1
|
Jin J, Mao X, Zhang D. A differential diagnosis method for systemic CAEBV and the prospect of EBV-related immune cell markers via flow cytometry. Ann Med 2024; 56:2329136. [PMID: 38502913 PMCID: PMC10953786 DOI: 10.1080/07853890.2024.2329136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 02/23/2024] [Indexed: 03/21/2024] Open
Abstract
Chronic active Epstein-Barr virus (CAEBV) infection of the T-cell or Natural killer (NK)-cell type, systemic form (systemic CAEBV or sCAEBV) was defined by the WHO in 2017 as an EBV-related lymphoproliferative disorder and is listed as an EBV-positive T-cell and NK-cell proliferation. The clinical manifestations and prognoses are heterogeneous. This makes systemic CAEBV indistinguishable from other EBV-positive T-cell and NK-cell proliferations. Early diagnosis of systemic CAEBV and early hematopoietic stem cell transplantation can improve patient prognosis. At present, the diagnosis of systemic CAEBV relies mainly on age, clinical manifestations, and cell lineage, incurring missed diagnosis, misdiagnosis, long diagnosis time, and inability to identify high-risk systemic CAEBV early. The diagnostic methods for systemic CAEBV are complicated and lack systematic description. The recent development of diagnostic procedures, including molecular biological and immunological techniques such as flow cytometry, has provided us with the ability to better understand the proliferation of other EBV-positive T cells and NK cells, but there is no definitive review of their value in diagnosing systemic CAEBV. This article summarizes the recent progress in systemic CAEBV differential diagnosis and the prospects of flow cytometry.
Collapse
Affiliation(s)
- Jie Jin
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xia Mao
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Donghua Zhang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
2
|
Vulcano TJ, Abdulahad WH, van Meurs M, Jongman RM, Struys MMRF, Bosch DJ. The Impact of Different Anesthetics on the Distribution and Cytotoxic Function of NK Cell Subpopulations: An In Vitro Study. Int J Mol Sci 2024; 25:11045. [PMID: 39456827 PMCID: PMC11507532 DOI: 10.3390/ijms252011045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/30/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
Only some subpopulations of natural killer (NK) cells have cytotoxic functionality, and the effects of anesthetics on these subpopulations are unknown. This study aimed to evaluate the in vitro effects of various anesthetics, both alone and in combination, on the distribution and cytotoxic function of NK cells and their subpopulations. Peripheral blood mononuclear cells (PBMCs) from eight healthy volunteers were treated for 4 h in vitro with dexmedetomidine, remifentanil, lidocaine, propofol, sevoflurane, and combinations in clinically relevant concentrations or left untreated. Flow cytometry was used to quantify the percentage of sampled NK cells and evaluate their distribution (CD56brightCD16neg, CD56brightCD16dim, CD56dimCD16neg, CD56dimCD16bright, and CD56negCD16bright) and cytotoxicity (Granzyme B (GrzB) and perforin) of NK cell subpopulations. Although the percentage of total NK cells did not change following exposure to anesthesia, the most important cytotoxic subpopulation (CD56dimCD16bright NK cells) decreased after exposure to both propofol (-3.58%, p = 0.045) and sevoflurane (-16.10%, p = 0.008) alone, and most combinations, especially in combination with lidocaine (propofol with lidocaine (-9.66%, p = 0.002) and sevoflurane with lidocaine (-21.90%, p < 0.001)). Dexmedetomidine and remifentanil had no effect on CD56dimCD16bright NK cells. Furthermore, no anesthetic regimen or combination altered the expression of GrzB and perforin in NK cells or NK cell subpopulations. In short, propofol and sevoflurane suppressed the highly cytotoxic phenotype (CD56dimCD16bright) of NK cells, with those exposed to sevoflurane combinations showing greater reductions. Immunosuppression was intensified with the inclusion of lidocaine in the anesthetic regimen.
Collapse
Affiliation(s)
- Tristan J. Vulcano
- Department of Anaesthesiology, University Medical Centre Groningen (UMCG), University of Groningen, 9713 GZ Groningen, The Netherlands; (T.J.V.); (R.M.J.); (M.M.R.F.S.)
| | - Wayel H. Abdulahad
- Department of Rheumatology and Clinical Immunology, University Medical Centre Groningen (UMCG), University of Groningen, 9713 GZ Groningen, The Netherlands;
- Department of Pathology and Medical Biology, University Medical Centre Groningen (UMCG), University of Groningen, 9713 GZ Groningen, The Netherlands;
| | - Matijs van Meurs
- Department of Pathology and Medical Biology, University Medical Centre Groningen (UMCG), University of Groningen, 9713 GZ Groningen, The Netherlands;
- Department of Critical Care, University Medical Centre Groningen (UMCG), University of Groningen, 9713 GZ Groningen, The Netherlands
| | - Rianne M. Jongman
- Department of Anaesthesiology, University Medical Centre Groningen (UMCG), University of Groningen, 9713 GZ Groningen, The Netherlands; (T.J.V.); (R.M.J.); (M.M.R.F.S.)
- Department of Pathology and Medical Biology, University Medical Centre Groningen (UMCG), University of Groningen, 9713 GZ Groningen, The Netherlands;
| | - Michel M. R. F. Struys
- Department of Anaesthesiology, University Medical Centre Groningen (UMCG), University of Groningen, 9713 GZ Groningen, The Netherlands; (T.J.V.); (R.M.J.); (M.M.R.F.S.)
- Department of Basic and Applied Medical Sciences, Ghent University, 9000 Gent, Belgium
| | - Dirk J. Bosch
- Department of Anaesthesiology, University Medical Centre Groningen (UMCG), University of Groningen, 9713 GZ Groningen, The Netherlands; (T.J.V.); (R.M.J.); (M.M.R.F.S.)
| |
Collapse
|
3
|
Monticciolo I, Guarano A, Inversetti A, Barbaro G, Di Simone N. Unexplained Recurrent Pregnancy Loss: Clinical Application of Immunophenotyping. Am J Reprod Immunol 2024; 92:e13939. [PMID: 39392245 DOI: 10.1111/aji.13939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/18/2024] [Accepted: 09/23/2024] [Indexed: 10/12/2024] Open
Abstract
PROBLEM Recurrent pregnancy loss (RPL) is defined as the failure of two or more pregnancies and affects approximately 5% of couples, often without a clear cause. The etiologies of RPL include factors such as maternal age, endocrine dysfunction, uterine abnormalities, chromosomal abnormalities, thrombophilias, infections, and autoimmune disorders. However, these conditions account for only 50%-60% of RPL cases. Research has explored whether an altered immune system, compared to the physiological state, may be linked to RPL. This review aims to determine whether specific immunophenotypes are associated with unexplained Recurrent Pregnancy Loss (uRPL) and whether targeted therapies addressing specific immunophenotypic alterations can improve pregnancy outcomes. METHODS A literature review was conducted using Pubmed/Medline, Scopus, and Embase databases, analyzing data from 95 articles published between 2001 and 2023. The roles of various cells of the immune system (B lymphocytes, T lymphocytes, natural killer cells, macrophages) in different tissues (peripheral blood, menstrual blood) were specifically investigated in women with uRPL. DISCUSSION AND CONCLUSION Specific immunophenotypes have been demonstrated to be associated with this condition. However, there is a need to standardize immunophenotyping assays and conduct more trials to stratify RPL risk and improve potential therapeutic strategies.
Collapse
Affiliation(s)
- Irene Monticciolo
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Alice Guarano
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- Humanitas San Pio X, Milan, Italy
| | - Annalisa Inversetti
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- IRCCS Humanitas Research Hospital, Rozzano, Italy
| | - Greta Barbaro
- Humanitas San Pio X, Milan, Italy
- Dipartimento di Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario A. Gemelli, Istituto di Ricovero e Cura a Carattere Scientifico (I.R.C.C.S.), Rome, Italy
| | - Nicoletta Di Simone
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- IRCCS Humanitas Research Hospital, Rozzano, Italy
| |
Collapse
|
4
|
Lintao RCV, Richardson LS, Kammala AK, Chapa J, Yunque-Yap DA, Khanipov K, Golovko G, Dalmacio LMM, Menon R. PGRMC2 and HLA-G regulate immune homeostasis in a microphysiological model of human maternal-fetal membrane interface. Commun Biol 2024; 7:1041. [PMID: 39179795 PMCID: PMC11344061 DOI: 10.1038/s42003-024-06740-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 08/15/2024] [Indexed: 08/26/2024] Open
Abstract
Chorion trophoblasts (CTCs) and immune cell-enriched decidua (DECs) comprise the maternal-fetal membrane interface called the chorio-decidual interface (CDi) which constantly gets exposed to maternal stressors without leading to labor activation. This study explored how CTCs act as a barrier at CDi. The roles of human leukocyte antigen (HLA)-G and progesterone receptor membrane component 2 (PGRMC2) in mediating immune homeostasis were also investigated. The CDi was recreated in a two-chamber microfluidic device (CDi-on-chip) with an outer chamber of primary DECs and immune cell line-derived innate immune cells and an inner chamber of wild-type or PGRMC2 or HLA-G knockout immortalized CTCs. To mimic maternal insults, DECs were treated with lipopolysaccharide, poly(I:C), or oxidative stress inducer cigarette smoke extract. Expression levels of inflammation and immunity genes via targeted RNA sequencing, production of soluble mediators, and immune cell migration into CTCs were determined. In CDi-on-chip, decidua and immune cells became inflammatory in response to insults while CTCs were refractory, highlighting their barrier function. HLA-G and PGRMC2 are found to be vital to immune homeostasis at the CDi, with PGRMC2 serving as an upstream regulator of inflammation, HLA-G expression, and mesenchymal-epithelial transition, and HLA-G serving as a frontline immunomodulatory molecule, thus preventing fetal membrane compromise.
Collapse
Affiliation(s)
- Ryan C V Lintao
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
- Department of Biochemistry and Molecular Biology, College of Medicine, University of the Philippines Manila, Manila, Philippines
- Institute of Reproductive Health, National Institutes of Health, University of the Philippines Manila, Manila, Philippines
| | - Lauren S Richardson
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Ananth Kumar Kammala
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Jenieve Chapa
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Dianne Aster Yunque-Yap
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
- Microbiome and Bioinformatics Analysis Core, The Institute for Translational Sciences, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
- National Aeronautics and Space Administration Johnson Space Center, Houston, TX, USA
- KBR, Houston, TX, USA
| | - Kamil Khanipov
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
- Microbiome and Bioinformatics Analysis Core, The Institute for Translational Sciences, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - George Golovko
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
- Microbiome and Bioinformatics Analysis Core, The Institute for Translational Sciences, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Leslie Michelle M Dalmacio
- Department of Biochemistry and Molecular Biology, College of Medicine, University of the Philippines Manila, Manila, Philippines
| | - Ramkumar Menon
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, USA.
| |
Collapse
|
5
|
Luo Y, Liu J, Feng W, Lin D, Chen M, Zheng H. Single-cell RNA Sequencing Identifies Natural Kill Cell-Related Transcription Factors Associated With Age-Related Macular Degeneration. Evol Bioinform Online 2024; 20:11769343241272413. [PMID: 39149137 PMCID: PMC11325330 DOI: 10.1177/11769343241272413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 07/11/2024] [Indexed: 08/17/2024] Open
Abstract
Background Age-related Macular Degeneration (AMD) poses a growing global health concern as the leading cause of central vision loss in elderly people. Objection This study focuses on unraveling the intricate involvement of Natural Killer (NK) cells in AMD, shedding light on their immune responses and cytokine regulatory roles. Methods Transcriptomic data from the Gene Expression Omnibus database were utilized, employing single-cell RNA-seq analysis. High-dimensional weighted gene co-expression network analysis (hdWGCNA) and single-cell regulatory network inference and clustering (SCENIC) analysis were applied to reveal the regulatory mechanisms of NK cells in early-stage AMD patients. Machine learning models, such as random forests and decision trees, were employed to screen hub genes and key transcription factors (TFs) associated with AMD. Results Distinct cell clusters were identified in the present study, especially the T/NK cluster, with a notable increase in NK cell abundance observed in AMD. Cell-cell communication analyses revealed altered interactions, particularly in NK cells, indicating their potential role in AMD pathogenesis. HdWGCNA highlighted the turquoise module, enriched in inflammation-related pathways, as significantly associated with AMD in NK cells. The SCENIC analysis identified key TFs in NK cell regulatory networks. The integration of hub genes and TFs identified CREM, FOXP1, IRF1, NFKB2, and USF2 as potential predictors for AMD through machine learning. Conclusion This comprehensive approach enhances our understanding of NK cell dynamics, signaling alterations, and potential predictive models for AMD. The identified TFs provide new avenues for molecular interventions and highlight the intricate relationship between NK cells and AMD pathogenesis. Overall, this study contributes valuable insights for advancing our understanding and management of AMD.
Collapse
Affiliation(s)
- Yili Luo
- Department of Ophthalmology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jianpeng Liu
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Wangqiang Feng
- Department of Ophthalmology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Da Lin
- Department of Ophthalmology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Mengji Chen
- Department of Ophthalmology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Haihua Zheng
- Department of Ophthalmology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
6
|
Watanabe CM, Suzuki CI, Dos Santos AM, Aloia TPA, Lee G, Wald D, Okamoto OK, de Azevedo JTC, de Godoy JAP, Santos FPS, Weinlich R, Kerbauy LN, Kutner JM, Paiva RDMA, Hamerschlak N. An Extended Flow Cytometry Evaluation of ex Vivo Expanded NK Cells Using K562.Clone1, a Feeder Cell Line Manufactured in Brazil. Transplant Cell Ther 2024:S2666-6367(24)00531-1. [PMID: 38986739 DOI: 10.1016/j.jtct.2024.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/03/2024] [Accepted: 07/03/2024] [Indexed: 07/12/2024]
Abstract
Natural killer (NK) cells play a crucial role in the immune system's response against cancer. However, the challenge of obtaining the required quantity of NK cells for effective therapeutic response necessitates the development of strategies for their ex vivo expansion. This study aimed to develop a novel feeder cell line, K562.Clone1, capable of promoting the ex vivo expansion of NK cells while preserving their cytotoxic potential. he K562 leukemic cell line was transduced with mbIL-21 and 4-1BBL proteins to generate K562.Clone1 cells. NK cells were then co-cultured with these feeder cells, and their expansion rate was monitored over 14 days. The cytotoxic potential of the expanded NK cells was evaluated against acute myeloid leukemia blasts and tumor cell lines of leukemia and glial origin. Statistical analysis was performed to determine the significance of the results. The K562.Clone1 co-cultured with peripheral NK showed a significant increase in cell count, with an approximate 94-fold expansion over 14 days. Expanded NK cells demonstrated cytotoxicity against the tested tumor cell lines, indicating preservation of their cytotoxic characteristics. Additionally, the CD56, CD16, inhibitory KIRs, and activation receptors were conserved and present in a well-balanced manner. The study successfully developed a feeder cell line, K562.Clone1, that effectively promotes the expansion of NK cells ex vivo while maintaining their cytotoxic potential. This development could significantly contribute to the advancement of NK cell therapy, especially in Brazil.
Collapse
Affiliation(s)
| | | | | | | | - Grace Lee
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio
| | - David Wald
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio; Department of Pathology, University Hospitals Cleveland Medical Center, Cleveland, Ohio
| | - Oswaldo Keith Okamoto
- Department of Hemotherapy and Cellular Therapy, Hospital Israelita Albert Einstein, São Paulo, Brazil; Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Biosciences Institute, University of São Paulo, São Paulo, Brazil
| | - Julia T Cottas de Azevedo
- Experimental Research Laboratory, Hospital Israelita Albert Einstein, São Paulo, Brazil; Department of Hemotherapy and Cellular Therapy, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Juliana Aparecida Preto de Godoy
- Experimental Research Laboratory, Hospital Israelita Albert Einstein, São Paulo, Brazil; Department of Hemotherapy and Cellular Therapy, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Fabio P S Santos
- Experimental Research Laboratory, Hospital Israelita Albert Einstein, São Paulo, Brazil; Oncology and Hematology Center, Familia Dayan-Daycoval, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Ricardo Weinlich
- Experimental Research Laboratory, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Lucila N Kerbauy
- Experimental Research Laboratory, Hospital Israelita Albert Einstein, São Paulo, Brazil; Department of Hemotherapy and Cellular Therapy, Hospital Israelita Albert Einstein, São Paulo, Brazil; Oncology and Hematology Center, Familia Dayan-Daycoval, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Jose Mauro Kutner
- Department of Hemotherapy and Cellular Therapy, Hospital Israelita Albert Einstein, São Paulo, Brazil; Oncology and Hematology Center, Familia Dayan-Daycoval, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Raquel de Melo Alves Paiva
- Experimental Research Laboratory, Hospital Israelita Albert Einstein, São Paulo, Brazil; Department of Hemotherapy and Cellular Therapy, Hospital Israelita Albert Einstein, São Paulo, Brazil.
| | - Nelson Hamerschlak
- Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Biosciences Institute, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
7
|
Wang D, Dou L, Sui L, Xue Y, Xu S. Natural killer cells in cancer immunotherapy. MedComm (Beijing) 2024; 5:e626. [PMID: 38882209 PMCID: PMC11179524 DOI: 10.1002/mco2.626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 05/30/2024] [Accepted: 05/30/2024] [Indexed: 06/18/2024] Open
Abstract
Natural killer (NK) cells, as innate lymphocytes, possess cytotoxic capabilities and engage target cells through a repertoire of activating and inhibitory receptors. Particularly, natural killer group 2, member D (NKG2D) receptor on NK cells recognizes stress-induced ligands-the MHC class I chain-related molecules A and B (MICA/B) presented on tumor cells and is key to trigger the cytolytic response of NK cells. However, tumors have developed sophisticated strategies to evade NK cell surveillance, which lead to failure of tumor immunotherapy. In this paper, we summarized these immune escaping strategies, including the downregulation of ligands for activating receptors, upregulation of ligands for inhibitory receptors, secretion of immunosuppressive compounds, and the development of apoptosis resistance. Then, we focus on recent advancements in NK cell immune therapies, which include engaging activating NK cell receptors, upregulating NKG2D ligand MICA/B expression, blocking inhibitory NK cell receptors, adoptive NK cell therapy, chimeric antigen receptor (CAR)-engineered NK cells (CAR-NK), and NKG2D CAR-T cells, especially several vaccines targeting MICA/B. This review will inspire the research in NK cell biology in tumor and provide significant hope for improving cancer treatment outcomes by harnessing the potent cytotoxic activity of NK cells.
