1
|
Chen L, Shu Z, Zhou D, Zhou H, Wang J, Feng Y, Zheng S, He W. Metabolite profiling and transcriptome analyses reveal defense regulatory network against pink tea mite invasion in tea plant. BMC Genomics 2024; 25:989. [PMID: 39438821 PMCID: PMC11520189 DOI: 10.1186/s12864-024-10877-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 10/08/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND The tea plant Camellia sinensis (L.) O. Kuntze is a perennial crop, invaded by diversity of insect pest species, and pink tea mite is one of the most devastating pests for sustainable tea production. However, molecular mechanism of defense responses against pink tea mites in tea is still unknown. In this study, metabolomics and transcriptome profiles of susceptible and resistant tea varieties were compared before and after pink tea mite infestation. RESULTS Metabolomics analysis revealed that abundance levels of polyphenol-related compounds changed significantly before and after infestation. At the transcript level, nearly 8 GB of clean reads were obtained from each sequenced library, and a comparison of infested plants of resistant and susceptible tea varieties revealed 9402 genes with significant differential expression. An array of genes enriched in plant pathogen interaction and biosynthetic pathways of phenylpropanoids showed significant differential regulation in response to pink tea mite invasion. In particular, the functional network linkage of disease resistant proteins, phenylalanine ammonia lyase, flavanone -3-hydroxylase, hydroxycinnamoyl-CoA shikimate transferase, brassinosteroid-6-oxidase 1, and gibberellin 2 beta-dioxygenase induced dynamic defense signals to suppress prolonged pink tea mite attacks. Further integrated analyses identified a complex network of transcripts and metabolites interlinked with precursors of various flavonoids that are likely modulate resistance against to pink tea mite. CONCLUSIONS Our results characterized the profiles of insect induced metabolic and transcript reprogramming and identified a defense regulatory network that can potentially be used to fend off pink tea mites damage.
Collapse
Affiliation(s)
- Limin Chen
- Lishui Institute of Agricultural and Forestry Sciences, Lishui, 323000, Zhejiang, China
- College of Ecology, Lishui University, Lishui, 323000, Zhejiang, China
| | - Zaifa Shu
- Lishui Institute of Agricultural and Forestry Sciences, Lishui, 323000, Zhejiang, China
| | - Dayun Zhou
- Lishui Institute of Agricultural and Forestry Sciences, Lishui, 323000, Zhejiang, China
| | - Huijuan Zhou
- Lishui Institute of Agricultural and Forestry Sciences, Lishui, 323000, Zhejiang, China
| | - Jinchao Wang
- College of Ecology, Lishui University, Lishui, 323000, Zhejiang, China
| | - Yaqi Feng
- Lishui Institute of Agricultural and Forestry Sciences, Lishui, 323000, Zhejiang, China
| | - Shenghong Zheng
- Lishui Institute of Agricultural and Forestry Sciences, Lishui, 323000, Zhejiang, China
| | - Weizhong He
- Lishui Institute of Agricultural and Forestry Sciences, Lishui, 323000, Zhejiang, China.
| |
Collapse
|
2
|
Caratti A, Fina A, Trapani F, Bicchi C, Liberto E, Cordero C, Magagna F. Artificial Intelligence Sensing: Effective Flavor Blueprinting of Tea Infusions for a Quality Control Perspective. Molecules 2024; 29:565. [PMID: 38338309 PMCID: PMC10856620 DOI: 10.3390/molecules29030565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/16/2024] [Accepted: 01/21/2024] [Indexed: 02/12/2024] Open
Abstract
Tea infusions are the most consumed beverages in the world after water; their pleasant yet peculiar flavor profile drives consumer choice and acceptance and becomes a fundamental benchmark for the industry. Any qualification method capable of objectifying the product's sensory features effectively supports industrial quality control laboratories in guaranteeing high sample throughputs even without human panel intervention. The current study presents an integrated analytical strategy acting as an Artificial Intelligence decision tool for black tea infusion aroma and taste blueprinting. Key markers validated by sensomics are accurately quantified in a wide dynamic range of concentrations. Thirteen key aromas are quantitatively assessed by standard addition with in-solution solid-phase microextraction sampling followed by GC-MS. On the other hand, nineteen key taste and quality markers are quantified by external standard calibration and LC-UV/DAD. The large dynamic range of concentration for sensory markers is reflected in the selection of seven high-quality teas from different geographical areas (Ceylon, Darjeeling Testa Valley and Castleton, Assam, Yunnan, Azores, and Kenya). The strategy as a sensomics-based expert system predicts teas' sensory features and acts as an AI smelling and taste machine suitable for quality controls.
Collapse
Affiliation(s)
| | | | | | | | | | - Chiara Cordero
- Dipartimento di Scienza a Tecnologia del Farmaco, Università degli Studi di Torino, 10125 Turin, Italy; (A.C.); (A.F.); (F.T.); (C.B.); (E.L.); (F.M.)
| | | |
Collapse
|
3
|
Zhang ZB, Xiong T, Chen JH, Ye F, Cao JJ, Chen YR, Zhao ZW, Luo T. Understanding the Origin and Evolution of Tea (Camellia sinensis [L.]): Genomic Advances in Tea. J Mol Evol 2023; 91:156-168. [PMID: 36859501 DOI: 10.1007/s00239-023-10099-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 02/07/2023] [Indexed: 03/03/2023]
Abstract
Tea, which is processed by the tender shoots or leaves of tea plant (Camellia sinensis), is one of the most popular nonalcoholic beverages in the world and has numerous health benefits for humans. Along with new progress in biotechnologies, the refined chromosome-scale reference tea genomes have been achieved, which facilitates great promise for the understanding of fundamental genomic architecture and evolution of the tea plants. Here, we summarize recent achievements in genome sequencing in tea plants and review the new progress in origin and evolution of tea plants by population sequencing analysis. Understanding the genomic characterization of tea plants is import to improve tea quality and accelerate breeding in tea plants.
Collapse
Affiliation(s)
- Zai-Bao Zhang
- College of Life Science, Xinyang Normal University, Xinyang, 464000, China.
| | - Tao Xiong
- College of Life Science, Xinyang Normal University, Xinyang, 464000, China
| | - Jia-Hui Chen
- College of International Education, Xinyang Normal University, Xinyang, 464000, China
| | - Fan Ye
- College of International Education, Xinyang Normal University, Xinyang, 464000, China
| | - Jia-Jia Cao
- College of International Education, Xinyang Normal University, Xinyang, 464000, China
| | - Yu-Rui Chen
- College of International Education, Xinyang Normal University, Xinyang, 464000, China
| | - Zi-Wei Zhao
- College of Life Science, Xinyang Normal University, Xinyang, 464000, China
| | - Tian Luo
- College of Life Science, Xinyang Normal University, Xinyang, 464000, China
| |
Collapse
|
4
|
Tea Plant ( Camellia sinensis): A Current Update on Use in Diabetes, Obesity, and Cardiovascular Disease. Nutrients 2022; 15:nu15010037. [PMID: 36615695 PMCID: PMC9823498 DOI: 10.3390/nu15010037] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/14/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
The tea plant (C. sinensis) has traditionally been consumed worldwide as "tea" for its many health benefits, with the potential for the prevention and therapy of various conditions. Regardless of its long history, the use of tea plants in modern times seems not to have changed much, as the beverage remains the most popular form. This review aimed to compile scientific information about the role and action of tea plants, as well as their status concerning clinical applications, based on the currently available evidence, with a focus on metabolic syndrome, mainly covering obesity, diabetes, and cardiovascular disease. It has been recognized that these diseases pose a significant threat to public health, and the development of effective treatment and prevention strategies is necessary but still challenging. In this article, the potential benefits of tea plants and their derived bioactive components (such as epigallocatechin-3-gallate) as anti-obesity, anti-diabetic, and anti-cardiovascular agents are clearly shown and emphasized, along with their mechanisms of action. However, according to the status of the clinical translation of tea plants, particularly in drug development, more substantial efforts in well-designed, randomized, controlled trials are required to expand their applications in treating the three major metabolic disorders and avoiding the toxicity caused by overconsumption.
Collapse
|
5
|
Fu N, Magsi FH, Zhao Y, Cai X, Li Z, Bian L, Xiu C, Chen Z, Luo Z. Identification and Field Evaluation of Sex Pheromone Components and Its Antagonist Produced by a Major Tea Pest, Archips strojny (Lepidoptera: Tortricidae). INSECTS 2022; 13:1056. [PMID: 36421959 PMCID: PMC9697133 DOI: 10.3390/insects13111056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/05/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
Pesticide application is the only known control method for the tea tortrix Archips strojny (Lepidoptera: Tortricidae), which is a major pest of spring tea in China. To develop sex pheromone-based, environmentally safe control strategies, here we identified the sex pheromone components of this species. The male moths' antennae responded electrophysiologically to two compounds in female pheromone gland extracts. Gas chromatography-mass spectrometry analysis indicated that the two bioactive compounds were (Z)-11-tetradecenyl acetate (Z11-14:Ac) and (Z)-11-tetradecenyl alcohol (Z11-14:OH). Field trapping assays showed that lures baited with only the major component Z11-14:Ac were the most attractive to male moths, and the attractiveness decreased significantly when the lure was impregnated with increased relative ratios of the minor component Z11-14:OH. Our study demonstrated that Z11-14:Ac was the major attractant in the A. strojny sex pheromone, and the minor component Z11-14:OH seemed to serve as an antagonist. The results indicate that lures baited with 1 mg of Z11-14:Ac could be used as a monitoring or mass trapping tool for A. strojny management in Chinese tea plantations. Furthermore, Z11-14:Ac was identified as a common sex pheromone attractant of nine Archips species; these results lay the foundation for developing mating disruption techniques that target multiple leafroller pests.
