1
|
Coirada FC, Fernandes ER, Mello LRD, Schuch V, Soares Campos G, Braconi CT, Boscardin SB, Santoro Rosa D. Heterologous DNA Prime- Subunit Protein Boost with Chikungunya Virus E2 Induces Neutralizing Antibodies and Cellular-Mediated Immunity. Int J Mol Sci 2023; 24:10517. [PMID: 37445695 DOI: 10.3390/ijms241310517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/07/2023] [Accepted: 06/08/2023] [Indexed: 07/15/2023] Open
Abstract
Chikungunya virus (CHIKV) has become a significant public health concern due to the increasing number of outbreaks worldwide and the associated comorbidities. Despite substantial efforts, there is no specific treatment or licensed vaccine against CHIKV to date. The E2 glycoprotein of CHIKV is a promising vaccine candidate as it is a major target of neutralizing antibodies during infection. In this study, we evaluated the immunogenicity of two DNA vaccines (a non-targeted and a dendritic cell-targeted vaccine) encoding a consensus sequence of E2CHIKV and a recombinant protein (E2*CHIKV). Mice were immunized with different homologous and heterologous DNAprime-E2* protein boost strategies, and the specific humoral and cellular immune responses were accessed. We found that mice immunized with heterologous non-targeted DNA prime- E2*CHIKV protein boost developed high levels of neutralizing antibodies, as well as specific IFN-γ producing cells and polyfunctional CD4+ and CD8+ T cells. We also identified 14 potential epitopes along the E2CHIKV protein. Furthermore, immunization with recombinant E2*CHIKV combined with the adjuvant AS03 presented the highest humoral response with neutralizing capacity. Finally, we show that the heterologous prime-boost strategy with the non-targeted pVAX-E2 DNA vaccine as the prime followed by E2* protein + AS03 boost is a promising combination to elicit a broad humoral and cellular immune response. Together, our data highlights the importance of E2CHIKV for the development of a CHIKV vaccine.
Collapse
Affiliation(s)
- Fernanda Caroline Coirada
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo (UNIFESP/EPM), São Paulo 04023-062, Brazil
| | - Edgar Ruz Fernandes
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo (UNIFESP/EPM), São Paulo 04023-062, Brazil
| | - Lucas Rodrigues de Mello
- Departamento de Biofísica, Universidade Federal de São Paulo (UNIFESP/EPM), São Paulo 04044-020, Brazil
| | - Viviane Schuch
- Departamento de Análises Clínicas e Toxicológicas, Universidade de São Paulo (USP), São Paulo 05508-000, Brazil
| | - Gúbio Soares Campos
- Laboratório de Virologia, Universidade Federal da Bahia (UFBA), Salvador 40110-909, Brazil
| | - Carla Torres Braconi
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo (UNIFESP/EPM), São Paulo 04023-062, Brazil
| | - Silvia Beatriz Boscardin
- Departamento de Parasitologia, Universidade de São Paulo (USP), São Paulo 05508-000, Brazil
- Instituto Nacional de Ciência e Tecnologia de Investigação em Imunologia-INCT (III), São Paulo 05403-900, Brazil
| | - Daniela Santoro Rosa
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo (UNIFESP/EPM), São Paulo 04023-062, Brazil
- Instituto Nacional de Ciência e Tecnologia de Investigação em Imunologia-INCT (III), São Paulo 05403-900, Brazil
| |
Collapse
|
2
|
ZIKV-envelope proteins induce specific humoral and cellular immunity in distinct mice strains. Sci Rep 2022; 12:15733. [PMID: 36131132 PMCID: PMC9492693 DOI: 10.1038/s41598-022-20183-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 09/08/2022] [Indexed: 11/08/2022] Open
Abstract
Recent outbreaks of Zika virus (ZIKV) infection have highlighted the need for a better understanding of ZIKV-specific immune responses. The ZIKV envelope glycoprotein (EZIKV) is the most abundant protein on the virus surface and it is the main target of the protective immune response. EZIKV protein contains the central domain (EDI), a dimerization domain containing the fusion peptide (EDII), and a domain that binds to the cell surface receptor (EDIII). In this study, we performed a systematic comparison of the specific immune response induced by different EZIKV recombinant proteins (EZIKV, EDI/IIZIKV or EDIIIZIKV) in two mice strains. Immunization induced high titers of E-specific antibodies which recognized ZIKV-infected cells and neutralized the virus. Furthermore, immunization with EZIKV, EDI/IIZIKV and EDIIIZIKV proteins induced specific IFNγ-producing cells and polyfunctional CD4+ and CD8+ T cells. Finally, we identified 4 peptides present in the envelope protein (E1-20, E51-70, E351-370 and E361-380), capable of inducing a cellular immune response to the H-2Kd and H-2Kb haplotypes. In summary, our work provides a detailed assessment of the immune responses induced after immunization with different regions of the ZIKV envelope protein.
Collapse
|
3
|
Quach HQ, Ovsyannikova IG, Poland GA, Kennedy RB. Evaluating immunogenicity of pathogen-derived T-cell epitopes to design a peptide-based smallpox vaccine. Sci Rep 2022; 12:15401. [PMID: 36100624 PMCID: PMC9470075 DOI: 10.1038/s41598-022-19679-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 09/01/2022] [Indexed: 11/09/2022] Open
Abstract
Despite the eradication in 1980, developing safe and effective smallpox vaccines remains an active area of research due to the recent outbreaks and the public health concern that smallpox viruses could be used as bioterrorism weapons. Identifying immunogenic peptides (epitopes) would create a foundation for the development of a robust peptide-based vaccine. We previously identified a library of naturally-processed, human leukocyte antigen class I-presented vaccinia-derived peptides from infected B cells. In the current study, we evaluated the immunogenicity of these T-cell peptides in both transgenic mouse models and human peripheral blood mononuclear cells. A vaccine based on four selected peptides provided 100% protection against a lethal viral challenge. In addition, responses from memory T cells remained unchanged up to five months. Our results validate a practical approach for identifying and verifying immunogenic peptides for vaccine development and highlight the potential of peptide-based vaccines for various infectious diseases.
Collapse
Affiliation(s)
- Huy Quang Quach
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, MN, 55905, USA
| | | | - Gregory A Poland
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, MN, 55905, USA
| | - Richard B Kennedy
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, MN, 55905, USA.
| |
Collapse
|
4
|
Longitudinal Assessment of SARS-CoV-2-Specific T Cell Cytokine-Producing Responses for 1 Year Reveals Persistence of Multicytokine Proliferative Responses, with Greater Immunity Associated with Disease Severity. J Virol 2022; 96:e0050922. [PMID: 35699447 PMCID: PMC9278147 DOI: 10.1128/jvi.00509-22] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Cell-mediated immunity is critical for long-term protection against most viral infections, including coronaviruses. We studied 23 severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-infected survivors over a 1-year post-symptom onset (PSO) interval by ex vivo cytokine enzyme-linked immunosorbent spot assay (ELISpot) assay. All subjects demonstrated SARS-CoV-2-specific gamma interferon (IFN-γ), interleukin 2 (IL-2), and granzyme B (GzmB) T cell responses at presentation, with greater frequencies in severe disease. Cytokines, mainly produced by CD4+ T cells, targeted all structural proteins (nucleocapsid, membrane, and spike) except envelope, with GzmB and IL-2 greater than IFN-γ. Mathematical modeling predicted that (i) cytokine responses peaked at 6 days for IFN-γ, 36 days for IL-2, and 7 days for GzmB, (ii) severe illness was associated with reduced IFN-γ and GzmB but increased IL-2 production rates, and (iii) males displayed greater production of IFN-γ, whereas females produced more GzmB. Ex vivo responses declined over time, with persistence of IL-2 in 86% and of IFN-γ and GzmB in 70% of subjects at a median of 336 days PSO. The average half-life of SARS-CoV-2-specific cytokine-producing cells was modeled to be 139 days (~4.6 months). Potent T cell proliferative responses persisted throughout observation, were CD4 dominant, and were capable of producing all 3 cytokines. Several immunodominant CD4 and CD8 epitopes identified in this study were shared by seasonal coronaviruses or SARS-CoV-1 in the nucleocapsid and membrane regions. Both SARS-CoV-2-specific CD4+ and CD8+ T cell clones were able to kill target cells, though CD8 tended to be more potent. IMPORTANCE Our findings highlight the relative importance of SARS-CoV-2-specific GzmB-producing T cell responses in SARS-CoV-2 control and shared CD4 and CD8 immunodominant epitopes in seasonal coronaviruses or SARS-CoV-1, and they indicate robust persistence of T cell memory at least 1 year after infection. Our findings should inform future strategies to induce T cell vaccines against SARS-CoV-2 and other coronaviruses.
