fate. Here, we present a method to assess the metabolic configuration of single cells within their native tissue microenvironment via the visualization and quantification of multiple enzymatic activities measured at saturating substrate conditions combined with subsequent cell type identification. After careful validation of the approach and to demonstrate its potential, we assessed the intracellular metabolic configuration of different human immune cell populations in healthy and tumor colon tissue. Additionally, we analyzed the intercellular metabolic relationship between cancer cells and cancer-associated fibroblasts in a breast cancer tissue array. This study demonstrates that the determination of metabolic configurations in single cells could be a powerful complementary tool for every researcher interested to study metabolic networks in situ.
Collapse
Affiliation(s)
- Anne Miller
- Department of Laboratory Medicine, Medical University of Vienna, 1090 Vienna, Austria
| | - Csörsz Nagy
- Department of Laboratory Medicine, Medical University of Vienna, 1090 Vienna, Austria
| | - Bernhard Knapp
- Department of Statistics, Protein Informatics Group, University of Oxford, OX13SY Oxford, UK
| | - Johannes Laengle
- Division of General Surgery, Department of Surgery, Comprehensive Cancer Center Vienna, Medical University of Vienna, 1090 Vienna, Austria
| | - Elisabeth Ponweiser
- Department of Laboratory Medicine, Medical University of Vienna, 1090 Vienna, Austria
| | - Marion Groeger
- Core Facility Imaging, Skin and Endothelium Research Division, Medical University of Vienna, 1090 Vienna, Austria
| | - Philipp Starkl
- CeMM-Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria; Department of Medicine I, Laboratory of Infection Biology, Medical University of Vienna, 1090 Vienna, Austria
| | - Michael Bergmann
- Division of General Surgery, Department of Surgery, Comprehensive Cancer Center Vienna, Medical University of Vienna, 1090 Vienna, Austria
| | - Oswald Wagner
- Department of Laboratory Medicine, Medical University of Vienna, 1090 Vienna, Austria
| | - Arvand Haschemi
- Department of Laboratory Medicine, Medical University of Vienna, 1090 Vienna, Austria.
| |
Collapse
|
37
|
Large-scale 3-dimensional quantitative imaging of tissues: state-of-the-art and translational implications. Transl Res 2017; 189:1-12. [PMID: 28784428 PMCID: PMC5659947 DOI: 10.1016/j.trsl.2017.07.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Revised: 06/26/2017] [Accepted: 07/18/2017] [Indexed: 12/12/2022]
Abstract
Recent developments in automated optical sectioning microscope systems have enabled researchers to conduct high resolution, three-dimensional (3D) microscopy at the scale of millimeters in various types of tissues. This powerful technology allows the exploration of tissues at an unprecedented level of detail, while preserving the spatial context. By doing so, such technology will also enable researchers to explore cellular and molecular signatures within tissue and correlate with disease course. This will allow an improved understanding of pathophysiology and facilitate a precision medicine approach to assess the response to treatment. The ability to perform large-scale imaging in 3D cannot be realized without the widespread availability of accessible quantitative analysis. In this review, we will outline recent advances in large-scale 3D imaging and discuss the available methodologies to perform meaningful analysis and potential applications in translational research.
Collapse
|
38
|
Wurm S, Steege A, Rom-Jurek EM, van Roeyen CR, Kurtz A, Banas B, Banas MC. CCR7 Is Important for Mesangial Cell Physiology and Repair. J Histochem Cytochem 2017; 66:7-22. [PMID: 29077526 DOI: 10.1369/0022155417737975] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The homeostatic chemokine receptor CCR7 serves as key molecule in lymphocyte homing into secondary lymphoid tissues. Previous experiments from our group identified CCR7 also to be expressed by human mesangial cells. Exposing cultured human mesangial cells to the receptor ligand CCL21 revealed a positive effect on these cells regarding proliferation, migration, and survival. In the present study, we localized CCR7 and CCL21 during murine nephrogenesis. Analyzing wild-type and CCR7 deficient (CCR7-/-) mice, we observed a retarded glomerulogenesis during renal development and a significantly decreased mesangial cellularity in adult CCR7-/- mice, as a consequence of less mesangial cell proliferation between embryonic day E17.5 and week 5 postpartum. Cell proliferation assays and cell-wounding experiments confirmed reduced proliferative and migratory properties of mesangial cells cultured from CCR7-/- kidneys. To further emphasize the role of CCR7 as important factor for mesangial biology, we examined the chemokine receptor expression in rats after induction of a mesangioproliferative glomerulonephritis. Here, we demonstrated for the first time that extra- and intraglomerular mesangial cells that were CCR7-negative in control rats exhibited a strong CCR7 expression during the phase of mesangial repopulation and proliferation.