Collapse
Affiliation(s)
- Nanxia Fu
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Hangzhou 310008, China
| | - Fida Hussain Magsi
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Hangzhou 310008, China
| | - Yingjie Zhao
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Hangzhou 310008, China
| | - Xiaoming Cai
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Hangzhou 310008, China
| | - Zhaoqun Li
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Hangzhou 310008, China
| | - Lei Bian
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Hangzhou 310008, China
| | - Chunli Xiu
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Hangzhou 310008, China
| | - Zongmao Chen
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Hangzhou 310008, China
| | - Zongxiu Luo
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Hangzhou 310008, China
| |
Collapse
|
6
|
Hu Y, Liu L, Wang Z, Jiang CP, Zhu Z, Li H, Zeng Q, Xue Y, Wu Y, Wang Y, Yi Y, Zhu H, Shen C, Liu Q. Network pharmacology, molecular docking and in vivo and in vitro experiments to explore the molecular mechanism of licorice green tea beverage to scavenge oxygen free radicals. J Food Biochem 2022; 46:e14315. [PMID: 35855584 DOI: 10.1111/jfbc.14315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 06/24/2022] [Accepted: 06/27/2022] [Indexed: 02/07/2023]
Abstract
Excessive oxygen free radicals can lead to aging, cancer, and other diseases. Therefore, searching for effective antioxidants to scavenge oxygen free radicals has become the focus of modern medicine. In this study, the molecular mechanism of Licorice Green Tea Beverage (LGTB) in scavenging oxygen free radicals was investigated by means of network pharmacology, molecular docking and experimental verification. Network pharmacology studies have shown that paeonol, eugenol, cinnamaldehyde, swertisin, rutin, glycyrrhetinic acid, oleic, pelargonidin-3-O-glucoside and quercetin, kaferempol were the main active components of LGTB, and SOD and CAT are important targets for LGTB in scavenging oxygen free radicals. The results of molecular docking showed that these representative compounds had good affinity to SOD and CAT target proteins. In vitro free radical scavenging experiments showed that LTGB had significant scavenging effects on both DPPH and ABTS radicals, and had strong total reducing power. In vitro cell experiments showed that LGTB could protect HaCaT cells from oxidative stress induced by H2 O2 . The mechanism of LGTB was related to the increase of SOD and CAT activity. Western blotting showed that LGTB could inhibit PI3K/AKT/HIF-1 signaling pathway and improve the antioxidant capacity of HaCaT cells. In vivo experiments showed that LGTB could significantly increase mouse visceral index, increase serum SOD and GSH-Px activity, decrease the content of MDA, and improve liver and kidney pathological state. This study reported the molecular mechanism of LTGB scavenging oxygen free radicals, which provided scientific basis for the treatment and clinical research of aging and other diseases caused by excessive free radicals. PRACTICAL APPLICATIONS: Free radicals are produced by the normal response of cells during aerobic respiration and perform various functions, such as signaling and providing protection against infection. However, excessive free radicals can lead to aging, cancer, and other diseases. The antioxidant can overcome the harm caused by excessive free radicals. In this study, we investigated the molecular mechanism of scavenging oxygen free radicals of Licorice Green Tea Beverage (LGTB) through network pharmacology and molecular docking, and its efficacy was verified by free radical scavenging experiment in vitro, HaCaT cell oxidative stress injury induced by H2 O2 , D-galactose to establish an aging model in mice and Western blotting experiment. It not only elucidates its mechanism at the system level, but also proves its validity at the biological level. It provides the theoretical basis and experimental evidence for the follow-up research and promotion of the product.
Collapse
Affiliation(s)
- Yi Hu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, People's Republic of China
| | - Li Liu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, People's Republic of China
| | - Zhuxian Wang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, People's Republic of China
| | - Cui Ping Jiang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, People's Republic of China
| | - Zhaoming Zhu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, People's Republic of China
| | - Hui Li
- Department of Traditional Chinese Medicine, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, People's Republic of China
| | - Quanfu Zeng
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, People's Republic of China
| | - Yaqi Xue
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, People's Republic of China
| | - Yufan Wu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, People's Republic of China
| | - Yuan Wang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, People's Republic of China
| | - Yankui Yi
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, People's Republic of China
| | - Hongxia Zhu
- Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, People's Republic of China
| | - Chunyan Shen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, People's Republic of China
| | - Qiang Liu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, People's Republic of China
| |
Collapse
|
7
|
Peng C, Yin H, Liu Y, Mao XF, Liu ZY. RNAi Mediated Gene Silencing of Detoxification Related Genes in the Ectropis oblique. Genes (Basel) 2022; 13:genes13071141. [PMID: 35885924 PMCID: PMC9318823 DOI: 10.3390/genes13071141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 06/09/2022] [Accepted: 06/21/2022] [Indexed: 02/05/2023] Open
Abstract
Ectropis oblique is one of the main pests that feed on tea leaves. At present, the main control method is chemical control, but the long-term use of insecticides has been related to the development of insect resistance. One of the resistance mechanisms is the upregulation of relevant detoxification enzymes for defense. In this study, four genes with increased expression were screened from the gene sequences annotated from the transcriptome data of deltamethrin-treated larvae of E. oblique, which are acid phosphatase EoACP138, and cytochrome P450 EoCYP316, carboxylesterase EoCarE592 and acetylcholine esterase EoAchE989, respectively. The fourth instar larvae of E. oblique were stimulated by deltamethrin, chlorpyrifos and fenpropathrin respectively, and the expression levels of the genes were detected by qRT-PCR. The result showed that all four genes’ expression had significantly increased under the stimulation of three insecticides. RNAi technology was used to silence the expression of genes of EoACP138, EoCYP316, EoCarE592 and EoAchE989 in the fourth instar larvae of E. oblique. The change in the expression levels of the above genes in the larvae treated with dsRNA and stimulated with pesticides was determined by qRT-PCR. The target genes have been effectively silenced after feeding on dsRNA and higher sensitivity with higher mortality to pesticides was observed in the larvae interfered with dsRNA. The above genes are related to the detoxification and metabolism of resistance of E. oblique, which lays a foundation for further study on the mechanism of insecticide resistance in E. oblique.
Collapse
|
8
|
Truong VL, Jeong WS. Antioxidant and anti-inflammatory roles of tea polyphenols in inflammatory bowel diseases. FOOD SCIENCE AND HUMAN WELLNESS 2022. [DOI: 10.1016/j.fshw.2021.12.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
9
|
Huang R, Wang JY, Yao MZ, Ma CL, Chen L. Quantitative trait loci mapping for free amino acid content using an albino population and SNP markers provides insight into the genetic improvement of tea plants. HORTICULTURE RESEARCH 2022; 9:6510850. [PMID: 35040977 PMCID: PMC8788373 DOI: 10.1093/hr/uhab029] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/02/2021] [Accepted: 09/20/2021] [Indexed: 05/07/2023]
Abstract
Free amino acids are one of the main chemical components in tea, and they contribute to the pleasant flavor, function, and quality of tea, notably the level of theanine. Here, a high-density genetic map was constructed to characterize quantitative trait loci (QTLs) for free amino acid content. A total of 2688 polymorphic SNP markers were obtained using genotyping-by-sequencing (GBS) based on 198 individuals derived from a pseudotestcross population of "Longjing 43" × "Baijiguan", which are elite and albino tea cultivars, respectively. The 1846.32 cM high-density map with an average interval of 0.69 cM was successfully divided into 15 linkage groups (LGs) ranging from 93.41 cM to 171.28 cM. Furthermore, a total of 4 QTLs related to free amino acid content (theanine, glutamate, glutamine, aspartic acid and arginine) identified over two years were mapped to LG03, LG06, LG11 and LG14. The phenotypic variation explained by these QTLs ranged from 11.8% to 23.7%, with an LOD score from 3.56 to 7.7. Furthermore, several important amino acid metabolic pathways were enriched based on the upregulated differentially expressed genes (DEGs) among the offspring. These results will be essential for fine mapping genes involved in amino acid pathways and diversity, thereby providing a promising avenue for the genetic improvement of tea plants.