Collapse
|
5
|
Elias G, Meysman P, Bartholomeus E, De Neuter N, Keersmaekers N, Suls A, Jansens H, Souquette A, De Reu H, Emonds MP, Smits E, Lion E, Thomas PG, Mortier G, Van Damme P, Beutels P, Laukens K, Van Tendeloo V, Ogunjimi B. Preexisting memory CD4 T cells in naïve individuals confer robust immunity upon hepatitis B vaccination. eLife 2022; 11:68388. [PMID: 35074048 PMCID: PMC8824481 DOI: 10.7554/elife.68388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 01/07/2022] [Indexed: 11/22/2022] Open
Abstract
Antigen recognition through the T cell receptor (TCR) αβ heterodimer is one of the primary determinants of the adaptive immune response. Vaccines activate naïve T cells with high specificity to expand and differentiate into memory T cells. However, antigen-specific memory CD4 T cells exist in unexposed antigen-naïve hosts. In this study, we use high-throughput sequencing of memory CD4 TCRβ repertoire and machine learning to show that individuals with preexisting vaccine-reactive memory CD4 T cell clonotypes elicited earlier and higher antibody titers and mounted a more robust CD4 T cell response to hepatitis B vaccine. In addition, integration of TCRβ sequence patterns into a hepatitis B epitope-specific annotation model can predict which individuals will have an early and more vigorous vaccine-elicited immunity. Thus, the presence of preexisting memory T cell clonotypes has a significant impact on immunity and can be used to predict immune responses to vaccination. Immune cells called CD4 T cells help the body build immunity to infections caused by bacteria and viruses, or after vaccination. Receptor proteins on the outside of the cells recognize pathogens, foreign molecules called antigens, or vaccine antigens. Vaccine antigens are usually inactivated bacteria or viruses, or fragments of these pathogens. After recognizing an antigen, CD4 T cells develop into memory CD4 T cells ready to defend against future infections with the pathogen. People who have never been exposed to a pathogen, or have never been vaccinated against it, may nevertheless have preexisting memory cells ready to defend against it. This happens because CD4 T cells can recognize multiple targets, which enables the immune system to be ready to defend against both new and familiar pathogens. Elias, Meysman, Bartholomeus et al. wanted to find out whether having preexisting memory CD4 T cells confers an advantage for vaccine-induced immunity. Thirty-four people who were never exposed to hepatitis B or vaccinated against it participated in the study. These individuals provided blood samples before vaccination, with 2 doses of the hepatitis B vaccine, and at 3 time points afterward. Using next generation immune sequencing and machine learning techniques, Elias et al. analyzed the individuals’ memory CD4 T cells before and after vaccination. The experiments showed that preexisting memory CD4 T cells may determine vaccination outcomes, and people with more preexisting memory cells develop quicker and stronger immunity after vaccination against hepatitis B. This information may help scientists to better understand how people develop immunity to pathogens. It may guide them develop better vaccines or predict who will develop immunity after vaccination.
Collapse
Affiliation(s)
- George Elias
- Laboratory of Experimental Hematology (LEH), University of Antwerp
| | - Pieter Meysman
- Biomedical Informatics Research Network Antwerp, Department of Mathematics and Informatics, University of Antwerp
| | | | - Nicolas De Neuter
- Antwerp Unit for Data Analysis and Computation in Immunology and Sequencing, University of Antwerp
| | - Nina Keersmaekers
- Centre for Health Economics Research & Modeling Infectious Diseases, University of Antwerp
| | - Arvid Suls
- Antwerp Unit for Data Analysis and Computation in Immunology and Sequencing, University of Antwerp
| | - Hilde Jansens
- Department of Clinical Microbiology, Antwerp University Hospital
| | - Aisha Souquette
- Department of Immunology, St. Jude Children's Research Hospital
| | - Hans De Reu
- Laboratory of Experimental Hematology, University of Antwerp
| | | | - Evelien Smits
- Laboratory of Experimental Hematology, University of Antwerp
| | - Eva Lion
- Laboratory of Experimental Hematology, University of Antwerp
| | - Paul G Thomas
- Department of Immunology, St. Jude Children's Research Hospital
| | - Geert Mortier
- Antwerp Unit for Data Analysis and Computation in Immunology and Sequencing, University of Antwerp
| | - Pierre Van Damme
- Antwerp Unit for Data Analysis and Computation in Immunology and Sequencing, University of Antwerp
| | - Philippe Beutels
- Antwerp Unit for Data Analysis and Computation in Immunology and Sequencing, University of Antwerp
| | - Kris Laukens
- Antwerp Unit for Data Analysis and Computation in Immunology and Sequencing, University of Antwerp
| | - Viggo Van Tendeloo
- Janssen Research and Development, Immunosciences WWDA, Johnson and Johnson
| | - Benson Ogunjimi
- Antwerp Unit for Data Analysis and Computation in Immunology and Sequencing, University of Antwerp
| |
Collapse
|
6
|
Hayes P, Fernandez N, Ochsenbauer C, Dalel J, Hare J, King D, Black L, Streatfield C, Kakarla V, Macharia G, Makinde J, Price M, Hunter E, Gilmour J. Breadth of CD8 T-cell mediated inhibition of replication of diverse HIV-1 transmitted-founder isolates correlates with the breadth of recognition within a comprehensive HIV-1 Gag, Nef, Env and Pol potential T-cell epitope (PTE) peptide set. PLoS One 2021; 16:e0260118. [PMID: 34788349 PMCID: PMC8598018 DOI: 10.1371/journal.pone.0260118] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 11/02/2021] [Indexed: 11/21/2022] Open
Abstract
Full characterisation of functional HIV-1-specific T-cell responses, including identification of recognised epitopes linked with functional antiviral responses, would aid development of effective vaccines but is hampered by HIV-1 sequence diversity. Typical approaches to identify T-cell epitopes utilising extensive peptide sets require subjects' cell numbers that exceed feasible sample volumes. To address this, CD8 T-cells were polyclonally expanded from PBMC from 13 anti-retroviral naïve subjects living with HIV using CD3/CD4 bi-specific antibody. Assessment of recognition of individual peptides within a set of 1408 HIV-1 Gag, Nef, Pol and Env potential T-cell epitope peptides was achieved by sequential IFNγ ELISpot assays using peptides pooled in 3-D matrices followed by confirmation with single peptides. A Renilla reniformis luciferase viral inhibition assay assessed CD8 T-cell-mediated inhibition of replication of a cross-clade panel of 10 HIV-1 isolates, including 9 transmitted-founder isolates. Polyclonal expansion from one frozen PBMC vial provided sufficient CD8 T-cells for both ELISpot steps in 12 of 13 subjects. A median of 33 peptides in 16 epitope regions were recognised including peptides located in previously characterised HIV-1 epitope-rich regions. There was no significant difference between ELISpot magnitudes for in vitro expanded CD8 T-cells and CD8 T-cells directly isolated from PBMCs. CD8 T-cells from all subjects inhibited a median of 7 HIV-1 isolates (range 4 to 10). The breadth of CD8 T-cell mediated HIV-1 inhibition was significantly positively correlated with CD8 T-cell breadth of peptide recognition. Polyclonal CD8 T-cell expansion allowed identification of HIV-1 isolates inhibited and peptides recognised within a large peptide set spanning the major HIV-1 proteins. This approach overcomes limitations associated with obtaining sufficient cell numbers to fully characterise HIV-1-specific CD8 T-cell responses by different functional readouts within the context of extreme HIV-1 diversity. Such an approach will have useful applications in clinical development for HIV-1 and other diseases.