Collapse
Affiliation(s)
- DanRu Wang
- National Key Lab of Immunity and Inflammation and Institute of Immunology Naval Medical University Shanghai China
| | - LingYun Dou
- National Key Lab of Immunity and Inflammation and Institute of Immunology Naval Medical University Shanghai China
| | - LiHao Sui
- National Key Lab of Immunity and Inflammation and Institute of Immunology Naval Medical University Shanghai China
| | - Yiquan Xue
- National Key Lab of Immunity and Inflammation and Institute of Immunology Naval Medical University Shanghai China
| | - Sheng Xu
- National Key Lab of Immunity and Inflammation and Institute of Immunology Naval Medical University Shanghai China
- Shanghai Institute of Stem Cell Research and Clinical Translation Dongfang Hospital Shanghai China
| |
Collapse
|
8
|
Kiran S, Xue Y, Sarker DB, Li Y, Sang QXA. Feeder-free differentiation of human iPSCs into natural killer cells with cytotoxic potential against malignant brain rhabdoid tumor cells. Bioact Mater 2024; 36:301-316. [PMID: 38496035 PMCID: PMC10940949 DOI: 10.1016/j.bioactmat.2024.02.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/21/2024] [Accepted: 02/23/2024] [Indexed: 03/19/2024] Open
Abstract
Natural killer (NK) cells are cytotoxic immune cells that can eliminate target cells without prior stimulation. Human induced pluripotent stem cells (iPSCs) provide a robust source of NK cells for safe and effective cell-based immunotherapy against aggressive cancers. In this in vitro study, a feeder-free iPSC differentiation was performed to obtain iPSC-NK cells, and distinct maturational stages of iPSC-NK were characterized. Mature cells of CD56bright CD16bright phenotype showed upregulation of CD56, CD16, and NK cell activation markers NKG2D and NKp46 upon IL-15 exposure, while exposure to aggressive atypical teratoid/rhabdoid tumor (ATRT) cell lines enhanced NKG2D and NKp46 expression. Malignant cell exposure also increased CD107a degranulation markers and stimulated IFN-γ secretion in activated NK cells. CD56bright CD16bright iPSC-NK cells showed a ratio-dependent killing of ATRT cells, and the percentage lysis of CHLA-05-ATRT was higher than that of CHLA-02-ATRT. The iPSC-NK cells were also cytotoxic against other brain, kidney, and lung cancer cell lines. Further NK maturation yielded CD56-ve CD16bright cells, which lacked activation markers even after exposure to interleukins or ATRT cells - indicating diminished cytotoxicity. Generation and characterization of different NK phenotypes from iPSCs, coupled with their promising anti-tumor activity against ATRT in vitro, offer valuable insights into potential immunotherapeutic strategies for brain tumors.
Collapse
Affiliation(s)
- Sonia Kiran
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306-4390, USA
| | - Yu Xue
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306-4390, USA
| | - Drishty B. Sarker
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306-4390, USA
| | - Yan Li
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL, 32310-6046, USA
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL, 32306-4380, USA
| | - Qing-Xiang Amy Sang
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306-4390, USA
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL, 32306-4380, USA
| |
Collapse
|
9
|
Pighi C, Rotili A, De Luca M, Chiurchiù S, Calò Carducci FI, Rossetti C, Cifaldi L, Bei R, Caforio L, Bernardi S, Palma P, Amodio D. Characterization of Natural Killer Cell Profile in a Cohort of Infected Pregnant Women and Their Babies and Its Relation to CMV Transmission. Viruses 2024; 16:780. [PMID: 38793661 PMCID: PMC11125694 DOI: 10.3390/v16050780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/06/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
Human cytomegalovirus (CMV) is a common herpesvirus causing lifelong latent infection in most people and is a primary cause of congenital infection worldwide. Given the role of NK cells in the materno-fetal barrier, we investigated peripheral blood NK cell behavior in the context of CMV infection acquired during pregnancy. We analyzed the NK phenotype and CD107a surface mobilization on PBMCs from CMV-transmitting and non-transmitting mothers and newborns with or without congenital infection. NK cells from non-transmitting mothers showed the typical phenotype of CMV-adaptive NK cells, characterized by higher levels of NKG2C, CD57, and KIRs, with reduced NKG2A, compared to transmitting ones. A significantly higher percentage of DNAM-1+, PD-1+, and KIR+NKG2A-CD57+PD-1+ CD56dim cells was found in the non-transmitting group. Accordingly, NK cells from congenital-CMV (cCMV)-infected newborns expressed higher levels of NKG2C and CD57, with reduced NKG2A, compared to non-congenital ones. Furthermore, they showed a significant expansion of CD56dim cells co-expressing NKG2C and CD57 or with a memory-like (KIR+NKG2A-CD57+NKG2C+) phenotype, as well as a significant reduction of the CD57-NKG2C- population. Degranulation assays showed a slightly higher CD107a geomean ratio in NK cells of mothers who were non-transmitting compared to those transmitting the virus. Our findings demonstrate that both CMV-transmitting mothers and cCMV newborns show a specific NK profile. These data can guide studies on predicting virus transmission from mothers and congenital infection in infants.
Collapse
Affiliation(s)
- Chiara Pighi
- Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (C.P.); (A.R.); (C.R.); (P.P.)
| | - Arianna Rotili
- Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (C.P.); (A.R.); (C.R.); (P.P.)
- PhD Program in “Immunology, Molecular Medicine and Applied Biotechnologies”, Department of Systems Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Maia De Luca
- Infectious Disease Unit, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (M.D.L.); (S.C.); (F.I.C.C.); (S.B.)
| | - Sara Chiurchiù
- Infectious Disease Unit, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (M.D.L.); (S.C.); (F.I.C.C.); (S.B.)
| | | | - Chiara Rossetti
- Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (C.P.); (A.R.); (C.R.); (P.P.)
| | - Loredana Cifaldi
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy; (L.C.); (R.B.)
| | - Roberto Bei
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy; (L.C.); (R.B.)
| | - Leonardo Caforio
- Fetal Medicine and Surgery Unit, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy;
| | - Stefania Bernardi
- Infectious Disease Unit, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (M.D.L.); (S.C.); (F.I.C.C.); (S.B.)
| | - Paolo Palma
- Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (C.P.); (A.R.); (C.R.); (P.P.)
- Department of Systems Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Donato Amodio
- Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (C.P.); (A.R.); (C.R.); (P.P.)
- Department of Systems Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy
| |
Collapse
|
10
|
Schmälter AK, Löhr P, Konrad M, Waidhauser J, Arndt TT, Schiele S, Thoma A, Hackanson B, Rank A. Alterations in Peripheral Lymphocyte Subsets under Immunochemotherapy in Stage IV SCLC Patients: Th17 Cells as Potential Early Predictive Biomarker for Response. Int J Mol Sci 2024; 25:5056. [PMID: 38791096 PMCID: PMC11121216 DOI: 10.3390/ijms25105056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 05/26/2024] Open
Abstract
UICC stage IV small-cell lung cancer (SCLC) is a highly aggressive malignancy without curative treatment options. Several randomized trials have demonstrated improved survival rates through the addition of checkpoint inhibitors to first-line platin-based chemotherapy. Consequently, a combination of chemo- and immunotherapy has become standard palliative treatment. However, no reliable predictive biomarkers for treatment response exist. Neither PD-L1 expression nor tumor mutational burden have proven to be effective predictive biomarkers. In this study, we compared the cellular immune statuses of SCLC patients to a healthy control cohort and investigated changes in peripheral blood B, T, and NK lymphocytes, as well as several of their respective subsets, during treatment with immunochemotherapy (ICT) using flow cytometry. Our findings revealed a significant decrease in B cells, while T cells showed a trend to increase throughout ICT. Notably, high levels of exhausted CD4+ and CD8+ cells, alongside NK subsets, increased significantly during treatment. Furthermore, we correlated decreases/increases in subsets after two cycles of ICT with survival. Specifically, a decrease in Th17 cells indicated a better overall survival. Based on these findings, we suggest conducting further investigation into Th17 cells as a potential early predictive biomarkers for response in patients receiving palliative ICT for stage IV SCLC.
Collapse
Affiliation(s)
- Ann-Kristin Schmälter
- Department of Hematology and Oncology, Augsburg University Hospital and Medical Faculty, Comprehensive Cancer Center Augsburg, 86156 Augsburg, Germany; (P.L.); (M.K.); (J.W.); (A.T.); (B.H.); (A.R.)
- Bavarian Cancer Research Center (BZKF), 86156 Augsburg, Germany
| | - Phillip Löhr
- Department of Hematology and Oncology, Augsburg University Hospital and Medical Faculty, Comprehensive Cancer Center Augsburg, 86156 Augsburg, Germany; (P.L.); (M.K.); (J.W.); (A.T.); (B.H.); (A.R.)
- Bavarian Cancer Research Center (BZKF), 86156 Augsburg, Germany
| | - Maik Konrad
- Department of Hematology and Oncology, Augsburg University Hospital and Medical Faculty, Comprehensive Cancer Center Augsburg, 86156 Augsburg, Germany; (P.L.); (M.K.); (J.W.); (A.T.); (B.H.); (A.R.)
| | - Johanna Waidhauser
- Department of Hematology and Oncology, Augsburg University Hospital and Medical Faculty, Comprehensive Cancer Center Augsburg, 86156 Augsburg, Germany; (P.L.); (M.K.); (J.W.); (A.T.); (B.H.); (A.R.)
| | - Tim Tobias Arndt
- Institute of Mathematics, University of Augsburg, 86159 Augsburg, Germany; (T.T.A.); (S.S.)
| | - Stefan Schiele
- Institute of Mathematics, University of Augsburg, 86159 Augsburg, Germany; (T.T.A.); (S.S.)
| | - Alicia Thoma
- Department of Hematology and Oncology, Augsburg University Hospital and Medical Faculty, Comprehensive Cancer Center Augsburg, 86156 Augsburg, Germany; (P.L.); (M.K.); (J.W.); (A.T.); (B.H.); (A.R.)
| | - Björn Hackanson
- Department of Hematology and Oncology, Augsburg University Hospital and Medical Faculty, Comprehensive Cancer Center Augsburg, 86156 Augsburg, Germany; (P.L.); (M.K.); (J.W.); (A.T.); (B.H.); (A.R.)
- Bavarian Cancer Research Center (BZKF), 86156 Augsburg, Germany
- Department of Medicine I, Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Andreas Rank
- Department of Hematology and Oncology, Augsburg University Hospital and Medical Faculty, Comprehensive Cancer Center Augsburg, 86156 Augsburg, Germany; (P.L.); (M.K.); (J.W.); (A.T.); (B.H.); (A.R.)
| |
Collapse
|
11
|
Murdock BJ, Zhao B, Pawlowski KD, Famie JP, Piecuch CE, Webber-Davis IF, Teener SJ, Feldman EL, Zhao L, Goutman SA. Peripheral Immune Profiles Predict ALS Progression in an Age- and Sex-Dependent Manner. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2024; 11:e200241. [PMID: 38626361 PMCID: PMC11087030 DOI: 10.1212/nxi.0000000000200241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 02/12/2024] [Indexed: 04/18/2024]
Abstract
BACKGROUND AND OBJECTIVES Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease whose pathobiology associates with peripheral blood immune cell levels and activation patterns in an age and sex-dependent manner. This study's objective was to identify immune profile associations with ALS progression, whether the associations are age and sex-specific, and whether immune profiles can predict a future disease course. METHODS Flow cytometry immune profiles (a combination of 22 peripheral blood immune markers) were generated for 241 participants with ALS and linked to ALS progression, using progression-free survival, which is a composite combining the revised ALS Functional Rating Scale and survival. Participants were first grouped by immune profiles using unsupervised hierarchical clustering, and clusters were associated with subsequent progression-free survival. Next, individual immune markers were associated with progression-free survival using least absolute shrinkage and selection operator-Cox regression. Analyses were stratified by age and sex to identify demographic-specific immune mechanisms. Finally, random forest determined the predictive power of immune profiles on ALS progression in the whole population and again stratified by age and sex. RESULTS Progression-free survival differed between clusters of participants with similar immune profiles, particularly reduced natural killer (NK)-cell activation associated with slower progression. Individual markers such as neutrophil levels and NK-cell NKp46 expression associated with faster ALS progression while overall NK-cell levels and NK-cell subpopulations associated with slower progression; the strength of these associations varied by age and sex. Adding these immune markers to prediction models dramatically increased short-term prediction compared with routine clinical prognostic variables alone, and the addition of NK-cell markers further improved the prediction accuracy in female participants. DISCUSSION Specific immune profiles likely contribute to ALS progression in an age and sex-dependent manner, and peripheral immune markers enhance the prediction of short-term clinical outcomes. These findings suggest a complex milieu of immune profiles associated with ALS progression, and more detailed immunophenotyping in ALS will facilitate personalized immunotherapeutics in ALS.
Collapse
Affiliation(s)
- Benjamin J Murdock
- From the Department of Neurology (B.J.M., K.D.P., J.P.F., C.E.P., I.F.W.-D., S.J.T., E.L.F., S.A.G.); and School of Public Health (B.Z., L.Z.), Biostatistics Department, University of Michigan, Ann Arbor
| | - Bangyao Zhao
- From the Department of Neurology (B.J.M., K.D.P., J.P.F., C.E.P., I.F.W.-D., S.J.T., E.L.F., S.A.G.); and School of Public Health (B.Z., L.Z.), Biostatistics Department, University of Michigan, Ann Arbor
| | - Kristen D Pawlowski
- From the Department of Neurology (B.J.M., K.D.P., J.P.F., C.E.P., I.F.W.-D., S.J.T., E.L.F., S.A.G.); and School of Public Health (B.Z., L.Z.), Biostatistics Department, University of Michigan, Ann Arbor
| | - Joshua P Famie
- From the Department of Neurology (B.J.M., K.D.P., J.P.F., C.E.P., I.F.W.-D., S.J.T., E.L.F., S.A.G.); and School of Public Health (B.Z., L.Z.), Biostatistics Department, University of Michigan, Ann Arbor
| | - Caroline E Piecuch
- From the Department of Neurology (B.J.M., K.D.P., J.P.F., C.E.P., I.F.W.-D., S.J.T., E.L.F., S.A.G.); and School of Public Health (B.Z., L.Z.), Biostatistics Department, University of Michigan, Ann Arbor
| | - Ian F Webber-Davis
- From the Department of Neurology (B.J.M., K.D.P., J.P.F., C.E.P., I.F.W.-D., S.J.T., E.L.F., S.A.G.); and School of Public Health (B.Z., L.Z.), Biostatistics Department, University of Michigan, Ann Arbor
| | - Samuel J Teener
- From the Department of Neurology (B.J.M., K.D.P., J.P.F., C.E.P., I.F.W.-D., S.J.T., E.L.F., S.A.G.); and School of Public Health (B.Z., L.Z.), Biostatistics Department, University of Michigan, Ann Arbor
| | - Eva L Feldman
- From the Department of Neurology (B.J.M., K.D.P., J.P.F., C.E.P., I.F.W.-D., S.J.T., E.L.F., S.A.G.); and School of Public Health (B.Z., L.Z.), Biostatistics Department, University of Michigan, Ann Arbor
| | - Lili Zhao
- From the Department of Neurology (B.J.M., K.D.P., J.P.F., C.E.P., I.F.W.-D., S.J.T., E.L.F., S.A.G.); and School of Public Health (B.Z., L.Z.), Biostatistics Department, University of Michigan, Ann Arbor
| | - Stephen A Goutman
- From the Department of Neurology (B.J.M., K.D.P., J.P.F., C.E.P., I.F.W.-D., S.J.T., E.L.F., S.A.G.); and School of Public Health (B.Z., L.Z.), Biostatistics Department, University of Michigan, Ann Arbor
| |
Collapse
|
12
|
Zhang Q, Lin J, Yang M, Li Z, Zhang M, Bu B. Therapeutic potential of natural killer cells in neuroimmunological diseases. Biomed Pharmacother 2024; 173:116371. [PMID: 38430631 DOI: 10.1016/j.biopha.2024.116371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 03/05/2024] Open
Abstract
Natural killer (NK) cells, a major component of the innate immune system, have prominent immunoregulatory, antitumor proliferation, and antiviral activities. NK cells act as a double-edged sword with therapeutic potential in neurological autoimmunity. Emerging evidence has identified NK cells are involved in the development and progression of neuroimmunological diseases such as multiple sclerosis, neuromyelitis optica spectrum disorders, autoimmune encephalitis, Guillain-Barré Syndrome, chronic inflammatory demyelinating polyneuropathy, myasthenia gravis, and idiopathic inflammatory myopathy. However, the regulatory mechanisms and functional roles of NK cells are highly variable in different clinical states of neuroimmunological diseases and need to be further determined. In this review, we summarize the evidence for the heterogenic involvement of NK cells in the above conditions. Further, we describe cutting-edge NK-cell-based immunotherapy for neuroimmunological diseases in preclinical and clinical development and highlight challenges that must be overcome to fully realize the therapeutic potential of NK cells.