Collapse
Affiliation(s)
- Rong Huang
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Jun-Ya Wang
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Ming-Zhe Yao
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Chun-Lei Ma
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
- Corresponding authors: E-mail: ,
| | - Liang Chen
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
- Corresponding authors: E-mail: ,
| |
Collapse
|
10
|
Rahimi M, Kordrostami M, Mohamadhasani F, Chaeikar SS. Antioxidant gene expression analysis and evaluation of total phenol content and oxygen-scavenging system in tea accessions under normal and drought stress conditions. BMC PLANT BIOLOGY 2021; 21:494. [PMID: 34706647 PMCID: PMC8549219 DOI: 10.1186/s12870-021-03275-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 10/18/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Abiotic and biotic stresses induce oxidative processes in plant cells that this process starts with the production of ROSs which cause damage to the proteins. Therefore, plants have increased their antioxidant activity to defend against this oxidative stress to be able to handle stress better. In this research, 14 different tea accessions in a randomized complete block design with two replications were evaluated in two normal and drought stress conditions, and their antioxidant activity was measured by DPPH-free radicals' assay and gene expression analysis. RESULTS The results of gene expression analysis showed that the 100 and 399 accessions and Bazri cultivar had high values for most of the antioxidant enzymes, ascorbate peroxidase, superoxide dismutase, catalase, and peroxidase under drought stress conditions while the 278 and 276 accessions had the lowest amount of antioxidant enzymes in the same situation. Results showed that the IC50 of the BHT combination was 90.12 μg/ ml. Also, The IC50 of accessions ranged from 218 to 261 μg/ml and 201-264 μg/ml at normal and drought stress conditions, respectively. The 100 and 399 accessions showed the lowest IC50 under normal and drought stress conditions, while 278 and 276 accessions had the highest value for IC50. The antioxidant activity of tea accession extracts under normal conditions was ranged from 25 to 69% for accessions 278 and 100, respectively. While, the antioxidant activities of extracts under drought stress condition was 12 to 83% for accessions 276 and 100, respectively. So, according to the results, 100 and 399 accessions exhibited the least IC50 and more antioxidant activity under drought stress conditions and were identified as stress-tolerant accessions. However, 278 and 276 accessions did not show much antioxidant activity and were recognized as sensitive accessions under drought stress conditions. CONCLUSIONS These results demonstrate that total phenol content, antioxidant activity, and the oxygen-scavenging system can be used as a descriptor for identifying drought-tolerant accessions.
Collapse
Affiliation(s)
- Mehdi Rahimi
- Department of Biotechnology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran.
| | - Mojtaba Kordrostami
- Department of Plant Breeding, Nuclear Agriculture Research School, Nuclear Science and Technology Research Institute (NSTRI), Karaj, Iran
| | | | - Sanam Safaei Chaeikar
- Tea Research Center, Horticultural Sciences Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Lahijan, Iran
| |
Collapse
|
11
|
Wakamatsu J, Wada T, Tanaka W, Fujii S, Fujikawa Y, Sambongi Y, Tominaga R. Identification of six CPC-like genes and their differential expression in leaves of tea plant, Camellia sinensis. JOURNAL OF PLANT PHYSIOLOGY 2021; 263:153465. [PMID: 34225176 DOI: 10.1016/j.jplph.2021.153465] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 06/04/2021] [Accepted: 06/15/2021] [Indexed: 06/13/2023]
Abstract
Tea is one of the most consumed beverages worldwide, and trichome formation in tea plant leaves impairs their commercial value. In Arabidopsis thaliana leaves, trichome formation is negatively regulated by the CPC family genes, which encode R3-type MYB transcription factors. Here, we identified six CPC-like genes in a tea plant (Camellia sinensis var. sinensis) for the first time. Simulated three-dimensional structure of the MYB domains of all the six CPC-like proteins exhibited negative charge on the surface, as observed on that of the Arabidopsis CPC protein that does not bind to DNA, indicating their similarity with regard to molecular interaction. We further found that the six CPC-like genes were differentially expressed in different developmental stages of tea leaves, and four out of the six genes were upregulated in the youngest 1st leaves, which formed more trichomes than other older leaves. Although it does not establish a causal link, the correlation between differential expression of CPC-like genes and variable trichome formation suggests that the R3-type MYB transcription factors are potential precipitating factors in affecting the value of tea leaf.
Collapse
Affiliation(s)
- Juri Wakamatsu
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-4 Kagamiyama, Higashi, Hiroshima, 739-8528, Japan
| | - Takuji Wada
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-4 Kagamiyama, Higashi, Hiroshima, 739-8528, Japan
| | - Wakana Tanaka
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-4 Kagamiyama, Higashi, Hiroshima, 739-8528, Japan
| | - Sotaro Fujii
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-4 Kagamiyama, Higashi, Hiroshima, 739-8528, Japan
| | - Yukichi Fujikawa
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-4 Kagamiyama, Higashi, Hiroshima, 739-8528, Japan
| | - Yoshihiro Sambongi
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-4 Kagamiyama, Higashi, Hiroshima, 739-8528, Japan
| | - Rumi Tominaga
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-4 Kagamiyama, Higashi, Hiroshima, 739-8528, Japan.
| |
Collapse
|
12
|
Comparative evaluation of antioxidant properties of lemongrass and other tea brands. SCIENTIFIC AFRICAN 2021. [DOI: 10.1016/j.sciaf.2021.e00718] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
13
|
Sun L, Li Q, Xiang L, Lai X, Zhang W, Chen R, Cao J, Sun S. Phytochemical Profiles and Bioactivities of Cake Tea Leaves Obtained From the Same Cultivar: A Comparative Analysis. Nat Prod Commun 2020. [DOI: 10.1177/1934578x20945505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Cake tea, a traditional beverage of China, has excellent health benefits. Our study investigated the phytochemical profiles, antioxidant, and antiproliferative activities of cake tea leaves, which were obtained from the same cultivar and processed at different intervals. The effects of bioactive compounds and antioxidant activities of 4 cake tea varieties on a human lung cancer cell line (A549 cells) were systematically examined. The content of total polyphenol, an active ingredient of tea, was significantly higher in green cake teas (14.0% ± 0.4a) than their black (4.8 ± 0.3c), yellow (10.0 ± 0.6b), and white (8.8 ± 0.5b) counterparts. Likewise, the content of total free amino acids in green cake tea (3.6% ± 0.5a) was significantly higher than the other tea varieties. Our results indicated that the extent of fermentation of tea leaves could decrease the antioxidant activities of cake tea leaves. Furthermore, the white tea cake variety demonstrated the maximum antiproliferative activity on A549 cells as opposed to other types of cake tea leaves. Such an observation allows future researchers to narrow down their focus on using specific cake tea types (sourced from the same cultivar) that provide the maximum health benefits.
Collapse
Affiliation(s)
- Lingli Sun
- Tea Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation ad Utilization, Guangzhou, P. R. China
| | - Qiuhua Li
- Tea Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation ad Utilization, Guangzhou, P. R. China
| | - Limin Xiang
- Tea Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation ad Utilization, Guangzhou, P. R. China
| | - Xingfei Lai
- Tea Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation ad Utilization, Guangzhou, P. R. China
| | - Wenji Zhang
- Tea Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation ad Utilization, Guangzhou, P. R. China
| | - Ruohong Chen
- Tea Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation ad Utilization, Guangzhou, P. R. China
| | - Junxi Cao
- Tea Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation ad Utilization, Guangzhou, P. R. China
| | - Shili Sun
- Tea Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation ad Utilization, Guangzhou, P. R. China
| |
Collapse
|
14
|
Genome assembly of wild tea tree DASZ reveals pedigree and selection history of tea varieties. Nat Commun 2020; 11:3719. [PMID: 32709943 PMCID: PMC7381669 DOI: 10.1038/s41467-020-17498-6] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 07/01/2020] [Indexed: 01/30/2023] Open
Abstract
Wild teas are valuable genetic resources for studying domestication and breeding. Here we report the assembly of a high-quality chromosome-scale reference genome for an ancient tea tree. The further RNA sequencing of 217 diverse tea accessions clarifies the pedigree of tea cultivars and reveals key contributors in the breeding of Chinese tea. Candidate genes associated with flavonoid biosynthesis are identified by genome-wide association study. Specifically, diverse allelic function of CsANR, CsF3'5'H and CsMYB5 is verified by transient overexpression and enzymatic assays, providing comprehensive insights into the biosynthesis of catechins, the most important bioactive compounds in tea plants. The inconspicuous differentiation between ancient trees and cultivars at both genetic and metabolic levels implies that tea may not have undergone long-term artificial directional selection in terms of flavor-related metabolites. These genomic resources provide evolutionary insight into tea plants and lay the foundation for better understanding the biosynthesis of beneficial natural compounds.
