1
|
Myrick A, Jimenez D, Jacquez B, Sun MS, Noor S, Milligan ED, Valenzuela CF, Linsenbardt DN. Maternal alcohol drinking patterns predict offspring neurobehavioral outcomes. Neuropharmacology 2024; 257:110044. [PMID: 38878859 PMCID: PMC11284739 DOI: 10.1016/j.neuropharm.2024.110044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/29/2024] [Accepted: 06/11/2024] [Indexed: 06/18/2024]
Abstract
The timing, rate, and quantity of gestational alcohol consumption, collectively referred to here as Maternal Drinking Patterns (MDPs), are of known importance to fetal developmental outcomes. However, few studies have directly evaluated the impact of MDPs on offspring behavior. To do so, we used specialized equipment to record the precise amount and timing of alcohol consumption in pregnant dams, and then characterized MDPs using Principle Component Analysis (PCA). We next tested offspring on behaviors we have previously identified as impacted by prenatal alcohol exposure, and evaluated them where possible in the context of MDPs. Male alcohol exposed mice exhibited longer latencies to fall on the rotarod compared to their controls, which we attribute to a delayed decrease in body weight-gain. This effect was mediated by MDPs within the first 15 min of alcohol access (i.e. alcohol frontloading), where the highest performing male offspring came from dams exhibiting the highest rate of alcohol frontloading. Female alcohol exposed mice displayed reduced locomotor activity in the open field compared to controls, which was mediated by MDPs encompassing the entire drinking session. Surprisingly, total gestational alcohol exposure alone was not associated with any behavioral outcomes. Finally, we observed allodynia in alcohol exposed mice that developed more quickly in males compared to females, and which was not observed in controls. To our knowledge, this report represents the highest resolution assessment of alcohol drinking throughout gestation in mice, and one of few to have identified relationships between specific alcohol MDPs and neurobehavioral outcomes in offspring.
Collapse
Affiliation(s)
- Abbey Myrick
- University of New Mexico, Department of Neurosciences, Albuquerque, NM, 87131, USA
| | - Diane Jimenez
- University of New Mexico, Department of Neurosciences, Albuquerque, NM, 87131, USA
| | - Belkis Jacquez
- University of New Mexico, Department of Neurosciences, Albuquerque, NM, 87131, USA
| | - Melody S Sun
- University of New Mexico, Department of Neurosciences, Albuquerque, NM, 87131, USA
| | - Shahani Noor
- University of New Mexico, Department of Neurosciences, Albuquerque, NM, 87131, USA
| | - Erin D Milligan
- University of New Mexico, Department of Neurosciences, Albuquerque, NM, 87131, USA
| | | | - David N Linsenbardt
- University of New Mexico, Department of Neurosciences, Albuquerque, NM, 87131, USA.
| |
Collapse
|
2
|
Roach AN, Bhadsavle SS, Higgins SL, Derrico DD, Basel A, Thomas KN, Golding MC. Alterations in sperm RNAs persist after alcohol cessation and correlate with epididymal mitochondrial dysfunction. Andrology 2024; 12:1012-1023. [PMID: 38044754 PMCID: PMC11144833 DOI: 10.1111/andr.13566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 10/10/2023] [Accepted: 11/20/2023] [Indexed: 12/05/2023]
Abstract
BACKGROUND Chronic preconception paternal alcohol use adversely modifies the sperm epigenome, inducing fetoplacental and craniofacial growth defects in the offspring of exposed males. A crucial outstanding question in the field of paternal epigenetic inheritance concerns the resilience of the male germline and its capacity to recover and correct sperm-inherited epigenetic errors after stressor withdrawal. OBJECTIVES We set out to determine if measures of the sperm-inherited epigenetic program revert to match the control treatment 1 month after withdrawing the daily alcohol treatments. MATERIALS AND METHODS Using a voluntary access model, we exposed C57BL/6J males to 6% or 10% alcohol for 10 weeks, withdrew the alcohol treatments for 4 weeks, and used RNA sequencing to examine gene expression patterns in the caput section of the epididymis. We then compared the abundance of sperm small RNA species between treatments. RESULTS In the caput section of the epididymis, chronic alcohol exposure induced changes in the transcriptional control of genetic pathways related to the mitochondrial function, oxidative phosphorylation, and the generalized stress response (EIF2 signaling). Subsequent analysis identified region-specific, alcohol-induced changes in mitochondrial DNA copy number across the epididymis, which correlated with increases in the mitochondrial DNA content of alcohol-exposed sperm. Notably, in the corpus section of the epididymis, increases in mitochondrial DNA copy number persisted 1 month after alcohol cessation. Analysis of sperm noncoding RNAs between control and alcohol-exposed males 1 month after alcohol withdrawal revealed a ∼100-fold increase in mir-196a, a microRNA induced as part of the nuclear factor erythroid 2-related factor 2 (Nrf2)-driven cellular antioxidant response. DISCUSSION AND CONCLUSION Our data reveal that alcohol-induced epididymal mitochondrial dysfunction and differences in sperm noncoding RNA content persist after alcohol withdrawal. Further, differences in mir-196a and sperm mitochondrial DNA copy number may serve as viable biomarkers of adverse alterations in the sperm-inherited epigenetic program.
Collapse
Affiliation(s)
- Alexis N. Roach
- Department of Veterinary Physiology & Pharmacology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA, 77843
| | - Sanat S. Bhadsavle
- Department of Veterinary Physiology & Pharmacology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA, 77843
| | - Samantha L. Higgins
- Department of Veterinary Physiology & Pharmacology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA, 77843
| | - Destani D. Derrico
- Department of Veterinary Physiology & Pharmacology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA, 77843
| | - Alison Basel
- Department of Veterinary Physiology & Pharmacology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA, 77843
| | - Kara N. Thomas
- Department of Veterinary Physiology & Pharmacology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA, 77843
| | - Michael C. Golding
- Department of Veterinary Physiology & Pharmacology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA, 77843
| |
Collapse
|
3
|
Becker HC, Lopez MF. Animal Models of Excessive Alcohol Consumption in Rodents. Curr Top Behav Neurosci 2024. [PMID: 38340255 DOI: 10.1007/7854_2024_461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2024]
Abstract
The development of animal models that demonstrate excessive levels of alcohol consumption has played an important role in advancing our knowledge about neurobiological underpinnings and environmental circumstances that engender such maladaptive behavior. The use of these preclinical models has also provided valuable opportunities for discovering new and novel therapeutic targets that may be useful in the treatment of alcohol use disorder (AUD). While no single model can fully capture the complexities of AUD, the goal is to develop animal models that closely approximate characteristics of heavy alcohol drinking in humans to enhance their translational value and utility. A variety of experimental approaches have been employed to produce the desired phenotype of interest-robust and reliable excessive levels of alcohol drinking. Here we provide an updated review of five animal models that are commonly used. The models entail procedural manipulations of scheduled access to alcohol (time of day, duration, frequency), periods of time when access to alcohol is withheld, and history of alcohol exposure. Specially, the models involve (a) scheduled access to alcohol, (b) scheduled periods of alcohol deprivation, (c) scheduled intermittent access to alcohol, (d) scheduled-induced polydipsia, and (e) chronic alcohol (dependence) and withdrawal experience. Each of the animal models possesses unique experimental features that engender excessive levels of alcohol consumption. Both advantages and disadvantages of each model are described along with discussion of future work to be considered in developing more optimal models. Ultimately, the validity and utility of these models will lie in their ability to aid in the discovery of new and novel potential therapeutic targets as well as serve as a platform to evaluate treatment strategies that effectively reduce excessive levels of alcohol consumption associated with AUD.
Collapse
Affiliation(s)
- Howard C Becker
- Charleston Alcohol Research Center, Medical University of South Carolina, Charleston, SC, USA.
- Departments of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA.
- Departments of Psychiatry and Neuroscience, Medical University of South Carolina, Charleston, SC, USA.
- RHJ Veterans Administration Health Care System, Medical University of South Carolina, Charleston, SC, USA.
| | - Marcelo F Lopez
- Charleston Alcohol Research Center, Medical University of South Carolina, Charleston, SC, USA
- Departments of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
4
|
Roach AN, Zimmel KN, Thomas KN, Basel A, Bhadsavle SS, Golding MC. Preconception paternal alcohol exposure decreases IVF embryo survival and pregnancy success rates in a mouse model. Mol Hum Reprod 2023; 29:gaad002. [PMID: 36637195 PMCID: PMC9907225 DOI: 10.1093/molehr/gaad002] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/22/2022] [Indexed: 01/14/2023] Open
Abstract
Increasingly, couples struggling with fertility turn to assisted reproductive techniques, including IVF, to have children. Despite the demonstrated influence of periconception male health and lifestyle choices on offspring development, studies examining IVF success rates and child health outcomes remain exclusively focused on maternal factors. Using a physiologically relevant mouse model, we tested the hypothesis that chronic paternal preconception alcohol intake adversely affects IVF success and negatively impacts IVF offspring fetoplacental growth. Using a voluntary, binge-like mouse model, we exposed sexually mature C57BL/6J males to three preconception treatments (0% (Control), 6% EtOH or 10% EtOH) for 6 weeks, isolated and cryopreserved caudal sperm from treated males, and then used these samples to fertilize oocytes before assessing IVF embryo developmental outcomes. We found that preconception paternal alcohol use reduced IVF embryo survival and pregnancy success rates in a dose-dependent manner, with the pregnancy success rate of the 10% EtOH treatment falling to half those of the Controls. Mechanistically, we found that preconception paternal alcohol exposure disrupts embryonic gene expression, including Fgf4 and Egfr, two critical regulators of trophectoderm stem cell growth and placental patterning, with lasting impacts on the histological organization of the late-term placenta. The changes in placental histoarchitecture were accompanied by altered regulation of pathways controlling mitochondrial function, oxidative phosphorylation and some imprinted genes. Our studies indicate that male alcohol use may significantly impede IVF success rates, increasing the couple's financial burden and emotional stress, and highlights the need to expand prepregnancy messaging to emphasize the reproductive dangers of alcohol use by both parents.