Collapse
Affiliation(s)
- Qing Zhang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jing Lin
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Mengge Yang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhijun Li
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Min Zhang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Bitao Bu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
13
|
Yang F, Zhou L, Shen Y, Wang X, Fan X, Yang L. Multi-omics approaches for drug-response characterization in primary biliary cholangitis and autoimmune hepatitis variant syndrome. J Transl Med 2024; 22:214. [PMID: 38424613 PMCID: PMC10902991 DOI: 10.1186/s12967-024-05029-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 02/24/2024] [Indexed: 03/02/2024] Open
Abstract
BACKGROUND Primary biliary cholangitis (PBC) and autoimmune hepatitis (AIH) variant syndrome (VS) exhibit a complex overlap of AIH features with PBC, leading to poorer prognoses than those with PBC or AIH alone. The biomarkers associated with drug response and potential molecular mechanisms in this syndrome have not been fully elucidated. METHODS Whole-transcriptome sequencing was employed to discern differentially expressed (DE) RNAs within good responders (GR) and poor responders (PR) among patients with PBC/AIH VS. Subsequent gene ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were conducted for the identified DE RNAs. Plasma metabolomics was employed to delineate the metabolic profiles distinguishing PR and GR groups. The quantification of immune cell profiles and associated cytokines was achieved through flow cytometry and immunoassay technology. Uni- and multivariable logistic regression analyses were conducted to construct a predictive model for insufficient biochemical response. The performance of the model was assessed by computing the area under the receiver operating characteristic (AUC) curve, sensitivity, and specificity. FINDINGS The analysis identified 224 differentially expressed (DE) mRNAs, 189 DE long non-coding RNAs, 39 DE circular RNAs, and 63 DE microRNAs. Functional pathway analysis revealed enrichment in lipid metabolic pathways and immune response. Metabolomics disclosed dysregulated lipid metabolism and identified PC (18:2/18:2) and PC (16:0/20:3) as predictors. CD4+ T helper (Th) cells, including Th2 cells and regulatory T cells (Tregs), were upregulated in the GR group. Pro-inflammatory cytokines (IFN-γ, TNF-α, IL-9, and IL-17) were downregulated in the GR group, while anti-inflammatory cytokines (IL-10, IL-4, IL-5, and IL-22) were elevated. Regulatory networks were constructed, identifying CACNA1H and ACAA1 as target genes. A predictive model based on these indicators demonstrated an AUC of 0.986 in the primary cohort and an AUC of 0.940 in the validation cohort for predicting complete biochemical response. CONCLUSION A combined model integrating genomic, metabolic, and cytokinomic features demonstrated high accuracy in predicting insufficient biochemical response in patients with PBC/AIH VS. Early recognition of individuals at elevated risk for insufficient response allows for the prompt initiation of additional treatments.
Collapse
Affiliation(s)
- Fan Yang
- Department of Gastroenterology and Hepatology and Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, West China Hospital, Sichuan University, #37 Guoxue Road, Chengdu, 610041, Sichuan, China
| | - Leyu Zhou
- Department of Gastroenterology and Hepatology and Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, West China Hospital, Sichuan University, #37 Guoxue Road, Chengdu, 610041, Sichuan, China
| | - Yi Shen
- Department of Gastroenterology and Hepatology and Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, West China Hospital, Sichuan University, #37 Guoxue Road, Chengdu, 610041, Sichuan, China
| | - Xianglin Wang
- Department of Gastroenterology and Hepatology and Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, West China Hospital, Sichuan University, #37 Guoxue Road, Chengdu, 610041, Sichuan, China
| | - Xiaoli Fan
- Department of Gastroenterology and Hepatology and Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, West China Hospital, Sichuan University, #37 Guoxue Road, Chengdu, 610041, Sichuan, China.
| | - Li Yang
- Department of Gastroenterology and Hepatology and Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, West China Hospital, Sichuan University, #37 Guoxue Road, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
14
|
Xiong Y, Wang Y, Wu M, Chen S, Lei H, Mu H, Yu H, Hou Y, Tang K, Chen X, Dong J, Wang X, Chen L. Aberrant NK cell profile in gestational diabetes mellitus with fetal growth restriction. Front Immunol 2024; 15:1346231. [PMID: 38375483 PMCID: PMC10875967 DOI: 10.3389/fimmu.2024.1346231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 01/17/2024] [Indexed: 02/21/2024] Open
Abstract
Gestational diabetes mellitus (GDM) is a gestational disorder characterized by hyperglycemia, that can lead to dysfunction of diverse cells in the body, especially the immune cells. It has been reported that immune cells, specifically natural killer (NK) cells, play a crucial role in normal pregnancy. However, it remains unknown how hyperglycemia affects NK cell dysfunction thus participates in the development of GDM. In this experiment, GDM mice were induced by an intraperitoneal injection of streptozotocin (STZ) after pregnancy and it has been found that the intrauterine growth restriction occurred in mice with STZ-induced GDM, accompanied by the changed proportion and function of NK cells. The percentage of cytotoxic CD27-CD11b+ NK cells was significantly increased, while the proportion of nourished CD27-CD11b- NK cells was significantly reduced in the decidua of GDM mice. Likewise, the same trend appeared in the peripheral blood NK cell subsets of GDM patients. What's more, after intrauterine reinfusion of NK cells to GDM mice, the fetal growth restriction was alleviated and the proportion of NK cells was restored. Our findings provide a theoretical and experimental basis for further exploring the pathogenesis of GDM.
Collapse
Affiliation(s)
- Yujing Xiong
- Department of Immunology, Air Force Medical University, Xi’an, Shaanxi, China
- Reproductive Medical Center, Department of Obstetrics and Gynecology, Tangdu Hospital, Air Force Medical University, Xi’an, Shaanxi, China
| | - Yazhen Wang
- Department of Immunology, Air Force Medical University, Xi’an, Shaanxi, China
| | - Mengqi Wu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Shuqiang Chen
- Reproductive Medical Center, Department of Obstetrics and Gynecology, Tangdu Hospital, Air Force Medical University, Xi’an, Shaanxi, China
| | - Hui Lei
- Reproductive Medical Center, Department of Obstetrics and Gynecology, Tangdu Hospital, Air Force Medical University, Xi’an, Shaanxi, China
| | - Hui Mu
- Reproductive Medical Center, Department of Obstetrics and Gynecology, Tangdu Hospital, Air Force Medical University, Xi’an, Shaanxi, China
| | - Haikun Yu
- Reproductive Medical Center, Department of Obstetrics and Gynecology, Tangdu Hospital, Air Force Medical University, Xi’an, Shaanxi, China
| | - Yongli Hou
- Department of Immunology, Air Force Medical University, Xi’an, Shaanxi, China
| | - Kang Tang
- Department of Immunology, Air Force Medical University, Xi’an, Shaanxi, China
| | - Xutao Chen
- Department of Immunology, Air Force Medical University, Xi’an, Shaanxi, China
| | - Jie Dong
- Reproductive Medical Center, Department of Obstetrics and Gynecology, Tangdu Hospital, Air Force Medical University, Xi’an, Shaanxi, China
| | - Xiaohong Wang
- Reproductive Medical Center, Department of Obstetrics and Gynecology, Tangdu Hospital, Air Force Medical University, Xi’an, Shaanxi, China
| | - Lihua Chen
- Department of Immunology, Air Force Medical University, Xi’an, Shaanxi, China
| |
Collapse
|
15
|
Yao M, Wang W, Sun J, Guo T, Bian J, Xiao F, Li Y, Cong H, Wei Y, Zhang X, Liu J, Yin L. The landscape of PBMCs in AQP4-IgG seropositive NMOSD and MOGAD, assessed by high dimensional mass cytometry. CNS Neurosci Ther 2024; 30:e14608. [PMID: 38334017 PMCID: PMC10853888 DOI: 10.1111/cns.14608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 01/02/2024] [Accepted: 01/05/2024] [Indexed: 02/10/2024] Open
Abstract
OBJECTIVES Data on peripheral blood mononuclear cells (PBMCs) characteristics of aquaporin-4 (AQP4)-IgG seropositive neuromyelitis optica spectrum disorder (NMOSD) and myelin oligodendrocyte glycoprotein antibody-associated disease (MOGAD) are lacking. In this study, we describe the whole PBMCs landscape of the above diseases using cytometry by time-of-flight mass spectrometry (CyTOF). METHODS The immune cell populations were phenotyped and clustered using CyTOF isolated from 27 AQP4-IgG seropositive NMOSD, 11 MOGAD patients, and 15 healthy individuals. RNA sequencing was employed to identify critical genes. Fluorescence cytometry and qPCR analysis were applied to further validate the algorithm-based results that were obtained. RESULTS We identified an increased population of CD11b+ mononuclear phagocytes (MNPs) in patients with high expression of CCR2, whose abundance may correlate with brain inflammatory infiltration. Using fluorescence cytometry, we confirmed the CCR2+ monocyte subsets in a second cohort of patients. Moreover, there was a wavering of B, CD4+ T, and NKT cells between AQP4-IgG seropositive NMOSD and MOGAD. CONCLUSIONS Our findings describe the whole landscape of PBMCs in two similar demyelinated diseases and suggest that, besides MNPs, T, NK and B, cells were all involved in the pathogenesis. The identified cell population may be used as a predictor for monitoring disease development or treatment responses.
Collapse
Affiliation(s)
- Mengyuan Yao
- Department of Neuroinfection and Neuroimmunology, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Wenjing Wang
- Beijing Institute of Hepatology, Beijing Youan HospitalCapital Medical UniversityBeijingChina
| | - Jiali Sun
- Department of Neuroinfection and Neuroimmunology, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Tianshu Guo
- Department of Neuroinfection and Neuroimmunology, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Jiangping Bian
- Department of Neuroinfection and Neuroimmunology, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Fuyao Xiao
- Department of Neuroinfection and Neuroimmunology, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Yuanyuan Li
- Department of Neuroinfection and Neuroimmunology, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Hengri Cong
- Department of Neuroinfection and Neuroimmunology, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Yuzhen Wei
- Department of Neuroinfection and Neuroimmunology, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Xinghu Zhang
- Department of Neuroinfection and Neuroimmunology, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Jianghong Liu
- Department of Neurology, Xuanwu HospitalCapital Medical UniversityBeijingChina
- Collaborative Innovation Center for Brain Disorders, Beijing Institute of Brain DisordersCapital Medical UniversityBeijingChina
| | - Linlin Yin
- Department of Neuroinfection and Neuroimmunology, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- Collaborative Innovation Center for Brain Disorders, Beijing Institute of Brain DisordersCapital Medical UniversityBeijingChina
| |
Collapse
|
16
|
Gu L, Zhao C, Wang Y, Wang C, Yin X, Ye Q, Liu Y, Zou X, Wang L, Zhuge Y, Wu J, Zhang F. Senescence of Hepatic Stellate Cells by Specific Delivery of Manganese for Limiting Liver Fibrosis. NANO LETTERS 2024; 24:1062-1073. [PMID: 38164915 PMCID: PMC10836362 DOI: 10.1021/acs.nanolett.3c03689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Senescence of activated hepatic stellate cells (HSCs) is crucial for the regression of liver fibrosis. However, impaired immune clearance can result in the accumulation of senescent HSCs, exacerbating liver fibrosis. The activation of the cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) pathway is essential for both senescence and the innate immune response. Additionally, the specific delivery to activated HSCs is hindered by their inaccessible anatomical location, capillarization of liver sinusoidal endothelial cells (LSECs), and loss of substance exchange. Herein, we propose an antifibrotic strategy that combines prosenescence with enhanced immune clearance through targeted delivery of manganese (a cGAS-STING stimulator) via albumin-mediated transcytosis, specifically aimed at inducing senescence and eliminating activated HSCs in liver fibrosis. Our findings demonstrate that only albumin efficiently transfers manganese to activated HSCs from LSECs via transcytosis compared to liposomes, resulting in significant antifibrotic effects in vivo while exhibiting negligible toxicity.
Collapse
Affiliation(s)
- Lihong Gu
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu 210008, People's Republic of China
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center, Medical School of Nanjing University, Nanjing, Jiangsu 210093, People's Republic of China
- Jiangsu Key Laboratory for Nano Technology, Nanjing University, Nanjing, Jiangsu 210093, People's Republic of China
- Wuxi No. 2 People's Hospital, Wuxi, Jiangsu 214002, People's Republic of China
| | - Chenxuan Zhao
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center, Medical School of Nanjing University, Nanjing, Jiangsu 210093, People's Republic of China
- Jiangsu Key Laboratory for Nano Technology, Nanjing University, Nanjing, Jiangsu 210093, People's Republic of China
| | - Yixuan Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center, Medical School of Nanjing University, Nanjing, Jiangsu 210093, People's Republic of China
- Jiangsu Key Laboratory for Nano Technology, Nanjing University, Nanjing, Jiangsu 210093, People's Republic of China
| | - Chao Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center, Medical School of Nanjing University, Nanjing, Jiangsu 210093, People's Republic of China
- Jiangsu Key Laboratory for Nano Technology, Nanjing University, Nanjing, Jiangsu 210093, People's Republic of China
| | - Xiaochun Yin
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu 210008, People's Republic of China
| | - Qingsong Ye
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center, Medical School of Nanjing University, Nanjing, Jiangsu 210093, People's Republic of China
- Jiangsu Key Laboratory for Nano Technology, Nanjing University, Nanjing, Jiangsu 210093, People's Republic of China
| | - Yan Liu
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu 210008, People's Republic of China
| | - Xiaoping Zou
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu 210008, People's Republic of China
| | - Lei Wang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu 210008, People's Republic of China
| | - Yuzheng Zhuge
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu 210008, People's Republic of China
| | - Jinhui Wu
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center, Medical School of Nanjing University, Nanjing, Jiangsu 210093, People's Republic of China
- Jiangsu Key Laboratory for Nano Technology, Nanjing University, Nanjing, Jiangsu 210093, People's Republic of China
| | - Feng Zhang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu 210008, People's Republic of China
| |
Collapse
|
17
|
Lord JM, Veenith T, Sullivan J, Sharma-Oates A, Richter AG, Greening NJ, McAuley HJC, Evans RA, Moss P, Moore SC, Turtle L, Gautam N, Gilani A, Bajaj M, Wain LV, Brightling C, Raman B, Marks M, Singapuri A, Elneima O, Openshaw PJM, Duggal NA. Accelarated immune ageing is associated with COVID-19 disease severity. Immun Ageing 2024; 21:6. [PMID: 38212801 PMCID: PMC10782727 DOI: 10.1186/s12979-023-00406-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 12/18/2023] [Indexed: 01/13/2024]
Abstract
BACKGROUND The striking increase in COVID-19 severity in older adults provides a clear example of immunesenescence, the age-related remodelling of the immune system. To better characterise the association between convalescent immunesenescence and acute disease severity, we determined the immune phenotype of COVID-19 survivors and non-infected controls. RESULTS We performed detailed immune phenotyping of peripheral blood mononuclear cells isolated from 103 COVID-19 survivors 3-5 months post recovery who were classified as having had severe (n = 56; age 53.12 ± 11.30 years), moderate (n = 32; age 52.28 ± 11.43 years) or mild (n = 15; age 49.67 ± 7.30 years) disease and compared with age and sex-matched healthy adults (n = 59; age 50.49 ± 10.68 years). We assessed a broad range of immune cell phenotypes to generate a composite score, IMM-AGE, to determine the degree of immune senescence. We found increased immunesenescence features in severe COVID-19 survivors compared to controls including: a reduced frequency and number of naïve CD4 and CD8 T cells (p < 0.0001); increased frequency of EMRA CD4 (p < 0.003) and CD8 T cells (p < 0.001); a higher frequency (p < 0.0001) and absolute numbers (p < 0.001) of CD28-ve CD57+ve senescent CD4 and CD8 T cells; higher frequency (p < 0.003) and absolute numbers (p < 0.02) of PD-1 expressing exhausted CD8 T cells; a two-fold increase in Th17 polarisation (p < 0.0001); higher frequency of memory B cells (p < 0.001) and increased frequency (p < 0.0001) and numbers (p < 0.001) of CD57+ve senescent NK cells. As a result, the IMM-AGE score was significantly higher in severe COVID-19 survivors than in controls (p < 0.001). Few differences were seen for those with moderate disease and none for mild disease. Regression analysis revealed the only pre-existing variable influencing the IMM-AGE score was South Asian ethnicity ([Formula: see text] = 0.174, p = 0.043), with a major influence being disease severity ([Formula: see text] = 0.188, p = 0.01). CONCLUSIONS Our analyses reveal a state of enhanced immune ageing in survivors of severe COVID-19 and suggest this could be related to SARS-Cov-2 infection. Our data support the rationale for trials of anti-immune ageing interventions for improving clinical outcomes in these patients with severe disease.