Collapse
Affiliation(s)
- Peter Hayes
- IAVI Human Immunology Laboratory, Imperial College, London, United Kingdom
| | - Natalia Fernandez
- IAVI Human Immunology Laboratory, Imperial College, London, United Kingdom
| | | | - Jama Dalel
- IAVI Human Immunology Laboratory, Imperial College, London, United Kingdom
| | - Jonathan Hare
- IAVI Human Immunology Laboratory, Imperial College, London, United Kingdom
| | - Deborah King
- IAVI Human Immunology Laboratory, Imperial College, London, United Kingdom
| | - Lucas Black
- IAVI Human Immunology Laboratory, Imperial College, London, United Kingdom
| | - Claire Streatfield
- IAVI Human Immunology Laboratory, Imperial College, London, United Kingdom
| | - Vanaja Kakarla
- IAVI Human Immunology Laboratory, Imperial College, London, United Kingdom
| | - Gladys Macharia
- IAVI Human Immunology Laboratory, Imperial College, London, United Kingdom
| | - Julia Makinde
- IAVI Human Immunology Laboratory, Imperial College, London, United Kingdom
| | - Matt Price
- IAVI, New York, New York, United States of America
- Department of Epidemiology and Biostatistics, University of California at San Francisco, San Francisco, California, United States of America
| | - Eric Hunter
- Emory Vaccine Center, Atlanta, Georgia, United States of America
| | | | - Jill Gilmour
- IAVI Human Immunology Laboratory, Imperial College, London, United Kingdom
| |
Collapse
|
7
|
Brenna E, Davydov AN, Ladell K, McLaren JE, Bonaiuti P, Metsger M, Ramsden JD, Gilbert SC, Lambe T, Price DA, Campion SL, Chudakov DM, Borrow P, McMichael AJ. CD4 + T Follicular Helper Cells in Human Tonsils and Blood Are Clonally Convergent but Divergent from Non-Tfh CD4 + Cells. Cell Rep 2021; 30:137-152.e5. [PMID: 31914381 PMCID: PMC7029615 DOI: 10.1016/j.celrep.2019.12.016] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 09/16/2019] [Accepted: 12/05/2019] [Indexed: 12/30/2022] Open
Abstract
T follicular helper (Tfh) cells are fundamental for B cell selection and antibody maturation in germinal centers. Circulating Tfh (cTfh) cells constitute a minor proportion of the CD4+ T cells in peripheral blood, but their clonotypic relationship to Tfh populations resident in lymph nodes and the extent to which they differ from non-Tfh CD4+ cells have been unclear. Using donor-matched blood and tonsil samples, we investigate T cell receptor (TCR) sharing between tonsillar Tfh cells and peripheral Tfh and non-Tfh cell populations. TCR transcript sequencing reveals considerable clonal overlap between peripheral and tonsillar Tfh cell subsets as well as a clear distinction between Tfh and non-Tfh cells. Furthermore, influenza-specific cTfh cell clones derived from blood can be found in the repertoire of tonsillar Tfh cells. Therefore, human blood samples can be used to gain insight into the specificity of Tfh responses occurring in lymphoid tissues, provided that cTfh subsets are studied.
Collapse
Affiliation(s)
- Elena Brenna
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX3 7FZ, UK.
| | - Alexey N Davydov
- Central European Institute of Technology, Brno 601 77, Czech Republic
| | - Kristin Ladell
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, UK
| | - James E McLaren
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, UK
| | - Paolo Bonaiuti
- Istituto Firc di Oncologia Molecolare, Milano 20139, Italy
| | - Maria Metsger
- Central European Institute of Technology, Brno 601 77, Czech Republic
| | | | - Sarah C Gilbert
- The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK
| | - Teresa Lambe
- The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK
| | - David A Price
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, UK; Systems Immunity Research Institute, Cardiff University School of Medicine, Cardiff CF14 4XN, UK
| | - Suzanne L Campion
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX3 7FZ, UK
| | - Dmitriy M Chudakov
- Central European Institute of Technology, Brno 601 77, Czech Republic; Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Moscow 117997, Russia; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Science, Moscow 117997, Russia
| | - Persephone Borrow
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX3 7FZ, UK.
| | - Andrew J McMichael
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX3 7FZ, UK.
| |
Collapse
|
8
|
Warren JA, Zhou S, Xu Y, Moeser MJ, MacMillan DR, Council O, Kirchherr J, Sung JM, Roan NR, Adimora AA, Joseph S, Kuruc JD, Gay CL, Margolis DM, Archin N, Brumme ZL, Swanstrom R, Goonetilleke N. The HIV-1 latent reservoir is largely sensitive to circulating T cells. eLife 2020; 9:57246. [PMID: 33021198 PMCID: PMC7593086 DOI: 10.7554/elife.57246] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 09/24/2020] [Indexed: 01/01/2023] Open
Abstract
HIV-1-specific CD8+ T cells are an important component of HIV-1 curative strategies. Viral variants in the HIV-1 reservoir may limit the capacity of T cells to detect and clear virus-infected cells. We investigated the patterns of T cell escape variants in the replication-competent reservoir of 25 persons living with HIV-1 (PLWH) durably suppressed on antiretroviral therapy (ART). We identified all reactive T cell epitopes in the HIV-1 proteome for each participant and sequenced HIV-1 outgrowth viruses from resting CD4+ T cells. All non-synonymous mutations in reactive T cell epitopes were tested for their effect on the size of the T cell response, with a≥50% loss defined as an escape mutation. The majority (68%) of T cell epitopes harbored no detectable escape mutations. These findings suggest that circulating T cells in PLWH on ART could contribute to control of rebound and could be targeted for boosting in curative strategies.
Collapse
Affiliation(s)
- Joanna A Warren
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, United States
| | - Shuntai Zhou
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, United States.,UNC Center For AIDS Research, University of North Carolina, Chapel Hill, United States
| | - Yinyan Xu
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, United States
| | - Matthew J Moeser
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, United States.,UNC Center For AIDS Research, University of North Carolina, Chapel Hill, United States
| | | | - Olivia Council
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, United States.,Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, United States
| | - Jennifer Kirchherr
- Department of Medicine, University of North Carolina, Chapel Hill, United States
| | - Julia M Sung
- Department of Medicine, University of North Carolina, Chapel Hill, United States.,UNC HIV Cure Center, University of North Carolina, Chapel Hill, United States
| | - Nadia R Roan
- Department of Urology, University of California San Francisco, San Francisco, United States.,Gladstone Institute of Virology and Immunology, San Francisco, United States
| | - Adaora A Adimora
- Department of Medicine, University of North Carolina, Chapel Hill, United States
| | - Sarah Joseph
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, United States.,UNC HIV Cure Center, University of North Carolina, Chapel Hill, United States
| | - JoAnn D Kuruc
- Department of Medicine, University of North Carolina, Chapel Hill, United States.,UNC HIV Cure Center, University of North Carolina, Chapel Hill, United States
| | - Cynthia L Gay
- Department of Medicine, University of North Carolina, Chapel Hill, United States.,UNC HIV Cure Center, University of North Carolina, Chapel Hill, United States
| | - David M Margolis
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, United States.,UNC Center For AIDS Research, University of North Carolina, Chapel Hill, United States.,Department of Medicine, University of North Carolina, Chapel Hill, United States.,UNC HIV Cure Center, University of North Carolina, Chapel Hill, United States
| | - Nancie Archin
- Department of Medicine, University of North Carolina, Chapel Hill, United States.,UNC HIV Cure Center, University of North Carolina, Chapel Hill, United States
| | - Zabrina L Brumme
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, Canada.,Faculty of Health Sciences, Simon Fraser University, Burnaby, Canada
| | - Ronald Swanstrom
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, United States.,Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, United States.,UNC Center For AIDS Research, University of North Carolina, Chapel Hill, United States.,UNC HIV Cure Center, University of North Carolina, Chapel Hill, United States
| | - Nilu Goonetilleke
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, United States.,Department of Medicine, University of North Carolina, Chapel Hill, United States.,UNC HIV Cure Center, University of North Carolina, Chapel Hill, United States
| |
Collapse
|
9
|
Körber N, Behrends U, Protzer U, Bauer T. Evaluation of T-activated proteins as recall antigens to monitor Epstein-Barr virus and human cytomegalovirus-specific T cells in a clinical trial setting. J Transl Med 2020; 18:242. [PMID: 32552697 PMCID: PMC7298696 DOI: 10.1186/s12967-020-02385-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 05/21/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Pools of overlapping synthetic peptides are routinely used for ex vivo monitoring of antigen-specific T-cell responses. However, it is rather unlikely that these peptides match those resulting from naturally processed antigens. T-activated proteins have been described as immunogenic and more natural stimulants, since they have to pass through antigen processing and comprise activation of all clinically relevant effector cell populations. METHODS We performed comparative analysis of numbers and cytokine expression pattern of CD4 and CD8 T cells after stimulation with recombinant, urea-formulated T-activated EBV-BZLF1, -EBNA3A, and HCMV-IE1, and -pp65 proteins or corresponding overlapping peptide pools. Freshly isolated and cryopreserved PBMC of 30 EBV- and 19 HCMV-seropositive and seven EBV- and HCMV-seronegative subjects were stimulated ex vivo and analysed for IFN-γ, TNF and IL-2 production by flow cytometry-based intracellular cytokine staining. RESULTS T-activated proteins showed a high specificity of 100% (EBV-BZLF1, HCMV-IE1, and -pp65) and 86% (EBV-EBNA3A), and a high T-cell stimulatory capacity of 73-95% and 67-95% using freshly isolated and cryopreserved PBMC, respectively. The overall CD4 T-cell response rates in both cohorts were comparable after stimulation with either T-activated protein or peptide pools with the exception of lower numbers of CD8 T cells detected after stimulation with T-activated EBV-EBNA3A- (p = 0.038) and HCMV-pp65- (p = 0.0006). Overall, the number of detectable antigen-specific T cells varied strongly between individuals. Cytokine expression patterns in response to T-activated protein and peptide pool-based stimulation were similar for CD4, but significantly different for CD8 T-cell responses. CONCLUSION EBV and HCMV-derived T-activated proteins represent innovative, highly specific recall antigens suitable for use in immunological endpoint assays to evaluate success or failure in immunotherapy clinical trials (e.g. to assess the risk of EBV and/or HCMV reactivation after allogenic hematopoietic stem cell transplantation). T-activated proteins could be of particular importance, if an impaired antigen processing (e.g. in a post-transplant setting) must be taken into account.