Collapse
Affiliation(s)
- Alexis N Roach
- Department of Veterinary Physiology & Pharmacology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Katherine N Zimmel
- Department of Veterinary Physiology & Pharmacology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Kara N Thomas
- Department of Veterinary Physiology & Pharmacology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Alison Basel
- Department of Veterinary Physiology & Pharmacology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Sanat S Bhadsavle
- Department of Veterinary Physiology & Pharmacology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Michael C Golding
- Department of Veterinary Physiology & Pharmacology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| |
Collapse
|
5
|
Reed CH, Buhr TJ, Tystahl AC, Bauer EE, Clark PJ, Valentine RJ. The effects of voluntary binge-patterned ethanol ingestion and daily wheel running on signaling of muscle protein synthesis and degradation in female mice. Alcohol 2022; 104:45-52. [PMID: 35926812 DOI: 10.1016/j.alcohol.2022.06.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/17/2022] [Accepted: 06/22/2022] [Indexed: 01/26/2023]
Abstract
Excessive ethanol ingestion can reduce skeletal muscle protein synthesis (MPS) through the disruption of signaling along the Akt-mTOR pathway and increase muscle protein degradation (MPD) through the Ubiquitin Proteasome Pathway (UPP) and autophagy. Identification of interventions that curb the disrupting effects of alcohol misuse on MPS and MPD are of central importance for the prevention of chronic health complications that arise from muscle loss. Physical activity is one potential strategy to combat the deleterious effects of alcohol on skeletal muscle. Therefore, the purpose of this study was to investigate the interaction between daily wheel running and binge-patterned ethanol consumption, through episodes of voluntary binge-patterned ethanol drinking, on signaling factors along the Akt-mTOR, Ubiquitin-Proteasome, and autophagy pathways. Adult female C57BL/6J mice received daily access to cages with or without running wheels for 2.5 h/day for five weeks. During the final five days of the study, mice received 2-4 h of daily access to sipper tubes containing water (n = 14 sedentary; n = 15 running) or 20% ethanol (n = 14 sedentary; n = 16 running) 30 min after running wheel access, using the "Drinking in the Dark" (DID) model of binge-patterned ethanol consumption. Immediately after the final episode of DID, gastrocnemius muscle was extracted. Western blotting was performed to measure proteins along Akt-mTOR, Ubiquitin-Proteasome, and autophagy pathways, and PCR was used to assess mRNA expression of atrogenes. Ethanol access increased expression of MAFbx by 82% (p = 0.048), but did not robustly influence Akt-mTOR or UPP signaling. Daily wheel access did not prevent alcohol-induced MAFbx expression; however, ethanol access decreased the phosphorylation of p70S6K by 45% in running mice (p = 0.020). These results suggest that physical activity may be insufficient to prevent alcohol-induced changes to signaling factors along pathways involved in muscle loss. Instead, binge-patterned ethanol ingestion may impair the benefits of physical activity on factors involved in MPS.
Collapse
Affiliation(s)
- Carter H Reed
- Department of Kinesiology, Forker Building, 534 Wallace Road, Iowa State University, Ames, IA, 50011, United States; Interdepartmental Graduate Program of Nutritional Sciences, MacKay Hall, 2302 Osborn Drive, Iowa State University, Ames, IA, 50011, United States
| | - Trevor J Buhr
- Neuroscience Program, MacKay Hall, 2302 Osborn Drive, Iowa State University, Ames, IA, 50011, United States; Department of Food Science and Human Nutrition, MacKay Hall, 2302 Osborn Drive, Iowa State University, Ames, IA, 50011, United States
| | - Anna C Tystahl
- Department of Kinesiology, Forker Building, 534 Wallace Road, Iowa State University, Ames, IA, 50011, United States
| | - Ella E Bauer
- Interdepartmental Graduate Program of Nutritional Sciences, MacKay Hall, 2302 Osborn Drive, Iowa State University, Ames, IA, 50011, United States; Neuroscience Program, MacKay Hall, 2302 Osborn Drive, Iowa State University, Ames, IA, 50011, United States; Department of Food Science and Human Nutrition, MacKay Hall, 2302 Osborn Drive, Iowa State University, Ames, IA, 50011, United States
| | - Peter J Clark
- Interdepartmental Graduate Program of Nutritional Sciences, MacKay Hall, 2302 Osborn Drive, Iowa State University, Ames, IA, 50011, United States; Neuroscience Program, MacKay Hall, 2302 Osborn Drive, Iowa State University, Ames, IA, 50011, United States; Department of Food Science and Human Nutrition, MacKay Hall, 2302 Osborn Drive, Iowa State University, Ames, IA, 50011, United States.
| | - Rudy J Valentine
- Department of Kinesiology, Forker Building, 534 Wallace Road, Iowa State University, Ames, IA, 50011, United States; Interdepartmental Graduate Program of Nutritional Sciences, MacKay Hall, 2302 Osborn Drive, Iowa State University, Ames, IA, 50011, United States; Neuroscience Program, MacKay Hall, 2302 Osborn Drive, Iowa State University, Ames, IA, 50011, United States.
| |
Collapse
|
6
|
Nevzorova YA, Boyer-Diaz Z, Cubero FJ, Gracia-Sancho J. Animal models for liver disease - A practical approach for translational research. J Hepatol 2020; 73:423-440. [PMID: 32330604 DOI: 10.1016/j.jhep.2020.04.011] [Citation(s) in RCA: 135] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/06/2020] [Accepted: 04/06/2020] [Indexed: 12/11/2022]
Abstract
Animal models are crucial for improving our understanding of human pathogenesis, enabling researchers to identify therapeutic targets and test novel drugs. In the current review, we provide a comprehensive summary of the most widely used experimental models of chronic liver disease, starting from early stages of fatty liver disease (non-alcoholic and alcoholic) to steatohepatitis, advanced cirrhosis and end-stage primary liver cancer. We focus on aspects such as reproducibility and practicality, discussing the advantages and weaknesses of available models for researchers who are planning to perform animal studies in the near future. Additionally, we summarise current and prospective models based on human tissue bioengineering.
Collapse
Affiliation(s)
- Yulia A Nevzorova
- Department of Genetics, Physiology and Microbiology, Faculty of Biology, Complutense University, Madrid, Spain; 12 de Octubre Health Research Institute (imas12), Madrid, Spain; Department of Internal Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Zoe Boyer-Diaz
- Liver Vascular Biology Research Group, Barcelona Hepatic Hemodynamic Unit, IDIBAPS Biomedical Research Institute, Barcelona, Spain; Barcelona Liver Bioservices, Barcelona, Spain
| | - Francisco Javier Cubero
- 12 de Octubre Health Research Institute (imas12), Madrid, Spain; Department of Immunology, Ophthalmology & ENT, Complutense University School of Medicine, Madrid, Spain.
| | - Jordi Gracia-Sancho
- Liver Vascular Biology Research Group, Barcelona Hepatic Hemodynamic Unit, IDIBAPS Biomedical Research Institute, Barcelona, Spain; Barcelona Liver Bioservices, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain; Hepatology, Department of Biomedical Research, University of Bern, Bern, Switzerland.
| |
Collapse
|
7
|
Salguero A, Suarez A, Luque M, Ruiz-Leyva L, Cendán CM, Morón I, Pautassi RM. Binge-Like, Naloxone-Sensitive, Voluntary Ethanol Intake at Adolescence Is Greater Than at Adulthood, but Does Not Exacerbate Subsequent Two-Bottle Choice Drinking. Front Behav Neurosci 2020; 14:50. [PMID: 32327981 PMCID: PMC7161160 DOI: 10.3389/fnbeh.2020.00050] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 03/19/2020] [Indexed: 12/31/2022] Open
Abstract
The present study assessed the effects of ethanol exposure during adolescence or adulthood. We exposed Wistar rats, males or females, to self-administered 8–10% (v/v) ethanol (BINGE group) during the first 2 h of the dark cycle, three times a week (Monday, Wednesday, and Friday) during postnatal days (PDs) 32–54 or 72–94 (adolescent and adults, respectively). During this period, controls were only handled, and a third (IP) condition was given ethanol intraperitoneal administrations, three times a week (Monday, Wednesday, and Friday), at doses that matched those self-administered by the BINGE group. The rats were tested for ethanol intake and preference in a two-bottle (24 h long) choice test, shortly before (PD 30 or 70) and shortly after (PD 56 or 96) exposure to the binge or intraperitoneal protocol; and then tested for free-choice drinking during late adulthood (PDs 120–139) in intermittent two-bottle intake tests. Binge drinking was significantly greater in adolescents vs. adults, and was blocked by naloxone (5.0 mg/kg) administered immediately before the binge session. Mean blood ethanol levels (mg/dl) at termination of binge session 3 were 60.82 ± 22.39. Ethanol exposure at adolescence, but not at adulthood, significantly reduced exploration of an open field-like chamber and significantly increased shelter-seeking behavior in the multivariate concentric square field. The rats that had been initially exposed to ethanol at adolescence drank, during the intake tests conducted at adulthood, significantly more than those that had their first experience with ethanol at adulthood, an effect that was similar among BINGE, IP and control groups. The study indicates that binge ethanol drinking is greater in adolescent that in adults and is associated with heightened ethanol intake at adulthood. Preventing alcohol access to adolescents should reduce the likelihood of problematic alcohol use or alcohol-related consequences.