Collapse
Affiliation(s)
- Janet M Lord
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, Office 6, University of Birmingham Research Labs, Institute of Inflammation and Ageing, Queen Elizabeth Hospital, Birmingham, UK
- NIHR Birmingham Biomedical Research Centre, University Hospital Birmingham and University of Birmingham, Birmingham, UK
- NIHR Surgical Reconstruction and Microbiology Research Centre, University Hospital Birmingham, Birmingham, UK
| | - Tonny Veenith
- NIHR Surgical Reconstruction and Microbiology Research Centre, University Hospital Birmingham, Birmingham, UK
| | - Jack Sullivan
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, Office 6, University of Birmingham Research Labs, Institute of Inflammation and Ageing, Queen Elizabeth Hospital, Birmingham, UK
| | | | - Alex G Richter
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Neil J Greening
- Institute for Lung Health, NIHR Leicester Biomedical Research Centre, Glenfield Hospital, University of Leicester, Leicester, UK
| | - Hamish J C McAuley
- Institute for Lung Health, NIHR Leicester Biomedical Research Centre, Glenfield Hospital, University of Leicester, Leicester, UK
| | - Rachael A Evans
- Institute for Lung Health, NIHR Leicester Biomedical Research Centre, Glenfield Hospital, University of Leicester, Leicester, UK
| | - Paul Moss
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Shona C Moore
- NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Lance Turtle
- NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Nandan Gautam
- Queen Elizabeth Hospital, University Hospital Birmingham NHS Foundation Trust, Birmingham, UK
| | - Ahmed Gilani
- Queen Elizabeth Hospital, University Hospital Birmingham NHS Foundation Trust, Birmingham, UK
| | - Manan Bajaj
- Queen Elizabeth Hospital, University Hospital Birmingham NHS Foundation Trust, Birmingham, UK
| | - Louise V Wain
- Institute for Lung Health, NIHR Leicester Biomedical Research Centre, Glenfield Hospital, University of Leicester, Leicester, UK
- Department of Population Health Sciences, University of Leicester, Leicester, UK
| | - Christopher Brightling
- Institute for Lung Health, NIHR Leicester Biomedical Research Centre, Glenfield Hospital, University of Leicester, Leicester, UK
| | - Betty Raman
- Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Michael Marks
- London School of Hygiene and Tropical Medicine, University of London, London, UK
| | - Amisha Singapuri
- Institute for Lung Health, NIHR Leicester Biomedical Research Centre, Glenfield Hospital, University of Leicester, Leicester, UK
| | - Omer Elneima
- Institute for Lung Health, NIHR Leicester Biomedical Research Centre, Glenfield Hospital, University of Leicester, Leicester, UK
| | | | - Niharika A Duggal
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, Office 6, University of Birmingham Research Labs, Institute of Inflammation and Ageing, Queen Elizabeth Hospital, Birmingham, UK.
| |
Collapse
|
18
|
Lintao RCV, Richardson LS, Chapa J, Dalmacio LMM, Menon R. Culture and Maintenance of Immune Cells to Model Innate Immune Status at the Feto-maternal Interface. Methods Mol Biol 2024; 2781:119-130. [PMID: 38502448 DOI: 10.1007/978-1-0716-3746-3_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
The inflammatory process leading to human labor is mostly facilitated by immune cells, which can be studied by isolating and characterizing primary immune cells from the feto-maternal interface. However, difficulty and inconsistency in sampling approaches of immune cells and short lifespan in vitro prevent their usage in mechanistic studies to understand the maternal-fetal immunobiology. To address these limitations, existing cell line models can be differentiated into immune-like cells for use in reproductive biology experiments. In this chapter, we discussed cell culture methods of maintaining and differentiating HL-60, THP-1, and NK-92 cells to obtain neutrophil-like, macrophage-like, and decidual natural killer-like cells, respectively, which can then be used together with intrauterine cells to elucidate and investigate immune mechanisms that contribute to parturition.
Collapse
Affiliation(s)
- Ryan C V Lintao
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
- Department of Biochemistry and Molecular Medicine, College of Medicine, University of the Philippines Manila, Manila, Philippines
| | - Lauren S Richardson
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Jenieve Chapa
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Leslie Michelle M Dalmacio
- Department of Biochemistry and Molecular Medicine, College of Medicine, University of the Philippines Manila, Manila, Philippines
| | - Ramkumar Menon
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, USA.
| |
Collapse
|
19
|
Nouri N, Cao RG, Bunsow E, Nehar-Belaid D, Marches R, Xu Z, Smith B, Heinonen S, Mertz S, Leber A, Smits G, van der Klis F, Mejías A, Banchereau J, Pascual V, Ramilo O. Young infants display heterogeneous serological responses and extensive but reversible transcriptional changes following initial immunizations. Nat Commun 2023; 14:7976. [PMID: 38042900 PMCID: PMC10693608 DOI: 10.1038/s41467-023-43758-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 11/17/2023] [Indexed: 12/04/2023] Open
Abstract
Infants necessitate vaccinations to prevent life-threatening infections. Our understanding of the infant immune responses to routine vaccines remains limited. We analyzed two cohorts of 2-month-old infants before vaccination, one week, and one-month post-vaccination. We report remarkable heterogeneity but limited antibody responses to the different antigens. Whole-blood transcriptome analysis in an initial cohort showed marked overexpression of interferon-stimulated genes (ISGs) and to a lesser extent of inflammation-genes at day 7, which normalized one month post-vaccination. Single-cell RNA sequencing in peripheral blood mononuclear cells from a second cohort identified at baseline a predominantly naive immune landscape including ISGhi cells. On day 7, increased expression of interferon-, inflammation-, and cytotoxicity-related genes were observed in most immune cells, that reverted one month post-vaccination, when a CD8+ ISGhi and cytotoxic cluster and B cells expanded. Antibody responses were associated with baseline frequencies of plasma cells, B-cells, and monocytes, and induction of ISGs at day 7.
Collapse
Affiliation(s)
- Nima Nouri
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
- Precision Medicine and Computational Biology, Sanofi, 350 Water Street, Cambridge, MA, 02141, USA
| | - Raquel Giacomelli Cao
- Center for Vaccines and Immunity, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Nationwide Children's Hospital, and The Ohio State University College of Medicine, Columbus, OH, USA
| | - Eleonora Bunsow
- Center for Vaccines and Immunity, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | | | - Radu Marches
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Zhaohui Xu
- Center for Vaccines and Immunity, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Bennett Smith
- Center for Vaccines and Immunity, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Santtu Heinonen
- Center for Vaccines and Immunity, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
- Pediatric Research Center, New Children's Hospital, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Sara Mertz
- Center for Vaccines and Immunity, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Amy Leber
- Department of Laboratory Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | - Gaby Smits
- National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Fiona van der Klis
- National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Asunción Mejías
- Center for Vaccines and Immunity, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Nationwide Children's Hospital, and The Ohio State University College of Medicine, Columbus, OH, USA
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jacques Banchereau
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
- Immunai, New York, NY, USA
| | - Virginia Pascual
- Drukier Institute for Children's Health and Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA.
| | - Octavio Ramilo
- Center for Vaccines and Immunity, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA.
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Nationwide Children's Hospital, and The Ohio State University College of Medicine, Columbus, OH, USA.
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
20
|
Carreira-Santos S, López-Sejas N, González-Sánchez M, Sánchez-Hernández E, Pera A, Hassouneh F, Durán E, Solana R, Casado JG, Tarazona R. Enhanced expression of natural cytotoxicity receptors on cytokine-induced memory-like natural killer cells correlates with effector function. Front Immunol 2023; 14:1256404. [PMID: 37908353 PMCID: PMC10613704 DOI: 10.3389/fimmu.2023.1256404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 10/02/2023] [Indexed: 11/02/2023] Open
Abstract
Introduction Natural killer (NK) cells are a key component of the innate immune system, involved in defending the host against virus-infected cells and tumor immunosurveillance. Under in vitro culture conditions, IL-12/15/18 can induce a memory-like phenotype in NK cells. These cytokine-induced memory-like (CIML) NK cells possess desirable characteristics for immunotherapies, including a longer lifespan and increased cytotoxicity. Methods In this study, NK cells were isolated from peripheral blood of healthy donors and stimulated with IL-12/15/18 to induce a memory-like phenotype or with IL-15 alone as a control. After seven days of culture, multiparametric flow cytometry analysis was performed to evaluate the phenotypic and functional profiles of CIML and control NK cells. Results Our results showed a significantly higher expression of CD25, CD69, NKG2D, NKp30, NKp44, NKp46, TACTILE, and Granzyme B in CIML NK cells compared to control NK cells. In contrast, KIR2D expression was significantly lower in CIML NK cells than in control NK cells. Moreover, functional experiments demonstrated that CIML NK cells displayed enhanced degranulation capacity and increased intracellular IFN-γ production against the target cell line K562. Interestingly, the degranulation capacity of CIML NK cells was positively correlated with the expression of the activating receptors NKp46 and NKp30, as well as with the inhibitory receptor TACTILE. Discussion In conclusion, this study provides a deep phenotypic characterization of in vitro-expanded CIML NK cells. Moreover, the correlations found between NK cell receptors and degranulation capacity of CIML NK cells allowed the identification of several biomarkers that could be useful in clinical settings.
Collapse
Affiliation(s)
- Sofía Carreira-Santos
- Immunology Unit, Department of Physiology, Universidad de Extremadura, Cáceres, Spain
| | - Nelson López-Sejas
- Immunology Unit, Department of Physiology, Universidad de Extremadura, Cáceres, Spain
| | | | - Eva Sánchez-Hernández
- Immunology Unit, Department of Physiology, Universidad de Extremadura, Cáceres, Spain
| | - Alejandra Pera
- Immunology and Allergy Group (GC01), Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain
- Department of Cell Biology, Physiology and Immunology, Universidad de Córdoba, Córdoba, Spain
| | - Fakhri Hassouneh
- Immunology and Allergy Group (GC01), Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain
| | - Esther Durán
- Anatomy and Comparative Pathological Anatomy Unit, Department of Animal Medicine, Faculty of Veterinary Medicine, Universidad de Extremadura, Cáceres, Spain
| | - Rafael Solana
- Immunology and Allergy Group (GC01), Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain
- Department of Cell Biology, Physiology and Immunology, Universidad de Córdoba, Córdoba, Spain
- Immunology and Allergy Service, Reina Sofia University Hospital, Cordoba, Spain
| | - Javier G. Casado
- Immunology Unit, Department of Physiology, Universidad de Extremadura, Cáceres, Spain
- Centro de Investigación Biomédica En Red (CIBER) de Enfermedades Cardiovasculares, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- RICORS-TERAV Network, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Institute of Molecular Pathology Biomarkers, Universidad de Extremadura, Cáceres, Spain
| | - Raquel Tarazona
- Immunology Unit, Department of Physiology, Universidad de Extremadura, Cáceres, Spain
- Institute of Molecular Pathology Biomarkers, Universidad de Extremadura, Cáceres, Spain
| |
Collapse
|
21
|
Pierzchalski A, Zenclussen AC, Herberth G. OMIP-94: Twenty-four-color (thirty-marker) panel for deep immunophenotyping of immune cells in human peripheral blood. Cytometry A 2023; 103:695-702. [PMID: 37254600 DOI: 10.1002/cyto.a.24766] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 05/10/2023] [Accepted: 05/12/2023] [Indexed: 06/01/2023]
Abstract
This newly established 24-color (30-marker) panel focuses on the characterization of the main human immune cell subtypes and was optimized for the analysis of human whole blood using a full spectrum flow cytometer. The panel covers all main leukocyte populations: neutrophils, eosinophils and basophils, monocytes (with additional subsets), dendritic cells, innate lymphoid cells and lymphocytes. As for lymphocytes, this panel includes CD4+ T helper, Treg cells, and CD8+ cytotoxic T cells. Further T cells subsets are included with special focus on invariant T cells: γδ T cells (including δ2TCR variant), invariant NKT cells and MAIT (mucosal-associated invariant T cells) cells. Additionally, total B cells (including Bregs and plasmocytes), NK cells, and NKT cells are included. For the overall check of activation status of the analyzed immune cells we used HLA-DR, CD38, CD57, CD69, PD-1, and CD94. In addition, we used CD62L, CD45RA, CD27, and CD39 to describe the differentiation status of these cells. The panel was designed to maximize the information that can be obtained from surface markers in order to avoid the need for fixation and permeabilization steps. The presented multimarker panel offers the possibility to discover new immune cell subtypes which in patients and in cohort studies may lead to the identification of altered immune phenotypes and might give a link to immune system based or to certain other diseases. This panel was developed for a full spectrum flow cytometer equipped with a minimum of three lasers. We developed this panel using healthy human fresh blood, however it was also successfully used for staining of isolated human peripheral blood mononuclear cells (PBMC).
Collapse
Affiliation(s)
- Arkadiusz Pierzchalski
- Department of Environmental Immunology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Ana C Zenclussen
- Department of Environmental Immunology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
- Perinatal Immunology Research Group, Medical Faculty, Saxonian Incubator for Clinical Translation (SIKT), University of Leipzig, Leipzig, Germany
| | - Gunda Herberth
- Department of Environmental Immunology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| |
Collapse
|
22
|
Zhi L, Wang X, Gao Q, He W, Shang C, Guo C, Niu Z, Zhu W, Zhang X. Intrinsic and extrinsic factors determining natural killer cell fate: Phenotype and function. Biomed Pharmacother 2023; 165:115136. [PMID: 37453199 DOI: 10.1016/j.biopha.2023.115136] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/26/2023] [Accepted: 07/07/2023] [Indexed: 07/18/2023] Open
Abstract
Natural killer (NK) cells are derived from hematopoietic stem cells. They belong to the innate lymphoid cell family, which is an important part of innate immunity. This family plays a role in the body mainly through the release of perforin, granzyme, and various cytokines and is involved in cytotoxicity and cytokine-mediated immune regulation. NK cells involved in normal immune regulation and the tumor microenvironment (TME) can exhibit completely different states. Here, we discuss the growth, development, and function of NK cells in regard to intrinsic and extrinsic factors. Intrinsic factors are those that influence NK cells to promote cell maturation and exert their effector functions under the control of internal metabolism and self-related genes. Extrinsic factors include the metabolism of the TME and the influence of related proteins on the "fate" of NK cells. This review targets the potential of NK cell metabolism, cellular molecules, regulatory genes, and other mechanisms involved in immune regulation. We further discuss immune-mediated tumor therapy, which is the trend of current research.
Collapse
Affiliation(s)
- Lingtong Zhi
- Henan Province Engineering Research Center of Innovation for Synthetic Biology, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, Henan Province 453003, PR China
| | - Xing Wang
- Henan Province Engineering Research Center of Innovation for Synthetic Biology, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, Henan Province 453003, PR China
| | - Qing Gao
- Henan Province Engineering Research Center of Innovation for Synthetic Biology, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, Henan Province 453003, PR China
| | - Wenhui He
- Henan Province Engineering Research Center of Innovation for Synthetic Biology, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, Henan Province 453003, PR China
| | - Chongye Shang
- Henan Province Engineering Research Center of Innovation for Synthetic Biology, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, Henan Province 453003, PR China
| | - Changjiang Guo
- Henan Province Engineering Research Center of Innovation for Synthetic Biology, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, Henan Province 453003, PR China
| | - Zhiyuan Niu
- Henan Province Engineering Research Center of Innovation for Synthetic Biology, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, Henan Province 453003, PR China
| | - Wuling Zhu
- Henan Province Engineering Research Center of Innovation for Synthetic Biology, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, Henan Province 453003, PR China.
| | - Xuan Zhang
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453003, PR China.
| |
Collapse
|
23
|
Mao J, Feng Y, Zhu X, Ma F. The Molecular Mechanisms of HLA-G Regulatory Function on Immune Cells during Early Pregnancy. Biomolecules 2023; 13:1213. [PMID: 37627278 PMCID: PMC10452754 DOI: 10.3390/biom13081213] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 08/01/2023] [Accepted: 08/01/2023] [Indexed: 08/27/2023] Open
Abstract
Human leukocyte antigen-G (HLA-G) is a non-classical human major histocompatibility complex (MHC-I) molecule with the membrane-bound and soluble types. HLA-G is primarily expressed by extravillous cytotrophoblast cells located at the maternal-fetal interface during pregnancy and is essential in establishing immune tolerance. This review provides a comprehensive understanding of the multiple molecular mechanisms by which HLA-G regulates the immune function of NK cells. It highlights that HLA-G binds to microRNA to suppress NK cell cytotoxicity and stimulate the secretion of growth factors to support fetal growth. The interactions between HLA-G and NK cells also activate senescence signaling, promoting spiral artery remodeling and maintaining the balance of maternal-fetal immune responses. In addition, HLA-G can inhibit the function of decidual T cells, dendritic cells, and macrophages. Overall, the interaction between trophoblast cells and immune cells mediated by HLA-G plays a crucial role in understanding immune regulation at the maternal-fetal interface and offers insights into potential treatments for pregnancy-related diseases.