Collapse
|
15
|
Zadeh Hosseingholi E, Neghabi N, Molavi G, Gheibi Hayat SM, Shahriarpour H. In silico identification and characterization of antineoplastic asparaginase enzyme from endophytic bacteria. IUBMB Life 2020; 72:991-1000. [DOI: 10.1002/iub.2237] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 01/10/2020] [Indexed: 12/24/2022]
Affiliation(s)
| | - Neda Neghabi
- Department of Biology, Faculty of Basic SciencesAzarbaijan Shahid Madani University Tabriz Iran
| | - Ghader Molavi
- Drug Applied Research CenterTabriz University of Medical Sciences Tabriz Iran
- Department of Molecular Medicine, Faculty of Advanced Medical SciencesTabriz University of Medical Sciences Tabriz Iran
| | | | - Hamed Shahriarpour
- Department of Biology, Faculty of Basic SciencesAzarbaijan Shahid Madani University Tabriz Iran
| |
Collapse
|
16
|
Lv P, Shi F, Chen X, Xu L, Wang C, Tian S, Yang H, Hou L. Tea polyphenols inhibit the growth and angiogenesis of breast cancer xenografts in a mouse model. JOURNAL OF TRADITIONAL CHINESE MEDICAL SCIENCES 2020. [DOI: 10.1016/j.jtcms.2020.05.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
17
|
Zhu J, He Y, Yan X, Liu L, Guo R, Xia X, Cheng D, Mi X, Samarina L, Liu S, Xia E, Wei C. Duplication and transcriptional divergence of three Kunitz protease inhibitor genes that modulate insect and pathogen defenses in tea plant ( Camellia sinensis). HORTICULTURE RESEARCH 2019; 6:126. [PMID: 31754433 PMCID: PMC6856355 DOI: 10.1038/s41438-019-0208-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 09/10/2019] [Accepted: 09/18/2019] [Indexed: 05/30/2023]
Abstract
Kunitz protease inhibitors (KPIs) are ubiquitous in plants and act as crucial compounds in defense responses against insect attack and pathogen infection. However, the influence of gene duplication on the postdivergence of the CsKPI genes involved in biotic stresses in tea plant is not well known. Here, we identified three CsKPI genes from tea plant (Camellia sinensis) and characterized their expression and evolutionary patterns among plant species. We found that CsKPI1, CsKPI2, and CsKPI3 diverged from their common ancestor 72.94 million years ago (MYA), and the tandem duplication of CsKPI2 and CsKPI3 occurred 26.78 MYA. An in vitro protein assay showed that the three CsKPI proteins were functional and inhibited the production of p-nitroanilide (PNA) from an artificial substrate. The three CsKPI-GFP fusion proteins localized to the cytoplasm. We showed that salicylic acid (SA) and transcripts of CsKPI2 and CsKPI3 significantly accumulated after infection with Glomerella cingulata. The application of exogenous SA stimulated the high expression of both CsKPI2 and CsKPI3 by activating cis-elements within their promoters. Under Ectropis oblique attack, CsKPI1 expression and jasmonic acid (JA) levels were more abundant in both insect-damaged leaf tissues and undamaged neighboring leaves. The application of jasmonic acid methyl ester elicited high expression levels of CsKPI1, suggesting that CsKPI1 accumulation requires JA production in tea plant. The overall findings suggest that the transcriptional divergence of KPI genes after duplication led to the specialized role of CsKPI1 in the physiological response to insect stress; the functional conservation between CsKPI2 and CsKPI3 confers resistance to pathogen infection in tea plant.
Collapse
Affiliation(s)
- Junyan Zhu
- State Key Laboratory of Tea Plant Biology and Utilization/Key Laboratory of Tea Biology and Processing, Ministry of Agriculture, Anhui Agricultural University, West 130 Changjiang Road, Hefei, 230036 Anhui People’s Republic of China
| | - Yaxian He
- State Key Laboratory of Tea Plant Biology and Utilization/Key Laboratory of Tea Biology and Processing, Ministry of Agriculture, Anhui Agricultural University, West 130 Changjiang Road, Hefei, 230036 Anhui People’s Republic of China
| | - Xiaomei Yan
- State Key Laboratory of Tea Plant Biology and Utilization/Key Laboratory of Tea Biology and Processing, Ministry of Agriculture, Anhui Agricultural University, West 130 Changjiang Road, Hefei, 230036 Anhui People’s Republic of China
| | - Lu Liu
- State Key Laboratory of Tea Plant Biology and Utilization/Key Laboratory of Tea Biology and Processing, Ministry of Agriculture, Anhui Agricultural University, West 130 Changjiang Road, Hefei, 230036 Anhui People’s Republic of China
| | - Rui Guo
- State Key Laboratory of Tea Plant Biology and Utilization/Key Laboratory of Tea Biology and Processing, Ministry of Agriculture, Anhui Agricultural University, West 130 Changjiang Road, Hefei, 230036 Anhui People’s Republic of China
| | - Xiaobo Xia
- State Key Laboratory of Tea Plant Biology and Utilization/Key Laboratory of Tea Biology and Processing, Ministry of Agriculture, Anhui Agricultural University, West 130 Changjiang Road, Hefei, 230036 Anhui People’s Republic of China
| | - Daojie Cheng
- State Key Laboratory of Tea Plant Biology and Utilization/Key Laboratory of Tea Biology and Processing, Ministry of Agriculture, Anhui Agricultural University, West 130 Changjiang Road, Hefei, 230036 Anhui People’s Republic of China
| | - Xiaozeng Mi
- State Key Laboratory of Tea Plant Biology and Utilization/Key Laboratory of Tea Biology and Processing, Ministry of Agriculture, Anhui Agricultural University, West 130 Changjiang Road, Hefei, 230036 Anhui People’s Republic of China
| | - Lidiia Samarina
- Russian Research Institute of Floriculture and Subtropical Crops, 354002 Yana Fabritsiusa st. 2/28, Sochi, Russian Federation
| | - Shenrui Liu
- State Key Laboratory of Tea Plant Biology and Utilization/Key Laboratory of Tea Biology and Processing, Ministry of Agriculture, Anhui Agricultural University, West 130 Changjiang Road, Hefei, 230036 Anhui People’s Republic of China
| | - Enhua Xia
- State Key Laboratory of Tea Plant Biology and Utilization/Key Laboratory of Tea Biology and Processing, Ministry of Agriculture, Anhui Agricultural University, West 130 Changjiang Road, Hefei, 230036 Anhui People’s Republic of China
| | - Chaoling Wei
- State Key Laboratory of Tea Plant Biology and Utilization/Key Laboratory of Tea Biology and Processing, Ministry of Agriculture, Anhui Agricultural University, West 130 Changjiang Road, Hefei, 230036 Anhui People’s Republic of China
| |
Collapse
|
18
|
Preparation of antimicrobial gold and silver nanoparticles from tea leaf extracts. Colloids Surf B Biointerfaces 2018; 173:242-248. [PMID: 30300830 DOI: 10.1016/j.colsurfb.2018.09.055] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 09/10/2018] [Accepted: 09/21/2018] [Indexed: 12/15/2022]
Abstract
Gold and silver nanoparticles were prepared from the green tea and black tea extracts of the leaves of Camellia sinensis. The metal nanoparticle solutions were obtained by reacting HAuCl4 or AgNO3 aqueous solutions with aqueous NaHCO3 and tea leaf extracts, which were obtained from used tea leaves at low temperature, under ambient conditions. The nanoparticles were stable at room temperature and had a uniform particle size (Au: ∼10 nm, Ag: ∼30 nm). Nanoparticle-immobilized cotton cloths were then prepared, which displayed high antibacterial activity and a characteristic color, thereby showing potential application as antimicrobial pigments. This study provides a means of utilizing used tea leaves, which would otherwise be considered waste products.
Collapse
|
19
|
Yan X, Wang Z, Mei Y, Wang L, Wang X, Xu Q, Peng S, Zhou Y, Wei C. Isolation, Diversity, and Growth-Promoting Activities of Endophytic Bacteria From Tea Cultivars of Zijuan and Yunkang-10. Front Microbiol 2018; 9:1848. [PMID: 30186243 PMCID: PMC6111150 DOI: 10.3389/fmicb.2018.01848] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 07/24/2018] [Indexed: 11/13/2022] Open
Abstract
Endophytes are rich in plant tissues and play important roles in plant-microbial interactions and plant-growth regulation. Here, endophytic bacteria from two closely related tea cultivars of Zijuan and Yunkang-10 were isolated, and the diversities were compared. Plant-growth promoting (PGP) activities were determined on the dominant groups or nitrogen-fixing genera from the two cultivars. Endophytic bacteria were isolated by using of different selective media and methods, and the PGP activities were investigated by analytical and molecular technologies. A total of 110 isolates of 18 genera belonging to three phylums (Proteobacteria, Firmicutes, and Bacteroidetes) were obtained from Zijuan, while 164 isolates of 22 genera belonging to two phylums (Proteobacteria and Firmicutes) were obtained from Yunkang-10. PGP screening indicated that Herbaspirillum spp., Methylobacterium spp., and Brevundimonas spp. showed different PGP abilities. The PGP ability decreased in order of Herbaspirillum spp., Brevundimonas spp. and Methylobacterium spp., and the majority of Methylobacterium spp. did not showed PGP activity of nitrogen-fixation, P-solubilization, siderophore, indole-3-acetic acid (IAA) production or 1-aminocyclopropane-1-carboxylate (ACC) deaminase. The study of bacterial community and PGP activities confirmed that endophytes in tea plants are constantly changing in different seasons and tea cultivars, and the PGP bacteria in Zijuan are much abundant than those of Yunkang-10.
Collapse
Affiliation(s)
- Xiaomei Yan
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Zhi Wang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Yu Mei
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Liqun Wang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Xu Wang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Qingshan Xu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Su Peng
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Yu Zhou
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Chaoling Wei
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| |
Collapse
|
20
|
Wang WW, Zheng C, Hao WJ, Ma CL, Ma JQ, Ni DJ, Chen L. Transcriptome and metabolome analysis reveal candidate genes and biochemicals involved in tea geometrid defense in Camellia sinensis. PLoS One 2018; 13:e0201670. [PMID: 30067831 PMCID: PMC6070272 DOI: 10.1371/journal.pone.0201670] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 07/19/2018] [Indexed: 11/22/2022] Open
Abstract
Tea plant (Camellia sinensis (L) O. Kuntze) respond to herbivore attack through large changes in defense related metabolism and gene expression. Ectropis oblique (Prout) is one of the most devastating insects that feed on tea leaves and tender buds, which can cause severe production loss and deteriorate the quality of tea. To elucidate the biochemicals and molecular mechanism of defense against tea geometrid (TG), transcriptome and metabolome of TG interaction with susceptible (SG) and resistance (RG) tea genotypes were analyzed by using UPLC-Q-TOF-MS, GC-MS, and RNA-seq technologies. This revealed that jasmonic acid was highly induced in RG, following a plethora of secondary metabolites involved in defense against TG could be induced by jasmonic acid signaling pathway. However, the constitutively present of salicylic acid in SG might be a suppressor of jasmonate signaling and thus misdirect tea plants against TG. Furthermore, flavonoids and terpenoids biosynthesis pathways were highly activated in RG to constitute the chemical barrier on TG feeding behavior. In contrast, fructose and theanine, which can act as feeding stimulants were observed to highly accumulate in SG. Being present in the major hub, 39 transcription factors or protein kinases among putative candidates were identified as master regulators from protein-protein interaction network analysis. Together, the current study provides a comprehensive gene expression and metabolite profiles, which can shed new insights into the molecular mechanism of tea defense against TG. The candidate genes and specific metabolites identified in the present study can serve as a valuable resource for unraveling the possible defense mechanism of plants against various biotic stresses.