Collapse
Affiliation(s)
- Agustín Salguero
- Instituto de Investigación Médica M. y M. Ferreyra, INIMEC-CONICET-Universidad Nacional de Córdoba, Córdoba, Argentina.,Facultad de Psicología, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Andrea Suarez
- Instituto de Investigación Médica M. y M. Ferreyra, INIMEC-CONICET-Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Maribel Luque
- Instituto de Investigación Médica M. y M. Ferreyra, INIMEC-CONICET-Universidad Nacional de Córdoba, Córdoba, Argentina.,Facultad de Psicología, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - L Ruiz-Leyva
- Department of Pharmacology, Faculty of Medicine, University of Granada, Granada, Spain.,Institute of Neuroscience, Biomedical Research Center (CIBM), University of Granada, Granada, Spain.,Biosanitary Research Institute (IBS), University Hospital Complex of Granada, Granada, Spain
| | - Cruz Miguel Cendán
- Department of Pharmacology, Faculty of Medicine, University of Granada, Granada, Spain.,Institute of Neuroscience, Biomedical Research Center (CIBM), University of Granada, Granada, Spain.,Biosanitary Research Institute (IBS), University Hospital Complex of Granada, Granada, Spain
| | - Ignacio Morón
- Department of Psychobiology and Research Center for Mind, Brain, and Behavior (CIMCYC), University of Granada, Faculty of Psychology, Granada, Spain
| | - Ricardo Marcos Pautassi
- Instituto de Investigación Médica M. y M. Ferreyra, INIMEC-CONICET-Universidad Nacional de Córdoba, Córdoba, Argentina.,Facultad de Psicología, Universidad Nacional de Córdoba, Córdoba, Argentina
| |
Collapse
|
8
|
Kwok A, Rosas S, Bateman TA, Livingston E, Smith TL, Moore J, Zawieja DC, Hampton T, Mao XW, Delp MD, Willey JS. Altered rodent gait characteristics after ~35 days in orbit aboard the International Space Station. LIFE SCIENCES IN SPACE RESEARCH 2020; 24:9-17. [PMID: 31987483 DOI: 10.1016/j.lssr.2019.10.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 10/23/2019] [Accepted: 10/29/2019] [Indexed: 06/10/2023]
Abstract
The long-term adaptations to microgravity and other spaceflight challenges within the confines of a spacecraft, and readaptations to weight-bearing upon reaching a destination, are unclear. While post-flight gait change in astronauts have been well documented and reflect multi-system deficits, no data from rodents have been collected. Thus, the purpose of this study was to evaluate gait changes in response to spaceflight. A prospective collection of gait data was collected on 3 groups of mice: those who spent~35 days in orbit (FLIGHT) aboard the International Space Station (ISS); a ground-based control with the same habitat conditions as ISS (Ground Control; GC); and a vivarium control with typical rodent housing conditions (VIV). Pre-flight and post-flight gait measurements were conducted utilizing an optimized and portable gait analysis system (DigiGait, Mouse Specifics, Inc). The total data acquisition time for gait patterns of FLIGHT and control mice was 1.5-5 min/mouse, allowing all 20 mice per group to be assessed in less than an hour. Patterns of longitudinal gait changes were observed in the hind limbs and the forelimbs of the FLIGHT mice after ~35 days in orbit; few differences were observed in gait characteristics within the GC and VIV controls from the initial to the final gait assessment, and between groups. For FLIGHT mice, 12 out of 18 of the evaluated gait characteristics in the hind limbs were significantly changed, including: stride width variability; stride length and variance; stride, swing, and stance duration; paw angle and area at peak stance; and step angle, among others. Gait characteristics that decreased included stride frequency, and others. Moreover, numerous forelimb gait characteristics in the FLIGHT mice were changed at post-flight measures relative to pre-flight. This rapid DigiGait gait measurement tool and customized spaceflight protocol is useful for providing preliminary insight into how spaceflight could affect multiple systems in rodents in which deficits are reflected by altered gait characteristics.
Collapse
Affiliation(s)
- Andy Kwok
- Department of Radiation Oncology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Samuel Rosas
- Department of Radiation Oncology, Wake Forest School of Medicine, Winston-Salem, NC, United States; Department of Orthopaedic Surgery, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Ted A Bateman
- Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Eric Livingston
- Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Thomas L Smith
- Department of Orthopaedic Surgery, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Joseph Moore
- Department of Radiation Oncology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - David C Zawieja
- Department of Medical Physiology, Texas A&M University, College Station, TX, United States
| | - Tom Hampton
- Mouse Specifics, Framingham, MA, United States
| | - Xiao W Mao
- Department of Basic Sciences, Division of Biomedical Engineering Sciences (BMES), Loma Linda University School of Medicine and Medical Center, Loma Linda, CA, United States
| | - Michael D Delp
- Department of Nutrition, Food and Exercise Sciences, Florida State University, Tallahassee, FL, United States
| | - Jeffrey S Willey
- Department of Radiation Oncology, Wake Forest School of Medicine, Winston-Salem, NC, United States.
| |
Collapse
|
9
|
Maternal ethanol exposure reshapes CART system in the rat brain: Correlation with development of anxiety, depression and memory deficits. Neuroscience 2019; 406:126-139. [DOI: 10.1016/j.neuroscience.2019.02.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 02/06/2019] [Accepted: 02/07/2019] [Indexed: 02/07/2023]
|
10
|
Cantacorps L, González-Pardo H, Arias JL, Valverde O, Conejo NM. Altered brain functional connectivity and behaviour in a mouse model of maternal alcohol binge-drinking. Prog Neuropsychopharmacol Biol Psychiatry 2018. [PMID: 29526773 DOI: 10.1016/j.pnpbp.2018.03.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Prenatal and perinatal alcohol exposure caused by maternal alcohol intake during gestation and lactation periods can have long-lasting detrimental effects on the brain development and behaviour of offspring. Children diagnosed with Foetal Alcohol Spectrum Disorders (FASD) display a wide range of cognitive, emotional and motor deficits, together with characteristic morphological abnormalities. Maternal alcohol binge drinking is particularly harmful for foetal and early postnatal brain development, as it involves exposure to high levels of alcohol over short periods of time. However, little is known about the long-term effects of maternal alcohol binge drinking on brain function and behaviour. To address this issue, we used pregnant C57BL/6 female mice with time-limited access to a 20% v/v alcohol solution as a procedure to model alcohol binge drinking during gestation and lactational periods. Male offspring were behaviourally tested during adolescence (30 days) and adulthood (60 days), and baseline neural metabolic capacity of brain regions sensitive to alcohol effects were also evaluated in adult animals from both groups. Our results show that prenatal and postnatal alcohol exposure caused age-dependent changes in spontaneous locomotor activity, increased anxiety-like behaviour and attenuated alcohol-induced conditioned place preference in adults. Also, significant changes in neural metabolic capacity using cytochrome c oxidase (CCO) quantitative histochemistry were found in the hippocampal dentate gyrus, the mammillary bodies, the ventral tegmental area, the lateral habenula and the central lobules of the cerebellum in adult mice with prenatal and postnatal alcohol exposure. In addition, the analysis of interregional CCO activity correlations in alcohol-exposed adult mice showed disrupted functional brain connectivity involving the limbic, brainstem, and cerebellar regions. Finally, increased neurogenesis was found in the dentate gyrus of the hippocampus of alcohol-exposed offspring, suggesting neuroadaptive effects due to early alcohol exposure. Our results demonstrate that maternal binge-like alcohol drinking causes long-lasting effects on motor and emotional-related behaviours associated with impaired neuronal metabolic capacity and altered functional brain connectivity.
Collapse
Affiliation(s)
- Lídia Cantacorps
- Neurobiology of Behaviour Research Group (GReNeC-NeuroBio), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Héctor González-Pardo
- Laboratory of Neuroscience, Department of Psychology, University of Oviedo, Plaza Feijóo, Oviedo, Spain; Instituto de Neurociencias del Principado de Asturias (INEUROPA), Oviedo, Spain
| | - Jorge L Arias
- Laboratory of Neuroscience, Department of Psychology, University of Oviedo, Plaza Feijóo, Oviedo, Spain; Instituto de Neurociencias del Principado de Asturias (INEUROPA), Oviedo, Spain
| | - Olga Valverde
- Neurobiology of Behaviour Research Group (GReNeC-NeuroBio), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain; Neuroscience Research Program, IMIM-Hospital del Mar Research Institute, Barcelona, Spain.
| | - Nélida M Conejo
- Laboratory of Neuroscience, Department of Psychology, University of Oviedo, Plaza Feijóo, Oviedo, Spain; Instituto de Neurociencias del Principado de Asturias (INEUROPA), Oviedo, Spain
| |
Collapse
|
11
|
Brancato A, Castelli V, Cavallaro A, Lavanco G, Plescia F, Cannizzaro C. Pre-conceptional and Peri-Gestational Maternal Binge Alcohol Drinking Produces Inheritance of Mood Disturbances and Alcohol Vulnerability in the Adolescent Offspring. Front Psychiatry 2018; 9:150. [PMID: 29743872 PMCID: PMC5930268 DOI: 10.3389/fpsyt.2018.00150] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 04/04/2018] [Indexed: 12/28/2022] Open
Abstract
Although binge drinking is on the rise in women of reproductive age and during pregnancy, the consequences in the offspring, in particular the inheritance of alcohol-related mood disturbances and alcohol abuse vulnerability, are still poorly investigated. In this study, we modeled both Habitual- and Binge Alcohol Drinking (HAD and BAD) in female rats by employing a two-bottle choice paradigm, with 20% alcohol and water. The exposure started 12 weeks before pregnancy and continued during gestation and lactation. The consequences induced by the two alcohol drinking patterns in female rats were assessed before conception in terms of behavioral reactivity, anxiety- and depressive-like behavior. Afterwards, from adolescence to young-adulthood, male offspring was assessed for behavioral phenotype and alcohol abuse vulnerability. At pre-conceptional time BAD female rats showed higher mean alcohol intake and preference than HAD group; differences in drinking trajectories were attenuated during pregnancy and lactation. Pre-conceptional BAD induced a prevalent depressive/anhedonic-like behavior in female rats, rather than an increase in anxiety-like behavior, as observed in HAD rats. In the adolescent offspring, peri-gestational BAD did not affect behavioral reactivity in the open field and anxiety-like behavior in the elevated plus maze. Rather, BAD dams offspring displayed higher despair-behavior and lower social interaction with respect to control- and HAD dams progeny. Notably, only binge drinking exposure increased offspring vulnerability to alcohol abuse and relapse following forced abstinence. This is the first report showing that binge-like alcohol consumption from pre-conceptional until weaning induces relevant consequences in the affective phenotype of both the mothers and the offspring, and that such effects include heightened alcohol abuse vulnerability in the offspring. These findings highlight the need for more incisive public education campaigns about detrimental consequences of peri-gestational alcohol exposure.