Collapse
Affiliation(s)
- Jia Mao
- Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, China;
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, State Key Laboratory of Biotherapy and Cancer Center, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Ying Feng
- Department of Histology, Embryology and Neurobiology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China;
| | - Xiaofeng Zhu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, State Key Laboratory of Biotherapy and Cancer Center, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Fang Ma
- Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, China;
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
24
|
Wang L, Hu Z, Chen C, Chen T, Yao Z, Li W, Yang Z. Low-dose aspirin can inhibit exosomal release induced by radiotherapy in breast cancer and attenuate its inhibitory effect on NK cell proliferation. Cancer Med 2023; 12:16386-16404. [PMID: 37392173 PMCID: PMC10469664 DOI: 10.1002/cam4.6274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 05/26/2023] [Accepted: 06/02/2023] [Indexed: 07/03/2023] Open
Abstract
BACKGROUND Breast cancer (BC) seriously threatens women's health. Aspirin plays a key role in the treatment and prognosis of BC. OBJECTIVE To explore the effect of low-dose aspirin on BC radiotherapy through the mechanism of exosomes and natural killer (NK) cells. METHODS BC cells were injected into the left chest wall to establish a BC model in nude mice. Tumor morphology and size were observed. Immunohistochemical staining for Ki-67 was used to observe the proliferation of tumor cells. TUNEL was used to detect the apoptosis of cancer cells. Protein levels of exosomal biogenesis- and secretion-related genes (Rab 11, Rab27a, Rab27b, CD63, and Alix) were detected by Western blot. Flow cytometry was used to detect apoptosis. Transwell assays were used to detect cell migration. A clonogenic assay was used to detect cell proliferation. Exosomes of BT549 and 4T1-Luc cells were extracted and observed by electron microscopy. After the coculture of exosomes and NK cells, the activity of NK cells was detected by CCK-8. RESULTS The protein expression of genes related to exosomal genesis and secretion (Rab 11, Rab27a, Rab27b, CD63, and Alix) in BT549 and 4T1-Luc cells was upregulated under radiotherapy treatment. Low doses of aspirin inhibited exosome release from BT549 and 4T1-Luc cells and alleviated the inhibitory effect of BC cell exosomes on NK cell proliferation. In addition, knocking down Rab27a reduced the protein levels of exosome-related and secretion-related genes in BC cells, further enhancing the promotive effect of aspirin on NK cell proliferation, while overexpressing Rab27a had the opposite effect. Aspirin was combined at a radiotherapeutic dose of 10 Gy to enhance the radiotherapy sensitivity of radiotherapy-tolerant BC cells (BT549R and 4T1-LucR). Animal experiments have also verified that aspirin can promote the killing effect of radiotherapy on cancer cells and significantly inhibit tumor growth. CONCLUSION Low doses of aspirin can inhibit the release of BC exosomes induced by radiotherapy and weaken their inhibition of NK cell proliferation, promoting radiotherapy resistance.
Collapse
Affiliation(s)
- Li Wang
- Department of RadiotherapyThird Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center)KunmingChina
| | - Zaoxiu Hu
- Department of PathologyThird Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center)KunmingChina
| | - Ceshi Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan ProvinceKunming Institute of ZoologyKunmingChina
| | - Ting Chen
- Department of Nuclear MedicineThird Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center)KunmingChina
| | - Zhihong Yao
- Bone and Soft Tissue Tumors Research CenterThird Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center)KunmingChina
| | - Wenhui Li
- Department of RadiotherapyThird Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center)KunmingChina
| | - Zuozhang Yang
- Bone and Soft Tissue Tumors Research CenterThird Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center)KunmingChina
| |
Collapse
|
25
|
Seheult JN, Otteson GE, Jevremovic D, Horna P, Timm MM, Yuan J, Morice WG, Olteanu H, Shi M. Establishing NK-Cell Receptor Restriction by Flow Cytometry and Detecting Potential NK-Cell Clones of Uncertain Significance. Mod Pathol 2023; 36:100255. [PMID: 37385341 DOI: 10.1016/j.modpat.2023.100255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 07/01/2023]
Abstract
Natural killer (NK) cells develop a complex inhibitory and/or activating NK-cell receptor system, including killer cell immunoglobulin-like receptors (KIRs or CD158) and CD94/NKG2 dimers, which are variably combined to generate the individual's NK-cell receptor repertoire. Establishing NK-cell receptor restriction by flow cytometric immunophenotyping is an important step in diagnosing NK-cell neoplasms, but reference interval (RI) data for interpreting these studies are lacking. Specimens from 145 donors and 63 patients with NK-cell neoplasms were used to identify discriminatory rules based on 95% and 99% nonparametric RIs for CD158a+, CD158b+, CD158e+, KIR-negative, and NKG2A+ NK-cell populations to establish NK-cell receptor restriction. These 99% upper RI limits (NKG2a >88% or CD158a >53% or CD158b >72% or CD158e >54% or KIR-negative >72%) provided optimal discrimination between NK-cell neoplasm cases and healthy donor controls with an accuracy of 100% compared with the clinicopathologic diagnosis. The selected rules were applied to 62 consecutive samples received in our flow cytometry laboratory that were reflexed to an NK-cell panel due to an expanded NK-cell percentage (exceeding 40% of total lymphocytes). Twenty-two (35%) of 62 samples were found to harbor a very small NK-cell population with restricted NK-cell receptor expression based on the rule combination, suggestive of NK-cell clonality. A thorough clinicopathologic evaluation for the 62 patients did not reveal diagnostic features of NK-cell neoplasms; therefore, these potential clonal populations of NK cells were designated as NK-cell clones of uncertain significance (NK-CUS). In this study, we established decision rules for NK-cell receptor restriction from the largest published cohorts of healthy donors and NK-cell neoplasms. The presence of small NK-cell populations with restricted NK-cell receptors does not appear to be an uncommon finding, and its significance requires further exploration.
Collapse
Affiliation(s)
- Jansen N Seheult
- Division of Hematopathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Gregory E Otteson
- Division of Hematopathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Dragan Jevremovic
- Division of Hematopathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Pedro Horna
- Division of Hematopathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Michael M Timm
- Division of Hematopathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Ji Yuan
- Division of Hematopathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - William G Morice
- Division of Hematopathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Horatiu Olteanu
- Division of Hematopathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Min Shi
- Division of Hematopathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota.
| |
Collapse
|
26
|
Zhao X, Lin M, Huang X. Current status and future perspective of natural killer cell therapy for cancer. MEDICAL REVIEW (2021) 2023; 3:305-320. [PMID: 38235405 PMCID: PMC10790210 DOI: 10.1515/mr-2023-0031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 09/23/2023] [Indexed: 01/19/2024]
Abstract
Natural killer (NK) cells possess innate abilities to effectively eliminate cancer cells. However, because of difficulties of proliferation and easy to be induced dysfunction in the setting of cancer post NK cell therapy, the curative effect of NK cell infusion has been constrained and not been widely applicable in clinical practice. The rapid development of biotechnology has promoted the development of NK cell therapy for cancer treatment. In this review, we will provide a comprehensive analysis of the current status and future prospects of NK cell therapy for cancer, focusing on the biological characteristics of NK cells, as well as strategies to enhance their targeting capabilities and overcome tumor immune suppression within the microenvironment.
Collapse
Affiliation(s)
- Xiangyu Zhao
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease, Beijing, China
| | - Minghao Lin
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease, Beijing, China
| | - Xiaojun Huang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease, Beijing, China
| |
Collapse
|
27
|
Gihring A, Gärtner F, Mayer L, Roth A, Abdelrasoul H, Kornmann M, Elad L, Knippschild U. Influence of bariatric surgery on the peripheral blood immune system of female patients with morbid obesity revealed by high-dimensional mass cytometry. Front Immunol 2023; 14:1131893. [PMID: 37266430 PMCID: PMC10230950 DOI: 10.3389/fimmu.2023.1131893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 04/25/2023] [Indexed: 06/03/2023] Open
Abstract
Introduction Obesity is associated with low-grade chronic inflammation, altered levels of adipocytokines, and impaired regulation of gastrointestinal hormones. Secreted, these factors exert immunostimulatory functions directly influencing peripheral immune cells. Methods In the realm of this study, we aimed to investigate the composition and activation status of peripheral blood immune cells in female patients with morbid obesity compared to lean controls using high-dimensional mass cytometry. Besides, we also assessed the influence of bariatric surgery with respect to its ability to reverse obesity-associated alterations within the first-year post-surgery. Results Patients with morbid obesity showed typical signs of chronic inflammation characterized by increased levels of CRP and fibrinogen. Apart from that, metabolic alterations were characterized by increased levels of leptin and resistin as well as decreased levels of adiponectin and ghrelin compared to the healthy control population. All these however, except for ghrelin levels, rapidly normalized after surgery with regard to control levels. Furthermore, we found an increased population of monocytic CD14+, HLA-DR-, CD11b+, CXCR3+ cells in patients with morbid obesity and an overall reduction of the HLA-DR monocytic expression compared to the control population. Although CD14+, HLA-DR-, CD11b+, CXCR3+ decreased after surgery, HLA-DR expression did not recover within 9 - 11 months post-surgery. Moreover, compared to the control population, patients with morbid obesity showed a perturbed CD4+ T cell compartment, characterized by a strongly elevated CD127+ memory T cell subset and decreased naïve T cells, which was not recovered within 9 - 11 months post-surgery. Although NK cells showed an activated phenotype, they were numerically lower in patients with morbid obesity when compared to healthy controls. The NK cell population further decreased after surgery and did not recover quantitatively within the study period. Conclusions Our results clearly demonstrate that the rapid adaptions in inflammatory parameters and adipocytokine levels that occur within the first year post-surgery do not translate to the peripheral immune cells. Apart from that, we described highly affected, distinct immune cell subsets, defined as CD127+ memory T cells and monocytic CD14+, HLA-DR, CD11b+, CXCR3+ cells, that might play a significant role in understanding and further decoding the etiopathogenesis of morbid obesity.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Uwe Knippschild
- Department of General and Visceral Surgery, Surgery Center, Ulm University Medical Center, Ulm, Germany
| |
Collapse
|
28
|
Mazinani M, Rahbarizadeh F. New cell sources for CAR-based immunotherapy. Biomark Res 2023; 11:49. [PMID: 37147740 PMCID: PMC10163725 DOI: 10.1186/s40364-023-00482-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 04/04/2023] [Indexed: 05/07/2023] Open
Abstract
Chimeric antigen receptor (CAR) T cell therapy, in which a patient's own T lymphocytes are engineered to recognize and kill cancer cells, has achieved striking success in some hematological malignancies in preclinical and clinical trials, resulting in six FDA-approved CAR-T products currently available in the market. Despite impressive clinical outcomes, concerns about treatment failure associated with low efficacy or high cytotoxicity of CAR-T cells remain. While the main focus has been on improving CAR-T cells, exploring alternative cellular sources for CAR generation has garnered growing interest. In the current review, we comprehensively evaluated other cell sources rather than conventional T cells for CAR generation.
Collapse
Affiliation(s)
- Marzieh Mazinani
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, P.O. Box 14115-111, Tehran, Iran
| | - Fatemeh Rahbarizadeh
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, P.O. Box 14115-111, Tehran, Iran.
- Research and Development Center of Biotechnology, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
29
|
Xu Z, Liu Y, He S, Sun R, Zhu C, Li S, Hai S, Luo Y, Zhao Y, Dai L. Integrative Proteomics and N-Glycoproteomics Analyses of Rheumatoid Arthritis Synovium Reveal Immune-Associated Glycopeptides. Mol Cell Proteomics 2023; 22:100540. [PMID: 37019382 PMCID: PMC10176071 DOI: 10.1016/j.mcpro.2023.100540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 03/10/2023] [Accepted: 03/30/2023] [Indexed: 04/05/2023] Open
Abstract
Rheumatoid arthritis (RA) is a typical autoimmune disease characterized by synovial inflammation, synovial tissue hyperplasia, and destruction of bone and cartilage. Protein glycosylation plays key roles in the pathogenesis of RA but in-depth glycoproteomics analysis of synovial tissues is still lacking. Here, by using a strategy to quantify intact N-glycopeptides, we identified 1260 intact N-glycopeptides from 481 N-glycosites on 334 glycoproteins in RA synovium. Bioinformatics analysis revealed that the hyper-glycosylated proteins in RA were closely linked to immune responses. By using DNASTAR software, we identified 20 N-glycopeptides whose prototype peptides were highly immunogenic. We next calculated the enrichment scores of nine types of immune cells using specific gene sets from public single-cell transcriptomics data of RA and revealed that the N-glycosylation levels at some sites, such as IGSF10_N2147, MOXD2P_N404, and PTCH2_N812, were significantly correlated with the enrichment scores of certain immune cell types. Furthermore, we showed that aberrant N-glycosylation in the RA synovium was related to increased expression of glycosylation enzymes. Collectively, this work presents, for the first time, the N-glycoproteome of RA synovium and describes immune-associated glycosylation, providing novel insights into RA pathogenesis.
Collapse
Affiliation(s)
- Zhiqiang Xu
- National Clinical Research Center for Geriatrics and Department of General Practice, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Yi Liu
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Siyu He
- National Clinical Research Center for Geriatrics and Department of General Practice, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Rui Sun
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Chenxi Zhu
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Shuangqing Li
- National Clinical Research Center for Geriatrics and Department of General Practice, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Shan Hai
- National Clinical Research Center for Geriatrics and Department of General Practice, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Yubin Luo
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Yi Zhao
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China.
| | - Lunzhi Dai
- National Clinical Research Center for Geriatrics and Department of General Practice, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu, China.
| |
Collapse
|
30
|
Ma K, Zheng ZR, Meng Y. Natural Killer Cells, as the Rising Point in Tissues, Are Forgotten in the Kidney. Biomolecules 2023; 13:biom13050748. [PMID: 37238618 DOI: 10.3390/biom13050748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/13/2023] [Accepted: 04/21/2023] [Indexed: 05/28/2023] Open
Abstract
Natural killer (NK) cells are members of a rapidly expanding family of innate lymphoid cells (ILCs). NK cells play roles in the spleen, periphery, and in many tissues, such as the liver, uterine, lung, adipose, and so on. While the immunological functions of NK cells are well established in these organs, comparatively little is known about NK cells in the kidney. Our understanding of NK cells is rapidly rising, with more and more studies highlighting the functional significance of NK cells in different types of kidney diseases. Recent progress has been made in translating these findings to clinical diseases that occur in the kidney, with indications of subset-specific roles of NK cells in the kidney. For the development of targeted therapeutics to delay kidney disease progression, a better understanding of the NK cell with respect to the mechanisms of kidney diseases is necessary. In order to promote the targeted treatment ability of NK cells in clinical diseases, in this paper we demonstrate the roles that NK cells play in different organs, especially the functions of NK cells in the kidney.
Collapse
Affiliation(s)
- Ke Ma
- Department of Nephrology, The First Affiliated Hospital of Jinan University, Guangzhou 510000, China
| | - Zi-Run Zheng
- Department of Nephrology, The First Affiliated Hospital of Jinan University, Guangzhou 510000, China
| | - Yu Meng
- Department of Nephrology, The First Affiliated Hospital of Jinan University, Guangzhou 510000, China
- Department of Nephrology, The Fifth Affiliated Hospital of Jinan University, Heyuan 570000, China
| |
Collapse
|
31
|
van Wolfswinkel M, van Meijgaarden KE, Ottenhoff THM, Niewold P, Joosten SA. Extensive flow cytometric immunophenotyping of human PBMC incorporating detection of chemokine receptors, cytokines and tetramers. Cytometry A 2023. [PMID: 36898852 DOI: 10.1002/cyto.a.24727] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 01/19/2023] [Accepted: 02/24/2023] [Indexed: 03/12/2023]
Abstract
Characterization of immune cells is essential to advance our understanding of immunology and flow cytometry is an important tool in this context. Addressing both cellular phenotype and antigen-specific functional responses of the same cells is valuable to achieve a more integrated understanding of immune cell behavior and maximizes information obtained from precious samples. Until recently, panel size was limiting, resulting in panels generally focused on either deep immunophenotyping or functional readouts. Ongoing developments in the field of (spectral) flow cytometry have made panels of 30+ markers more accessible, opening up possibilities for advanced integrated analyses. Here, we optimized immune phenotyping by co-detection of markers covering chemokine receptors, cytokines and specific T cell/peptide tetramer interaction using a 32-color panel. Such panels enable integrated analysis of cellular phenotypes and markers assessing the quality of immune responses and will contribute to our understanding of the immune system.
Collapse
Affiliation(s)
| | | | - Tom H M Ottenhoff
- Department of Infectious Diseases, Leiden University Medical Center, The Netherlands
| | - Paula Niewold
- Department of Infectious Diseases, Leiden University Medical Center, The Netherlands
| | - Simone A Joosten
- Department of Infectious Diseases, Leiden University Medical Center, The Netherlands
| |
Collapse
|
32
|
PD-L1/PD-1 blockage enhanced the cytotoxicity of natural killer cell on the non-small cell lung cancer (NSCLC) by granzyme B secretion. Clin Transl Oncol 2023:10.1007/s12094-023-03120-w. [PMID: 36856921 DOI: 10.1007/s12094-023-03120-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 02/09/2023] [Indexed: 03/02/2023]
Abstract
OBJECTIVE To explore the role of PD-L1/PD-1 blockage in the cytotoxicity of natural killer cell in NSCLC. METHODS Two NSCLC cell lines, Calu-1 and H460, were tested for susceptibility to the cytolytic activity of freshly isolated healthy donor NK cells by a non-radioactive cellular cytotoxicity assay kit. Western blot analysis, FACS, ELISA and antibody blockage experiments were conducted to determine the mechanisms. NK cells isolated from NSCLC patients were also collected for functional assays. RESULTS Calu-1 and H460 cells were lysed by NK cells in a dose-dependent manner. H460 cells showed less susceptibility to NK cell-mediated lysis than Calu-1 cells at all ratios. The expression of PD-L1 on H460 cells was higher than that on Calu-1 cells, as determined by FACS and western blot analysis. The specific lysis of H460 cells by NK cells was enhanced when the PD-L1/PD-1 interaction was blocked by anti-PD-L1 antibody. This finding was also demonstrated in NK cells isolated from NSCLC patients. CONCLUSIONS The present study revealed that PD-L1/PD-1 blockage enhanced the cytotoxicity of natural killer cells in NSCLC via granzyme B secretion. This study will greatly facilitate the precise treatment of lung cancer through determination of PD-L1 expression in tumors.