Collapse
Affiliation(s)
- Simone Wurm
- Department of Nephrology, University Hospital Regensburg, Regensburg, Germany
| | - Andreas Steege
- Department of Nephrology, University Hospital Regensburg, Regensburg, Germany
| | - Eva-Maria Rom-Jurek
- Department of Nephrology, University Hospital Regensburg, Regensburg, Germany.,Department of Gynaecology and Obstetrics, University Hospital Regensburg, Regensburg, Germany
| | - Claudia R van Roeyen
- Division of Nephrology and Immunology, Rheinisch-Westfälische Technische Hochschule Aachen University, Aachen, Germany
| | - Armin Kurtz
- Institute of Physiology, University of Regensburg, Regensburg, Germany
| | - Bernhard Banas
- Department of Nephrology, University Hospital Regensburg, Regensburg, Germany
| | - Miriam C Banas
- Department of Nephrology, University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
39
|
Timm AC, Warrick JW, Yin J. Quantitative profiling of innate immune activation by viral infection in single cells. Integr Biol (Camb) 2017; 9:782-791. [PMID: 28831492 PMCID: PMC5603422 DOI: 10.1039/c7ib00082k] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cells infected by viruses can exhibit diverse patterns of viral and cellular gene expression. The patterns arise in part from the stochastic or noisy reaction kinetics associated with the small number of genomes, enzymes, and other molecules that typically initiate virus replication and activate cellular anti-viral defenses. It is not known what features, if any, of the early viral or cellular gene expression correlate with later processes of viral replication or cell survival. Here we used two fluorescent reporters to visualize innate immune activation of human prostate cancer (PC3) cells against infection by vesicular stomatitis virus. The cells were engineered to express green-fluorescent protein under control of the promoter for IFIT2, an interferon-sensitive component of the anti-viral response, while red-fluorescent protein was expressed as a byproduct of virus infection. To isolate and quantitatively analyze single-cells, we used a unique microwell array device and open-source image processing software. Kinetic analysis of viral and cellular reporter profiles from hundreds of cells revealed novel relationships between gene expression and the outcome of infection. Specifically, the relative timing rather than the magnitude of the viral gene expression and innate immune activation correlated with the infection outcome. Earlier viral or anti-viral gene expression favored or hindered virus growth, respectively. Further, analysis of kinetic parameters estimated from these data suggests a trade-off between robust antiviral signaling and cell death, as indicated by a higher rate of detectable cell lysis in infected cells with a detectable immune response. In short, cells that activate an immune response lyse at a higher rate. More broadly, we demonstrate how the intrinsic heterogeneity of individual cell behaviors can be exploited to discover features of viral and host gene expression that correlate with single-cell outcomes, which will ultimately impact whether or not infections spread.
Collapse
Affiliation(s)
- Andrea C Timm
- Systems Biology Theme, Wisconsin Institute for Discovery, Department of Chemical and Biological Engineering, University of Wisconsin, Madison, WI, USA.
| | | | | |
Collapse
|
40
|
Bodenmiller B. Multiplexed Epitope-Based Tissue Imaging for Discovery and Healthcare Applications. Cell Syst 2016; 2:225-38. [PMID: 27135535 DOI: 10.1016/j.cels.2016.03.008] [Citation(s) in RCA: 165] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 03/10/2016] [Indexed: 12/15/2022]
Abstract
The study of organs and tissues on a molecular level is necessary as we seek an understanding of health and disease. Over the last few years, powerful highly multiplexed epitope-based imaging approaches that rely on the serial imaging of tissues with fluorescently labeled antibodies and the simultaneous analysis using metal-labeled antibodies have emerged. These techniques enable analysis of dozens of epitopes in thousands of cells in a single experiment providing a systems level view of normal and disease processes at the single-cell level with spatial resolution in tissues. In this Review, I discuss, first, the highly multiplexed epitope-based imaging approaches and the generated data. Second, I describe challenges that must be overcome to implement these imaging methods from bench to bedside, including issues with tissue processing and analyses of the large amounts of data generated. Third, I discuss how these methods can be integrated with readouts of genome, transcriptome, metabolome, and live cell information, and fourth, the novel applications possible in tissue biology, drug development, and biomarker discovery. I anticipate that highly multiplexed epitope-based imaging approaches will broadly complement existing imaging methods and will become a cornerstone of tissue biology and biomedical research and of precision medical applications.