Collapse
Affiliation(s)
- Wei-Wei Wang
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, National Center for Tea Improvement, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Horticulture Plant Biology, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Chao Zheng
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, National Center for Tea Improvement, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Wan-Jun Hao
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, National Center for Tea Improvement, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Chun-Lei Ma
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, National Center for Tea Improvement, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Jian-Qiang Ma
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, National Center for Tea Improvement, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - De-Jiang Ni
- Key Laboratory of Horticulture Plant Biology, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
- * E-mail: (LC); (DJN)
| | - Liang Chen
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, National Center for Tea Improvement, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou, China
- * E-mail: (LC); (DJN)
| |
Collapse
|
21
|
Draft genome sequence of Camellia sinensis var. sinensis provides insights into the evolution of the tea genome and tea quality. Proc Natl Acad Sci U S A 2018; 115:E4151-E4158. [PMID: 29678829 PMCID: PMC5939082 DOI: 10.1073/pnas.1719622115] [Citation(s) in RCA: 540] [Impact Index Per Article: 90.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A high-quality genome assembly of Camellia sinensis var. sinensis facilitates genomic, transcriptomic, and metabolomic analyses of the quality traits that make tea one of the world’s most-consumed beverages. The specific gene family members critical for biosynthesis of key tea metabolites, monomeric galloylated catechins and theanine, are indicated and found to have evolved specifically for these functions in the tea plant lineage. Two whole-genome duplications, critical to gene family evolution for these two metabolites, are identified and dated, but are shown to account for less amplification than subsequent paralogous duplications. These studies lay the foundation for future research to understand and utilize the genes that determine tea quality and its diversity within tea germplasm. Tea, one of the world’s most important beverage crops, provides numerous secondary metabolites that account for its rich taste and health benefits. Here we present a high-quality sequence of the genome of tea, Camellia sinensis var. sinensis (CSS), using both Illumina and PacBio sequencing technologies. At least 64% of the 3.1-Gb genome assembly consists of repetitive sequences, and the rest yields 33,932 high-confidence predictions of encoded proteins. Divergence between two major lineages, CSS and Camellia sinensis var. assamica (CSA), is calculated to ∼0.38 to 1.54 million years ago (Mya). Analysis of genic collinearity reveals that the tea genome is the product of two rounds of whole-genome duplications (WGDs) that occurred ∼30 to 40 and ∼90 to 100 Mya. We provide evidence that these WGD events, and subsequent paralogous duplications, had major impacts on the copy numbers of secondary metabolite genes, particularly genes critical to producing three key quality compounds: catechins, theanine, and caffeine. Analyses of transcriptome and phytochemistry data show that amplification and transcriptional divergence of genes encoding a large acyltransferase family and leucoanthocyanidin reductases are associated with the characteristic young leaf accumulation of monomeric galloylated catechins in tea, while functional divergence of a single member of the glutamine synthetase gene family yielded theanine synthetase. This genome sequence will facilitate understanding of tea genome evolution and tea metabolite pathways, and will promote germplasm utilization for breeding improved tea varieties.
Collapse
|
22
|
TFOUNI SAV, CAMARA MM, KAMIKATA K, GOMES FML, FURLANI RPZ. Caffeine in teas: levels, transference to infusion and estimated intake. FOOD SCIENCE AND TECHNOLOGY 2018. [DOI: 10.1590/1678-457x.12217] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
23
|
Zhang S, Xuan H, Zhang L, Fu S, Wang Y, Yang H, Tai Y, Song Y, Zhang J, Ho CT, Li S, Wan X. TBC2health: a database of experimentally validated health-beneficial effects of tea bioactive compounds. Brief Bioinform 2017; 18:830-836. [PMID: 27387194 PMCID: PMC5862282 DOI: 10.1093/bib/bbw055] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Indexed: 11/14/2022] Open
Abstract
Tea is one of the most consumed beverages in the world. Considerable studies show the exceptional health benefits (e.g. antioxidation, cancer prevention) of tea owing to its various bioactive components. However, data from these extensively published papers had not been made available in a central database. To lay a foundation in improving the understanding of healthy tea functions, we established a TBC2health database that currently documents 1338 relationships between 497 tea bioactive compounds and 206 diseases (or phenotypes) manually culled from over 300 published articles. Each entry in TBC2health contains comprehensive information about a bioactive relationship that can be accessed in three aspects: (i) compound information, (ii) disease (or phenotype) information and (iii) evidence and reference. Using the curated bioactive relationships, a bipartite network was reconstructed and the corresponding network (or sub-network) visualization and topological analyses are provided for users. This database has a user-friendly interface for entry browse, search and download. In addition, TBC2health provides a submission page and several useful tools (e.g. BLAST, molecular docking) to facilitate use of the database. Consequently, TBC2health can serve as a valuable bioinformatics platform for the exploration of beneficial effects of tea on human health. TBC2health is freely available at http://camellia.ahau.edu.cn/TBC2health.
Collapse
Affiliation(s)
- Shihua Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
- College of Information and Computer science, Anhui Agricultural University, Hefei, China
| | - Hongdong Xuan
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
- College of Information and Computer science, Anhui Agricultural University, Hefei, China
| | - Liang Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
- College of Information and Computer science, Anhui Agricultural University, Hefei, China
| | - Sicong Fu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
- College of Information and Computer science, Anhui Agricultural University, Hefei, China
| | - Yijun Wang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
- College of Information and Computer science, Anhui Agricultural University, Hefei, China
| | - Hua Yang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
- College of Information and Computer science, Anhui Agricultural University, Hefei, China
| | - Yuling Tai
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
- College of Information and Computer science, Anhui Agricultural University, Hefei, China
| | - Youhong Song
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
- College of Information and Computer science, Anhui Agricultural University, Hefei, China
| | - Jinsong Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
- College of Information and Computer science, Anhui Agricultural University, Hefei, China
| | - Chi-Tang Ho
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
- College of Information and Computer science, Anhui Agricultural University, Hefei, China
| | - Shaowen Li
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
- College of Information and Computer science, Anhui Agricultural University, Hefei, China
| | - Xiaochun Wan
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
- College of Information and Computer science, Anhui Agricultural University, Hefei, China
- Corresponding authors. Xiaochun Wan, State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China. Tel.: +86-551-65786468, Fax.: +86-551-65786765; E-mail: ; Shaowen Li, College of Information and Computer science, Anhui Agricultural University, Hefei 230036, China. Tel.: +86-551-65786146; Fax.: +86-551-65786183; E-mail:
| |
Collapse
|
24
|
Saeed M, Naveed M, Arif M, Kakar MU, Manzoor R, Abd El-Hack ME, Alagawany M, Tiwari R, Khandia R, Munjal A, Karthik K, Dhama K, Iqbal HMN, Dadar M, Sun C. Green tea (Camellia sinensis) and l-theanine: Medicinal values and beneficial applications in humans-A comprehensive review. Biomed Pharmacother 2017; 95:1260-1275. [PMID: 28938517 DOI: 10.1016/j.biopha.2017.09.024] [Citation(s) in RCA: 134] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Revised: 09/03/2017] [Accepted: 09/06/2017] [Indexed: 02/05/2023] Open
Abstract
Green tea (Camellia sinensis) is a famous herb, and its extract has been extensively used in traditional Chinese medicinal system. In this context, several studies have revealed its health benefits and medicinal potentialities for several ailments. With ever increasing scientific knowledge, search for safer, potential and novel type of health-related supplements quest, scientists are re-directing their research interests to explore natural resources i.e. medicinal herbs/plant derived compounds. Green tea consumption has gained a special attention and popularity in the modern era of changing lifestyle. The present review is aimed to extend the current knowledge by highlighting the importance and beneficial applications of green tea in humans for safeguarding various health issues. Herein, we have extensively reviewed, analyzed, and compiled salient information on green tea from the authentic published literature available in PubMed and other scientific databases. Scientific literature evidenced that owing to the bioactive constituents including caffeine, l-theanine, polyphenols/flavonoids and other potent molecules, green tea has many pharmacological and physiological functions. It possesses multi-beneficial applications in treating various disorders of humans. This review also provides in-depth insights on the medicinal values of green tea which will be useful for researchers, medical professionals, veterinarians, nutritionists, pharmacists and pharmaceutical industry. Future research emphasis and promotional avenues are needed to explore its potential therapeutic applications for designing appropriate pharmaceuticals, complementary medicines, and effective drugs as well as popularize and propagate its multidimensional health benefits.
