1
|
Mañas-Ojeda A, Hidalgo-Cortés J, García-Mompó C, Zahran MA, Gil-Miravet I, Olucha-Bordonau FE, Guirado R, Castillo-Gómez E. Activation of somatostatin neurons in the medial amygdala reverses long-term aggression and social deficits associated to early-life stress in male mice. Mol Psychiatry 2024:10.1038/s41380-024-02829-6. [PMID: 39580603 DOI: 10.1038/s41380-024-02829-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 11/04/2024] [Accepted: 11/05/2024] [Indexed: 11/25/2024]
Abstract
Early postnatal development is a critical period for the configuration of neural networks that support social and affective-like behaviors. In this sense, children raised in stressful environments are at high risk to develop maladaptive behaviors immediately or later in life, including anti-social and aggressive behaviors. However, the neurobiological bases of such phenomena remain poorly understood. Here we showed that, at long-term, maternal separation with early weaning (MSEW) decreased the density of somatostatin-expressing (SST+) neurons in the basolateral amygdala (BLA) of females and males, while their activity was only reduced in the medial amygdala (MeA) of males. Interestingly, only MSEW males exhibited long-term behavioral effects, including reduced sociability and social novelty preference in the 3-chamber test (3CH), decreased social interest in the resident-intruder test (RI), and increased aggressivity in both the RI and the tube dominance test (TT). To test whether the manipulation of MeASST+ neurons was sufficient to reverse these negative behavioral outcomes, we expressed the chemogenetic excitatory receptor hM3Dq in MSEW adult males. We found that the activation of MeASST+ neurons ameliorated social interest in the RI test and reduced aggression traits in the TT and RI assays. Altogether, our results highlight a role for MeASST+ neurons in the regulation of aggressivity and social interest and point to the loss of activity of these neurons as a plausible etiological mechanism linking early life stress to these maladaptive behaviors in later life.
Collapse
Affiliation(s)
- Aroa Mañas-Ojeda
- Department of Medicine, School of Medical Sciences, Universitat Jaume I, Castelló de la Plana, Spain
| | - José Hidalgo-Cortés
- Department of Medicine, School of Medical Sciences, Universitat Jaume I, Castelló de la Plana, Spain
| | - Clara García-Mompó
- Department of Medicine, School of Medical Sciences, Universitat Jaume I, Castelló de la Plana, Spain
- Department of Psicobiology, School of Medical Sciences, Universitat Jaume I, Castelló de la Plana, Spain
| | - Mohamed Aly Zahran
- Department of Medicine, School of Medical Sciences, Universitat Jaume I, Castelló de la Plana, Spain
| | - Isis Gil-Miravet
- Department of Medicine, School of Medical Sciences, Universitat Jaume I, Castelló de la Plana, Spain
| | - Francisco E Olucha-Bordonau
- Department of Medicine, School of Medical Sciences, Universitat Jaume I, Castelló de la Plana, Spain
- Spanish National Network for Research in Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
| | - Ramón Guirado
- Department of Medicine, School of Medical Sciences, Universitat Jaume I, Castelló de la Plana, Spain.
| | - Esther Castillo-Gómez
- Department of Medicine, School of Medical Sciences, Universitat Jaume I, Castelló de la Plana, Spain.
- Spanish National Network for Research in Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
2
|
Demaili A, Portugalov A, Maroun M, Akirav I, Braun K, Bock J. Early life stress induces decreased expression of CB1R and FAAH and epigenetic changes in the medial prefrontal cortex of male rats. Front Cell Neurosci 2024; 18:1474992. [PMID: 39503008 PMCID: PMC11534599 DOI: 10.3389/fncel.2024.1474992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 10/07/2024] [Indexed: 11/08/2024] Open
Abstract
Several studies in both animal models and in humans have provided substantial evidence that early life stress (ELS) induces long-term changes in behavior and brain function, making it a significant risk factor in the aetiology of various mental disorders, including anxiety and depression. In this study, we tested the hypothesis that ELS in male rats (i) leads to increased anxiety and depressive-like symptoms; and (ii) that these behavioral changes are associated with functional alterations in the endocannabinoid system of the medial prefrontal cortex (mPFC). We further assessed whether the predicted changes in the gene expression of two key components of the endocannabinoid system, cannabinoid receptor 1 (CB1R) and the fatty acid amide hydrolase (FAAH), are regulated by epigenetic mechanisms. Behavioral profiling revealed that the proportion of behaviorally affected animals was increased in ELS exposed male rats compared to control animals, specifically showing symptoms of anhedonia and impaired social behavior. On the molecular level we observed a decrease in CB1R and FAAH mRNA expression in the mPFC of adult ELS exposed animals. These gene expression changes were accompanied by reduced global histone 3 acetylation in the mPFC, while no significant changes in DNA methylation and no significant changes of histone-acetylation at the promoter regions of the analyzed genes were detected. Taken together, our data provide evidence that ELS induces a long-term reduction of CB1R and FAAH expression in the mPFC of adult male rats, which may partially contribute to the ELS-induced changes in adult socio-emotional behavior.