Collapse
Affiliation(s)
- Nina Körber
- Institute of Virology, Helmholtz Zentrum München/Technical University of Munich, School of Medicine, Schneckenburgerstr. 8, 81675, Munich, Germany.
| | - Uta Behrends
- Children's Hospital, School of Medicine, Technical University of Munich, Munich, Germany.,Research Unit Gene Vectors, Helmholtz Zentrum München, Munich, Germany.,German Center for Infection Research (DZIF), Partner Site, Munich, Germany
| | - Ulrike Protzer
- Institute of Virology, Helmholtz Zentrum München/Technical University of Munich, School of Medicine, Schneckenburgerstr. 8, 81675, Munich, Germany.,German Center for Infection Research (DZIF), Partner Site, Munich, Germany
| | - Tanja Bauer
- Institute of Virology, Helmholtz Zentrum München/Technical University of Munich, School of Medicine, Schneckenburgerstr. 8, 81675, Munich, Germany.,German Center for Infection Research (DZIF), Partner Site, Munich, Germany
| |
Collapse
|
10
|
Grimaldi A, Cammarata I, Martire C, Focaccetti C, Piconese S, Buccilli M, Mancone C, Buzzacchino F, Berrios JRG, D'Alessandris N, Tomao S, Giangaspero F, Paroli M, Caccavale R, Spinelli GP, Girelli G, Peruzzi G, Nisticò P, Spada S, Panetta M, Letizia Cecere F, Visca P, Facciolo F, Longo F, Barnaba V. Combination of chemotherapy and PD-1 blockade induces T cell responses to tumor non-mutated neoantigens. Commun Biol 2020; 3:85. [PMID: 32099064 PMCID: PMC7042341 DOI: 10.1038/s42003-020-0811-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 02/06/2020] [Indexed: 12/16/2022] Open
Abstract
Here, we developed an unbiased, functional target-discovery platform to identify immunogenic proteins from primary non-small cell lung cancer (NSCLC) cells that had been induced to apoptosis by cisplatin (CDDP) treatment in vitro, as compared with their live counterparts. Among the multitude of proteins identified, some of them were represented as fragmented proteins in apoptotic tumor cells, and acted as non-mutated neoantigens (NM-neoAgs). Indeed, only the fragmented proteins elicited effective multi-specific CD4+ and CD8+ T cell responses, upon a chemotherapy protocol including CDDP. Importantly, these responses further increased upon anti-PD-1 therapy, and correlated with patients' survival and decreased PD-1 expression. Cross-presentation assays showed that NM-neoAgs were unveiled in apoptotic tumor cells as the result of caspase-dependent proteolytic activity of cellular proteins. Our study demonstrates that apoptotic tumor cells generate a repertoire of immunogenic NM-neoAgs that could be potentially used for developing effective T cell-based immunotherapy across multiple cancer patients.
Collapse
MESH Headings
- Aged
- Antigen Presentation/drug effects
- Antigen Presentation/immunology
- Antigens, Neoplasm/immunology
- Antigens, Neoplasm/isolation & purification
- Antineoplastic Agents, Immunological/administration & dosage
- Antineoplastic Agents, Immunological/pharmacology
- Antineoplastic Combined Chemotherapy Protocols/pharmacology
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Carcinoma, Non-Small-Cell Lung/immunology
- Carcinoma, Non-Small-Cell Lung/pathology
- Carcinoma, Non-Small-Cell Lung/therapy
- Case-Control Studies
- Cell Line, Tumor
- Cisplatin/administration & dosage
- Cisplatin/pharmacology
- Combined Modality Therapy
- Drug Screening Assays, Antitumor/methods
- Female
- Humans
- Immunity, Cellular/drug effects
- Immunotherapy/methods
- Lung Neoplasms/immunology
- Lung Neoplasms/pathology
- Lung Neoplasms/therapy
- Male
- Middle Aged
- Programmed Cell Death 1 Receptor/antagonists & inhibitors
- Programmed Cell Death 1 Receptor/immunology
- T-Lymphocytes/drug effects
- T-Lymphocytes/physiology
Collapse
Affiliation(s)
- Alessio Grimaldi
- Dipartimento di Medicina Interna e Specialità Mediche, Sapienza Università di Roma, 00161, Rome, Italy
| | - Ilenia Cammarata
- Dipartimento di Medicina Interna e Specialità Mediche, Sapienza Università di Roma, 00161, Rome, Italy
| | - Carmela Martire
- Dipartimento di Medicina Interna e Specialità Mediche, Sapienza Università di Roma, 00161, Rome, Italy
| | - Chiara Focaccetti
- Dipartimento di Medicina Interna e Specialità Mediche, Sapienza Università di Roma, 00161, Rome, Italy
| | - Silvia Piconese
- Dipartimento di Medicina Interna e Specialità Mediche, Sapienza Università di Roma, 00161, Rome, Italy
| | - Marta Buccilli
- Dipartimento di Medicina Interna e Specialità Mediche, Sapienza Università di Roma, 00161, Rome, Italy
| | - Carmine Mancone
- Dipartimento di Medicina Molecolare, Sapienza Università di Roma, 00161, Rome, Italy
| | - Federica Buzzacchino
- Dipartimento di Scienze Radiologiche, Oncologiche e Anatomo Patologiche, Oncologia Medica, Università di Roma, 00161, Rome, Italy
| | - Julio Rodrigo Giron Berrios
- Dipartimento di Scienze Radiologiche, Oncologiche e Anatomo Patologiche, Oncologia Medica, Università di Roma, 00161, Rome, Italy
| | - Nicoletta D'Alessandris
- Department of Radiological, Oncological and Pathological Sciences, Sapienza University of Rome, Rome, Italy
| | - Silverio Tomao
- Dipartimento di Scienze Radiologiche, Oncologiche e Anatomo Patologiche, Oncologia Medica, Università di Roma, 00161, Rome, Italy
| | - Felice Giangaspero
- Department of Radiological, Oncological and Pathological Sciences, Sapienza University of Rome, Rome, Italy
- IRCCS Neuromed, Pozzilli, Isernia, Italy
| | - Marino Paroli
- Dipartimento di Scienze e Biotecnologie Medico-Chirurgiche, Sapienza Università di Roma - Polo Pontino, 04100, Latina, Italy
| | - Rosalba Caccavale
- Dipartimento di Scienze e Biotecnologie Medico-Chirurgiche, Sapienza Università di Roma - Polo Pontino, 04100, Latina, Italy
| | - Gian Paolo Spinelli
- UOC Oncologia Universitaria, ASL Latina (distretto Aprilia), Sapienza Università di Roma, Via Giustiniano snc, 04011, Aprilia, Latina, Italy
| | - Gabriella Girelli
- Dipartimento di Medicina Molecolare, Sapienza Università di Roma, 00161, Rome, Italy
| | - Giovanna Peruzzi
- Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, 00161, Rome, Italy
| | - Paola Nisticò
- Tumor Immunology and Immunotherapy Unit, IRCCS-Regina Elena National Cancer Institute, Rome, Italy
| | - Sheila Spada
- Tumor Immunology and Immunotherapy Unit, IRCCS-Regina Elena National Cancer Institute, Rome, Italy
| | - Mariangela Panetta
- Tumor Immunology and Immunotherapy Unit, IRCCS-Regina Elena National Cancer Institute, Rome, Italy
| | | | - Paolo Visca
- Unit of Pathology, IRCCS-Regina Elena National Cancer Institute, Rome, Italy
| | - Francesco Facciolo
- Thoracic Surgery Unit, IRCCS-Regina Elena National Cancer Institute, Rome, Italy
| | - Flavia Longo
- Dipartimento di Scienze Radiologiche, Oncologiche e Anatomo Patologiche, Oncologia Medica, Università di Roma, 00161, Rome, Italy
| | - Vincenzo Barnaba
- Dipartimento di Medicina Interna e Specialità Mediche, Sapienza Università di Roma, 00161, Rome, Italy.
- Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, 00161, Rome, Italy.