Collapse
|
33
|
Rao VA, Kurian NK, Rao KA. Cytokines, NK cells and regulatory T cell functions in normal pregnancy and reproductive failures. Am J Reprod Immunol 2023; 89:e13667. [PMID: 36480305 DOI: 10.1111/aji.13667] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 10/22/2022] [Accepted: 12/02/2022] [Indexed: 12/14/2022] Open
Abstract
PURPOSE OF THE REVIEW Pregnancy brings about an intricate assortment of dynamic changes, which causes proper connection of genetically discordant maternal and foetal tissues. Uterine NK cells are immune cells populating the endometrium and play a major role in implantation and also regulate placentation. This review mainly aims explore the role of uterine NK cells in implantation and how it is affecting in adverse pregnancy outcomes. RECENT FINDINGS Though the functions of uterine NK (uNK) cells are not clearly understood, NK cell activity plays a vital role during immunomodulation which is the main step in implantation and sustaining the early pregnancy. Cytokines, cell surface receptors of NK cells and hormones such as progesterone modulate the NK cell activity in turn affect the implantation of the embryo. Altered NK cell activity (number and functionality) would be an important attributing factor in adverse pregnancy outcomes. Furthermore, T regulatory cells and cytokines also modulate the immune responses in the decidua which in turn contributes to successful implantation of embryos. SUMMARY Immunological responses and interactions in the Foetus-maternal interface is crucial in the successful implantation of allogenic foetus resulting in a healthy pregnancy. NK cells, Treg cells and cytokines play a major role in successful implantation which remains an enigma. Comprehending pregnancy-induced immunological changes at the foetus-maternal interface will allow newer therapeutic strategies to improve pregnancy outcomes.
Collapse
Affiliation(s)
| | - Noble K Kurian
- University Institute of Biotechnology, Chandigarh University, Mohali, India
| | - Kamini A Rao
- Department, of Reproductive Medicine, Bangalore, India
| |
Collapse
|
34
|
Cianga VA, Rusu C, Pavel-Tanasa M, Dascalescu A, Danaila C, Harnau S, Aanei CM, Cianga P. Combined flow cytometry natural killer immunophenotyping and KIR/HLA-C genotyping reveal remarkable differences in acute myeloid leukemia patients, but suggest an overall impairment of the natural killer response. Front Med (Lausanne) 2023; 10:1148748. [PMID: 36960339 PMCID: PMC10028202 DOI: 10.3389/fmed.2023.1148748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 02/13/2023] [Indexed: 03/09/2023] Open
Abstract
Introduction Natural killer (NK) cells are key anti-tumor effectors of the innate immunity. Phenotypic differences allow us to discriminate in between three functional stages of maturation, named immature, mature and hypermature that are distinctive in terms of receptor expression, cytokine secretion, cytotoxic properties and organ trafficking. NKs display an impressive repertoire of highly polymorphic germline encoded receptors that can be either activating, triggering the effector's function, or inhibitory, limiting the immune response. In our study, we have investigated peripheral blood NK cells of acute myeloid leukemia (AML) patients. Methods The Killer Immunoglobulin-like receptors (KIRs) and the HLA-C genotypes were assessed, as HLA-C molecules are cognate antigens for inhibitory KIRs. Results The AA mainly inhibitory KIR haplotype was found in a higher proportion in AML, while a striking low frequency of the 2DS3 characterized the mainly activating Bx haplotype. Flow cytometry immunophenotyping evidenced a lower overall count of NK cells in AML versus healthy controls, with lower percentages of the immature and mature subpopulations, but with a markedly increase of the hypermature NKs. The analysis of the KIR2DL1, KIR2DL2, KIR2DL3, KIR3DL1, and NKG2A inhibitory receptors surface expression revealed a remarkable heterogeneity. However, an overall trend for a higher expression in AML patients could be noticed in all maturation subpopulations. Some of the AML patients with complex karyotypes or displaying a FLT3 gene mutation proved to be extreme outliers in terms of NK cells percentages or inhibitory receptors expression. Discussion We conclude that while the genetic background investigation in AML offers important pieces of information regarding susceptibility to disease or prognosis, it is flow cytometry that is able to offer details of finesse in terms of NK numbers and phenotypes, necessary for an adequate individual evaluation of these patients.
Collapse
Affiliation(s)
- Vlad Andrei Cianga
- Department of Hematology, University of Medicine and Pharmacy “Grigore T. Popa”, Iasi, Romania
- Department of Clinical Hematology, Regional Institute of Oncology, Iasi, Romania
| | - Cristina Rusu
- Department of Genetics, University of Medicine and Pharmacy “Grigore T. Popa”, Iasi, Romania
- *Correspondence: Cristina Rusu,
| | - Mariana Pavel-Tanasa
- Department of Immunology, University of Medicine and Pharmacy “Grigore T. Popa”, Iasi, Romania
| | - Angela Dascalescu
- Department of Hematology, University of Medicine and Pharmacy “Grigore T. Popa”, Iasi, Romania
- Department of Clinical Hematology, Regional Institute of Oncology, Iasi, Romania
| | - Catalin Danaila
- Department of Hematology, University of Medicine and Pharmacy “Grigore T. Popa”, Iasi, Romania
- Department of Clinical Hematology, Regional Institute of Oncology, Iasi, Romania
| | - Sebastian Harnau
- Department of Immunology, University of Medicine and Pharmacy “Grigore T. Popa”, Iasi, Romania
| | - Carmen-Mariana Aanei
- Laboratory of Hematology, Nord Hospital, CHU Saint Etienne, Cedex2, Saint-Étienne, France
- INSERM U1059-SAINBIOSE, Université de Lyon, Saint-Étienne, France
| | - Petru Cianga
- Department of Immunology, University of Medicine and Pharmacy “Grigore T. Popa”, Iasi, Romania
- Petru Cianga,
| |
Collapse
|
35
|
Konova ZV, Parovichnikova EN, Galtseva IV, Khamaganova EG. Impact of natural killer cell’s functional reconstruction on the results of allogeneic hematopoietic stem cell transplantation. RUSSIAN JOURNAL OF HEMATOLOGY AND TRANSFUSIOLOGY 2022. [DOI: 10.35754/0234-5730-2022-67-4-551-569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Introduction. Currently, more and more attention is being paid to possible strategies for preventing the development of graft-versus-host disease (GVHD) and reducing the risk of infections while maintaining the antitumor effect — graft-versus-leukemia effect (GVL). In this context, the study of natural killer cells (NK-cells) seems to be quite promising.Aim – to analyze the biological and functional properties of NK-cells after allo-HSCT, their reconstitution after transplantation and factors affecting this process, as well as the mechanisms of alloreactivity of NK cells in patients after allo-HSCT. Main findings. Various types of activating or inhibiting receptors, which are expressed on NK-cells, regulate the functions of NK-cells. Among them, the main role is played by the killer immunoglobin-like receptor (KIR-receptor), which mediates tolerance to one’s own cells and the immune response, both antitumor and directed against infectious agents. NK-cells can play a decisive role in preventing early relapses and infectious complications, as they are among the first to recover after allo-HSCT. They also have the ability to eliminate the recipient’s T-cells and antigen presenting cells (APCs), thereby preventing the development of graft failure and GVHD. There are several models of NK alloreactivity based on KIR; however, the results of studies in this area are contradictory. This review summarizes the available literature data.
Collapse
|
36
|
Valenzuela-Vázquez L, Nuñez-Enriquez JC, Sánchez-Herrera J, Medina-Sanson A, Pérez-Saldivar ML, Jiménez-Hernández E, Martiín-Trejo JA, Del Campo-Martínez MDLÁ, Flores-Lujano J, Amador-Sánchez R, Mora-Ríos FG, Peñaloza-González JG, Duarte-Rodríguez DA, Torres-Nava JR, Espinosa-Elizondo RM, Cortés-Herrera B, Flores-Villegas LV, Merino-Pasaye LE, Almeida-Hernández C, Ramírez-Colorado R, Solís-Labastida KA, Medrano-López F, Pérez-Gómez JA, Velázquez-Aviña MM, Martínez-Ríos A, Aguilar-De los Santos A, Santillán-Juárez JD, Gurrola-Silva A, García-Velázquez AJ, Mata-Rocha M, Hernández-Echáurregui GA, Sepúlveda-Robles OA, Rosas-Vargas H, Mancilla-Herrera I, Jimenez-Morales S, Hidalgo-Miranda A, Martinez-Duncker I, Waight JD, Hance KW, Madauss KP, Mejía-Aranguré JM, Cruz-Munoz ME. NK cells with decreased expression of multiple activating receptors is a dominant phenotype in pediatric patients with acute lymphoblastic leukemia. Front Oncol 2022; 12:1023510. [PMID: 36419901 PMCID: PMC9677112 DOI: 10.3389/fonc.2022.1023510] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 10/17/2022] [Indexed: 11/09/2022] Open
Abstract
NK cells have unique attributes to react towards cells undergoing malignant transformation or viral infection. This reactivity is regulated by activating or inhibitory germline encoded receptors. An impaired NK cell function may result from an aberrant expression of such receptors, a condition often seen in patients with hematological cancers. Acute lymphoblastic leukemia (ALL) is the most common pediatric cancer worldwide and NK cells have emerged as crucial targets for developing immunotherapies. However, there are important gaps concerning the phenotype and behavior of NK cells during emergence of ALL. In this study we analyze the phenotype and function of NK cells from peripheral blood in pediatric patients with ALL at diagnosis. Our results showed that NK cells exhibited an altered phenotype highlighted by a significant reduction in the overall expression and percent representation of activating receptors compared to age-matched controls. No significant differences were found for the expression of inhibitory receptors. Moreover, NK cells with a concurrent reduced expression in various activating receptors, was the dominant phenotype among patients. An alteration in the relative frequencies of NK cells expressing NKG2A and CD57 within the mature NK cell pool was also observed. In addition, NK cells from patients displayed a significant reduction in the ability to sustain antibody-dependent cellular cytotoxicity (ADCC). Finally, an aberrant expression of activating receptors is associated with the phenomenon of leukemia during childhood.
Collapse
Affiliation(s)
- Lucero Valenzuela-Vázquez
- Facultad de Medicina, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
- Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| | - Juan Carlos Nuñez-Enriquez
- Unidad de Investigación Médica en Epidemiología Clínica, Unidad Médica de Alta Especialidad (UMAE) Hospital de Pediatría, Centro Médico Nacional (CMN) “Siglo XXI”, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - Jacqueline Sánchez-Herrera
- Facultad de Medicina, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
- Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| | - Aurora Medina-Sanson
- Servicio de Oncología Pediátrica, Hospital Infantil de México, “Dr. Federico Gómez Sántos”, Secretaria de Salud, Ciudad de México, Mexico
| | - María Luisa Pérez-Saldivar
- Unidad de Investigación Médica en Epidemiología Clínica, Unidad Médica de Alta Especialidad (UMAE) Hospital de Pediatría, Centro Médico Nacional (CMN) “Siglo XXI”, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - Elva Jiménez-Hernández
- Servicio de Hematología Pediátrica, Hospital General “Gaudencio González Garza”, Centro Médico Nacional (CMN) “La Raza”, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - Jorge Alfonso Martiín-Trejo
- Servicio de Hematología Pediátrica, Unidad Médica de Alta Especialidad (UMAE) Hospital de Pediatría, Centro Médico Nacional (CMN) “Siglo XXI”, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - María de Los Ángeles Del Campo-Martínez
- Servicio de Hematología Pediátrica, Hospital General “Gaudencio González Garza”, Centro Médico Nacional (CMN) “La Raza”, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - Janet Flores-Lujano
- Unidad de Investigación Médica en Epidemiología Clínica, Unidad Médica de Alta Especialidad (UMAE) Hospital de Pediatría, Centro Médico Nacional (CMN) “Siglo XXI”, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - Raquel Amador-Sánchez
- Hospital General Regional No. 1 “Carlos McGregor Sánchez Navarro”, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - Félix Gustavo Mora-Ríos
- Departamento de Hematología, Hospital General Regional Ignacio Zaragoza del Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado (ISSSTE), Mexico City, Mexico
| | | | - David Aldebarán Duarte-Rodríguez
- Unidad de Investigación Médica en Epidemiología Clínica, Unidad Médica de Alta Especialidad (UMAE) Hospital de Pediatría, Centro Médico Nacional (CMN) “Siglo XXI”, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - José Refugio Torres-Nava
- Servicio de Oncología, Hospital Pediátrico de Moctezuma, Secretaría de Salud de la Ciudad de México (CDMX), Mexico City, Mexico
| | | | - Beatriz Cortés-Herrera
- Servicio de Hematología Pediátrica, Hospital General de México, Secretaria de Salud (SS), Mexico City, Mexico
| | - Luz Victoria Flores-Villegas
- Servicio de Hematología Pediátrica, Centro Médico Nacional (CMN) “20 de Noviembre”, Instituto de Seguridad Social al Servicio de los Trabajadores del Estado (ISSSTE), Mexico City, Mexico
| | - Laura Elizabeth Merino-Pasaye
- Servicio de Hematología Pediátrica, Centro Médico Nacional (CMN) “20 de Noviembre”, Instituto de Seguridad Social al Servicio de los Trabajadores del Estado (ISSSTE), Mexico City, Mexico
| | - Carolina Almeida-Hernández
- Hospital General de Ecatepec “Las Américas”, Instituto de Salud del Estado de México (ISEM), Mexico City, Mexico
| | - Rosario Ramírez-Colorado
- Hospital Pediátrico La Villa, Secretaría de Salud de la Ciudad de México (SSCDMX), Mexico City, Mexico
| | - Karina Anastacia Solís-Labastida
- Servicio de Hematología Pediátrica, Unidad Médica de Alta Especialidad (UMAE) Hospital de Pediatría, Centro Médico Nacional (CMN) “Siglo XXI”, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - Francisco Medrano-López
- Hospital General Regional (HGR) No. 72 “Dr. Vicente Santos Guajardo”, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - Jessica Arleet Pérez-Gómez
- Hospital General Regional (HGR) No. 72 “Dr. Vicente Santos Guajardo”, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | | | - Annel Martínez-Ríos
- Departamento de Hematología, Hospital General Regional Ignacio Zaragoza del Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado (ISSSTE), Mexico City, Mexico
| | | | - Jessica Denisse Santillán-Juárez
- Servicio de Hemato-oncología Pediátrica, Hospital Regional No. 1° de Octubre, Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado (ISSSTE), Mexico City, Mexico
| | - Alma Gurrola-Silva
- Hospital Regional Tipo B de Alta Especialidad Bicentenario de la Independencia, Instituto de Seguridad Social al Servicio de los Trabajadores del Estado, Mexico City, Mexico
| | - Alejandra Jimena García-Velázquez
- Servicio de Hemato-oncología Pediátrica, Hospital Regional No. 1° de Octubre, Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado (ISSSTE), Mexico City, Mexico
| | - Minerva Mata-Rocha
- Unidad de Investigación Médica en Epidemiología Clínica, Unidad Médica de Alta Especialidad (UMAE) Hospital de Pediatría, Centro Médico Nacional (CMN) “Siglo XXI”, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | | | - Omar Alejandro Sepúlveda-Robles
- Unidad de Investigación Médica en Genética Humana, Unidad Médica de Alta Especialidad (UMAE) Hospital de Pediatría, Centro Médico Nacional (CMN) “Siglo XXI”, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - Haydeé Rosas-Vargas
- Unidad de Investigación Médica en Genética Humana, Unidad Médica de Alta Especialidad (UMAE) Hospital de Pediatría, Centro Médico Nacional (CMN) “Siglo XXI”, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - Ismael Mancilla-Herrera
- Departamento de Infectología e Inmunología, Instituto Nacional de Perinatología, Mexico City, Mexico
| | - Silvia Jimenez-Morales
- Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Alfredo Hidalgo-Miranda
- Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Ivan Martinez-Duncker
- Centro de Investigación en Dinámica Celular, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| | | | | | | | - Juan Manuel Mejía-Aranguré
- Unidad de Investigación Médica en Genética Humana, Unidad Médica de Alta Especialidad (UMAE) Hospital de Pediatría, Centro Médico Nacional (CMN) “Siglo XXI”, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
- Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
- Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
- *Correspondence: Juan Manuel Mejía-Aranguré, ; Mario Ernesto Cruz-Munoz,
| | - Mario Ernesto Cruz-Munoz
- Facultad de Medicina, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
- *Correspondence: Juan Manuel Mejía-Aranguré, ; Mario Ernesto Cruz-Munoz,
| |
Collapse
|
37
|
STAT1 is associated with NK cell dysfunction by downregulating NKG2D transcription in chronic HBV-infected patients. Immunobiology 2022; 227:152272. [PMID: 36122437 DOI: 10.1016/j.imbio.2022.152272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 07/30/2022] [Accepted: 09/01/2022] [Indexed: 11/23/2022]
Abstract
PURPOSE Natural killer (NK) cells are key players in the immune system, however, the exact mechanism of NK cell dysfunction during HBV infection remains poorly defined. METHODS Hepatitis B envelope antigen-negative (HBeAg-, n = 19) chronic hepatitis B infection (CHB) patients, HBeAg-positive (HBeAg+, n = 20) CHB patients, HBV-related hepatocellular carcinoma (HBV-HCC, n = 12) patients and healthy blood donors (HD, n = 20), were enrolled in our study. The phenotype and function of the corresponding NK cells of these subjects were then determined. NK cells were cocultured with HBV to assess whether HBV influences the activation of STAT1. Receptors, proliferation, apoptosis rate, and cytotoxicity of NK-92 cells were detected after STAT1 overexpression and knockdown. The relationship between STAT1 and NKG2D promoter was determined by luciferase assay. RESULTS The levels of NKG2D and STAT1 were the lowest in the HBV-HCC group compared with the HD group, followed by the HBeAg+ group and then the HBeAg- group, respectively. Interestingly, STAT1 levels were positively correlated with NKG2D expression and HBeAg status. Furthermore, STAT1 directly bound to the NKG2D promoter to regulate the transcription and expression of NKG2D. Finally, the results also suggested that knockdown of STAT1 can inhibit proliferation, increase apoptosis rate of NK-92 cells and impair cytotoxicity of NK-92 cells. CONCLUSION STAT1 is correlated with NK cell dysfunction by downregulating NKG2D transcription in HBV-infected patients. Our findings demonstrate that STAT1 is an important and positive regulator of NK cells, which could provide a potential immunotherapy target for CHB.