Collapse
Affiliation(s)
- Muhammad Saeed
- College of Animal Science and Technology, NW A&F University, Yangling, Shaanxi, 712100, China; Institute of Animal Sciences, Faculty of Animal Husbandry, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Muhammad Naveed
- Department of Clinical Pharmacy, School of Basic Medicine, and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu Province, 211198, China; Department of Urology Surgery, Aviation General Hospital, Beijing, 100012, China
| | - Muhammad Arif
- Department of Animal Sciences, University College of Agriculture, University of Sargodha, 40100, Pakistan
| | - Mohib Ullah Kakar
- Faculty of Marine Sciences, Lasbela University of Agriculture, Water and Marine Sciences, Uthal, Balochistan, 3800, Pakistan
| | - Robina Manzoor
- Faculty of Marine Sciences, Lasbela University of Agriculture, Water and Marine Sciences, Uthal, Balochistan, 3800, Pakistan
| | | | - Mahmoud Alagawany
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt.
| | - Ruchi Tiwari
- Department of Veterinary Microbiology and Immunology, College of Veterinary Sciences, UP Pandit Deen Dayal Upadhayay Pashu Chikitsa Vigyan Vishwavidyalay Evum Go-Anusandhan Sansthan (DUVASU), Mathura, Uttar Pradesh, 281 001, India
| | - Rekha Khandia
- Department of Biochemistry and Genetics, Barkatullah University, Bhopal, 462 026 M.P., India
| | - Ashok Munjal
- Department of Biochemistry and Genetics, Barkatullah University, Bhopal, 462 026 M.P., India
| | - Kumaragurubaran Karthik
- Central University Laboratory, Tamil Nadu Veterinary and Animal Sciences University, Madhavaram Milk Colony, Chennai, Tamil Nadu, 600051, India
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, 243 122, Uttar Pradesh, India
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, N.L., CP 64849, Mexico
| | - Maryam Dadar
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Chao Sun
- College of Animal Science and Technology, NW A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
25
|
Saeed M, Abd El-Hac ME, Alagawany M, Naveed M, Arain MA, Arif M, Soomro RN, Kakar M, Manzoor R, Tiwari R, Khandia R, Munjal A, Karthik K, Dhama K, Iqbal HMN, Sun C. Phytochemistry, Modes of Action and Beneficial Health Applications of Green Tea (Camellia sinensis) in Humans and Animals. INT J PHARMACOL 2017. [DOI: 10.3923/ijp.2017.698.708] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
26
|
Hou YH, Jeyaraj A, Zhang X, Wei CL. Absolute quantification of microRNAs in green tea (Camellia sinensis) by stem-loop quantitative real-time PCR. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2017; 97:2975-2981. [PMID: 27861949 DOI: 10.1002/jsfa.8137] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 10/03/2016] [Accepted: 11/07/2016] [Indexed: 06/06/2023]
Abstract
BACKGROUND There are some studies to show that food-derived plant microRNAs (miRNAs) may be detected in mammals. The research evidence has provoked a considerable debate whether plant-derived miRNAs exert the same regulatory functions as endogenous animal miRNAs. To test the hypothesis, methods of highly sensitive absolute quantification miRNAs have been developed. However, absolute miRNA quantification of green tea has not yet been reported. This study is the first to build an absolute quantification method to detect miRNAs level in green tea using stem-loop quantitative real-time PCR (qRT-PCR). RESULTS Two miRNAs, csn-miR164 (a conserved miRNA) and csn-miRn329 (a tea-specific miRNA), were selected as examples for the detection and absolute quantification of miRNAs in green tea samples using stem-loop qRT-PCR. The content of csn-miR164 was significantly higher in the Yuexi Cuilan (YX) samples than in the Shucheng Orchid (SC) samples. The content of csn-miRn329 was found to be high at the start of processing in leaf tissues in both the withering and soaking experiments, after which it gradually decreased with time. CONCLUSION To the best of our knowledge, this is the first report to absolutely quantify the miRNAs present in green tea. This method will help to further investigate the possibility that tea-derived miRNAs may play an important role on defending against various diseases in humans. © 2016 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ying-Hui Hou
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, P.R. China
| | - Anburaj Jeyaraj
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, P.R. China
| | - Xiao Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, P.R. China
| | - Chao-Ling Wei
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, P.R. China
| |
Collapse
|
27
|
Tappi S, Tylewicz U, Romani S, Dalla Rosa M, Rizzi F, Rocculi P. Study on the quality and stability of minimally processed apples impregnated with green tea polyphenols during storage. INNOV FOOD SCI EMERG 2017. [DOI: 10.1016/j.ifset.2016.12.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
28
|
Elmann A, Beit-Yannai E, Telerman A, Ofir R, Mordechay S, Erlank H, Borochov-Neori H. Pulicaria incisa infusion attenuates inflammatory responses of brain microglial cells. J Funct Foods 2016. [DOI: 10.1016/j.jff.2016.05.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
29
|
Shi Y, Wu H, Wang C, Guo X, Du J, Du L. Determination of polycyclic aromatic hydrocarbons in coffee and tea samples by magnetic solid-phase extraction coupled with HPLC–FLD. Food Chem 2016; 199:75-80. [DOI: 10.1016/j.foodchem.2015.11.137] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 11/25/2015] [Accepted: 11/28/2015] [Indexed: 10/22/2022]
|
30
|
Differential transcriptome analysis of leaves of tea plant (Camellia sinensis) provides comprehensive insights into the defense responses to Ectropis oblique attack using RNA-Seq. Funct Integr Genomics 2016; 16:383-98. [DOI: 10.1007/s10142-016-0491-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Revised: 03/05/2016] [Accepted: 03/29/2016] [Indexed: 12/31/2022]
|
31
|
D’Archivio AA, Maggi MA, Ruggieri F. Investigation by Response Surface Methodology of Extraction of Caffeine, Gallic Acid and Selected Catechins from Tea Using Water-Ethanol Mixtures. FOOD ANAL METHOD 2016. [DOI: 10.1007/s12161-016-0469-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
32
|
Hutková J, Kántor A, Terentjeva M, Petrová J, Puchalski C, Kluz M, Kordiaka R, Kunová S, Kačániová M. Indicience of bacteria nad antibacterial activity of selected types of tea. POTRAVINARSTVO 2016. [DOI: 10.5219/552] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The purpose of this study was to determine in vitro antibacterial activity of selected teas (Assam: Indian black tea from Camellia sinensis, Pu-erh: darkpu-erh (shu) from Camellia sinensis, Sencha: Japanese green tea from Camellia sinensis) against five species of pathogenic microorganisms. In our study, we determined the total viable count (TVC), yeasts (Y) andEnterobacteriaceae counts (E). MALDI-TOF MS Biotyper was used for identification of colonies after cultivation. Evaluation of the antimicrobial activity was performed by disc diffusion method, well diffusion method and detection of minimum inhibitory concentration (MIC). For antibacterial activity against Escherichia coli CCM 2024, Yersinia enterocolitica CCM 5671, Klebsiella pneumonie CCM 2318, Staphylococus aureus CCM 2461 and Bacillus thurigiensis CCM19 were detected. The inhibition zones were measured in mm in disc diffusion method and well diffusion method. The MIC of the individual extracts was measured spectrophotometrically. The high number of total viable count was found in Pu-erh tea (2.1 log CFU.g-1) and lowest number was found in Assam tea (0.7 log CFU.g-1). The high number of Enterobacteriacea was found in Pu-erh tea (2.03 log CFU.g-1) and lowest in Assam tea (0 log CFU.g-1). The higher number of yeasts was found in Pu-erh tea (1.83 log CFU.g-1) and lowest in Assam tea (0.3 log CFU.g-1). Mass spectrometry revealed the presence of seven Gram positive bacteria Bacillus cereus, B. mycoides, B. pumilus, Enterococcus durans, Staphylococcus epidermis, S. hominis, S. warneri, four Gram negative bacteriaAcinetobacter junii, Hafnia alvei, Klebsiella pneumoniae, Sphingomonas spp. and two yeast - Candida glabrata, Cryptococcus albidus. The results show that certain tea extracts are particularly active against various pathogenic bacteria. Tea extracts (Sencha, Rooibos, Mate, Assam) were found to have the strongest antibacterial activity against Staphylococcus aureus CCM 2461.
Collapse
|
33
|
Almeida S, Alves MG, Sousa M, Oliveira PF, Silva BM. Are Polyphenols Strong Dietary Agents Against Neurotoxicity and Neurodegeneration? Neurotox Res 2016; 30:345-66. [PMID: 26745969 DOI: 10.1007/s12640-015-9590-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 12/10/2015] [Accepted: 12/12/2015] [Indexed: 12/21/2022]
Abstract
Life expectancy of most human populations has greatly increased as a result of factors including better hygiene, medical practice, and nutrition. Unfortunately, as humans age, they become more prone to suffer from neurodegenerative diseases and neurotoxicity. Polyphenols can be cheaply and easily obtained as part of a healthy diet. They present a wide range of biological activities, many of which have relevance for human health. Compelling evidence has shown that dietary phytochemicals, particularly polyphenols, have properties that may suppress neuroinflammation and prevent toxic and degenerative effects in the brain. The mechanisms by which polyphenols exert their action are not fully understood, but it is clear that they have a direct effect through their antioxidant activities. They have also been shown to modulate intracellular signaling cascades, including the PI3K-Akt, MAPK, Nrf2, and MEK pathways. Polyphenols also interact with a range of neurotransmitters, illustrating that these compounds can promote their health benefits in the brain through a direct, indirect, or complex action. We discuss whether polyphenols obtained from diet or food supplements are an effective strategy to prevent or treat neurodegeneration. We also discuss the safety, mechanisms of action, and the current and future relevance of polyphenols in clinical treatment of neurodegenerative diseases. As populations age, it is important to discuss the dietary strategies to avoid or counteract the effects of incurable neurodegenerative disorders, which already represent an enormous financial and emotional burden for health care systems, patients, and their families.