- Istituto Pasteur - Fondazione Cenci Bolognetti, 00185, Rome, Italy.
| |
Collapse
|
11
|
An Immunodominant and Conserved B-Cell Epitope in the Envelope of Simian Foamy Virus Recognized by Humans Infected with Zoonotic Strains from Apes. J Virol 2019; 93:JVI.00068-19. [PMID: 30894477 DOI: 10.1128/jvi.00068-19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 03/13/2019] [Indexed: 11/20/2022] Open
Abstract
Cross-species transmission of simian foamy viruses (SFVs) from nonhuman primates (NHPs) to humans is currently ongoing. These zoonotic retroviruses establish lifelong persistent infection in their human hosts. SFV are apparently nonpathogenic in vivo, with ubiquitous in vitro tropism. Here, we aimed to identify envelope B-cell epitopes that are recognized following a zoonotic SFV infection. We screened a library of 169 peptides covering the external portion of the envelope from the prototype foamy virus (SFVpsc_huHSRV.13) for recognition by samples from 52 Central African hunters (16 uninfected and 36 infected with chimpanzee, gorilla, or Cercopithecus SFV). We demonstrate the specific recognition of peptide N96-V110 located in the leader peptide, gp18LP Forty-three variant peptides with truncations, alanine substitutions, or amino acid changes found in other SFV species were tested. We mapped the epitope between positions 98 and 108 and defined six amino acids essential for recognition. Most plasma samples from SFV-infected humans cross-reacted with sequences from apes and Old World monkey SFV species. The magnitude of binding to peptide N96-V110 was significantly higher for samples of individuals infected with a chimpanzee or gorilla SFV than those infected with a Cercopithecus SFV. In conclusion, we have been the first to define an immunodominant B-cell epitope recognized by humans following zoonotic SFV infection.IMPORTANCE Foamy viruses are the oldest known retroviruses and have been mostly described to be nonpathogenic in their natural animal hosts. SFVs can be transmitted to humans, in whom they establish persistent infection, like the simian lenti- and deltaviruses that led to the emergence of two major human pathogens, human immunodeficiency virus type 1 and human T-lymphotropic virus type 1. This is the first identification of an SFV-specific B-cell epitope recognized by human plasma samples. The immunodominant epitope lies in gp18LP, probably at the base of the envelope trimers. The NHP species the most genetically related to humans transmitted SFV strains that induced the strongest antibody responses. Importantly, this epitope is well conserved across SFV species that infect African and Asian NHPs.
Collapse
|
12
|
Moris P, Bauer KM, Currier JR, Friberg H, Eckels KH, Esquilin IO, Gibbons RV, Innis BL, Jarman RG, Simasathien S, Sun P, Thomas SJ, Watanaveeradej V. Cell-mediated immune responses to different formulations of a live-attenuated tetravalent dengue vaccine candidate in subjects living in dengue endemic and non-endemic regions. Hum Vaccin Immunother 2019; 15:2090-2105. [PMID: 30829100 PMCID: PMC6773406 DOI: 10.1080/21645515.2019.1581536] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Three phase II randomized trials evaluated the safety/immunogenicity of two formulations of live-attenuated tetravalent dengue virus (TDEN) vaccine in dengue-endemic (Puerto Rico, Thailand) and non-endemic (US) regions (NCT00350337/NCT00370682/NCT00468858). We describe cell-mediated immune (CMI) responses; safety and humoral responses were reported previously. Participants received two doses of vaccine or control (placebo or the precursor live-attenuated TDEN vaccine) 6 months apart. Selected US participants received a booster 5–12 months post-dose 2. Evaluated subsets of the per-protocol cohorts included 75 primarily dengue virus (DENV)-unprimed US adults, 69 primarily flavivirus-primed Thai adults, and 100 DENV-primed or DENV-unprimed Puerto Rican adults/adolescents/children. T-cell responses were quantified using intracellular cytokine staining (ICS; DENV-infected cell-lysate or DENV-1/DENV-2 peptide-pool stimulation) or IFN-γ ELISPOT (DENV-2 peptide-pool stimulation). Memory B-cell responses were quantified using B-cell ELISPOT. Across populations and age strata, DENV serotype-specific CD4+ T-cell responses were slightly to moderately increased (medians ≤0.18% [ICS]), DENV-2–biased, and variable for both formulations. Responses in unprimed subjects were primarily detected post-dose 1. Response magnitudes in primed subjects were similar between doses. Multifunctional CD8+ T-cell responses were detected after peptide-pool stimulation. T-cell responses were mostly directed to DENV nonstructural proteins 3 and 5. Memory B-cell responses were tetravalent, of low-to-moderate magnitudes (medians ≤0.25%), and mainly observed post-dose 2 in unprimed subjects and post-dose 1 in primed subjects. A third dose did not boost CMI responses. In conclusion, both formulations of the live-attenuated TDEN vaccine candidate were poorly to moderately immunogenic with respect to B-cell and T-cell responses, irrespective of the priming status of the participants. Abbreviation ATP: according-to-protocol; ICS: Intracellular Cytokine Staining; NS3: Nonstructural protein 3; ELISPOT: Enzyme-Linked ImmunoSpot; JEV: Japanese encephalitis virus; PBMC: peripheral blood mononuclear cells
Collapse
Affiliation(s)
| | | | - Jeffrey R Currier
- Viral Diseases Branch, Walter Reed Army Institute of Research , Silver Spring , MD , USA
| | - Heather Friberg
- Viral Diseases Branch, Walter Reed Army Institute of Research , Silver Spring , MD , USA
| | - Kenneth H Eckels
- Pilot Bioproduction Facility, Walter Reed Army Institute of Research , Silver Spring , MD , USA
| | - Ines O Esquilin
- Department of Pediatrics, University of Puerto Rico School of Medicine , San Juan , Puerto Rico
| | - Robert V Gibbons
- Battlefield Pain Management Task Area, U.S. Army Institute for Surgical Research , Fort Sam Houston , TX , USA
| | | | - Richard G Jarman
- Viral Diseases Branch, Walter Reed Army Institute of Research , Silver Spring , MD , USA
| | | | - Peifang Sun
- Henry Jackson Foundation for the Advancement of Military Medicine , Bethesda , MD , USA
| | - Stephen J Thomas
- Viral Diseases Branch, Walter Reed Army Institute of Research , Silver Spring , MD , USA
| | - Veerachai Watanaveeradej
- Department of Pediatrics, Phramongkutklao Hospital , Bangkok , Thailand.,Department of Microbiology, Phramongkutklao College of Medicine , Bangkok , Thailand
| |
Collapse
|
13
|
Croft NP, Smith SA, Pickering J, Sidney J, Peters B, Faridi P, Witney MJ, Sebastian P, Flesch IEA, Heading SL, Sette A, La Gruta NL, Purcell AW, Tscharke DC. Most viral peptides displayed by class I MHC on infected cells are immunogenic. Proc Natl Acad Sci U S A 2019; 116:3112-3117. [PMID: 30718433 PMCID: PMC6386720 DOI: 10.1073/pnas.1815239116] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
CD8+ T cells are essential effectors in antiviral immunity, recognizing short virus-derived peptides presented by MHC class I (pMHCI) on the surface of infected cells. However, the fraction of viral pMHCI on infected cells that are immunogenic has not been shown for any virus. To approach this fundamental question, we used peptide sequencing by high-resolution mass spectrometry to identify more than 170 vaccinia virus pMHCI presented on infected mouse cells. Next, we screened each peptide for immunogenicity in multiple virus-infected mice, revealing a wide range of immunogenicities. A surprisingly high fraction (>80%) of pMHCI were immunogenic in at least one infected mouse, and nearly 40% were immunogenic across more than half of the mice screened. The high number of peptides found to be immunogenic and the distribution of responses across mice give us insight into the specificity of antiviral CD8+ T cell responses.
Collapse
Affiliation(s)
- Nathan P Croft
- Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia;
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Stewart A Smith
- John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2601, Australia
| | - Jana Pickering
- John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2601, Australia
| | - John Sidney
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037
| | - Bjoern Peters
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093
| | - Pouya Faridi
- Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Matthew J Witney
- John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2601, Australia
| | - Prince Sebastian
- John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2601, Australia
| | - Inge E A Flesch
- John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2601, Australia
| | - Sally L Heading
- John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2601, Australia
| | - Alessandro Sette
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093
| | - Nicole L La Gruta
- Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
- Department of Microbiology and Immunology, University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Anthony W Purcell
- Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia;
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - David C Tscharke
- John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2601, Australia;
| |
Collapse
|
14
|
Schmidt ME, Varga SM. Identification of Novel Respiratory Syncytial Virus CD4 + and CD8 + T Cell Epitopes in C57BL/6 Mice. Immunohorizons 2019; 3:1-12. [PMID: 31356172 DOI: 10.4049/immunohorizons.1800056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 12/15/2018] [Indexed: 11/19/2022] Open
Abstract
Respiratory syncytial virus (RSV) is the most common cause of lower respiratory tract infection and hospitalization in infants. It is well established that both CD4+ and CD8+ T cells are critical for mediating viral clearance but also contribute to the induction of immunopathology following RSV infection. C57BL/6 mice are often used to study T cell responses following RSV infection given the wide variety of genetically modified animals available. To date, few RSV-derived CD4+ and CD8+ T cell epitopes have been identified in C57BL/6 mice. Using an overlapping peptide library spanning the entire RSV proteome, intracellular cytokine staining for IFN-γ was performed to identify novel CD4+ and CD8+ T cell epitopes in C57BL/6 mice. We identified two novel CD4+ T cell epitopes and three novel CD8+ T cell epitopes located within multiple RSV proteins. Additionally, we characterized the newly described T cell epitopes by determining their TCR Vβ expression profiles and MHC restriction. Overall, the novel RSV-derived CD4+ and CD8+ T cell epitopes identified in C57BL/6 mice will aid in future studies of RSV-specific T cell responses.