Collapse
Affiliation(s)
- Bernd Bodenmiller
- Institute of Molecular Life Sciences, University of Zürich, 8057 Zürich, Switzerland.
| |
Collapse
|
41
|
Schmid M, Dufner B, Dürk J, Bedal K, Stricker K, Prokoph LA, Koch C, Wege AK, Zirpel H, van Zandbergen G, Ecker R, Boghiu B, Ritter U. An Emerging Approach for Parallel Quantification of Intracellular Protozoan Parasites and Host Cell Characterization Using TissueFAXS Cytometry. PLoS One 2015; 10:e0139866. [PMID: 26488169 PMCID: PMC4619545 DOI: 10.1371/journal.pone.0139866] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 08/17/2015] [Indexed: 01/16/2023] Open
Abstract
Characterization of host-pathogen interactions is a fundamental approach in microbiological and immunological oriented disciplines. It is commonly accepted that host cells start to change their phenotype after engulfing pathogens. Techniques such as real time PCR or ELISA were used to characterize the genes encoding proteins that are associated either with pathogen elimination or immune escape mechanisms. Most of such studies were performed in vitro using primary host cells or cell lines. Consequently, the data generated with such approaches reflect the global RNA expression or protein amount recovered from all cells in culture. This is justified when all host cells harbor an equal amount of pathogens under experimental conditions. However, the uptake of pathogens by phagocytic cells is not synchronized. Consequently, there are host cells incorporating different amounts of pathogens that might result in distinct pathogen-induced protein biosynthesis. Therefore, we established a technique able to detect and quantify the number of pathogens in the corresponding host cells using immunofluorescence-based high throughput analysis. Paired with multicolor staining of molecules of interest it is now possible to analyze the infection profile of host cell populations and the corresponding phenotype of the host cells as a result of parasite load.
Collapse
Affiliation(s)
- Maximilian Schmid
- Institute of Immunology, University of Regensburg, Regensburg, Germany
| | - Bianca Dufner
- Institute of Immunology, University of Regensburg, Regensburg, Germany
| | - Julius Dürk
- Institute of Immunology, University of Regensburg, Regensburg, Germany
| | - Konstanze Bedal
- Institute of Immunology, University of Regensburg, Regensburg, Germany
| | - Kristina Stricker
- Institute of Immunology, University of Regensburg, Regensburg, Germany
| | - Lukas Ali Prokoph
- Institute of Immunology, University of Regensburg, Regensburg, Germany
| | - Christoph Koch
- Institute of Immunology, University of Regensburg, Regensburg, Germany
| | - Anja K. Wege
- Department of Gynecology and Obstetrics, University of Regensburg, Regensburg, Germany
| | - Henner Zirpel
- Division of Immunology, Paul-Ehrlich-Institute, Langen, Germany
| | - Ger van Zandbergen
- Department of Gynecology and Obstetrics, University of Regensburg, Regensburg, Germany
- Institute of Immunology, University Medical Center of the Johannes Gutenberg University of Mainz, Mainz, Germany
| | | | | | - Uwe Ritter
- Institute of Immunology, University of Regensburg, Regensburg, Germany
- * E-mail:
| |
Collapse
|
42
|
Allipour Birgani S, Mailänder M, Wasle I, Dietrich H, Gruber J, Distler O, Sgonc R. Efficient therapy of ischaemic lesions with VEGF121-fibrin in an animal model of systemic sclerosis. Ann Rheum Dis 2015; 75:1399-406. [PMID: 26362758 PMCID: PMC4766736 DOI: 10.1136/annrheumdis-2015-207548] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 08/01/2015] [Indexed: 11/17/2022]
Abstract