Collapse
Affiliation(s)
- Anna Brancato
- Department of Sciences for Health Promotion and Mother and Child Care "Giuseppe D'Alessandro", University of Palermo, Palermo, Italy
| | - Valentina Castelli
- Department of Sciences for Health Promotion and Mother and Child Care "Giuseppe D'Alessandro", University of Palermo, Palermo, Italy
| | - Angela Cavallaro
- Department of Sciences for Health Promotion and Mother and Child Care "Giuseppe D'Alessandro", University of Palermo, Palermo, Italy
| | - Gianluca Lavanco
- Department of Sciences for Health Promotion and Mother and Child Care "Giuseppe D'Alessandro", University of Palermo, Palermo, Italy
| | - Fulvio Plescia
- Department of Sciences for Health Promotion and Mother and Child Care "Giuseppe D'Alessandro", University of Palermo, Palermo, Italy
| | - Carla Cannizzaro
- Department of Sciences for Health Promotion and Mother and Child Care "Giuseppe D'Alessandro", University of Palermo, Palermo, Italy
| |
Collapse
|
12
|
Rouzer SK, Cole JM, Johnson JM, Varlinskaya EI, Diaz MR. Moderate Maternal Alcohol Exposure on Gestational Day 12 Impacts Anxiety-Like Behavior in Offspring. Front Behav Neurosci 2017; 11:183. [PMID: 29033803 PMCID: PMC5626811 DOI: 10.3389/fnbeh.2017.00183] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 09/14/2017] [Indexed: 12/29/2022] Open
Abstract
Among the numerous consequences of prenatal alcohol exposure (PAE) is an increase in anxiety-like behavior that can prove debilitating to daily functioning. A significant body of literature has linked gestational day 12 (G12) heavy ethanol exposure with social anxiety, evident in adolescent males and females. However, the association between non-social anxiety-like behavior and moderate alcohol exposure, a more common pattern of drinking in pregnant women, is yet unidentified. To model moderate PAE (mPAE), we exposed pregnant Sprague-Dawley rats to either room air or vaporized ethanol for 6 h on G12. Adolescent offspring were then tested on postnatal days (P) 41-47 in one of the following four anxiety assays: novelty-induced hypophagia (NIH), elevated plus maze (EPM), light-dark box (LDB) and open-field (OF). Our findings revealed significant increases in measures of anxiety-like behavior in male PAE offspring in the NIH, LDB and OF, with no differences observed in females on any test. Additionally, male offspring who demonstrated heightened anxiety-like behavior as adolescents demonstrated decreased anxiety-like behavior in adulthood, as measured by a marble-burying test (MBT), while females continued to be unaffected in adulthood. These results suggest that mPAE leads to dynamic changes in anxiety-like behavior exclusively in male offspring.
Collapse
Affiliation(s)
- Siara K Rouzer
- Department of Psychology, Center for Development and Behavioral Neuroscience, Developmental Exposure Alcohol Research Center, Binghamton University, Binghamton, NY, United States
| | - Jesse M Cole
- Department of Psychology, Center for Development and Behavioral Neuroscience, Developmental Exposure Alcohol Research Center, Binghamton University, Binghamton, NY, United States
| | - Julia M Johnson
- Department of Psychology, Center for Development and Behavioral Neuroscience, Developmental Exposure Alcohol Research Center, Binghamton University, Binghamton, NY, United States
| | - Elena I Varlinskaya
- Department of Psychology, Center for Development and Behavioral Neuroscience, Developmental Exposure Alcohol Research Center, Binghamton University, Binghamton, NY, United States
| | - Marvin R Diaz
- Department of Psychology, Center for Development and Behavioral Neuroscience, Developmental Exposure Alcohol Research Center, Binghamton University, Binghamton, NY, United States
| |
Collapse
|
13
|
Cantacorps L, Alfonso-Loeches S, Moscoso-Castro M, Cuitavi J, Gracia-Rubio I, López-Arnau R, Escubedo E, Guerri C, Valverde O. Maternal alcohol binge drinking induces persistent neuroinflammation associated with myelin damage and behavioural dysfunctions in offspring mice. Neuropharmacology 2017; 123:368-384. [DOI: 10.1016/j.neuropharm.2017.05.034] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 05/30/2017] [Accepted: 05/31/2017] [Indexed: 01/08/2023]
|
14
|
Coll TA, Chaufan G, Pérez-Tito L, Ventureira MR, Sobarzo CMA, Ríos de Molina MDC, Cebral E. Oxidative stress and cellular and tissue damage in organogenic outbred mouse embryos after moderate perigestational alcohol intake. Mol Reprod Dev 2017; 84:1086-1099. [DOI: 10.1002/mrd.22865] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 07/08/2017] [Indexed: 01/21/2023]
Affiliation(s)
- Tamara A. Coll
- Universidad de Buenos Aires; Facultad de Ciencias Exactas y Naturales; Ciudad Autonoma de Buenos Aires Buenos Aires Argentina
- CONICET-Universidad de Buenos Aires; Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE); Ciudad Autonoma de Buenos Aires Buenos Aires Argentina
| | - Gabriela Chaufan
- Universidad de Buenos Aires; Facultad de Ciencias Exactas y Naturales; Ciudad Autonoma de Buenos Aires Buenos Aires Argentina
- CONICET-Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN); Departamento de Química Biológica; Ciudad Autonoma de Buenos Aires Buenos Aires Argentina
| | - Leticia Pérez-Tito
- Universidad de Buenos Aires; Facultad de Ciencias Exactas y Naturales; Ciudad Autonoma de Buenos Aires Buenos Aires Argentina
- CONICET-Universidad de Buenos Aires; Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE); Ciudad Autonoma de Buenos Aires Buenos Aires Argentina
| | - Martín R. Ventureira
- Universidad de Buenos Aires; Facultad de Ciencias Exactas y Naturales; Ciudad Autonoma de Buenos Aires Buenos Aires Argentina
- CONICET-Universidad de Buenos Aires; Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA-CONICET); Ciudad Autonoma de Buenos Aires Buenos Aires Argentina
| | - Cristian M. A. Sobarzo
- Universidad de Buenos Aires, Facultad de Medicina, CONICET- Universidad de Buenos Aires; Instituto de Investigaciones Biomédicas (INBIOMED); Ciudad Autonoma de Buenos Aires Buenos Aires Argentina
| | - María del Carmen Ríos de Molina
- Universidad de Buenos Aires; Facultad de Ciencias Exactas y Naturales; Ciudad Autonoma de Buenos Aires Buenos Aires Argentina
- CONICET-Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN); Departamento de Química Biológica; Ciudad Autonoma de Buenos Aires Buenos Aires Argentina
| | - Elisa Cebral
- Universidad de Buenos Aires; Facultad de Ciencias Exactas y Naturales; Ciudad Autonoma de Buenos Aires Buenos Aires Argentina
- CONICET-Universidad de Buenos Aires; Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA-CONICET); Ciudad Autonoma de Buenos Aires Buenos Aires Argentina
| |
Collapse
|
15
|
Bell RL, Hauser SR, Liang T, Sari Y, Maldonado-Devincci A, Rodd ZA. Rat animal models for screening medications to treat alcohol use disorders. Neuropharmacology 2017; 122:201-243. [PMID: 28215999 PMCID: PMC5659204 DOI: 10.1016/j.neuropharm.2017.02.004] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2017] [Revised: 02/02/2017] [Accepted: 02/05/2017] [Indexed: 01/21/2023]
Abstract
The purpose of this review is to present animal research models that can be used to screen and/or repurpose medications for the treatment of alcohol abuse and dependence. The focus will be on rats and in particular selectively bred rats. Brief introductions discuss various aspects of the clinical picture, which provide characteristics of individuals with alcohol use disorders (AUDs) to model in animals. Following this, multiple selectively bred rat lines will be described and evaluated in the context of animal models used to screen medications to treat AUDs. Next, common behavioral tests for drug efficacy will be discussed particularly as they relate to stages in the addiction cycle. Tables highlighting studies that have tested the effects of compounds using the respective techniques are included. Wherever possible the Tables are organized chronologically in ascending order to describe changes in the focus of research on AUDs over time. In general, high ethanol-consuming selectively bred rats have been used to test a wide range of compounds. Older studies usually followed neurobiological findings in the selected lines that supported an association with a propensity for high ethanol intake. Most of these tests evaluated the compound's effects on the maintenance of ethanol drinking. Very few compounds have been tested during ethanol-seeking and/or relapse and fewer still have assessed their effects during the acquisition of AUDs. Overall, while a substantial number of neurotransmitter and neuromodulatory system targets have been assessed; the roles of sex- and age-of-animal, as well as the acquisition of AUDs, ethanol-seeking and relapse continue to be factors and behaviors needing further study. This article is part of the Special Issue entitled "Alcoholism".
Collapse
Affiliation(s)
- Richard L Bell
- Indiana University School of Medicine, Department of Psychiatry, Indianapolis, IN 46202, USA.
| | - Sheketha R Hauser
- Indiana University School of Medicine, Department of Psychiatry, Indianapolis, IN 46202, USA
| | - Tiebing Liang
- Indiana University School of Medicine, Department of Gastroenterology, Indianapolis, IN 46202, USA
| | - Youssef Sari
- University of Toledo, Department of Pharmacology, Toledo, OH 43614, USA
| | | | - Zachary A Rodd
- Indiana University School of Medicine, Department of Psychiatry, Indianapolis, IN 46202, USA
| |
Collapse
|
16
|
Developmental and behavioral consequences of early life maternal separation stress in a mouse model of fetal alcohol spectrum disorder. Behav Brain Res 2016; 308:94-103. [DOI: 10.1016/j.bbr.2016.04.031] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 04/12/2016] [Accepted: 04/16/2016] [Indexed: 02/07/2023]
|
17
|
Chi P, Aras R, Martin K, Favero C. Using Swiss Webster mice to model Fetal Alcohol Spectrum Disorders (FASD): An analysis of multilevel time-to-event data through mixed-effects Cox proportional hazards models. Behav Brain Res 2016; 305:1-7. [PMID: 26765502 DOI: 10.1016/j.bbr.2015.12.040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 12/01/2015] [Accepted: 12/25/2015] [Indexed: 01/08/2023]
Abstract
Fetal Alcohol Spectrum Disorders (FASD) collectively describes the constellation of effects resulting from human alcohol consumption during pregnancy. Even with public awareness, the incidence of FASD is estimated to be upwards of 5% in the general population and is becoming a global health problem. The physical, cognitive, and behavioral impairments of FASD are recapitulated in animal models. Recently rodent models utilizing voluntary drinking paradigms have been developed that accurately reflect moderate consumption, which makes up the majority of FASD cases. The range in severity of FASD characteristics reflects the frequency, dose, developmental timing, and individual susceptibility to alcohol exposure. As most rodent models of FASD use C57BL/6 mice, there is a need to expand the stocks of mice studied in order to more fully understand the complex neurobiology of this disorder. To that end, we allowed pregnant Swiss Webster mice to voluntarily drink ethanol via the drinking in the dark (DID) paradigm throughout their gestation period. Ethanol exposure did not alter gestational outcomes as determined by no significant differences in maternal weight gain, maternal liquid consumption, litter size, or pup weight at birth or weaning. Despite seemingly normal gestation, ethanol-exposed offspring exhibit significantly altered timing to achieve developmental milestones (surface righting, cliff aversion, and open field traversal), as analyzed through mixed-effects Cox proportional hazards models. These results confirm Swiss Webster mice as a viable option to study the incidence and causes of ethanol-induced neurobehavioral alterations during development. Future studies in our laboratory will investigate the brain regions and molecules responsible for these behavioral changes.