Collapse
|
38
|
Ii T, Chambers JK, Nakashima K, Goto-Koshino Y, Mizuno T, Uchida K. Intraepithelial cytotoxic lymphocytes are associated with a poor prognosis in feline intestinal T-cell lymphoma. Vet Pathol 2022; 59:931-939. [PMID: 36052863 DOI: 10.1177/03009858221120010] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The expression of cytotoxic molecules in feline intestinal T-cell lymphoma cells was examined immunohistochemically using endoscopic samples of 50 cases. Cases included 14 large-cell lymphomas (LCLs) and 36 small-cell lymphomas (SCLs). Most LCL and some SCL exhibited marked erosion and villous atrophy. Clonal T-cell receptor (TCR) gene rearrangement was detected in 10/14 (71%) LCL cases and 33/36 (92%) SCL cases. No clonal immunoglobulin heavy chain (IgH) gene rearrangement was detected. Immunohistochemically, all cases were positive for CD3 and negative for CD79α, CD30, CD56, and Foxp3. LCLs were positive for CD8 in 13/14 cases (93%), T-cell intracellular antigen 1 (TIA1) in 14/14 cases (100%), and granzyme B in 6/14 cases (43%). SCLs were positive for CD8 in 28/36 cases (78%), TIA1 in 33/36 cases (92%), and granzyme B in 2/36 cases (6%). TIA1- and granzyme B-positive neoplastic lymphocytes were predominantly observed in the mucosal epithelium of 10/50 cases (20%) and 6/50 cases (12%), respectively. No significant differences in survival time were found based on cell size or epitheliotropism. However, cases with TIA1+ and/or granzyme B+ neoplastic lymphocytes predominantly in the mucosal epithelium had significantly shorter survival times (P < .05), suggesting that mucosal epithelium infiltration of neoplastic cells with a cytotoxic immunophenotype is a negative prognostic factor. Therefore, intraepithelial cytotoxic lymphocytes may be associated with mucosal injury and impaired intestinal function, leading to a poor prognosis in cats with intestinal T-cell lymphoma.
Collapse
Affiliation(s)
| | | | - Ko Nakashima
- Japan Small Animal Medical Center, Saitama, Japan
| | | | | | | |
Collapse
|
39
|
Seliger B, Koehl U. Underlying mechanisms of evasion from NK cells as rational for improvement of NK cell-based immunotherapies. Front Immunol 2022; 13:910595. [PMID: 36045670 PMCID: PMC9422402 DOI: 10.3389/fimmu.2022.910595] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 07/20/2022] [Indexed: 11/13/2022] Open
Abstract
Natural killer (NK) cells belong to the family of innate immune cells with the capacity to recognize and kill tumor cells. Different phenotypes and functional properties of NK cells have been described in tumor patients, which could be shaped by the tumor microenvironment. The discovery of HLA class I-specific inhibitory receptors controlling NK cell activity paved the way to the fundamental concept of modulating immune responses that are regulated by an array of inhibitory receptors, and emphasized the importance to explore the potential of NK cells in cancer therapy. Although a whole range of NK cell-based approaches are currently being developed, there are still major challenges that need to be overcome for improved efficacy of these therapies. These include escape of tumor cells from NK cell recognition due to their expression of inhibitory molecules, immune suppressive signals of NK cells, reduced NK cell infiltration of tumors, an immune suppressive micromilieu and limited in vivo persistence of NK cells. Therefore, this review provides an overview about the NK cell biology, alterations of NK cell activities, changes in tumor cells and the tumor microenvironment contributing to immune escape or immune surveillance by NK cells and their underlying molecular mechanisms as well as the current status and novel aspects of NK cell-based therapeutic strategies including their genetic engineering and their combination with conventional treatment options to overcome tumor-mediated evasion strategies and improve therapy efficacy.
Collapse
Affiliation(s)
- Barbara Seliger
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
- Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
- *Correspondence: Barbara Seliger,
| | - Ulrike Koehl
- Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
- Institute of Clinical Immunology, University of Leipzig, Leipzig, Germany
- Institute of Cellular Therapeutics, Hannover Medical School, Hannover, Germany
| |
Collapse
|
40
|
Schenk A, Esser T, Belen S, Gunasekara N, Joisten N, Winker MT, Weike L, Bloch W, Heidenreich A, Herden J, Löser H, Oganesian S, Theurich S, Watzl C, Zimmer P. Distinct distribution patterns of exercise-induced natural killer cell mobilisation into the circulation and tumor tissue of patients with prostate cancer. Am J Physiol Cell Physiol 2022; 323:C879-C884. [PMID: 35912994 DOI: 10.1152/ajpcell.00243.2022] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The mobilization and activation of natural killer (NK) cells have been proposed as key mechanisms promoting anti oncogenic effects of physical exercise. Although mouse models have proven that physical exercise recruits NK cells to tumor tissue and inhibits tumor growth, this preclinical finding has not been transferred to the clinical setting yet. In this first-in-human study, we found that physical exercise mobilizes and redistributes NK cells, especially those with a cytotoxic phenotype, in line with preclinical models. However, physical exercise did not increase NK cell tumor infiltrates. Future studies should carefully distinguish between acute and chronic exercise modalities and should be encouraged to investigate more immune responsive tumor entities.
Collapse
Affiliation(s)
- Alexander Schenk
- TU Dortmund University, Institute for Sport and Sport Science, Division of Performance and Health (Sports Medicine), Dortmund, Germany
| | - Tobias Esser
- TU Dortmund University, Institute for Sport and Sport Science, Division of Performance and Health (Sports Medicine), Dortmund, Germany
| | - Sergen Belen
- German Sport University Cologne, Institute for Molecular and Cellular Sports Medicine, Cologne, Germany
| | - Nadira Gunasekara
- German Sport University Cologne, Institute for Molecular and Cellular Sports Medicine, Cologne, Germany
| | - Niklas Joisten
- TU Dortmund University, Institute for Sport and Sport Science, Division of Performance and Health (Sports Medicine), Dortmund, Germany
| | - Matteo Thomas Winker
- German Sport University Cologne, Institute for Molecular and Cellular Sports Medicine, Cologne, Germany
| | - Lea Weike
- Paderborn University, Institute of Sports Medicine, Paderborn, Germany
| | - Wilhelm Bloch
- German Sport University Cologne, Institute for Molecular and Cellular Sports Medicine, Cologne, Germany
| | - Axel Heidenreich
- University Hospital Cologne, Department of Urology, Faculty of Medicine and University Hospital Cologne, Uro-Oncology, Robot-Assisted and Reconstructive Urology, Cologne, Germany.,Medical University Vienna, Department of Urology, Vienna, Austria
| | - Jan Herden
- University Hospital Cologne, Department of Urology, Faculty of Medicine and University Hospital Cologne, Uro-Oncology, Robot-Assisted and Reconstructive Urology, Cologne, Germany
| | - Heike Löser
- University Hospital Cologne, Institute of Pathology, Cologne Germany
| | - Sabine Oganesian
- LMU Munich, University Hospital, Department of Medicine III, Munich, Germany and LMU Gene Center, Cancer- and Immunometabolism Research Group, Munich, Germany and German Cancer Consortium (DKTK), Munich Site, and German Cancer Research Center, Heidelberg, Germany
| | - Sebastian Theurich
- LMU Munich, University Hospital, Department of Medicine III, Munich, Germany and LMU Gene Center, Cancer- and Immunometabolism Research Group, Munich, Germany and German Cancer Consortium (DKTK), Munich Site, and German Cancer Research Center, Heidelberg, Germany
| | - Carsten Watzl
- Leibniz Research Centre for Working Environment and Human Factors at TU Dortmund University (IfADo), Department for Immunology, Dortmund, Germany
| | - Philipp Zimmer
- TU Dortmund University, Institute for Sport and Sport Science, Division of Performance and Health (Sports Medicine), Dortmund, Germany
| |
Collapse
|
41
|
Zhao X, Feng X, Liu P, Ye J, Tao R, Li R, Shen B, Zhang X, Wang X, Zhao D. Abnormal expression of CD96 on natural killer cell in peripheral blood of patients with chronic obstructive pulmonary disease. THE CLINICAL RESPIRATORY JOURNAL 2022; 16:546-554. [PMID: 35866671 PMCID: PMC9376136 DOI: 10.1111/crj.13523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 06/13/2022] [Accepted: 06/24/2022] [Indexed: 11/30/2022]
Abstract
Natural killer (NK) cells are regarded as the host's first line of defense against viral infection. Moreover, the involvement of NK cells in chronic obstructive pulmonary disease (COPD) has been documented. However, the specific mechanism and biological changes of NK cells in COPD development have not been determined. In this study, we extracted NK cells from the peripheral blood of 18 COPD patients who were recovering from an acute exacerbation and 45 healthy donors (HDs), then we labeled NK cells with different antibodies and analyzed with flow cytometry. The data showed that the frequencies of total NK cells in the peripheral blood of COPD patients were lower compared with HDs. Moreover, the inhibitory receptors on NK cells expressed higher levels and the expression of activating receptors were generally low. Importantly, both the expression levels of CD96 in NK cells and the frequencies of CD96+ NK cells were significantly upregulated in COPD patients. These findings suggest that surface receptor CD96 from NK cells may be a risk factor in the evolution of COPD.
Collapse
Affiliation(s)
- Xiaomin Zhao
- Department of Respiratory and Critical Care Medicine, the Second Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Xiaowen Feng
- School of Pharmacy, Anhui Medical University, Hefei, China
| | - Pengcheng Liu
- Department of Respiratory and Critical Care Medicine, the Second Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Jing Ye
- Department of Respiratory and Critical Care Medicine, the Second Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Rui Tao
- Department of Respiratory and Critical Care Medicine, the Second Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Renming Li
- Department of Respiratory and Critical Care Medicine, the Second Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Bing Shen
- School of Pharmacy, Anhui Medical University, Hefei, China
| | - Xiaoming Zhang
- School of Basic Medicine, Anhui Medical University, Hefei, China
| | - Xuefu Wang
- School of Pharmacy, Anhui Medical University, Hefei, China
| | - Dahai Zhao
- Department of Respiratory and Critical Care Medicine, the Second Affiliated Hospital, Anhui Medical University, Hefei, China
| |
Collapse
|
42
|
Hue SSS, Ng SB, Wang S, Tan SY. Cellular Origins and Pathogenesis of Gastrointestinal NK- and T-Cell Lymphoproliferative Disorders. Cancers (Basel) 2022; 14:2483. [PMID: 35626087 PMCID: PMC9139583 DOI: 10.3390/cancers14102483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/08/2022] [Accepted: 05/13/2022] [Indexed: 11/25/2022] Open
Abstract
The intestinal immune system, which must ensure appropriate immune responses to both pathogens and commensal microflora, comprises innate lymphoid cells and various T-cell subsets, including intra-epithelial lymphocytes (IELs). An example of innate lymphoid cells is natural killer cells, which may be classified into tissue-resident, CD56bright NK-cells that serve a regulatory function and more mature, circulating CD56dim NK-cells with effector cytolytic properties. CD56bright NK-cells in the gastrointestinal tract give rise to indolent NK-cell enteropathy and lymphomatoid gastropathy, as well as the aggressive extranodal NK/T cell lymphoma, the latter following activation by EBV infection and neoplastic transformation. Conventional CD4+ TCRαβ+ and CD8αβ+ TCRαβ+ T-cells are located in the lamina propria and the intraepithelial compartment of intestinal mucosa as type 'a' IELs. They are the putative cells of origin for CD4+ and CD8+ indolent T-cell lymphoproliferative disorders of the gastrointestinal tract and intestinal T-cell lymphoma, NOS. In addition to such conventional T-cells, there are non-conventional T-cells in the intra-epithelial compartment that express CD8αα and innate lymphoid cells that lack TCRs. The central feature of type 'b' IELs is the expression of CD8αα homodimers, seen in monomorphic epitheliotropic intestinal T-cell lymphoma (MEITL), which primarily arises from both CD8αα+ TCRαβ+ and CD8αα+ TCRγδ+ IELs. EATL is the other epitheliotropic T-cell lymphoma in the GI tract, a subset of which arises from the expansion and reprograming of intracytoplasmic CD3+ innate lymphoid cells, driven by IL15 and mutations of the JAK-STAT pathway.
Collapse
Affiliation(s)
- Susan Swee-Shan Hue
- Department of Pathology, National University Hospital, Singapore 119074, Singapore; (S.S.-S.H.); (S.W.)
| | - Siok-Bian Ng
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119074, Singapore;
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
| | - Shi Wang
- Department of Pathology, National University Hospital, Singapore 119074, Singapore; (S.S.-S.H.); (S.W.)
| | - Soo-Yong Tan
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119074, Singapore;
| |
Collapse
|
43
|
Vaněk O, Kalousková B, Abreu C, Nejadebrahim S, Skořepa O. Natural killer cell-based strategies for immunotherapy of cancer. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2022; 129:91-133. [PMID: 35305726 DOI: 10.1016/bs.apcsb.2022.02.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Natural killer (NK) cells are a family of lymphocytes with a natural ability to kill infected, harmed, or malignantly transformed cells. As these cells are part of the innate immunity, the cytotoxic mechanisms are activated upon recognizing specific patterns without prior antigen sensitization. This recognition is crucial for NK cell function in the maintenance of homeostasis and immunosurveillance. NK cells not only act directly toward malignant cells but also participate in the complex immune response by producing cytokines or cross-talk with other immune cells. Cancer may be seen as a break of all immune defenses when malignant cells escape the immunity and invade surrounding tissues creating a microenvironment supporting tumor progression. This process may be reverted by intervening immune response with immunotherapy, which may restore immune recognition. NK cells are important effector cells for immunotherapy. They may be used for adoptive cell transfer, genetically modified with chimeric antigen receptors, or triggered with appropriate antibodies and other antibody-fragment-based recombinant therapeutic proteins tailored specifically for NK cell engagement. NK cell receptors, responsible for target recognition and activation of cytotoxic response, could also be targeted in immunotherapy, for example, by various bi-, tri-, or multi-specific fusion proteins designed to bridge the gap between tumor markers present on target cells and activation receptors expressed on NK cells. However, this kind of immunoactive therapeutics may be developed only with a deep functional and structural knowledge of NK cell receptor: ligand interactions. This review describes the recent developments in the fascinating protein-engineering field of NK cell immunotherapeutics.
Collapse
Affiliation(s)
- Ondřej Vaněk
- Department of Biochemistry, Faculty of Science, Charles University, Prague, Czech Republic.
| | - Barbora Kalousková
- Department of Biochemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Celeste Abreu
- Department of Biochemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Shiva Nejadebrahim
- Department of Biochemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Ondřej Skořepa
- Department of Biochemistry, Faculty of Science, Charles University, Prague, Czech Republic
| |
Collapse
|
44
|
Abbasi B, Shamsasenjan K, Ahmadi M, Beheshti SA, Saleh M. Mesenchymal stem cells and natural killer cells interaction mechanisms and potential clinical applications. Stem Cell Res Ther 2022; 13:97. [PMID: 35255980 PMCID: PMC8900412 DOI: 10.1186/s13287-022-02777-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 10/09/2021] [Indexed: 12/29/2022] Open
Abstract
Natural killer cells (NK cells) are innate immune cells that are activated to fight tumor cells and virus-infected cells. NK cells also play an important role in the graft versus leukemia response. However, they can over-develop inflammatory reactions by secreting inflammatory cytokines and increasing Th1 differentiation, eventually leading to tissue damage. Today, researchers have attributed some autoimmune diseases and GVHD to NK cells. On the other hand, it has been shown that mesenchymal stem cells (MSCs) can modulate the activity of NK cells, while some researchers have shown that NK cells can cause MSCs to lysis. Therefore, we considered it is necessary to investigate the effect of these two cells and their signaling pathway in contact with each other, also their clinical applications.