Background In systemic sclerosis (SSc), chronic and uncontrolled overexpression of vascular endothelial growth factor (VEGF) results in chaotic vessels, and intractable fingertip ulcers. Vice versa, VEGF is a potent mediator of angiogenesis if temporally and spatially controlled. We have addressed this therapeutic dilemma in SSc by a novel approach using a VEGF121 variant that covalently binds to fibrin and gets released on demand by cellular enzymatic activity. Using University of California at Davis (UCD)-206 chickens, we tested the hypothesis that cell-demanded release of fibrin-bound VEGF121 leads to the formation of stable blood vessels, and clinical improvement of ischaemic lesions. Methods Ninety-one early and late ischaemic comb and neck skin lesions of UCD-206 chickens were treated locally with VEGF121-fibrin, fibrin alone, or left untreated. After 1 week of treatment the clinical outcome was assessed. Angiogenesis was studied by immunofluorescence staining of vascular markers quantitatively analysed using TissueQuest. Results Overall, 79.3% of the lesions treated with VEGF121-fibrin showed clinical improvement, whereas 71.0% of fibrin treated controls, and 93.1% of untreated lesions deteriorated. This was accompanied by significantly increased growth of stable microvessels, upregulation of the proangiogenic VEGFR-2 and its regulator TAL-1, and increase of endogenous endothelial VEGF expression. Conclusions Our findings in the avian model of SSc suggest that cell-demanded release of VEGF121 from fibrin matrix induces controlled angiogenesis by differential regulation of VEGFR-1 and VEGFR-2 expression, shifting the balance towards the proangiogenic VEGFR-2. The study shows the potential of covalently conjugated VEGF-fibrin matrices for the therapy of ischaemic lesions such as fingertip ulcers.
Collapse
Affiliation(s)
- Shadab Allipour Birgani
- Division of Experimental Pathophysiology and Immunology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Marion Mailänder
- Division of Experimental Pathophysiology and Immunology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Ines Wasle
- Division of Experimental Pathophysiology and Immunology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Hermann Dietrich
- Central Laboratory Animal Facilities, Medical University of Innsbruck, Innsbruck, Austria
| | - Johann Gruber
- Department of Internal Medicine VI, Medical University of Innsbruck, Innsbruck, Austria
| | - Oliver Distler
- Department of Rheumatology, Center of Experimental Rheumatology, University Hospital Zurich, Zurich, Switzerland
| | - Roswitha Sgonc
- Division of Experimental Pathophysiology and Immunology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
43
|
Development of Blood and Lymphatic Endothelial Cells in Embryonic and Fetal Human Skin. THE AMERICAN JOURNAL OF PATHOLOGY 2015; 185:2563-74. [PMID: 26188132 DOI: 10.1016/j.ajpath.2015.05.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 04/08/2015] [Accepted: 05/13/2015] [Indexed: 12/26/2022]
Abstract
Blood and lymphatic vessels provide nutrients for the skin and fulfill important homeostatic functions, such as the regulation of immunologic processes. In this study, we investigated the development of blood and lymphatic endothelial cells in prenatal human skin in situ using multicolor immunofluorescence and analyzed angiogenic molecules by protein arrays of lysates and cell culture supernatants. We found that at 8 to 10 weeks of estimated gestational age, CD144(+) vessels predominantly express the venous endothelial cell marker PAL-E, whereas CD144(+)PAL-E(-) vessels compatible with arteries only appear at the end of the first trimester. Lymphatic progenitor cells at 8 weeks of estimated gestational age express CD31, CD144, Prox1, and temporary PAL-E. At that developmental stage not all lymphatic progenitor cells express podoplanin or Lyve-1, which are acquired with advancing gestational age in a stepwise fashion. Already in second-trimester human skin, the phenotype of blood and lymphatic vessels roughly resembles the one in adult skin. The expression pattern of angiogenic molecules in lysates and cell culture supernatants of prenatal skin did not reveal the expected bent to proangiogenic molecules, indicating a complex regulation of angiogenesis during ontogeny. In summary, this study provides enticing new insights into the development and phenotypic characteristics of the vascular system in human prenatal skin.