Collapse
Affiliation(s)
- Peter Chi
- Ursinus College, Computer Science Department, 601 E. Main Street, Collegeville, PA 19426-1000, United States.
| | - Radha Aras
- Ursinus College, Biology Department, 601 E. Main Street, Collegeville, PA 19426-1000, United States.
| | - Katie Martin
- Ursinus College, Biology Department, 601 E. Main Street, Collegeville, PA 19426-1000, United States.
| | - Carlita Favero
- Ursinus College, Biology Department, 601 E. Main Street, Collegeville, PA 19426-1000, United States.
| |
Collapse
|
18
|
Baculis BC, Diaz MR, Valenzuela CF. Third trimester-equivalent ethanol exposure increases anxiety-like behavior and glutamatergic transmission in the basolateral amygdala. Pharmacol Biochem Behav 2015; 137:78-85. [PMID: 26284742 DOI: 10.1016/j.pbb.2015.08.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 06/30/2015] [Accepted: 08/12/2015] [Indexed: 10/23/2022]
Abstract
Ethanol consumption during pregnancy produces a wide range of morphological and behavioral alterations known as fetal alcohol spectrum disorder (FASD). Among the behavioral deficits associated with FASD is an increased probability of developing anxiety disorders. Studies with animal models of FASD have demonstrated that ethanol exposure during the equivalent to the 1(st) and 2(nd) trimesters of human pregnancy increases anxiety-like behavior. Here, we examined the impact on this type of behavior of exposure to high doses of ethanol in vapor inhalation chambers during the rat equivalent to the human 3rd trimester of pregnancy (i.e., neonatal period in these animals). We evaluated anxiety-like behavior with the elevated plus maze. Using whole-cell patch-clamp electrophysiological techniques in brain slices, we also characterized glutamatergic and GABAergic synaptic transmission in the basolateral amygdala, a brain region that has been implicated to play a role in emotional behavior. We found that ethanol-exposed adolescent offspring preferred the closed arms over the open arms in the elevated plus maze and displayed lower head dipping activity than controls. Electrophysiological measurements showed an increase in the frequency of spontaneous and miniature excitatory postsynaptic currents in pyramidal neurons from the ethanol group. These findings suggest that high-dose ethanol exposure during the equivalent to the last trimester of human pregnancy can persistently increase excitatory synaptic inputs to principal neurons in the basolateral amygdala, leading to an increase in anxiety-like behaviors.
Collapse
Affiliation(s)
- Brian C Baculis
- Department of Neurosciences, University of New Mexico Health Sciences Center, Albuquerque, NM 87131-0001, USA
| | - Marvin R Diaz
- Department of Neurosciences, University of New Mexico Health Sciences Center, Albuquerque, NM 87131-0001, USA; Department of Psychology, Behavioral Neuroscience Program, Binghamton University - State University of New York, Binghamton, NY 13902-6000, USA
| | - C Fernando Valenzuela
- Department of Neurosciences, University of New Mexico Health Sciences Center, Albuquerque, NM 87131-0001, USA.
| |
Collapse
|
19
|
Kleiber ML, Diehl EJ, Laufer BI, Mantha K, Chokroborty-Hoque A, Alberry B, Singh SM. Long-term genomic and epigenomic dysregulation as a consequence of prenatal alcohol exposure: a model for fetal alcohol spectrum disorders. Front Genet 2014; 5:161. [PMID: 24917881 PMCID: PMC4040446 DOI: 10.3389/fgene.2014.00161] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 05/15/2014] [Indexed: 01/02/2023] Open
Abstract
There is abundant evidence that prenatal alcohol exposure leads to a range of behavioral and cognitive impairments, categorized under the term fetal alcohol spectrum disorders (FASDs). These disorders are pervasive in Western cultures and represent the most common preventable source of neurodevelopmental disabilities. The genetic and epigenetic etiology of these phenotypes, including those factors that may maintain these phenotypes throughout the lifetime of an affected individual, has become a recent topic of investigation. This review integrates recent data that has progressed our understanding FASD as a continuum of molecular events, beginning with cellular stress response and ending with a long-term “footprint” of epigenetic dysregulation across the genome. It reports on data from multiple ethanol-treatment paradigms in mouse models that identify changes in gene expression that occur with respect to neurodevelopmental timing of exposure and ethanol dose. These studies have identified patterns of genomic alteration that are dependent on the biological processes occurring at the time of ethanol exposure. This review also adds to evidence that epigenetic processes such as DNA methylation, histone modifications, and non-coding RNA regulation may underlie long-term changes to gene expression patterns. These may be initiated by ethanol-induced alterations to DNA and histone methylation, particularly in imprinted regions of the genome, affecting transcription which is further fine-tuned by altered microRNA expression. These processes are likely complex, genome-wide, and interrelated. The proposed model suggests a potential for intervention, given that epigenetic changes are malleable and may be altered by postnatal environment. This review accentuates the value of mouse models in deciphering the molecular etiology of FASD, including those processes that may provide a target for the ammelioration of this common yet entirely preventable disorder.
Collapse
Affiliation(s)
- Morgan L Kleiber
- Molecular Genetics Unit, Department of Biology, University of Western Ontario , London, ON, Canada
| | - Eric J Diehl
- Molecular Genetics Unit, Department of Biology, University of Western Ontario , London, ON, Canada
| | - Benjamin I Laufer
- Molecular Genetics Unit, Department of Biology, University of Western Ontario , London, ON, Canada
| | - Katarzyna Mantha
- Molecular Genetics Unit, Department of Biology, University of Western Ontario , London, ON, Canada
| | | | - Bonnie Alberry
- Molecular Genetics Unit, Department of Biology, University of Western Ontario , London, ON, Canada
| | - Shiva M Singh
- Molecular Genetics Unit, Department of Biology, University of Western Ontario , London, ON, Canada
| |
Collapse
|
20
|
Thiele TE, Navarro M. "Drinking in the dark" (DID) procedures: a model of binge-like ethanol drinking in non-dependent mice. Alcohol 2014; 48:235-41. [PMID: 24275142 DOI: 10.1016/j.alcohol.2013.08.005] [Citation(s) in RCA: 188] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Revised: 08/05/2013] [Accepted: 08/05/2013] [Indexed: 12/30/2022]
Abstract
This review provides an overview of an animal model of binge-like ethanol drinking that has come to be called "drinking in the dark" (DID), a procedure that promotes high levels of ethanol drinking and pharmacologically relevant blood ethanol concentrations (BECs) in ethanol-preferring strains of mice. Originally described by Rhodes, Best, Belknap, Finn, and Crabbe (2005), the most common variation of the DID procedure, using singly housed mice, involves replacing the water bottle with a bottle containing 20% ethanol for 2-4 h, beginning 3 h into the dark cycle. Using this procedure, high ethanol drinking strains of mice (e.g., C57BL/6J) typically consume enough ethanol to achieve BECs greater than 100 mg/dL and to exhibit behavioral evidence of intoxication. This limited access procedure takes advantage of the time in the animal's dark cycle in which the levels of ingestive behaviors are high, yet high ethanol intake does not appear to stem from caloric need. Mice have the choice of drinking or avoiding the ethanol solution, eliminating the stressful conditions that are inherent in other models of binge-like ethanol exposure in which ethanol is administered by the experimenter, and in some cases, potentially painful. The DID procedure is a high throughput approach that does not require extensive training or the inclusion of sweet compounds to motivate high levels of ethanol intake. The high throughput nature of the DID procedure makes it useful for rapid screening of pharmacological targets that are protective against binge-like drinking and for identifying strains of mice that exhibit binge-like drinking behavior. Additionally, the simplicity of DID procedures allows for easy integration into other paradigms, such as prenatal ethanol exposure and adolescent ethanol drinking. It is suggested that the DID model is a useful tool for studying the neurobiology and genetics underlying binge-like ethanol drinking, and may be useful for studying the transition to ethanol dependence.
Collapse
Affiliation(s)
- Todd E Thiele
- Department of Psychology, University of North Carolina at Chapel Hill, Davie Hall, CB #3270, Chapel Hill, NC 27599-3270, USA; Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Davie Hall, CB #3270, Chapel Hill, NC 27599-3270, USA.
| | - Montserrat Navarro
- Department of Psychology, University of North Carolina at Chapel Hill, Davie Hall, CB #3270, Chapel Hill, NC 27599-3270, USA
| |
Collapse
|
21
|
Chokroborty-Hoque A, Alberry B, Singh SM. Exploring the complexity of intellectual disability in fetal alcohol spectrum disorders. Front Pediatr 2014; 2:90. [PMID: 25207264 PMCID: PMC4143882 DOI: 10.3389/fped.2014.00090] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 08/11/2014] [Indexed: 01/16/2023] Open
Abstract
Brain development in mammals is long lasting. It begins early during embryonic growth and is finalized in early adulthood. This progression represents a delicate choreography of molecular, cellular, and physiological processes initiated and directed by the fetal genotype in close interaction with environment. Not surprisingly, most aberrations in brain functioning including intellectual disability (ID) are attributed to either gene(s), or environment or the interaction of the two. The ensuing complexity has made the assessment of this choreography, ever challenging. A model to assess this complexity has used a mouse model (C57BL/6J or B6) that is subjected to prenatal alcohol exposure. The resulting pups show learning and memory deficits similar to patients with fetal alcohol spectrum disorder (FASD), which is associated with life-long changes in gene expression. Interestingly, this change in gene expression underlies epigenetic processes including DNA methylation and miRNAs. This paradigm is applicable to ethanol exposure at different developmental times (binge at trimesters 1, 2, and 3 as well as continuous preference drinking (70%) of 10% alcohol by B6 females during pregnancy). The exposure leads to life-long changes in neural epigenetic marks, gene expression, and a variety of defects in neurodevelopment and CNS function. We argue that this cascade may be reversed postnatally via drugs, chemicals, and environment including maternal care. Such conclusions are supported by two sets of results. First, antipsychotic drugs that are used to treat ID including psychosis function via changes in DNA methylation, a major epigenetic mark. Second, post-natal environment may improve (with enriched environments) or worsen (with negative and maternal separation stress) the cognitive ability of pups that were prenatally exposed to ethanol as well as their matched controls. In this review, we will discuss operational epigenetic mechanisms involved in the development of intellectual ability/disability in response to alcohol during prenatal or post-natal development. In doing so, we will explore the potential of epigenetic manipulation in the treatment of FASD and related disorders implicated in ID.