Collapse
Affiliation(s)
- Arijana Demaili
- Department of Zoology/Developmental Neurobiology, Institute of Biology, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Anna Portugalov
- Department of Psychology, School of Psychological Sciences, University of Haifa, Haifa, Israel
- The Integrated Brain and Behavior Research Center (IBBR), University of Haifa, Haifa, Israel
| | - Mouna Maroun
- The Integrated Brain and Behavior Research Center (IBBR), University of Haifa, Haifa, Israel
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Irit Akirav
- Department of Psychology, School of Psychological Sciences, University of Haifa, Haifa, Israel
- The Integrated Brain and Behavior Research Center (IBBR), University of Haifa, Haifa, Israel
| | - Katharina Braun
- Department of Zoology/Developmental Neurobiology, Institute of Biology, Otto von Guericke University Magdeburg, Magdeburg, Germany
- Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
| | - Jörg Bock
- Department of Zoology/Developmental Neurobiology, Institute of Biology, Otto von Guericke University Magdeburg, Magdeburg, Germany
- Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
- PG Epigenetics and Structural Plasticity, Institute of Biology, Otto von Guericke University Magdeburg, Magdeburg, Germany
| |
Collapse
|
3
|
Specht L, Freiberg A, Mojahed A, Garthus-Niegel S, Schellong J. Adrenocortical deviations and adverse clinical outcomes in children and adolescents exposed to interparental intimate partner violence: A systematic review. Neurosci Biobehav Rev 2024; 165:105866. [PMID: 39233285 DOI: 10.1016/j.neubiorev.2024.105866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/21/2024] [Accepted: 08/25/2024] [Indexed: 09/06/2024]
Abstract
Childhood exposure to interparental intimate partner violence (i-IPV) is a pervasive form of child maltreatment, posing major public health concerns and elevating risks for enduring adverse clinical and developmental consequences. However, assessing the full spectrum of clinical effects is challenging, potentially leading to inconsistent identification of children in need of early intervention. This systematic review aimed to identify hypothalamic-pituitary-adrenocortical axis dysfunction following i-IPV exposure, elucidating the underlying biopsychobehavioural mechanisms and predicting adverse outcomes. We searched Embase, MEDLINE, and PsycINFO for peer-reviewed studies from infancy through adolescence, screened reference lists and conducted forward searches. Analysis of 23 publications (N = 1848) revealed associations between i-IPV and altered adrenocortical function from early childhood, influenced by FKBP5 haplotype, parental caregiving and offspring emotional insecurity. Results showed that the adrenocortical stress response may predict internalising and externalising problems, childhood asthma, impaired executive function and poor academic performance. Nonetheless, inconsistencies in findings between studies suggest methodological heterogeneity and potential bias. Identifying biomarkers such as cortisol can enhance prediction and mechanism-based intervention efforts but long-term studies with a common theoretical and methodological framework are needed for comprehensive understanding. Integrating biological, emotional, and behavioural assessments could potentiate trauma services and research, ultimately improving outcomes for affected children.
Collapse
Affiliation(s)
- Lina Specht
- Department of Psychotherapy and Psychosomatic Medicine, Faculty of Medicine, Technische Universität Dresden, Fetscherstraße 74, Dresden 01307, Germany; Institute and Policlinic of Occupational and Social Medicine, Faculty of Medicine, Technische Universität Dresden, Fetscherstraße 74, Dresden 01307, Germany.