Collapse
|
44
|
The Role of ExoS in Dissemination of Pseudomonas aeruginosa during Pneumonia. PLoS Pathog 2015; 11:e1004945. [PMID: 26090668 PMCID: PMC4474835 DOI: 10.1371/journal.ppat.1004945] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 05/11/2015] [Indexed: 01/11/2023] Open
Abstract
Hospital-acquired pneumonia is associated with high rates of morbidity and mortality, and dissemination to the bloodstream is a recognized risk factor for particularly poor outcomes. Yet the mechanism by which bacteria in the lungs gain access to the bloodstream remains poorly understood. In this study, we used a mouse model of Pseudomonas aeruginosa pneumonia to examine this mechanism. P. aeruginosa uses a type III secretion system to deliver effector proteins such as ExoS directly into the cytosol of eukaryotic cells. ExoS, a bi-functional GTPase activating protein (GAP) and ADP-ribosyltransferase (ADPRT), inhibits phagocytosis during pneumonia but has also been linked to a higher incidence of dissemination to the bloodstream. We used a novel imaging methodology to identify ExoS intoxicated cells during pneumonia and found that ExoS is injected into not only leukocytes but also epithelial cells. Phagocytic cells, primarily neutrophils, were targeted for injection with ExoS early during infection, but type I pneumocytes became increasingly injected at later time points. Interestingly, injection of these pneumocytes did not occur randomly but rather in discrete regions, which we designate ““fields of cell injection” (FOCI). These FOCI increased in size as the infection progressed and contained dead type I pneumocytes. Both of these phenotypes were attenuated in infections caused by bacteria secreting ADPRT-deficient ExoS, indicating that FOCI growth and type I pneumocyte death were dependent on the ADPRT activity of ExoS. During the course of infection, increased FOCI size was associated with enhanced disruption of the pulmonary-vascular barrier and increased bacterial dissemination into the blood, both of which were also dependent on the ADPRT activity of ExoS. We conclude that the ADPRT activity of ExoS acts upon type I pneumocytes to disrupt the pulmonary-vascular barrier during P. aeruginosa pneumonia, leading to bacterial dissemination. Dissemination to the bloodstream is a poor prognostic sign in patients with hospital-acquired pneumonia, yet the mechanism by which this occurs is poorly understood. To begin to address this issue, we have used a mouse model of P. aeruginosa pneumonia to study the mechanism by which the type-III-secreted effector protein ExoS enhances bacterial dissemination. We show that intoxication of type I pneumocytes by ExoS leads to cell death and disruption of the pulmonary-vascular barrier, allowing bacterial dissemination into the bloodstream. These effects required the ADP-ribosyltransferase activity of ExoS, as strains secreting an ExoS variant lacking this activity demonstrated reduced type I pneumocytes death and pulmonary-vascular breakdown. This study indicates that inhibitors of the ADP-ribosyltransferase activity of ExoS could serve as novel therapeutics for the prevention of bacteremic pneumonia.
Collapse
|
45
|
Schlederer M, Mueller KM, Haybaeck J, Heider S, Huttary N, Rosner M, Hengstschläger M, Moriggl R, Dolznig H, Kenner L. Reliable quantification of protein expression and cellular localization in histological sections. PLoS One 2014; 9:e100822. [PMID: 25013898 PMCID: PMC4094387 DOI: 10.1371/journal.pone.0100822] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 05/30/2014] [Indexed: 01/05/2023] Open
Abstract
In targeted therapy, patient tumors are analyzed for aberrant activations of core cancer pathways, monitored based on biomarker expression, to ensure efficient treatment. Thus, diagnosis and therapeutic decisions are often based on the status of biomarkers determined by immunohistochemistry in combination with other clinical parameters. Standard evaluation of cancer specimen by immunohistochemistry is frequently impeded by its dependence on subjective interpretation, showing considerable intra- and inter-observer variability. To make treatment decisions more reliable, automated image analysis is an attractive possibility to reproducibly quantify biomarker expression in patient tissue samples. We tested whether image analysis could detect subtle differences in protein expression levels. Gene dosage effects generate well-graded expression patterns for most gene-products, which vary by a factor of two between wildtype and haploinsufficient cells lacking one allele. We used conditional mouse models with deletion of the transcription factors Stat5ab in the liver as well Junb deletion in a T-cell lymphoma model. We quantified the expression of total or activated STAT5AB or JUNB protein in normal (Stat5ab+/+ or JunB+/+), hemizygous (Stat5ab+/Δ or JunB+/Δ) or knockout (Stat5abΔ/Δ or JunBΔ/Δ) settings. Image analysis was able to accurately detect hemizygosity at the protein level. Moreover, nuclear signals were distinguished from cytoplasmic expression and translocation of the transcription factors from the cytoplasm to the nucleus was reliably detected and quantified using image analysis. We demonstrate that image analysis supported pathologists to score nuclear STAT5AB expression levels in immunohistologically stained human hepatocellular patient samples and decreased inter-observer variability.