Collapse
Affiliation(s)
| | - Bonnie Alberry
- Molecular Genetics Unit, Department of Biology, University of Western Ontario , London, ON , Canada
| | - Shiva M Singh
- Molecular Genetics Unit, Department of Biology, University of Western Ontario , London, ON , Canada
| |
Collapse
|
22
|
Fate analysis of adult hippocampal progenitors in a murine model of fetal alcohol spectrum disorder (FASD). PLoS One 2013; 8:e73788. [PMID: 24040071 PMCID: PMC3770701 DOI: 10.1371/journal.pone.0073788] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 07/25/2013] [Indexed: 12/04/2022] Open
Abstract
Prenatal alcohol exposure can lead to fetal alcohol spectrum disorder (FASD) and associated behavioral impairments that may be linked to disruptions in adult hippocampal neurogenesis. Social and physical enrichment has been proposed as a potential therapeutic approach toward reversing behavioral deficits associated with FASD and is also a potent stimulator of adult hippocampal neurogenesis. In the present study, we utilized a genetic fate mapping approach in nestin-CreERT2/YFP bitransgenic mice to identify the stage-specific impact of prenatal alcohol exposure on the stepwise maturation of adult hippocampal progenitors. Using a limited alcohol access “drinking-in-the-dark” model of FASD, we confirm previous findings that moderate prenatal alcohol exposure has no effect on adult neurogenesis under standard housing conditions, but abolishes the neurogenic response to enriched environment (EE). Furthermore, we demonstrate that this effect is primarily due to failed EE-mediated survival of postmitotic neurons. Finally, we demonstrate that the neurogenic deficit is associated with impaired spatial pattern recognition, as demonstrated by delayed learning of FASD-EE mice in an A–B contextual discrimination task. These results identify a potential maturational stage-specific mechanism(s) underlying impaired neurogenic function in a preclinical model of FASD, and provide a basis for testing regulatory pathways in this model through conditional and inducible manipulation of gene expression in the adult hippocampal progenitor population.
Collapse
|
23
|
Cox BR, Olney JJ, Lowery-Gionta EG, Sprow GM, Rinker JA, Navarro M, Kash TL, Thiele TE. Repeated cycles of binge-like ethanol (EtOH)-drinking in male C57BL/6J mice augments subsequent voluntary EtOH intake but not other dependence-like phenotypes. Alcohol Clin Exp Res 2013; 37:1688-95. [PMID: 23647551 DOI: 10.1111/acer.12145] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Accepted: 02/27/2013] [Indexed: 11/29/2022]
Abstract
BACKGROUND Recently, procedures have been developed to model specific facets of human alcohol abuse disorders, including those that model excessive binge-like drinking (i.e., "drinking-in-the-dark," or DID procedures) and excessive dependence-like drinking (i.e., intermittent ethanol [EtOH] vapor exposure). Similar neuropeptide systems modulate excessive EtOH drinking stemming from both procedures, raising the possibility that both paradigms are actually modeling the same phenotypes and triggering the same central neuroplasticity. Therefore, the goal of this present project was to study the effects of a history of binge-like EtOH drinking, using DID procedures, on phenotypes that have previously been described with procedures to model dependence-like drinking. METHODS Male C57BL/6J mice first experienced 0 to 10 four-day binge-like drinking episodes (3 days of rest between episodes). Beginning 24 hours after the final binge-like drinking session, mice were tested for anxiety-like behaviors (with elevated plus maze [EPM] and open-field locomotor activity tests), ataxia with the rotarod test, and sensitivity to handling-induced convulsions (HICs). One week later, mice began a 40-day 2-bottle (water vs. EtOH) voluntary consumption test with concentration ranging from 10 to 20% (v/v) EtOH. RESULTS A prior history of binge-like EtOH drinking significantly increased subsequent voluntary EtOH consumption and preference, effects most robust in groups that initially experienced 6 or 10 binge-like drinking episodes and completely absent in mice that experienced 1 binge-like drinking episode. Conversely, a history of binge-like EtOH drinking did not influence anxiety-like behaviors, ataxia, or HICs. CONCLUSIONS Excessive EtOH drinking stemming from DID procedures does not initially induce phenotypes consistent with a dependence-like state. However, the subsequent increases in voluntary EtOH consumption and preference that become more robust following repeated episodes of binge-like EtOH drinking may reflect the early stages of EtOH dependence, suggesting that DID procedures may be ideal for studying the transition to EtOH dependence.
Collapse
Affiliation(s)
- Benjamin R Cox
- Department of Psychology , University of North Carolina, Chapel Hill, North Carolina
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Laufer BI, Mantha K, Kleiber ML, Diehl EJ, Addison SMF, Singh SM. Long-lasting alterations to DNA methylation and ncRNAs could underlie the effects of fetal alcohol exposure in mice. Dis Model Mech 2013; 6:977-92. [PMID: 23580197 PMCID: PMC3701217 DOI: 10.1242/dmm.010975] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Fetal alcohol spectrum disorders (FASDs) are characterized by life-long changes in gene expression, neurodevelopment and behavior. What mechanisms initiate and maintain these changes are not known, but current research suggests a role for alcohol-induced epigenetic changes. In this study we assessed alterations to adult mouse brain tissue by assaying DNA cytosine methylation and small noncoding RNA (ncRNA) expression, specifically the microRNA (miRNA) and small nucleolar RNA (snoRNA) subtypes. We found long-lasting alterations in DNA methylation as a result of fetal alcohol exposure, specifically in the imprinted regions of the genome harboring ncRNAs and sequences interacting with regulatory proteins. A large number of major nodes from the identified networks, such as Pten signaling, contained transcriptional repressor CTCF-binding sites in their promoters, illustrating the functional consequences of alcohol-induced changes to DNA methylation. Next, we assessed ncRNA expression using two independent array platforms and quantitative PCR. The results identified 34 genes that are targeted by the deregulated miRNAs. Of these, four (Pten, Nmnat1, Slitrk2 and Otx2) were viewed as being crucial in the context of FASDs given their roles in the brain. Furthermore, ∼20% of the altered ncRNAs mapped to three imprinted regions (Snrpn-Ube3a, Dlk1-Dio3 and Sfmbt2) that showed differential methylation and have been previously implicated in neurodevelopmental disorders. The findings of this study help to expand on the mechanisms behind the long-lasting changes in the brain transcriptome of FASD individuals. The observed changes could contribute to the initiation and maintenance of the long-lasting effect of alcohol.
Collapse
Affiliation(s)
- Benjamin I Laufer
- Molecular Genetics Unit, Department of Biology, Western University, London, Ontario, N6A 5B7, Canada
| | | | | | | | | | | |
Collapse
|
25
|
Kleiber ML, Laufer BI, Wright E, Diehl EJ, Singh SM. Long-term alterations to the brain transcriptome in a maternal voluntary consumption model of fetal alcohol spectrum disorders. Brain Res 2012; 1458:18-33. [PMID: 22560501 DOI: 10.1016/j.brainres.2012.04.016] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Revised: 03/29/2012] [Accepted: 04/09/2012] [Indexed: 12/16/2022]
Abstract
Many women continue to consume low to moderate quantities of alcohol during pregnancy, which can result in the variable neurobehavioural effects in the absence of physiological abnormalities that characterize fetal alcohol spectrum disorders (FASD). Previously, we reported that a mouse model for FASD based on voluntary maternal ethanol consumption throughout gestation resulted in offspring that showed mild developmental delay, anxiety-related traits, and deficits in spatial learning. Here, we extend this model by evaluating the gene expression changes that occur in the adult brain of C57BL/6J mice prenatally exposed to ethanol via maternal preference drinking. The results of two independent expression array experiments indicate that ethanol induces subtle but consistent changes to global gene expression. Gene enrichment analysis showed over-represented gene ontology classifications of cellular, embryonic, and nervous system development. Molecular network analysis supported these classifications, with significant networks related to cellular and tissue development, free radical scavenging, and small molecule metabolism. Further, a number of genes identified have previously been implicated in FASD-relevant neurobehavioural phenotypes such as cognitive function (Ache, Bcl2, Cul4b, Dkc1, Ebp, Lcat, Nsdh1, Sstr3), anxiety (Bcl2), attention deficit hyperactivity disorder (Nsdh1), and mood disorders (Bcl2, Otx2, Sstr3). The results suggest a complex residual "footprint" of neurodevelopmental ethanol exposure that may provide a new perspective for identifying mechanisms that underlie the life-long persistence of FASD-related cognitive and behavioural alterations, including potential targets for treatment.
Collapse
Affiliation(s)
- Morgan L Kleiber
- Molecular Genetics Unit, Department of Biology, University of Western Ontario, London, Ontario, Canada N6A 5B7
| | | | | | | | | |
Collapse
|
26
|
Foltran F, Gregori D, Franchin L, Verduci E, Giovannini M. Effect of alcohol consumption in prenatal life, childhood, and adolescence on child development. Nutr Rev 2012; 69:642-59. [PMID: 22029831 DOI: 10.1111/j.1753-4887.2011.00417.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The effects of alcohol consumption in adults are well described in the literature, while knowledge about the effects of alcohol consumption in children is more limited and less systematic. The present review shows how alcohol consumption may negatively influence the neurobiological and neurobehavioral development of humans. Three different periods of life have been considered: the prenatal term, childhood, and adolescence. For each period, evidence of the short-term and long-term effects of alcohol consumption, including neurodevelopmental effects and associations with subsequent alcohol abuse or dependence, is presented.