Collapse
Affiliation(s)
- Susana Almeida
- Department of Microscopy, Laboratory of Cell Biology and Unit for Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Marco G Alves
- CICS-UBI, Health Sciences Research Centre, Faculty of Health Sciences, University of Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal
| | - Mário Sousa
- Department of Microscopy, Laboratory of Cell Biology and Unit for Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal.,Centre for Reproductive Genetics Prof. Alberto Barros, Porto, Portugal
| | - Pedro F Oliveira
- Department of Microscopy, Laboratory of Cell Biology and Unit for Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal.,I3S - Institute of Health Research and Innovation, University of Porto, Porto, Portugal
| | - Branca M Silva
- CICS-UBI, Health Sciences Research Centre, Faculty of Health Sciences, University of Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal.
| |
Collapse
|
34
|
Asakawa T, Yoshida A, Hirooka Y, Suzuki T, Itoh K, Shimizu K, Oku N, Furuta T, Wakimoto T, Inai M, Kan T. Synthesis of Chemical-Biology Tools Enabling in vivo Imaging and Analysis of Epigallocatechin Gallate. HETEROCYCLES 2016. [DOI: 10.3987/com-15-s(t)25] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
35
|
Lee F, Chung JE, Xu K, Kurisawa M. Injectable Degradation-Resistant Hyaluronic Acid Hydrogels Cross-Linked via the Oxidative Coupling of Green Tea Catechin. ACS Macro Lett 2015; 4:957-960. [DOI: 10.1021/acsmacrolett.5b00544] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Fan Lee
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, The Nanos, #04-01, 138669, Singapore
| | - Joo Eun Chung
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, The Nanos, #04-01, 138669, Singapore
| | - Keming Xu
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, The Nanos, #04-01, 138669, Singapore
| | - Motoichi Kurisawa
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, The Nanos, #04-01, 138669, Singapore
| |
Collapse
|
36
|
Garcia Londoño VA, Reynoso CM, Resnik SL. Polycyclic aromatic hydrocarbons (PAHs) survey on tea (Camellia sinensis) commercialized in Argentina. Food Control 2015. [DOI: 10.1016/j.foodcont.2014.07.036] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
37
|
Lee F, Lim J, Reithofer MR, Lee SS, Chung JE, Hauser CAE, Kurisawa M. Synthesis and bioactivity of a conjugate composed of green tea catechins and hyaluronic acid. Polym Chem 2015. [DOI: 10.1039/c5py00495k] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
An amine-functionalized EGCG dimer was synthesized for the conjugation to HA. The resulting HA–EGCG conjugates could scavenge radicals effectively.
Collapse
Affiliation(s)
- Fan Lee
- Institute of Bioengineering and Nanotechnology
- Singapore
| | - Jaehong Lim
- Institute of Bioengineering and Nanotechnology
- Singapore
| | | | - Su Seong Lee
- Institute of Bioengineering and Nanotechnology
- Singapore
| | - Joo Eun Chung
- Institute of Bioengineering and Nanotechnology
- Singapore
| | | | | |
Collapse
|
38
|
Tea Polyphenols in Parkinson’s Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 863:117-37. [DOI: 10.1007/978-3-319-18365-7_6] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
39
|
Yue Y, Chu GX, Liu XS, Tang X, Wang W, Liu GJ, Yang T, Ling TJ, Wang XG, Zhang ZZ, Xia T, Wan XC, Bao GH. TMDB: a literature-curated database for small molecular compounds found from tea. BMC PLANT BIOLOGY 2014; 14:243. [PMID: 25224438 PMCID: PMC4172869 DOI: 10.1186/s12870-014-0243-1] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 09/08/2014] [Indexed: 05/08/2023]
Abstract
BACKGROUND Tea is one of the most consumed beverages worldwide. The healthy effects of tea are attributed to a wealthy of different chemical components from tea. Thousands of studies on the chemical constituents of tea had been reported. However, data from these individual reports have not been collected into a single database. The lack of a curated database of related information limits research in this field, and thus a cohesive database system should necessarily be constructed for data deposit and further application. DESCRIPTION The Tea Metabolome database (TMDB), a manually curated and web-accessible database, was developed to provide detailed, searchable descriptions of small molecular compounds found in Camellia spp. esp. in the plant Camellia sinensis and compounds in its manufactured products (different kinds of tea infusion). TMDB is currently the most complete and comprehensive curated collection of tea compounds data in the world. It contains records for more than 1393 constituents found in tea with information gathered from 364 published books, journal articles, and electronic databases. It also contains experimental 1H NMR and 13C NMR data collected from the purified reference compounds or collected from other database resources such as HMDB. TMDB interface allows users to retrieve tea compounds entries by keyword search using compound name, formula, occurrence, and CAS register number. Each entry in the TMDB contains an average of 24 separate data fields including its original plant species, compound structure, formula, molecular weight, name, CAS registry number, compound types, compound uses including healthy benefits, reference literatures, NMR, MS data, and the corresponding ID from databases such as HMDB and Pubmed. Users can also contribute novel regulatory entries by using a web-based submission page. The TMDB database is freely accessible from the URL of http://pcsb.ahau.edu.cn:8080/TCDB/index.jsp. The TMDB is designed to address the broad needs of tea biochemists, natural products chemists, nutritionists, and members of tea related research community. CONCLUSION The TMDB database provides a solid platform for collection, standardization, and searching of compounds information found in tea. As such this database will be a comprehensive repository for tea biochemistry and tea health research community.
Collapse
Affiliation(s)
- Yi Yue
- Key Laboratory of Tea Biochemistry and Biotechnology, Anhui Agricultural University, 130 West Changjiang Road, Hefei, Anhui Province 230036 China
| | - Gang-Xiu Chu
- Key Laboratory of Tea Biochemistry and Biotechnology, Anhui Agricultural University, 130 West Changjiang Road, Hefei, Anhui Province 230036 China
| | - Xue-Shi Liu
- Key Laboratory of Tea Biochemistry and Biotechnology, Anhui Agricultural University, 130 West Changjiang Road, Hefei, Anhui Province 230036 China
| | - Xing Tang
- Key Laboratory of Tea Biochemistry and Biotechnology, Anhui Agricultural University, 130 West Changjiang Road, Hefei, Anhui Province 230036 China
| | - Wei Wang
- Key Laboratory of Tea Biochemistry and Biotechnology, Anhui Agricultural University, 130 West Changjiang Road, Hefei, Anhui Province 230036 China
| | - Guang-Jin Liu
- Key Laboratory of Tea Biochemistry and Biotechnology, Anhui Agricultural University, 130 West Changjiang Road, Hefei, Anhui Province 230036 China
| | - Tao Yang
- Key Laboratory of Tea Biochemistry and Biotechnology, Anhui Agricultural University, 130 West Changjiang Road, Hefei, Anhui Province 230036 China
| | - Tie-Jun Ling
- Key Laboratory of Tea Biochemistry and Biotechnology, Anhui Agricultural University, 130 West Changjiang Road, Hefei, Anhui Province 230036 China
| | - Xiao-Gang Wang
- Key Laboratory of Tea Biochemistry and Biotechnology, Anhui Agricultural University, 130 West Changjiang Road, Hefei, Anhui Province 230036 China
| | - Zheng-Zhu Zhang
- Key Laboratory of Tea Biochemistry and Biotechnology, Anhui Agricultural University, 130 West Changjiang Road, Hefei, Anhui Province 230036 China
| | - Tao Xia
- Key Laboratory of Tea Biochemistry and Biotechnology, Anhui Agricultural University, 130 West Changjiang Road, Hefei, Anhui Province 230036 China
| | - Xiao-Chun Wan
- Key Laboratory of Tea Biochemistry and Biotechnology, Anhui Agricultural University, 130 West Changjiang Road, Hefei, Anhui Province 230036 China
| | - Guan-Hu Bao
- Key Laboratory of Tea Biochemistry and Biotechnology, Anhui Agricultural University, 130 West Changjiang Road, Hefei, Anhui Province 230036 China
| |
Collapse
|
40
|
Vuong QV, Golding JB, Stathopoulos CE, Roach PD. Effects of aqueous brewing solution pH on the extraction of the major green tea constituents. Food Res Int 2013. [DOI: 10.1016/j.foodres.2012.09.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
41
|
Epicatechin and epigallocatechin gallate inhibit formation of intermediary radicals during heating of lysine and glucose. Food Chem 2013; 146:48-55. [PMID: 24176312 DOI: 10.1016/j.foodchem.2013.09.032] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 08/22/2013] [Accepted: 09/04/2013] [Indexed: 12/12/2022]
Abstract
High concentrations of the tea catechins epicatechin (EC) or epigallocatechin gallate (EGCG) inhibited formation of highly reactive intermediary radicals appearing during the Maillard reactions (MR), that take place during heating glucose and lysine at 70°C in EtOH/HEPES buffer at pH 7.0 and pH 8.0. Radicals were trapped by ethanol, which subsequently were converted into spin adducts of the spin trap α-(4-pyridyl N-oxide)-N-tert-butylnitrone (POBN). EGCG was found to be more efficient than EC as inhibitor of intermediary radicals during the MR. Based on UV/Vis-spectroscopy, measurement of oxygen consumption and LC-MS detection of intermediates, it is suggested that the quinone form of autoxidised EC reacts with lysine through either a Michael type addition or a "Strecker like" reaction and thereby influences the formation of intermediary MR products as well as radicals.