Collapse
Affiliation(s)
| | | | | | - Susanne Heider
- Institute of Clinical Pathology, Medical University of Vienna, Vienna, Austria
| | - Nicole Huttary
- Institute of Clinical Pathology, Medical University of Vienna, Vienna, Austria
| | - Margit Rosner
- Institute of Medical Genetics, Medical University of Vienna, Vienna, Austria
| | | | - Richard Moriggl
- Ludwig Boltzmann Institute for Cancer Research (LBI-CR), Vienna, Austria
- Unit for Translational Methods in Cancer Research University of Veterinary Medicine Vienna (Vetmeduni Vienna), Vienna, Austria
| | - Helmut Dolznig
- Institute of Medical Genetics, Medical University of Vienna, Vienna, Austria
- * E-mail: (HD); (LK)
| | - Lukas Kenner
- Ludwig Boltzmann Institute for Cancer Research (LBI-CR), Vienna, Austria
- Institute of Clinical Pathology, Medical University of Vienna, Vienna, Austria
- Unit of Pathology of Laboratory Animals, University of Veterinary Medicine Vienna (Vetmeduni Vienna), Vienna, Austria
- * E-mail: (HD); (LK)
| |
Collapse
|
46
|
Wong SJ, Campbell B, Massey B, Lynch DP, Cohen EEW, Blair E, Selle R, Shklovskaya J, Jovanovic BD, Skripkauskas S, Dew A, Kulesza P, Parimi V, Bergan RC, Szabo E. A phase I trial of aminolevulinic acid-photodynamic therapy for treatment of oral leukoplakia. Oral Oncol 2013; 49:970-976. [PMID: 23845699 PMCID: PMC4456032 DOI: 10.1016/j.oraloncology.2013.05.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2012] [Revised: 05/24/2013] [Accepted: 05/30/2013] [Indexed: 12/14/2022]
Abstract
BACKGROUND Photodynamic therapy with aminolevulinic acid (ALA PDT) for oral leukoplakia has shown promising effects in regression of oral leukoplakia. Although ALA has been extensively studied and is an ideal photosensitizer, the optimal light dose for treatment of oral leukoplakia has not been determined. We conducted a phase I study to determine MTD and DLT of PDT in patients treated with ALA for leukoplakia. METHODS Patients with histologically confirmed oral leukoplakia received a single treatment of ALA PDT in cohorts with escalating doses of light (585nm). Clinical, histologic, and biologic markers were assessed. RESULTS Analysis of 11 participants is reported. No significant toxicity from ALA PDT was observed in patients who received ALA with a light dose of up to 4J/cm(2). One participant experienced transient grade 3 transaminase elevation due to ALA. One participant had a partial clinical response 3months after treatment. Biologic mucosal risk markers showed no significant associations. Determination of MTD could not be accomplished within a feasible timeframe for completion of the study. CONCLUSIONS ALA PDT could be safely administered with a light dose up to 4J/cm(2) and demonstrated activity. Larger studies are needed to fully elucidate the MTD and efficacy of ALA-PDT.