Collapse
Affiliation(s)
- Francesca Foltran
- Laboratories of Epidemiological Methods and Biostatistics, Department of Environmental Medicine and Public Health, University of Padova, Padova, Italy
| | | | | | | | | |
Collapse
|
27
|
Sprow GM, Thiele TE. The neurobiology of binge-like ethanol drinking: evidence from rodent models. Physiol Behav 2012; 106:325-31. [PMID: 22245775 DOI: 10.1016/j.physbeh.2011.12.026] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Revised: 12/22/2011] [Accepted: 12/30/2011] [Indexed: 10/14/2022]
Abstract
Binge alcohol (ethanol) drinking is a destructive pattern of ethanol consumption that may precipitate ethanol dependence-a chronic, debilitating, and prevalent health problem. While an abundance of research has focused on the neurochemical underpinnings of ethanol dependence, relatively little is known about the mechanisms underlying the heavy consumption characteristic of binge ethanol drinking. Recently, a simple preclinical model termed "drinking in the dark" (DID) was developed to examine binge-like ethanol consumption in a rodent population. This assay capitalizes on the predisposition of C57BL/6J mice to voluntarily consume substantial quantities of a high concentration (20% v/v) ethanol solution, resulting in pharmacologically relevant blood ethanol concentrations (BECs). This review provides a comprehensive overview of recent literature utilizing this model to investigate the neuromodulatory systems that may influence binge ethanol drinking. Studies examining the glutamatergic and opioidergic systems not only provide evidence for these systems in the modulation of binge-like ethanol consumption, but also suggest this preclinical model has predictive validity and may be an appropriate tool for screening novel pharmacological compounds aimed at treating binge ethanol drinking in the human population. Additionally, this review presents evidence for the involvement of the GABAergic, dopaminergic, nicotinic, and endocannabinoid systems in modulating binge-like ethanol consumption. Finally, recent evidence shows that corticotropin-releasing factor (CRF), agouti-related protein (AgRP), neuropeptide Y (NPY), and ghrelin are also implicated as impacting this pattern of ethanol consumption.
Collapse
Affiliation(s)
- Gretchen M Sprow
- Department of Psychology, University of North Carolina, Chapel Hill, NC 27599-3270, USA
| | | |
Collapse
|
28
|
Maternal voluntary drinking in C57BL/6J mice: Advancing a model for fetal alcohol spectrum disorders. Behav Brain Res 2011; 223:376-87. [DOI: 10.1016/j.bbr.2011.05.005] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Revised: 05/03/2011] [Accepted: 05/06/2011] [Indexed: 01/25/2023]
|
29
|
Brady ML, Allan AM, Caldwell KK. A limited access mouse model of prenatal alcohol exposure that produces long-lasting deficits in hippocampal-dependent learning and memory. Alcohol Clin Exp Res 2011; 36:457-66. [PMID: 21933200 DOI: 10.1111/j.1530-0277.2011.01644.x] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
BACKGROUND It has been estimated that approximately 12% of women consume alcohol at some time during their pregnancy, and as many as 5% of children born in the United States are impacted by prenatal alcohol exposure (PAE). The range of physical, behavioral, emotional, and social dysfunctions that are associated with PAE are collectively termed fetal alcohol spectrum disorder (FASD). METHODS Using a saccharin-sweetened ethanol solution, we developed a limited access model of PAE. C57BL/6J mice were provided access to a solution of either 10% (w/v) ethanol and 0.066% (w/v) saccharin or 0.066% (w/v) saccharin (control) for 4 h/d. After establishing consistent drinking, mice were mated and continued drinking during gestation. Following parturition, solutions were decreased to 0% in a stepwise fashion over a period of 6 days. Characterization of the model included measurements of maternal consumption patterns, blood ethanol levels, litter size, pup weight, maternal care, and the effects of PAE on fear-conditioned and spatial learning, and locomotor activity. RESULTS Mothers had mean daily ethanol intake of 7.17 ± 0.17 g ethanol/kg body weight per day, with average blood ethanol concentrations of 68.5 ± 9.2 mg/dl after 2 hours of drinking and 88.3 ± 11.5 mg/dl after 4 hours of drinking. Food and water consumption, maternal weight gain, litter size, pup weight, pup retrieval times, and time on nest did not differ between the alcohol-exposed and control animals. Compared with control offspring, mice that were exposed to ethanol prenatally displayed no difference in spontaneous locomotor activity but demonstrated learning deficits in 3 hippocampal-dependent tasks: delay fear conditioning, trace fear conditioning, and the delay nonmatch to place radial-arm maze task. CONCLUSIONS These results indicate that this model appropriately mimics the human condition of PAE and will be a useful tool in studying the learning deficits seen in FASD.
Collapse
Affiliation(s)
- Megan L Brady
- Department of Neurosciences, School of Medicine, University of New Mexico, Albuquerque, New Mexico 87131, USA
| | | | | |
Collapse
|
30
|
Coll TA, Tito LP, Sobarzo CMA, Cebral E. Embryo developmental disruption during organogenesis produced by CF-1 murine periconceptional alcohol consumption. ACTA ACUST UNITED AC 2011; 92:560-74. [PMID: 21922637 DOI: 10.1002/bdrb.20329] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2011] [Accepted: 07/11/2011] [Indexed: 01/09/2023]
Abstract
The aim was to study the control females (CF)-1 mouse embryo differentiation, growth, morphology on embryonic E- and N-cadherin expression at midgestation after periconceptional moderate alcohol ingestion. Adult female mice were exposed to 10% ethanol in drinking water for 17 days previous to and up to day 10 of gestation (ethanol-exposed females, EF) and were compared with nonexposed CF. EF presented reduced quantities of E10 to E10.5 embryos, greater percentage of embryos at stages less than E7.5, reduced implantation site numbers/female, and increased resorptions compared with CF. EF-embryo growth was significantly affected as evidenced by reduced cephalic and body sizes of E10 and E10.5 embryos (scanning electron microscopy) and decreased protein content of E10.5 embryos vs. CF embryos. A significantly higher percentage of EF-E10-10.5 embryos presented abnormal neural tube (NT) closure vs. the percentage of CF. E10 embryos from EF presented elevated tissue disorganization, pyknosis and nuclear condensation in somites, mesenchymal and neuroepithelial tissue. Immunohistochemical E- and N-cadherin distribution patterns were similar in organic structures of E10 embryos between groups. However, western blot revealed that E- and N-cadherin expression levels were significantly increased in EF-derived embryos vs. controls. Perigestational ethanol consumption by CF-1 mice induced significant damage in the organogenic embryogenesis by producing delayed differentiation, growth deficiencies, and increasing the frequency of NT defects. Ethanol exposure may disrupt cell-cell adhesion leading to upregulation of E- and N-cadherin expression suggesting that deregulation of cell adhesion molecules could be involved in the disruption of embryo development at organogenesis in CF-1 mouse.
Collapse
Affiliation(s)
- Tamara A Coll
- Laboratorio de Reproducción y Fisiopatología Materno-Embrionaria, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-CONICET), Departamento de Biodiversidad y Biología Experimental (DBBE), Universidad de Buenos Aires (UBA), Argentina
| | | | | | | |
Collapse
|
31
|
Bell RL, Rodd ZA, Smith RJ, Toalston JE, Franklin KM, McBride WJ. Modeling binge-like ethanol drinking by peri-adolescent and adult P rats. Pharmacol Biochem Behav 2011; 100:90-7. [PMID: 21824488 DOI: 10.1016/j.pbb.2011.07.017] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Revised: 07/18/2011] [Accepted: 07/23/2011] [Indexed: 01/27/2023]
Abstract
Alcohol binge-drinking, especially among adolescents and young adults, is a serious public health concern. The present study examined ethanol binge-like drinking by peri-adolescent [postnatal days (PNDs 30-72)] and adult (PNDs 90-132) alcohol-preferring (P) rats with a drinking-in-the-dark-multiple-scheduled-access (DID-MSA) procedure used by our laboratory. Male and female P rats were provided concurrent access to 15% and 30% ethanol for three 1-h sessions across the dark cycle 5 days/week. For the 1st week, adolescent and adult female P rats consumed 3.4 and 1.6g/kg of ethanol, respectively, during the 1st hour of access, whereas for male rats the values were 3.5 and 1.1g/kg of ethanol, respectively. Adult intakes increased to ~2.0 g/kg/h and adolescent intakes decreased to ~2.5 g/kg/h across the 6 weeks of ethanol access. The daily ethanol intake of adult DID-MSA rats approximated or modestly exceeded that seen in continuous access (CA) rats or the selection criterion for P rats (≥5 g/kg/day). However, in general, the daily ethanol intake of DID-MSA peri-adolescent rats significantly exceeded that of their CA counterparts. BELs were assessed at 15-min intervals across the 3rd hour of access during the 4th week. Ethanol intake was 1.7 g/kg vs. 2.7 g/kg and BELs were 57 mg% vs. 100mg% at 15- and 60-min, respectively. Intoxication induced by DID-MSA in female P rats was assessed during the 1st vs. 4th week of ethanol access. Level of impairment did not differ between the 2 weeks (106 vs. 97 s latency to fall, 120 s criterion) and was significant (vs. naïve controls) only during the 4th week. Overall, these findings support the use of the DID-MSA procedure in rats, and underscore the presence of age- and sex-dependent effects mediating ethanol binge-like drinking in P rats.
Collapse
Affiliation(s)
- Richard L Bell
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN 46202-4887, USA.
| | | | | | | | | | | |
Collapse
|
32
|
Linsenbardt DN, Moore EM, Griffin KD, Gigante ED, Boehm SL. Tolerance to ethanol's ataxic effects and alterations in ethanol-induced locomotion following repeated binge-like ethanol intake using the DID model. Alcohol Clin Exp Res 2011; 35:1246-55. [PMID: 21410484 PMCID: PMC3117122 DOI: 10.1111/j.1530-0277.2011.01459.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
BACKGROUND Tolerance to the behavioral and subjective effects of alcohol (ethanol) is thought to be a major predictive factor for the development of alcoholism. Evidence from rodent models has supported this view with those animals most likely to develop tolerance generally drinking and preferring ethanol more so than those resistant to it. Despite this evidence, very little is known about the behavioral relationships between ethanol-induced tolerance and consumption. The goal of this study was to evaluate the development of tolerance to the ataxic effects of ethanol using a mouse model of binge-like intake dubbed "Drinking in the Dark" (DID; Physiol Behav 2005, 84:53-63). We hypothesized that mice would become tolerant to the ataxic effects of ethanol as this behavior is known to be altered at the blood ethanol concentrations reached using this model (≥80 mg/dl). METHODS To evaluate this, we gave daily DID ethanol or water access sessions to male C57BL/6J (B6) mice and monitored ataxia (and in some cases locomotion) at various time points. RESULTS In general, mice given 14 consecutive days of ethanol access displayed tolerance to the ataxic effects of ethanol compared to water-drinking controls. These effects were coupled with alterations in locomotor behavior and in some cases differences in ethanol pharmacokinetics. CONCLUSIONS Thus, we can conclude that tolerance to the behavioral effects of binge-like ethanol intake might play a key role in the daily maintenance of this behavior and that these effects may be evidence of important neuroadaptations involved in the development of alcoholism.