Collapse
Affiliation(s)
- Megan E Schmidt
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA 52242
| | - Steven M Varga
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA 52242; .,Department of Microbiology and Immunology, University of Iowa, Iowa City, IA 52242; and.,Department of Pathology, University of Iowa, Iowa City, IA 52242
| |
Collapse
|
15
|
New Technologies for Vaccine Development: Harnessing the Power of Human Immunology. J Indian Inst Sci 2018. [DOI: 10.1007/s41745-018-0064-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
16
|
Graft versus self (GvS) against T-cell autoantigens is a mechanism of graft-host interaction. Proc Natl Acad Sci U S A 2016; 113:13827-13832. [PMID: 27834728 DOI: 10.1073/pnas.1609118113] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Graft-versus-host disease (GVHD) represents the major nonrelapse complication of allogeneic hematopoietic cell transplantation. Although rare, the CNS and the eye can be affected. In this study, manifestation in the retina as part of the CNS and T-cell epitopes recognized by the allogeneic T cells were evaluated. In 2 of 6 patients with posttransplantation retina diseases and 6 of 22 patients without ocular symptoms, antigen-specific T-cell responses against retina-specific epitopes were observed. No genetic differences between donor and recipient could be identified indicating T-cell activation against self-antigens (graft versus self). Transplantation of a preexisting immunity and cross-reactivity with ubiquitous epitopes was excluded in family donors and healthy individuals. In summary, an immunological reaction against retina cells represents a mechanism of graft-versus-host interaction following hematopoietic cell transplantation.
Collapse
|
17
|
Fiore-Gartland A, Manso BA, Friedrich DP, Gabriel EE, Finak G, Moodie Z, Hertz T, De Rosa SC, Frahm N, Gilbert PB, McElrath MJ. Pooled-Peptide Epitope Mapping Strategies Are Efficient and Highly Sensitive: An Evaluation of Methods for Identifying Human T Cell Epitope Specificities in Large-Scale HIV Vaccine Efficacy Trials. PLoS One 2016; 11:e0147812. [PMID: 26863315 PMCID: PMC4749288 DOI: 10.1371/journal.pone.0147812] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 11/22/2015] [Indexed: 11/19/2022] Open
Abstract
The interferon gamma, enzyme-linked immunospot (IFN-γ ELISpot) assay is widely used to identify viral antigen-specific T cells is frequently employed to quantify T cell responses in HIV vaccine studies. It can be used to define T cell epitope specificities using panels of peptide antigens, but with sample and cost constraints there is a critical need to improve the efficiency of epitope mapping for large and variable pathogens. We evaluated two epitope mapping strategies, based on group testing, for their ability to identify vaccine-induced T-cells from participants in the Step HIV-1 vaccine efficacy trial, and compared the findings to an approach of assaying each peptide individually. The group testing strategies reduced the number of assays required by >7-fold without significantly altering the accuracy of T-cell breadth estimates. Assays of small pools containing 7–30 peptides were highly sensitive and effective at detecting single positive peptides as well as summating responses to multiple peptides. Also, assays with a single 15-mer peptide, containing an identified epitope, did not always elicit a response providing validation that 15-mer peptides are not optimal antigens for detecting CD8+ T cells. Our findings further validate pooling-based epitope mapping strategies, which are critical for characterizing vaccine-induced T-cell responses and more broadly for informing iterative vaccine design. We also show ways to improve their application with computational peptide:MHC binding predictors that can accurately identify the optimal epitope within a 15-mer peptide and within a pool of 15-mer peptides.
Collapse
Affiliation(s)
- Andrew Fiore-Gartland
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, 98109, United States of America
- * E-mail:
| | - Bryce A. Manso
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, 98109, United States of America
| | - David P. Friedrich
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, 98109, United States of America
| | - Erin E. Gabriel
- Biostatistics Research Branch, National Institute of Allergy and Infectious Disease, Rockville, Maryland, 20852, United States of America
| | - Greg Finak
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, 98109, United States of America
| | - Zoe Moodie
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, 98109, United States of America
| | - Tomer Hertz
- Shraga Segal Department of Microbiology, Immunology and Genetics, Ben Gurion Institute of the Negev, Beer-Sheva, 84105, Israel
| | - Stephen C. De Rosa
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, 98109, United States of America
| | - Nicole Frahm
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, 98109, United States of America
| | - Peter B. Gilbert
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, 98109, United States of America
| | - M. Juliana McElrath
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, 98109, United States of America
| |
Collapse
|
18
|
Chevalier MF, Bobisse S, Costa-Nunes C, Cesson V, Jichlinski P, Speiser DE, Harari A, Coukos G, Romero P, Nardelli-Haefliger D, Jandus C, Derré L. High-throughput monitoring of human tumor-specific T-cell responses with large peptide pools. Oncoimmunology 2015; 4:e1029702. [PMID: 26451296 DOI: 10.1080/2162402x.2015.1029702] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 03/06/2015] [Accepted: 03/11/2015] [Indexed: 10/23/2022] Open
Abstract
In immune intervention trials, the comprehensive investigation of immunogenicity or T-cell epitope-mapping is challenging especially when a large set of epitopes needs to be screened and limited sample material is available. To this end, T-cell responses are often monitored using peptide pools. Here, we assessed the magnitude and sensitivity of detection of antigen-specific CD8+ and CD4+ T cells using a single peptide alone or mixed into large pools. Interestingly the magnitude of ex vivo anti-viral and anti-tumor T-cell responses was identical irrespective of the presence and number of irrelevant peptides, in different functional assays with PBMCs from healthy donors and cancer patients. Moreover, the presence of up to 300 irrelevant peptides did not affect the threshold of responsiveness of antigen-specific CD8+ T cells to single cognate peptides. These data demonstrate the relevance of using very large peptide pools for the sensitive and specific immune-monitoring of epitope-specific T cells in natural or immune-modulated context.
Collapse
Affiliation(s)
- Mathieu F Chevalier
- Urology Research Unit; Department of Urology; University Hospital of Lausanne (CHUV) ; Lausanne, Switzerland
| | - Sara Bobisse
- Center of Experimental Therapeutics; Department of Oncology; University Hospital of Lausanne ; Lausanne, Switzerland ; Ludwig Center for Cancer Research at University of Lausanne ; Epalinges, Switzerland
| | - Carla Costa-Nunes
- Ludwig Center for Cancer Research at University of Lausanne ; Epalinges, Switzerland
| | - Valérie Cesson
- Urology Research Unit; Department of Urology; University Hospital of Lausanne (CHUV) ; Lausanne, Switzerland
| | - Patrice Jichlinski
- Urology Research Unit; Department of Urology; University Hospital of Lausanne (CHUV) ; Lausanne, Switzerland
| | - Daniel E Speiser
- Ludwig Center for Cancer Research at University of Lausanne ; Epalinges, Switzerland
| | - Alexandre Harari
- Center of Experimental Therapeutics; Department of Oncology; University Hospital of Lausanne ; Lausanne, Switzerland ; Ludwig Center for Cancer Research at University of Lausanne ; Epalinges, Switzerland
| | - George Coukos
- Ludwig Center for Cancer Research at University of Lausanne ; Epalinges, Switzerland ; Ovarian Cancer Research Center; Perelman School of Medicine; University of Pennsylvania ; Philadelphia, PA USA ; Department of Oncology; University Hospital of Lausanne (CHUV) ; Lausanne, Switzerland
| | - Pedro Romero
- Ludwig Center for Cancer Research at University of Lausanne ; Epalinges, Switzerland
| | - Denise Nardelli-Haefliger
- Urology Research Unit; Department of Urology; University Hospital of Lausanne (CHUV) ; Lausanne, Switzerland
| | - Camilla Jandus
- Ludwig Center for Cancer Research at University of Lausanne ; Epalinges, Switzerland
| | - Laurent Derré
- Urology Research Unit; Department of Urology; University Hospital of Lausanne (CHUV) ; Lausanne, Switzerland
| |
Collapse
|
19
|
Hill BJ, Darrah PA, Ende Z, Ambrozak DR, Quinn KM, Darko S, Gostick E, Wooldridge L, van den Berg HA, Venturi V, Larsen M, Davenport MP, Seder RA, Price DA, Douek DC. Epitope specificity delimits the functional capabilities of vaccine-induced CD8 T cell populations. THE JOURNAL OF IMMUNOLOGY 2014; 193:5626-36. [PMID: 25348625 DOI: 10.4049/jimmunol.1401017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Despite progress toward understanding the correlates of protective T cell immunity in HIV infection, the optimal approach to Ag delivery by vaccination remains uncertain. We characterized two immunodominant CD8 T cell populations generated in response to immunization of BALB/c mice with a replication-deficient adenovirus serotype 5 vector expressing the HIV-derived Gag and Pol proteins at equivalent levels. The Gag-AI9/H-2K(d) epitope elicited high-avidity CD8 T cell populations with architecturally diverse clonotypic repertoires that displayed potent lytic activity in vivo. In contrast, the Pol-LI9/H-2D(d) epitope elicited motif-constrained CD8 T cell repertoires that displayed lower levels of physical avidity and lytic activity despite equivalent measures of overall clonality. Although low-dose vaccination enhanced the functional profiles of both epitope-specific CD8 T cell populations, greater polyfunctionality was apparent within the Pol-LI9/H-2D(d) specificity. Higher proportions of central memory-like cells were present after low-dose vaccination and at later time points. However, there were no noteworthy phenotypic differences between epitope-specific CD8 T cell populations across vaccine doses or time points. Collectively, these data indicate that the functional and phenotypic properties of vaccine-induced CD8 T cell populations are sensitive to dose manipulation, yet constrained by epitope specificity in a clonotype-dependent manner.