Collapse
Affiliation(s)
- Stuart J Wong
- Medical College of Wisconsin, Milwaukee, Wisconsin, United States.
| | - Bruce Campbell
- Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Becky Massey
- Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Denis P Lynch
- Marquette University School of Dentistry, Milwaukee, Wisconsin, United States
| | - Ezra E W Cohen
- University of Chicago Comprehensive Cancer Center, Chicago, Illinois, United States
| | - Elizabeth Blair
- University of Chicago Comprehensive Cancer Center, Chicago, Illinois, United States
| | - Rebecca Selle
- Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | | | | | | | | | | | | | - Raymond C Bergan
- Robert H. Lurie Cancer Center, United States; Center for Molecular Innovation and Drug Discovery of Northwestern University, Chicago, Illinois, United States
| | - Eva Szabo
- Division of Cancer Prevention, National Cancer Institute, National Institutes of Health, Chicago, Illinois, United States
| |
Collapse
|
47
|
Isse K, Lesniak A, Grama K, Maier J, Specht S, Castillo-Rama M, Lunz J, Roysam B, Michalopoulos G, Demetris AJ. Preexisting epithelial diversity in normal human livers: a tissue-tethered cytometric analysis in portal/periportal epithelial cells. Hepatology 2013; 57:1632-43. [PMID: 23150208 PMCID: PMC3612393 DOI: 10.1002/hep.26131] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Revised: 10/17/2012] [Accepted: 10/17/2012] [Indexed: 12/17/2022]
Abstract
UNLABELLED Routine light microscopy identifies two distinct epithelial cell populations in normal human livers: hepatocytes and biliary epithelial cells (BECs). Considerable epithelial diversity, however, arises during disease states when a variety of hepatocyte-BEC hybrid cells appear. This has been attributed to activation and differentiation of putative hepatic progenitor cells (HPC) residing in the canals of Hering and/or metaplasia of preexisting mature epithelial cells. A novel analytic approach consisting of multiplex labeling, high-resolution whole-slide imaging (WSI), and automated image analysis was used to determine if more complex epithelial cell phenotypes preexist in normal adult human livers, which might provide an alternative explanation for disease-induced epithelial diversity. "Virtually digested" WSI enabled quantitative cytometric analyses of individual cells displayed in a variety of formats (e.g., scatterplots) while still tethered to the WSI and tissue structure. We employed biomarkers specifically associated with mature epithelial forms (HNF4α for hepatocytes, CK19 and HNF1β for BEC) and explored for the presence of cells with hybrid biomarker phenotypes. The results showed abundant hybrid cells in portal bile duct BEC, canals of Hering, and immediate periportal hepatocytes. These bipotential cells likely serve as a reservoir for the epithelial diversity of ductular reactions, appearance of hepatocytes in bile ducts, and the rapid and fluid transition of BEC to hepatocytes, and vice versa. CONCLUSION Novel imaging and computational tools enable increased information extraction from tissue samples and quantify the considerable preexistent hybrid epithelial diversity in normal human liver. This computationally enabled tissue analysis approach offers much broader potential beyond the results presented here.
Collapse
Affiliation(s)
- Kumiko Isse
- Department of Pathology, University of Pittsburgh Medical Center,Department of Pathology, Division of Liver and Transplantation Pathology, Thomas E. Starzl Transplantation Institute, University of Pittsburgh
| | - Andrew Lesniak
- Department of Pathology, University of Pittsburgh Medical Center,Department of Pathology, Division of Liver and Transplantation Pathology, Thomas E. Starzl Transplantation Institute, University of Pittsburgh
| | - Kedar Grama
- Department of Electrical & Computer Engineering, University of Houston
| | - John Maier
- Department of Family Medicine, University of Pittsburgh Medical Center
| | - Susan Specht
- Department of Pathology, University of Pittsburgh Medical Center,Department of Pathology, Division of Liver and Transplantation Pathology, Thomas E. Starzl Transplantation Institute, University of Pittsburgh
| | - Marcela Castillo-Rama
- Department of Pathology, University of Pittsburgh Medical Center,Department of Pathology, Division of Liver and Transplantation Pathology, Thomas E. Starzl Transplantation Institute, University of Pittsburgh
| | - John Lunz
- Department of Pathology, University of Pittsburgh Medical Center,Department of Pathology, Division of Liver and Transplantation Pathology, Thomas E. Starzl Transplantation Institute, University of Pittsburgh
| | - Badrinath Roysam
- Department of Electrical & Computer Engineering, University of Houston
| | | | - Anthony J. Demetris
- Department of Pathology, University of Pittsburgh Medical Center,Department of Pathology, Division of Liver and Transplantation Pathology, Thomas E. Starzl Transplantation Institute, University of Pittsburgh
| |
Collapse
|
48
|
Toh B, Nardin A, Dai X, Keeble J, Chew V, Abastado JP. Detection, enumeration, and characterization of immune cells infiltrating melanoma tumors. Methods Mol Biol 2013; 961:261-277. [PMID: 23325650 DOI: 10.1007/978-1-62703-227-8_17] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Tumor-infiltrating immune cells have long been thought to affect tumor growth. In recent years, large retrospective studies have shown that the nature and polarization of the immune cells found within the tumor microenvironment impact not only the growth of the primary tumor, but also disease progression and patient survival. This has triggered considerable interest for an in depth analysis of the tumoral immune microenvironment and has created a need for standardized methods to characterize tumor-infiltrating immune cells. Here, we describe three approaches that can be used in mouse and human melanoma tumors.