Collapse
Affiliation(s)
- David N Linsenbardt
- Psychobiology of Addictions, Department of Psychology, Indiana University-Purdue University Indianapolis, 402 N Blackford St., Indianapolis, IN 46202, USA.
| | | | | | | | | |
Collapse
|
33
|
Abstract
Binge drinking is prevalent and has serious biomedical consequences. In children, adolescents, and young adults, it is a prominent risk factor for later development of alcohol-use disorders. Many preclinical models have been employed to study the genetic risks for and biomedical consequences of alcohol drinking. However, these models historically did not result in blood-alcohol concentrations (BACs) exceeding 80 mg%; this relatively modest level is the threshold that currently defines a binge session, according to the NIAAA and CDC. Nevertheless, in alcohol-dependent rodents, binge drinking has been well documented. Key neurobiological substrates localized to brain reward and stress systems have been identified. Studies of newer models of binge drinking without dependence are reviewed here. In these models, rodents, non-human primates, and flies will drink enough to reach high BACs. They often display observable signs of intoxication. The neurobiological consequences of these episodes of binge drinking without dependence are reviewed, and preliminary evidence for roles for GABA, glutamate, opioid peptides, and corticotropin releasing factor are discussed, as is the need for more work to identify the antecedents and consequences of binge drinking in both animal models and humans.
Collapse
Affiliation(s)
- John C Crabbe
- Portland Alcohol Research Center, Department of Behavioral Neuroscience, Oregon Health & Science University and VA Medical Center, Portland, Oregon 97239, USA.
| | | | | |
Collapse
|
34
|
Cacace S, Plescia F, La Barbera M, Cannizzaro C. Evaluation of chronic alcohol self-administration by a 3-bottle choice paradigm in adult male rats. Effects on behavioural reactivity, spatial learning and reference memory. Behav Brain Res 2011; 219:213-20. [DOI: 10.1016/j.bbr.2011.01.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Revised: 12/30/2010] [Accepted: 01/10/2011] [Indexed: 11/30/2022]
|
35
|
Sepulveda B, Carcea I, Zhao B, Salton SR, Benson DL. L1 cell adhesion molecule promotes resistance to alcohol-induced silencing of growth cone responses to guidance cues. Neuroscience 2011; 180:30-40. [PMID: 21335065 PMCID: PMC3070798 DOI: 10.1016/j.neuroscience.2011.02.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Revised: 01/20/2011] [Accepted: 02/08/2011] [Indexed: 01/05/2023]
Abstract
Alcohol exposure in utero is a common cause of mental retardation, but the targets and mechanisms of action are poorly understood. Several lines of data point toward alterations in cortical connectivity, suggesting that axon guidance may be vulnerable to alcohol exposure. To test this, we asked whether ethanol directly affects cortical axonal growth cone responses to guidance cues. We find that even low concentrations of ethanol (12.5 mM; 57.2 mg/dl) commonly observed in social drinking prevent growth cone responses to three mechanistically independent guidance cues, Semaphorin3A, Lysophosphatidic Acid, and Netrin-1. However, this effect is highly dependent on substrate; axonal growth cones extending on an L1 cell adhesion molecule (L1CAM) substrate retain responsiveness to cues following exposure to ethanol, while those growing on poly-L-lysine or N-cadherin do not. The effects of ethanol on axon extension are, by contrast, quite modest. Quantitative assessments of the effects of ethanol on the surface distribution of L1CAM in growth cones suggest that L1CAM homophilic interactions may be particularly relevant for retaining growth cone responsiveness following ethanol exposure. Together, our findings indicate that ethanol can directly and generally alter growth cone responses to guidance cues, that a substrate of L1CAM effectively antagonizes this effect, and that cortical axonal growth cone vulnerability to ethanol may be predicted in part based on the environment through which they are extending.
Collapse
Affiliation(s)
- Bryan Sepulveda
- Fishberg Department of Neuroscience, Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, NY 10029
| | - Ioana Carcea
- Fishberg Department of Neuroscience, Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, NY 10029
| | - Becky Zhao
- Fishberg Department of Neuroscience, Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, NY 10029
| | - Stephen R.J. Salton
- Fishberg Department of Neuroscience, Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, NY 10029
- Brookdale Department of Geriatrics and Palliative Medicine, Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, NY 10029
| | - Deanna L. Benson
- Fishberg Department of Neuroscience, Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, NY 10029
| |
Collapse
|
36
|
D'Souza El-Guindy NB, Kovacs EJ, De Witte P, Spies C, Littleton JM, de Villiers WJS, Lott AJ, Plackett TP, Lanzke N, Meadows GG. Laboratory models available to study alcohol-induced organ damage and immune variations: choosing the appropriate model. Alcohol Clin Exp Res 2010; 34:1489-511. [PMID: 20586763 PMCID: PMC2929290 DOI: 10.1111/j.1530-0277.2010.01234.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The morbidity and mortality resulting from alcohol-related diseases globally impose a substantive cost to society. To minimize the financial burden on society and improve the quality of life for individuals suffering from the ill effects of alcohol abuse, substantial research in the alcohol field is focused on understanding the mechanisms by which alcohol-related diseases develop and progress. Since ethical concerns and inherent difficulties limit the amount of alcohol abuse research that can be performed in humans, most studies are performed in laboratory animals. This article summarizes the various laboratory models of alcohol abuse that are currently available and are used to study the mechanisms by which alcohol abuse induces organ damage and immune defects. The strengths and weaknesses of each of the models are discussed. Integrated into the review are the presentations that were made in the symposium "Methods of Ethanol Application in Alcohol Model-How Long is Long Enough" at the joint 2008 Research Society on Alcoholism (RSA) and International Society for Biomedical Research on Alcoholism (ISBRA) meeting, Washington, DC, emphasizing the importance not only of selecting the most appropriate laboratory alcohol model to address the specific goals of a project but also of ensuring that the findings can be extrapolated to alcohol-induced diseases in humans.
Collapse
Affiliation(s)
- Nympha B D'Souza El-Guindy
- Department of Internal Medicine, Division of Digestive Diseases, University of Kentucky and Veterans Affairs Medical Center, Lexington, Kentucky, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Crabbe JC, Phillips TJ, Belknap JK. The complexity of alcohol drinking: studies in rodent genetic models. Behav Genet 2010; 40:737-50. [PMID: 20552264 DOI: 10.1007/s10519-010-9371-z] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Accepted: 05/22/2010] [Indexed: 02/01/2023]
Abstract
Risk for alcohol dependence in humans has substantial genetic contributions. Successful rodent models generally attempt to address only selected features of the human diagnosis. Most such models target the phenotype of oral administration of alcohol solutions, usually consumption of or preference for an alcohol solution versus water. Data from rats and mice for more than 50 years have shown genetic influences on preference drinking and related phenotypes. This paper summarizes some key findings from that extensive literature. Much has been learned, including the genomic location and possible identity of several genes influencing preference drinking. We report new information from congenic lines confirming QTLs for drinking on mouse chromosomes 2 and 9. There are many strengths of the various phenotypic assays used to study drinking, but there are also some weaknesses. One major weakness, the lack of drinking excessively enough to become intoxicated, has recently been addressed with a new genetic animal model, mouse lines selectively bred for their high and intoxicating blood alcohol levels after a limited period of drinking in the circadian dark. We report here results from a second replicate of that selection and compare them with the first replicate.
Collapse
Affiliation(s)
- John C Crabbe
- Portland Alcohol Research Center, Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, USA.
| | | | | |
Collapse
|
38
|
Current world literature. Curr Opin Obstet Gynecol 2010; 21:541-9. [PMID: 20072097 DOI: 10.1097/gco.0b013e3283339a65] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
39
|
Ehringer MA, Hoft NR, Zunhammer M. Reduced alcohol consumption in mice with access to a running wheel. Alcohol 2009; 43:443-52. [PMID: 19801274 DOI: 10.1016/j.alcohol.2009.06.003] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2008] [Revised: 05/08/2009] [Accepted: 06/20/2009] [Indexed: 01/17/2023]
Abstract
Studies of the behavioral effects of alcohol in humans and rodent models have implicated a number of neurological pathways and genes. Separate studies have shown that certain regions of the brain are involved in behavioral responses to exercise. The aim of this study was to determine whether mice which normally voluntarily consume high amounts of alcohol (C57BL/6 strain) would exhibit reduced alcohol consumption when given access to a running wheel under two different models of voluntary consumption: unlimited access two-bottle choice and limited access drinking in the dark (DID). Under the two-bottle choice model, the animals voluntarily consumed less alcohol when a wheel was present in their cage. However, sex-specific differences emerged because female mice voluntarily consumed less alcohol when they have the opportunity to exercise on a running wheel, whereas male mice consumed less alcohol even if the running wheel was locked. There were no significant differences observed in alcohol metabolism or food consumption. Under the DID protocol, no differences in alcohol consumption were observed in the presence of a running wheel. These results suggest that exercise may be a useful approach to consider for treatment for some types of chronic human alcohol problem behaviors, but may be less applicable to human binge drinking.
Collapse
|
40
|
Fiore M, Laviola G, Aloe L, di Fausto V, Mancinelli R, Ceccanti M. Early exposure to ethanol but not red wine at the same alcohol concentration induces behavioral and brain neurotrophin alterations in young and adult mice. Neurotoxicology 2009; 30:59-71. [DOI: 10.1016/j.neuro.2008.11.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2008] [Revised: 11/19/2008] [Accepted: 11/21/2008] [Indexed: 10/21/2022]
|