Collapse
Affiliation(s)
- Brenna J Hill
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Patricia A Darrah
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Zachary Ende
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - David R Ambrozak
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Kylie M Quinn
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Sam Darko
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Emma Gostick
- Institute of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, United Kingdom
| | - Linda Wooldridge
- Faculty of Medical and Veterinary Sciences, University of Bristol, Bristol BS8 1TD, United Kingdom
| | - Hugo A van den Berg
- Mathematics Institute, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Vanessa Venturi
- Computational Biology Group, Centre for Vascular Research, University of New South Wales, Kensington 2052, New South Wales, Australia
| | - Martin Larsen
- INSERM, U1135, Centre d'Immunologie et des Maladies Infectieuses, F-75013 Paris, France; and Centre d'Immunologie et des Maladies Infectieuses, Sorbonne Universités, Université Pierre et Marie Curie (Université Paris 06), CR7, F-75013 Paris, France
| | - Miles P Davenport
- Computational Biology Group, Centre for Vascular Research, University of New South Wales, Kensington 2052, New South Wales, Australia
| | - Robert A Seder
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - David A Price
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892; Institute of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, United Kingdom;
| | - Daniel C Douek
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892;
| |
Collapse
|
20
|
Piazza P, Campbell D, Marques E, Hildebrand WH, Buchli R, Mailliard R, Rinaldo CR. Dengue virus-infected human dendritic cells reveal hierarchies of naturally expressed novel NS3 CD8 T cell epitopes. Clin Exp Immunol 2014; 177:696-702. [PMID: 24816171 DOI: 10.1111/cei.12373] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/06/2014] [Indexed: 11/30/2022] Open
Abstract
Detailed knowledge of dengue virus (DENV) cell-mediated immunity is limited. In this study we characterize CD8(+) T lymphocytes recognizing three novel and two known non-structural protein 3 peptide epitopes in DENV-infected dendritic cells. Three epitopes displayed high conservation (75-100%), compared to the others (0-50%). A hierarchy ranking based on magnitude and polyfunctionality of the antigen-specific response showed that dominant epitopes were both highly conserved and cross-reactive against multiple DENV serotypes. These results are relevant to DENV pathogenesis and vaccine design.
Collapse
Affiliation(s)
- P Piazza
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, Pittsburgh, PA, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Combinatorial HLA-peptide bead libraries for high throughput identification of CD8⁺ T cell specificity. J Immunol Methods 2013; 403:72-8. [PMID: 24309405 DOI: 10.1016/j.jim.2013.11.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 10/18/2013] [Accepted: 11/20/2013] [Indexed: 11/23/2022]
Abstract
Comprehensive antigenic characterization of a T cell population of unknown specificity is challenging. Existing MHC class I expression systems are limited by the practical difficulty of probing cell populations with an MHC class I peptide library and the cross-reactivity of T cells that are able to recognise many variants of an index peptide. Using emulsion PCR and emulsion in vitro transcription/translation of a random library of peptides conjugated to CD8-null HLA-A*0201 on beads, we probed HLA-A*0201-restricted T cells with specificity for influenza, CMV and EBV. We observed significant enrichment for sequences containing HLA-A2 anchors and correct viral fragments for all T cell populations. HLA bead display provides a novel approach to identify the specificity of T cells.
Collapse
|
22
|
Abstract
Following primary infection, human herpesvirus 6 (HHV-6) establishes a persistent infection for life. HHV-6 reactivation has been associated with transplant rejection, delayed engraftment, encephalitis, muscular dystrophy, and drug-induced hypersensitivity syndrome. The poor understanding of the targets and outcome of the cellular immune response to HHV-6 makes it difficult to outline the role of HHV-6 in human disease. To fill in this gap, we characterized CD4 T cell responses to HHV-6 using peripheral blood mononuclear cell (PBMC) and T cell lines generated from healthy donors. CD4(+) T cells responding to HHV-6 in peripheral blood were observed at frequencies below 0.1% of total T cells but could be expanded easily in vitro. Analysis of cytokines in supernatants of PBMC and T cell cultures challenged with HHV-6 preparations indicated that gamma interferon (IFN-γ) and interleukin-10 (IL-10) were appropriate markers of the HHV-6 cellular response. Eleven CD4(+) T cell epitopes, all but one derived from abundant virion components, were identified. The response was highly cross-reactive between HHV-6A and HHV-6B variants. Seven of the CD4(+) T cell epitopes do not share significant homologies with other known human pathogens, including the closely related human viruses human herpesvirus 7 (HHV-7) and human cytomegalovirus (HCMV). Major histocompatibility complex (MHC) tetramers generated with these epitopes were able to detect HHV-6-specific T cell populations. These findings provide a window into the immune response to HHV-6 and provide a basis for tracking HHV-6 cellular immune responses.
Collapse
|
23
|
Lendle SD, Hudgens MG, Qaqish BF. Group testing for case identification with correlated responses. Biometrics 2011; 68:532-40. [PMID: 21950447 DOI: 10.1111/j.1541-0420.2011.01674.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This article examines group testing procedures where units within a group (or pool) may be correlated. The expected number of tests per unit (i.e., efficiency) of hierarchical- and matrix-based procedures is derived based on a class of models of exchangeable binary random variables. The effect on efficiency of the arrangement of correlated units within pools is then examined. In general, when correlated units are arranged in the same pool, the expected number of tests per unit decreases, sometimes substantially, relative to arrangements that ignore information about correlation.
Collapse
Affiliation(s)
- Samuel D Lendle
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | | | | |
Collapse
|
24
|
Zhao Y, Zhang Y, Liu YM, Liu Y, Feng X, Liao HY, Vergani D, Ma Y, Yan HP. Identification of T cell epitopes on soluble liver antigen in Chinese patients with auto-immune hepatitis. Liver Int 2011; 31:721-9. [PMID: 21457445 DOI: 10.1111/j.1478-3231.2011.02487.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
AIM To identify soluble liver antigen (SLA)-specific dominant epitopes and analyse the correlation between SLA-specific T cell response and the status of the disease. METHODS A cross-sectional analysis of SLA-specific T cell responses to 54 overlapping peptides covering the entire SLA sequence was performed using an interferon (IFN)-γ ELISpot assay in 31 patients with auto-immune hepatitis (AIH)-1, 15 patients with primary biliary cirrhosis, 16 hepatitis B virus, seven hepatitis C virus infection and 10 healthy subjects, in order to assess the correlation between SLA-specific T cell responses and the clinical outcome. RESULTS Soluble liver antigen-specific IFN-γ responses in AIH were significantly more frequent in AIH patients (58.1%) than those in controls (6.7% in PBC, P=0.001; 4.3% in hepatitis B/C, P<0.001 and 0% in healthy subjects, P=0.0015). Among 31 AIH patients, the frequency of recognition and the magnitude of response to SLA peptides in anti-SLA antibody-positive patients were higher and stronger than those negative for anti-SLA antibodies (P=0.02 and 0.037 respectively). We further analysed T-cell restriction and found that six individual SLA peptides (4, 9, 11, 12, 41 and 44) were recognized by CD4 T cells, and the most frequently recognized peptides were peptides 12 (61.1% of participants), followed by peptide 4 and peptide 44 (55.6 and 38.9% respectively). Moreover, a positive association was found between the breadth of recognition of SLA peptides and the indices of liver damage. CONCLUSION T cell response to SLA in Chinese patients with AIH is broad and associated with hepatocyte damage.