Collapse
|
42
|
Grover IS, Singh S, Pal B. Priority PAHs in orthodox black tea during manufacturing process. ENVIRONMENTAL MONITORING AND ASSESSMENT 2013; 185:6291-4. [PMID: 23224705 DOI: 10.1007/s10661-012-3025-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Accepted: 11/27/2012] [Indexed: 05/06/2023]
Abstract
Orthodox black tea is obtained from fresh leaves followed by withering, rolling, fermentation and drying. The presence of 16 priority polycyclic aromatic hydrocarbons (PAHs) was studied in fresh leaves and at various stages of manufacturing. Benzo(a)pyrene (2A: probable human carcinogen) was found in dried tea leaves only whereas, naphthalene (2B: probable human carcinogen) was present during all the stages of manufacturing. Dry tea leaves showed higher content of total 16 PAHs (∑PAHs) about 3 and 211 times than present in withered and dried leaves, respectively. Chrysene, benzo[g,h,i]perylene, indendo[1,2,3-c,d]pyrene, dibenzo[a,h]pyrene and benzo[a]antracene were not found during manufacturing stages of tea.
Collapse
|
43
|
Yin J, Andersen ML, Skibsted LH. Reduction of ferrylmyoglobin by theanine and green tea catechins. Importance of specific Acid catalysis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:3159-3166. [PMID: 23461366 DOI: 10.1021/jf400219r] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Reduction of the hypervalent heme pigment ferrylmyoglobin by green tea catechins in aqueous solution of pH = 7.5 was investigated by stopped-flow spectroscopy. Reduction by the gallic acid esters epigallocatechin gallate (EGCG, k2 = 1460 L mol(-1) s(-1), 25.0 °C, 0.16 ionic strength) and epicatechin gallate (ECG, 1410 L mol(-1) s(-1)) was found faster than for epicatechin (EC, 300 L mol(-1) s(-1)) and epigallocatechin (EGC, 200 L mol(-1) s(-1)), even though the gallate ion (G, 330 L mol(-1) s(-1)) is similar in rate to EC. The rate for reduction by EC, EGC, ECG, EGCG, and G shows no correlation with their oxidation potentials or phenolic hydrogen-oxygen bond dissociation energy, but with the pKa of the most acidic phenol group. Theanine, with an acidity similar to that of EC, reduces ferrylmyoglobin with a similar rate (200 L mol(-1) s(-1)), in support of general acid catalysis with an initial proton transfer prior to electron transfer.
Collapse
Affiliation(s)
- Jie Yin
- Food Chemistry, Department of Food Science, University of Copenhagen, Rolighedsvej 30, DK-1958 Frederiksberg C, Denmark
| | | | | |
Collapse
|
44
|
Wein S, Schrader E, Rimbach G, Wolffram S. Oral green tea catechins transiently lower plasma glucose concentrations in female db/db mice. J Med Food 2013; 16:312-7. [PMID: 23514230 DOI: 10.1089/jmf.2012.0205] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Polyphenols, including green tea catechins, are secondary plant compounds often discussed in the context of health-promoting potential. Evidence for such effects is mainly derived from epidemiological and cell culture studies. The aim of the present study was to investigate antidiabetic, antiadipogenic, and anti-inflammatory effects at nonpharmacological doses in an obese diabetic mouse model that exerts early relevant clinical signs of non-insulin-dependent diabetes mellitus. Female db/db mice received a flavonoid-poor diet either without additive, with rosiglitazone (RSG, 0.02 g/kg diet), or with green tea extract (low-dose green tea extract [LGTE] and high-dose green tea extract [HGTE], 0.1 and 1 g/kg diet). Food and water were freely available. The body weight was monitored weekly. Blood was sampled (12-h fasted) from the tail vein on day 28 and analyzed for glucose, cholesterol, triacylglycerol, nonesterified fatty acids, insulin, adiponectin, and soluble intercellular adhesion molecule-1 (sICAM-1). Blood glucose was also analyzed on day 14. Furthermore, sICAM-1 release was investigated in tumor necrosis factor alpha-stimulated EAhy926 cells. After 14 days, fasting glycemia was improved by RSG or HGTE supplementation compared to controls. However, at the end of the study (day 28), only RSG exhibited glucose-lowering effects and induced plasma adiponectin concentrations, paralleled by higher body weight gain and reduced periuterine fat pads compared to controls. However, only GTE treatment reduced sICAM-1 release in vitro and in vivo. Nonpharmacological HGTE supplementation in db/db mice caused (1) no adiponectin-inducing or antiadipogenic effects, (2) reduced sICAM-1 release, thereby potentially exerting anti-inflammatory effects in the progressive diabetic state, and (3) a transient improvement in glycemia.
Collapse
Affiliation(s)
- Silvia Wein
- Institute of Animal Nutrition & Physiology, Christian Albrechts University of Kiel, Kiel, Germany.
| | | | | | | |
Collapse
|
45
|
BATTIKH HOUDA, CHAIEB KAMEL, BAKHROUF AMINA, AMMAR EMNA. ANTIBACTERIAL AND ANTIFUNGAL ACTIVITIES OF BLACK AND GREEN KOMBUCHA TEAS. J Food Biochem 2012. [DOI: 10.1111/j.1745-4514.2011.00629.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
46
|
Kang J, Chen L, Okubayashi S, Sukigara S. Preparation of electrospun polycaprolactone nanofibers with water-soluble eggshell membrane and catechin. J Appl Polym Sci 2011. [DOI: 10.1002/app.35538] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
47
|
Vuong QV, Golding JB, Stathopoulos CE, Nguyen MH, Roach PD. Optimizing conditions for the extraction of catechins from green tea using hot water. J Sep Sci 2011; 34:3099-106. [PMID: 21905216 DOI: 10.1002/jssc.201000863] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Revised: 07/20/2011] [Accepted: 07/21/2011] [Indexed: 01/09/2023]
Abstract
Six different factors involved in the extraction of catechins from green tea using water were examined for their impact on the yield of catechins and on the efficiency of water use. The best temperature and time combination for catechin extraction was at 80°C for 30 min. The yield of catechins was also optimal with a tea particle size of 1 mm, a brewing solution pH <6 and a tea-to-water ratio at 50:1 (mL/g). In terms of efficient use of water in a single extraction, a water-to-tea ratio of 20:1 (mL/g) gave the best results; 2.5 times less water was used per gram of green tea. At the water-to-tea ratio of 20:1 mL/g, the highest yield of catechins per gram of green tea was achieved by extracting the same sample of green tea twice. However, for the most efficient use of water, the best extraction was found to be once at a water-to-tea ratio of 12:1 (mL/g) and once at a water-to-tea ratio of 8:1 (mL/g). Therefore, all six of the factors investigated had an impact on the yield of catechins extracted from green tea using water and two had an impact on the efficiency of water use.
Collapse
Affiliation(s)
- Quan V Vuong
- School of Environmental and Life Sciences, University of Newcastle, Ourimbah, NSW, Australia.
| | | | | | | | | |
Collapse
|
48
|
Vuong QV, Stathopoulos CE, Nguyen MH, Golding JB, Roach PD. Isolation of Green Tea Catechins and Their Utilization in the Food Industry. FOOD REVIEWS INTERNATIONAL 2011. [DOI: 10.1080/87559129.2011.563397] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
49
|
Vuong QV, Golding JB, Nguyen M, Roach PD. Extraction and isolation of catechins from tea. J Sep Sci 2011; 33:3415-28. [PMID: 21049524 DOI: 10.1002/jssc.201000438] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Tea is a major source of catechins, which have become well known for their antioxidant potential. Numerous human, animal, and in vitro studies have linked tea catechins with prevention of certain types of cancers, reduction of the risks for obesity, diabetes, and cardiovascular disease, and improvement of the immune system. Tea catechins are widely used in various neutraceuticals, pharmaceuticals, and cosmetics for either enhancing product shelf-life or for enhancing human health. Thus, the demand for catechins has increased considerably. Catechins have been extracted and isolated from tea leaves by numerous methods through several steps including: treatment of the tea leaves, extraction of catechins from teas into solvents, isolation of catechins from other extracted components, and drying the preparations to obtain catechin extracts in a powder form. This paper outlines the physical and chemical properties of the tea catechins and reviews the extraction steps of the various extraction methods, as a basis to improve and further develop the extraction and isolation of the tea catechins.
Collapse
Affiliation(s)
- Quan V Vuong
- School of Environmental and Life Sciences, University of Newcastle, Ourimbah, NSW, Australia.
| | | | | | | |
Collapse
|
50
|
Lin SF, Lin YH, Lin M, Kao YF, Wang RW, Teng LW, Chuang SH, Chang JM, Yuan TT, Fu KC, Huang KP, Lee YS, Chiang CC, Yang SC, Lai CL, Liao CB, Chen P, Lin YS, Lai KT, Huang HJ, Yang JY, Liu CW, Wei WY, Chen CK, Hiipakka RA, Liao S, Huang JJ. Synthesis and structure–activity relationship of 3-O-acylated (–)-epigallocatechins as 5α-reductase inhibitors. Eur J Med Chem 2010; 45:6068-76. [DOI: 10.1016/j.ejmech.2010.10.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Revised: 10/11/2010] [Accepted: 10/11/2010] [Indexed: 12/15/2022]
|