Collapse
Affiliation(s)
- Batol Abbasi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Karim Shamsasenjan
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. .,Stem Cell and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Majid Ahmadi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyedeh Ameneh Beheshti
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahshid Saleh
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
45
|
Ruder J, Rex J, Obahor S, Docampo MJ, Müller AMS, Schanz U, Jelcic I, Martin R. NK Cells and Innate-Like T Cells After Autologous Hematopoietic Stem Cell Transplantation in Multiple Sclerosis. Front Immunol 2022; 12:794077. [PMID: 34975899 PMCID: PMC8716406 DOI: 10.3389/fimmu.2021.794077] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 11/29/2021] [Indexed: 01/18/2023] Open
Abstract
Multiple sclerosis (MS) is an autoimmune disease of the central nervous system, in which autoreactive T and B cells play important roles. Other lymphocytes such as NK cells and innate-like T cells appear to be involved as well. To name a few examples, CD56bright NK cells were described as an immunoregulatory NK cell subset in MS while innate-like T cells in MS were described in brain lesions and with proinflammatory signatures. Autologous hematopoietic stem cell transplantation (aHSCT) is a procedure used to treat MS. This procedure includes hematopoietic stem/progenitor cell (HSPC) mobilization, then high-dose chemotherapy combined with anti-thymocyte globulin (ATG) and subsequent infusion of the patients own HSPCs to reconstitute a functional immune system. aHSCT inhibits MS disease activity very effectively and for long time, presumably due to elimination of autoreactive T cells. Here, we performed multidimensional flow cytometry experiments in peripheral blood lymphocytes of 27 MS patients before and after aHSCT to address its potential influence on NK and innate-like T cells. After aHSCT, the relative frequency and absolute numbers of CD56bright NK cells rise above pre-aHSCT levels while all studied innate-like T cell populations decrease. Hence, our data support an enhanced immune regulation by CD56bright NK cells and the efficient reduction of proinflammatory innate-like T cells by aHSCT in MS. These observations contribute to our current understanding of the immunological effects of aHSCT in MS.
Collapse
Affiliation(s)
- Josefine Ruder
- Neuroimmunology and Multiple Sclerosis (MS) Research Section (NIMS), Department of Neurology, University and University Hospital Zurich, Zurich, Switzerland
| | - Jordan Rex
- Neuroimmunology and Multiple Sclerosis (MS) Research Section (NIMS), Department of Neurology, University and University Hospital Zurich, Zurich, Switzerland
| | - Simon Obahor
- Neuroimmunology and Multiple Sclerosis (MS) Research Section (NIMS), Department of Neurology, University and University Hospital Zurich, Zurich, Switzerland
| | - María José Docampo
- Neuroimmunology and Multiple Sclerosis (MS) Research Section (NIMS), Department of Neurology, University and University Hospital Zurich, Zurich, Switzerland
| | - Antonia M S Müller
- Department of Medical Oncology and Hematology, University and University Hospital Zurich, Zurich, Switzerland
| | - Urs Schanz
- Department of Medical Oncology and Hematology, University and University Hospital Zurich, Zurich, Switzerland
| | - Ilijas Jelcic
- Neuroimmunology and Multiple Sclerosis (MS) Research Section (NIMS), Department of Neurology, University and University Hospital Zurich, Zurich, Switzerland
| | - Roland Martin
- Neuroimmunology and Multiple Sclerosis (MS) Research Section (NIMS), Department of Neurology, University and University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
46
|
Dasagrandhi D, Muthuswamy A, Swaminathan JK. Atherosclerosis: nexus of vascular dynamics and cellular cross talks. Mol Cell Biochem 2022; 477:571-584. [PMID: 34845570 DOI: 10.1007/s11010-021-04307-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/17/2021] [Indexed: 01/11/2023]
Abstract
Cardiovascular diseases (CVDs) are the foremost cause of mortality worldwide. Atherosclerosis is the underlying pathology behind CVDs. Atherosclerosis is manifested predominantly by lipid deposition, plaque formation, and inflammation in vascular intima. Initiation and progression of plaque require many years. With aging, atherosclerotic plaques become vulnerable. Localization of these plaques in the coronary artery leads to myocardial infarction. A complete understanding of the pathophysiology of this multifaceted disease is necessary to achieve the clinical goal to provide early diagnosis and the best therapeutics. The triggering factors of atherosclerosis are biomechanical forces, hyperlipidemia, and chronic inflammatory response. The current review focuses on crucial determinants involved in the disease, such as location, hemodynamic factors, oxidation of low-density lipoproteins, and the role of endothelial cells, vascular smooth muscle cells, and immune cells, and better therapeutic targets.
Collapse
Affiliation(s)
- Divya Dasagrandhi
- Drug Discovery and Molecular Cardiology Laboratory, Department of Bioinformatics, Bharathidasan University, Tiruchirappalli, 620024, India
| | - Anusuyadevi Muthuswamy
- Molecular Neurogerontology Laboratory, Department of Biochemistry, Bharathidasan University, Tiruchirappalli, 620024, India
| | - Jayachandran Kesavan Swaminathan
- Drug Discovery and Molecular Cardiology Laboratory, Department of Bioinformatics, Bharathidasan University, Tiruchirappalli, 620024, India.
| |
Collapse
|
47
|
Herrera L, Martin‐Inaraja M, Santos S, Inglés‐Ferrándiz M, Azkarate A, Perez‐Vaquero MA, Vesga MA, Vicario JL, Soria B, Solano C, De Paz R, Marcos A, Ferreras C, Perez‐Martinez A, Eguizabal C. Identifying SARS-CoV-2 'memory' NK cells from COVID-19 convalescent donors for adoptive cell therapy. Immunology 2022; 165:234-249. [PMID: 34775592 PMCID: PMC8652867 DOI: 10.1111/imm.13432] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 11/03/2021] [Accepted: 11/09/2021] [Indexed: 12/13/2022] Open
Abstract
COVID-19 disease is the manifestation of syndrome coronavirus 2 (SARS-CoV-2) infection, which is causing a worldwide pandemic. This disease can lead to multiple and different symptoms, being lymphopenia associated with severity one of the most persistent. Natural killer cells (NK cells) are part of the innate immune system, being fighting against virus-infected cells one of their key roles. In this study, we determined the phenotype of NK cells after COVID-19 and the main characteristic of SARS-CoV-2-specific-like NK population in the blood of convalescent donors. CD57+ NKG2C+ phenotype in SARS-CoV-2 convalescent donors indicates the presence of 'memory'/activated NK cells as it has been shown for cytomegalovirus infections. Although the existence of this population is donor dependent, its expression may be crucial for the specific response against SARS-CoV-2, so that, it gives us a tool for selecting the best donors to produce off-the-shelf living drug for cell therapy to treat COVID-19 patients under the RELEASE clinical trial (NCT04578210).
Collapse
Affiliation(s)
- Lara Herrera
- Research UnitBasque Center for Blood Transfusion and Human TissuesOsakidetza, GaldakaoSpain
- Cell Therapy, Stem Cells and Tissues GroupBiocruces Bizkaia Health Research InstituteBarakaldoSpain
| | - Myriam Martin‐Inaraja
- Research UnitBasque Center for Blood Transfusion and Human TissuesOsakidetza, GaldakaoSpain
- Cell Therapy, Stem Cells and Tissues GroupBiocruces Bizkaia Health Research InstituteBarakaldoSpain
| | - Silvia Santos
- Research UnitBasque Center for Blood Transfusion and Human TissuesOsakidetza, GaldakaoSpain
- Cell Therapy, Stem Cells and Tissues GroupBiocruces Bizkaia Health Research InstituteBarakaldoSpain
| | - Marta Inglés‐Ferrándiz
- Research UnitBasque Center for Blood Transfusion and Human TissuesOsakidetza, GaldakaoSpain
- Cell Therapy, Stem Cells and Tissues GroupBiocruces Bizkaia Health Research InstituteBarakaldoSpain
| | - Aida Azkarate
- Research UnitBasque Center for Blood Transfusion and Human TissuesOsakidetza, GaldakaoSpain
- Cell Therapy, Stem Cells and Tissues GroupBiocruces Bizkaia Health Research InstituteBarakaldoSpain
| | - Miguel A. Perez‐Vaquero
- Research UnitBasque Center for Blood Transfusion and Human TissuesOsakidetza, GaldakaoSpain
- Cell Therapy, Stem Cells and Tissues GroupBiocruces Bizkaia Health Research InstituteBarakaldoSpain
| | - Miguel A. Vesga
- Research UnitBasque Center for Blood Transfusion and Human TissuesOsakidetza, GaldakaoSpain
- Cell Therapy, Stem Cells and Tissues GroupBiocruces Bizkaia Health Research InstituteBarakaldoSpain
| | - Jose L. Vicario
- HistocompatibilityCentro de Transfusión de MadridMadridSpain
| | - Bernat Soria
- Instituto de BioingenieríaUniversidad Miguel Hernández de ElcheAlicanteSpain
- Instituto de Investigación Sanitaria Hospital General y Universitario de Alicante (ISABIAL)AlicanteSpain
| | - Carlos Solano
- Hospital Clínico Universitario de Valencia/Instituto de Investigación Sanitaria INCLIVAValenciaSpain
- School of MedicineUniversity of ValenciaSpain
| | - Raquel De Paz
- Hematology DepartmentUniversity Hospital La PazMadridSpain
| | - Antonio Marcos
- Hematology DepartmentUniversity Hospital La PazMadridSpain
| | - Cristina Ferreras
- Hospital La Paz Institute for Health ResearchIdiPAZUniversity Hospital La PazMadridSpain
| | - Antonio Perez‐Martinez
- Hospital La Paz Institute for Health ResearchIdiPAZUniversity Hospital La PazMadridSpain
- Pediatric Hemato‐Oncology DepartmentUniversity Hospital La PazMadridSpain
- Faculty of MedicineUniversidad Autónoma de MadridMadridSpain
| | - Cristina Eguizabal
- Research UnitBasque Center for Blood Transfusion and Human TissuesOsakidetza, GaldakaoSpain
- Cell Therapy, Stem Cells and Tissues GroupBiocruces Bizkaia Health Research InstituteBarakaldoSpain
| |
Collapse
|
48
|
Cao WJ, Zhang XC, Wan LY, Li QY, Mu XY, Guo AL, Zhou MJ, Shen LL, Zhang C, Fan X, Jiao YM, Xu RN, Zhou CB, Yuan JH, Wang SQ, Wang FS, Song JW. Immune Dysfunctions of CD56 neg NK Cells Are Associated With HIV-1 Disease Progression. Front Immunol 2022; 12:811091. [PMID: 35069597 PMCID: PMC8777256 DOI: 10.3389/fimmu.2021.811091] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 12/14/2021] [Indexed: 12/25/2022] Open
Abstract
Background Populations of natural killer cells lacking CD56 expression [CD56neg natural killer (NK) cells] have been demonstrated to expand during human immunodeficiency virus (HIV)-1 infection. However, their phenotypic and functional characteristics have not been systematically analyzed, and their roles during disease progression remain poorly understood. Methods In this study, 84 donors, namely 34 treatment-naïve HIV-1-infected patients (TNs), 29 HIV-1-infected patients with successful antiretroviral therapy (ARTs), and 21 healthy controls (HCs), were enrolled. The phenotypic and functional characteristics of CD56neg NK cells were analyzed using single-cell RNA-sequencing (scRNA-seq) and flow cytometry. A potential link between the characteristics of CD56neg NK cells and the clinical parameters associated with HIV-1 disease progression was examined. Results The frequency of the CD56neg NK cell population was significantly increased in TNs, which could be partially rescued by ART. Flow cytometry analyses revealed that CD56neg NK cells were characterized by high expression of CD39, TIGIT, CD95, and Ki67 compared to CD56dim NK cells. In vitro assays revealed reduced IFN-γ and TNF-α secretion, as well as decreased expression of granzyme B and perforin in CD56neg NK cells. In line with the data obtained by flow cytometry, scRNA-seq analysis further demonstrated impaired cytotoxic activities of CD56neg NK cells. Notably, a negative correlation was observed between CD39, CD95, and Ki67 expression levels in CD56neg NK cells and CD4+ T cell counts. Conclusions The results presented in this study indicate that the CD56neg NK cell population expanded in HIV-1-infected individuals is dysfunctional and closely correlates with HIV-1 disease progression.
Collapse
Affiliation(s)
- Wen-Jing Cao
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | | | - Lin-Yu Wan
- Department of Clinical Medicine, Bengbu Medical College, Bengbu, China.,Department of Infectious Diseases, the Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Qing-Yu Li
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Xiu-Ying Mu
- Department of Infectious Diseases, the Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - An-Liang Guo
- Department of Infectious Diseases, the Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Ming-Ju Zhou
- Department of Infectious Diseases, the Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Li-Li Shen
- Department of Clinical Medicine, Bengbu Medical College, Bengbu, China.,Department of Infectious Diseases, the Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Chao Zhang
- Department of Infectious Diseases, the Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Xing Fan
- Department of Infectious Diseases, the Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Yan-Mei Jiao
- Department of Infectious Diseases, the Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Ruo-Nan Xu
- Department of Infectious Diseases, the Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Chun-Bao Zhou
- Department of Infectious Diseases, the Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Jin-Hong Yuan
- Department of Infectious Diseases, the Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Sheng-Qi Wang
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Fu-Sheng Wang
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.,Department of Infectious Diseases, the Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Jin-Wen Song
- Department of Infectious Diseases, the Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| |
Collapse
|
49
|
Doyle CM, Fewings NL, Ctercteko G, Byrne SN, Harman AN, Bertram KM. OMIP 082: A 25-color phenotyping to define human innate lymphoid cells, natural killer cells, mucosal-associated invariant T cells, and γδ T cells from freshly isolated human intestinal tissue. Cytometry A 2022; 101:196-202. [PMID: 35018731 DOI: 10.1002/cyto.a.24529] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 12/18/2021] [Accepted: 12/22/2021] [Indexed: 11/12/2022]
Abstract
We developed a 25-color flow cytometry panel to comprehensively interrogate innate lymphoid cells (ILC), mucosal-associated invariant T (MAIT) cells, natural killer (NK) cells and γδ T cells in human tissues. The ability to isolate and interrogate these cells from fresh human tissue is crucial in understanding the role these cells play at immune-privileged mucosal surfaces like the intestine in health and disease settings. However, liberating these cells from tissue is extremely challenging as many key surface identification markers are susceptible to enzymatic cleavage. Choosing the correct enzyme-antibody clone combination within a high-parameter panel is, therefore, a critical consideration. Here, we present a comprehensive, in-depth analysis of the effect different common digestive enzyme blends have on key surface markers used to identify these cell types. In addition, we compared multiple antibody clones for surface markers that are highly susceptible to enzymatic cleavage, such as CD127 and NKp44, to achieve the most consistent and superior staining patterns among donors.
Collapse
Affiliation(s)
- Chloe M Doyle
- Centre for Immunology and Allergy Research, The Westmead Institute for Medical Research, Westmead, New South Wales, Australia.,Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, New South Wales, Australia.,Faculty of Medicine and Health, The University of Sydney, School of Medical Sciences, Westmead, New South Wales, Australia.,Faculty of Medicine and Health, The University of Sydney, Westmead Clinical School, Westmead, New South Wales, Australia
| | - Nicole L Fewings
- Centre for Immunology and Allergy Research, The Westmead Institute for Medical Research, Westmead, New South Wales, Australia.,Faculty of Medicine and Health, The University of Sydney, School of Medical Sciences, Westmead, New South Wales, Australia.,Faculty of Medicine and Health, The University of Sydney, Westmead Clinical School, Westmead, New South Wales, Australia
| | - Grahame Ctercteko
- Centre for Immunology and Allergy Research, The Westmead Institute for Medical Research, Westmead, New South Wales, Australia.,Faculty of Medicine and Health, The University of Sydney, Westmead Clinical School, Westmead, New South Wales, Australia.,Department of Colorectal Surgery, Westmead Hospital, Westmead, New South Wales, Australia
| | - Scott N Byrne
- Centre for Immunology and Allergy Research, The Westmead Institute for Medical Research, Westmead, New South Wales, Australia.,Faculty of Medicine and Health, The University of Sydney, School of Medical Sciences, Westmead, New South Wales, Australia
| | - Andrew N Harman
- Centre for Immunology and Allergy Research, The Westmead Institute for Medical Research, Westmead, New South Wales, Australia.,Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, New South Wales, Australia.,Faculty of Medicine and Health, The University of Sydney, School of Medical Sciences, Westmead, New South Wales, Australia
| | - Kirstie M Bertram
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, New South Wales, Australia.,Faculty of Medicine and Health, The University of Sydney, School of Medical Sciences, Westmead, New South Wales, Australia.,Faculty of Medicine and Health, The University of Sydney, Westmead Clinical School, Westmead, New South Wales, Australia
| |
Collapse
|
50
|
Ullmo I, Koksal N, Ang HYK, Brady HJM. In Vitro Development of Mouse and Human NK Cells from Hematopoietic Progenitor Cells. Methods Mol Biol 2022; 2463:31-45. [PMID: 35344165 DOI: 10.1007/978-1-0716-2160-8_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Natural killer (NK) cells are lymphocytes that play an important role at clearing virally infected or cancer cells. Their potential and role in cancer immunotherapy have generated great interest, given the promising results of NK cell adoptive transfer clinical trials. The remaining challenge to bring emerging NK cell immunotherapies to the clinic is to enhance the production of large numbers of functionally competent NK cells ex vivo. Here, we describe two in vitro NK cell development assays using hematopoietic progenitor cells (HPCs), one for human NK cells and one for mouse NK cells. These protocols describe two robust methods that can be utilized for investigation of NK cell development and function.
Collapse
Affiliation(s)
- Ines Ullmo
- Department of Life Sciences, Imperial College London, London, UK
| | - Nahide Koksal
- Department of Life Sciences, Imperial College London, London, UK
| | - Heather Y K Ang
- Department of Life Sciences, Imperial College London, London, UK
| | - Hugh J M Brady
- Department of Life Sciences, Imperial College London, London, UK.
| |
Collapse
|