Collapse
Affiliation(s)
- Benjamin Toh
- Singapore Immunology Network, BMSI, A-STAR, Singapore, Singapore
| | | | | | | | | | | |
Collapse
|
49
|
Kummrow A, Frankowski M, Bock N, Werner C, Dziekan T, Neukammer J. Quantitative assessment of cell viability based on flow cytometry and microscopy. Cytometry A 2012; 83:197-204. [PMID: 23081720 DOI: 10.1002/cyto.a.22213] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Revised: 09/06/2012] [Accepted: 09/12/2012] [Indexed: 11/05/2022]
Abstract
We compare flow cytometric and microscopic determination of cell viability by fluorescence labeling using calcein acetoxy-methyl-ester and ethidium homodimer-1 as live and dead stain, respectively. Peripheral blood monocytes served as model system and were accumulated applying density gradients. Subsequently, monocytes were further enriched by magnetic-activated or fluorescence-activated cell sorting (MACS, FACS) targeting the antigen CD14. Identical samples were used for flow cytometric and microscopic analysis to allow direct comparison of both analysis methods. More than 1,000 cells were measured for each sample to minimize the measurement uncertainty caused by counting statistics. We observed good agreement of flow cytometric and microscopic viability measurements. On average, the difference in viability measured by flow cytometry and microscopy amounted to (2.7 ± 1.4)% for live staining and (1.7 ± 1.2)% for dead staining. These deviations were similar to the uncertainty of measurement for cell viability, thus demonstrating that both methods delivered equal results. Besides monocytes, comparison of flow cytometric and microscopy viability for MACS enriched CD34-positive cells also showed consistent results.
Collapse
Affiliation(s)
- A Kummrow
- Physikalisch-Technische Bundesanstalt, 10587 Berlin, Germany.
| | | | | | | | | | | |
Collapse
|
50
|
Gerner MY, Kastenmuller W, Ifrim I, Kabat J, Germain RN. Histo-cytometry: a method for highly multiplex quantitative tissue imaging analysis applied to dendritic cell subset microanatomy in lymph nodes. Immunity 2012; 37:364-76. [PMID: 22863836 DOI: 10.1016/j.immuni.2012.07.011] [Citation(s) in RCA: 323] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Revised: 06/26/2012] [Accepted: 07/17/2012] [Indexed: 01/24/2023]
Abstract
Flow cytometry allows highly quantitative analysis of complex dissociated populations at the cost of neglecting their tissue localization. In contrast, conventional microscopy methods provide spatial information, but visualization and quantification of cellular subsets defined by complex phenotypic marker combinations is challenging. Here, we describe an analytical microscopy method, "histo-cytometry," for visualizing and quantifying phenotypically complex cell populations directly in tissue sections. This technology is based on multiplexed antibody staining, tiled high-resolution confocal microscopy, voxel gating, volumetric cell rendering, and quantitative analysis. We have tested this technology on various innate and adaptive immune populations in murine lymph nodes (LNs) and were able to identify complex cellular subsets and phenotypes, achieving quantitatively similar results to flow cytometry, while also gathering cellular positional information. Here, we employ histo-cytometry to describe the spatial segregation of resident and migratory dendritic cell subsets into specialized microanatomical domains, suggesting an unexpected LN demarcation into discrete functional compartments.
Collapse
Affiliation(s)
- Michael Y Gerner
- Lymphocyte Biology Section, Laboratory of Systems Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | |
Collapse
|