Collapse
Affiliation(s)
- Yan Zhao
- Clinical Research Centre for Autoimmune Liver Disease, Beijing YouAn Hospital, Capital Medical University, Beijing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Huang XL, Fan Z, Borowski L, Mailliard RB, Rolland M, Mullins JI, Day RD, Rinaldo CR. Dendritic cells reveal a broad range of MHC class I epitopes for HIV-1 in persons with suppressed viral load on antiretroviral therapy. PLoS One 2010; 5:e12936. [PMID: 20886040 PMCID: PMC2944894 DOI: 10.1371/journal.pone.0012936] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Accepted: 08/29/2010] [Indexed: 01/08/2023] Open
Abstract
Background HIV-1 remains sequestered during antiretroviral therapy (ART) and can resume high-level replication upon cessation of ART or development of drug resistance. Reactivity of memory CD8+ T lymphocytes to HIV-1 could potentially inhibit this residual viral replication, but is largely muted by ART in relation to suppression of viral antigen burden. Dendritic cells (DC) are important for MHC class I processing and presentation of peptide epitopes to memory CD8+ T cells, and could potentially be targeted to activate memory CD8+ T cells to a broad array of HIV-1 epitopes during ART. Principal Findings We show for the first time that HIV-1 peptide-loaded, CD40L-matured DC from HIV-1 infected persons on ART induce IFN gamma production by CD8+ T cells specific for a much broader range and magnitude of Gag and Nef epitopes than do peptides without DC. The DC also reveal novel, MHC class I restricted, Gag and Nef epitopes that are able to induce polyfunctional T cells producing various combinations of IFN gamma, interleukin 2, tumor necrosis factor alpha, macrophage inhibitory protein 1 beta and the cytotoxic de-granulation molecule CD107a. Significance There is an underlying, broad antigenic spectrum of anti-HIV-1, memory CD8+ T cell reactivity in persons on ART that is revealed by DC. This supports the use of DC-based immunotherapy for HIV-1 infection.
Collapse
Affiliation(s)
- Xiao-Li Huang
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health and School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Zheng Fan
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health and School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - LuAnn Borowski
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health and School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Robbie B. Mailliard
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health and School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Morgane Rolland
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
| | - James I. Mullins
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
| | - Richard D. Day
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health and School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Biostatistics, Graduate School of Public Health and School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Charles R. Rinaldo
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health and School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Biostatistics, Graduate School of Public Health and School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Pathology, Graduate School of Public Health and School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
26
|
Almeida CAM, Roberts SG, Laird R, McKinnon E, Ahmad I, Keane NM, Chopra A, Kadie C, Heckerman D, Mallal S, John M. Exploiting knowledge of immune selection in HIV-1 to detect HIV-specific CD8 T-cell responses. Vaccine 2010; 28:6052-7. [PMID: 20619380 DOI: 10.1016/j.vaccine.2010.06.091] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Revised: 06/23/2010] [Accepted: 06/25/2010] [Indexed: 02/09/2023]
Abstract
Since HLA-restricted cytotoxic T-cell responses select specific polymorphisms in HIV-1 sequences and HLA diversity is relatively static in human populations, we investigated the use of peptide epitopes based on sites of HLA-associated adaptation in HIV-1 sequences to stimulate and detect T-cell responses ex vivo. These "HLA-optimised" peptides captured more HIV-1 Nef-specific responses compared with overlapping peptides of a single consensus sequence, in interferon-gamma enzyme linked immunospot assays. Sites of immune selection can reveal more immunogenic epitopes in HLA-diverse populations and offer insights into the nature of HLA-epitope targeting, which could be applied in vaccine design.
Collapse
Affiliation(s)
- Coral-Ann M Almeida
- Centre for Clinical Immunology and Biomedical Statistics, Institute of Immunology and Infectious Diseases, Murdoch University, Perth, Western Australia, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
High throughput T epitope mapping and vaccine development. J Biomed Biotechnol 2010; 2010:325720. [PMID: 20617148 PMCID: PMC2896667 DOI: 10.1155/2010/325720] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2009] [Revised: 02/18/2010] [Accepted: 04/20/2010] [Indexed: 11/22/2022] Open
Abstract
Mapping of antigenic peptide sequences from proteins of relevant pathogens recognized by T helper (Th) and by cytolytic T lymphocytes (CTL) is crucial for vaccine development. In fact, mapping of T-cell epitopes provides useful information for the design of peptide-based vaccines and of peptide libraries to monitor specific cellular immunity in protected individuals, patients and vaccinees. Nevertheless, epitope mapping is a challenging task. In fact, large panels of overlapping peptides need to be tested with lymphocytes to identify the sequences that induce a T-cell response. Since numerous peptide panels from antigenic proteins are to be screened, lymphocytes available from human subjects are a limiting factor. To overcome this limitation, high throughput (HTP) approaches based on miniaturization and automation of T-cell assays are needed. Here we consider the most recent applications of the HTP approach to T epitope mapping. The alternative or complementary use of in silico prediction and experimental epitope definition is discussed in the context of the recent literature. The currently used methods are described with special reference to the possibility of applying the HTP concept to make epitope mapping an easier procedure in terms of time, workload, reagents, cells and overall cost.
Collapse
|
28
|
Gratama JW, Kern F, Manca F, Roederer M. Measuring antigen-specific immune responses, 2008 update. Cytometry A 2008; 73:971-4. [PMID: 18942721 DOI: 10.1002/cyto.a.20655] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
29
|
Li Pira G, Ivaldi F, Dentone C, Righi E, Del Bono V, Viscoli C, Koopman G, Manca F. Evaluation of antigen-specific T-cell responses with a miniaturized and automated method. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2008; 15:1811-8. [PMID: 18945878 PMCID: PMC2593160 DOI: 10.1128/cvi.00322-08] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2008] [Revised: 10/11/2008] [Accepted: 10/15/2008] [Indexed: 11/20/2022]
Abstract
The evaluation of antigen-specific T-cell responses is helpful for both research and clinical settings. Several techniques can enumerate antigen-responsive T cells or measure their products, but they require remarkable amounts of peripheral blood mononuclear cells (PBMCs). Since screening numerous antigens or testing samples from pediatric or lymphopenic patients is hampered in clinical practice, we refined a miniaturized, high-throughput assay for T-cell immunity. Antigens and cells in 10-microl volumes were dispensed into 1,536-well culture plates precoated with anti-gamma interferon (anti-IFN-gamma) antibodies. After being cultured, the wells were developed by enzyme-linked immunosorbent assay for bound cytokine. Miniaturization and automation allowed quantitation of antigen-specific responses on 10(4) PBMCs. This method was applied for epitope mapping of mycobacterial antigens and was used in the clinic to evaluate T-cell immunity to relevant opportunistic pathogens by using small blood samples. A comparison with conventional methods showed similar sensitivity. Therefore, current flow cytometric methods that provide information on frequency and phenotype of specific T cells can be complemented by this assay that provides extensive information on cytokine concentrations and profiles and requires 20- to 50-fold fewer PBMCs than other analytical methods.
Collapse
Affiliation(s)
- Giuseppina Li Pira
- Laboratory of Cellular Immunology, Advanced Biotechnology Center, Largo Benzi 10, 16132 Genoa, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
Tests for immunoglobulin reactivity with specific antigens are some of the oldest and most used assays in immunology. With efforts to understand B cell development, B cell dysregulation in autoimmunity, and to generate B cell vaccines for infectious agents, investigators have found the need to understand the ontogeny and regulation of epitope-specific B cell responses. The synchrony between surface and secreted antibodies for individual B cells has led to the development of reagents and techniques to identify antigen-specific B cells via reagent interactions with the B cell receptor complex. B cell antigen-specific reagents have been reported for model systems of haptens, for whole proteins, and for identification of double stranded (ds) DNA antibody-producing B cells using peptide mimics. Here we provide an overview of reported techniques for the detection of antigen-specific B cell responses via secreted antibody or by the surface B cell receptor and briefly discuss our recent work developing a panel of reagents to probe the B cell response to HIV-1 envelope. We also present an analysis of strengths and weaknesses of various methods for flow cytometric analysis of antigen-specific B cells.
Collapse
Affiliation(s)
- M Anthony Moody
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | |
Collapse
|