| | - Alice Freiberg
- Institute and Policlinic of Occupational and Social Medicine, Faculty of Medicine, Technische Universität Dresden, Fetscherstraße 74, Dresden 01307, Germany
| | - Amera Mojahed
- Institute and Policlinic of Occupational and Social Medicine, Faculty of Medicine, Technische Universität Dresden, Fetscherstraße 74, Dresden 01307, Germany
| | - Susan Garthus-Niegel
- Department of Psychotherapy and Psychosomatic Medicine, Faculty of Medicine, Technische Universität Dresden, Fetscherstraße 74, Dresden 01307, Germany; Institute and Policlinic of Occupational and Social Medicine, Faculty of Medicine, Technische Universität Dresden, Fetscherstraße 74, Dresden 01307, Germany; Institute for Systems Medicine (ISM) and Faculty of Medicine, Medical School Hamburg, Am Kaiserkai 1, Hamburg 20457, Germany; Department of Childhood and Families, Norwegian Institute of Public Health, Postboks 222 Skøyen, Oslo 0213, Norway
| | - Julia Schellong
- Department of Psychotherapy and Psychosomatic Medicine, Faculty of Medicine, Technische Universität Dresden, Fetscherstraße 74, Dresden 01307, Germany
| |
Collapse
|
4
|
Kaszyńska AA. Cannabinoids: Potential for Modulation and Enhancement When Combined with Vitamin B12 in Case of Neurodegenerative Disorders. Pharmaceuticals (Basel) 2024; 17:813. [PMID: 38931480 PMCID: PMC11207064 DOI: 10.3390/ph17060813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/26/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024] Open
Abstract
The enduring relationship between humanity and the cannabis plant has witnessed significant transformations, particularly with the widespread legalization of medical cannabis. This has led to the recognition of diverse pharmacological formulations of medical cannabis, containing 545 identified natural compounds, including 144 phytocannabinoids like Δ9-THC and CBD. Cannabinoids exert distinct regulatory effects on physiological processes, prompting their investigation in neurodegenerative diseases. Recent research highlights their potential in modulating protein aggregation and mitochondrial dysfunction, crucial factors in conditions such as Alzheimer's Disease, multiple sclerosis, or Parkinson's disease. The discussion emphasizes the importance of maintaining homeodynamics in neurodegenerative disorders and explores innovative therapeutic approaches such as nanoparticles and RNA aptamers. Moreover, cannabinoids, particularly CBD, demonstrate anti-inflammatory effects through the modulation of microglial activity, offering multifaceted neuroprotection including mitigating aggregation. Additionally, the potential integration of cannabinoids with vitamin B12 presents a holistic framework for addressing neurodegeneration, considering their roles in homeodynamics and nervous system functioning including the hippocampal neurogenesis. The potential synergistic therapeutic benefits of combining CBD with vitamin B12 underscore a promising avenue for advancing treatment strategies in neurodegenerative diseases. However, further research is imperative to fully elucidate their effects and potential applications, emphasizing the dynamic nature of this field and its potential to reshape neurodegenerative disease treatment paradigms.
Collapse
Affiliation(s)
- Anna Aleksandra Kaszyńska
- The Centre of Neurocognitive Research, Institute of Psychology, SWPS University of Social Sciences and Humanities, Chodakowska 19/31, 03-815 Warszawa, Poland
| |
Collapse
|
5
|
Stinson EA, Sullivan RM, Navarro GY, Wallace AL, Larson CL, Lisdahl KM. Childhood adversity is associated with reduced BOLD response in inhibitory control regions amongst preadolescents from the ABCD study. Dev Cogn Neurosci 2024; 67:101378. [PMID: 38626611 PMCID: PMC11035055 DOI: 10.1016/j.dcn.2024.101378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 03/10/2024] [Accepted: 04/08/2024] [Indexed: 04/18/2024] Open
Abstract
Adolescence is characterized by dynamic neurodevelopment, which poses opportunities for risk and resilience. Adverse childhood experiences (ACEs) confer additional risk to the developing brain, where ACEs have been associated with alterations in functional magnetic resonance imaging (fMRI) BOLD signaling in brain regions underlying inhibitory control. Socioenvironmental factors like the family environment may amplify or buffer against the neurodevelopmental risks associated with ACEs. Using baseline to Year 2 follow-up data from the Adolescent Brain Cognitive Development (ABCD) Study, the current study examined how ACEs relate to fMRI BOLD signaling during successful inhibition on the Stop Signal Task in regions associated with inhibitory control and examined whether family conflict levels moderated that relationship. Results showed that greater ACEs were associated with reduced BOLD response in the right opercular region of the inferior frontal gyrus and bilaterally in the pre-supplementary motor area, which are key regions underlying inhibitory control. Further, greater BOLD response was correlated with less impulsivity behaviorally, suggesting reduced activation may not be behaviorally adaptive at this age. No significant two or three-way interactions with family conflict levels or time were found. Findings highlight the continued utility of examining the relationship between ACEs and neurodevelopmental outcomes and the importance of intervention/prevention of ACES.
Collapse
Affiliation(s)
- Elizabeth A Stinson
- Department of Psychology, University of Wisconsin at Milwaukee, Milwaukee, WI 53201, United States
| | - Ryan M Sullivan
- Department of Psychology, University of Wisconsin at Milwaukee, Milwaukee, WI 53201, United States
| | - Gabriella Y Navarro
- Department of Psychology, University of Wisconsin at Milwaukee, Milwaukee, WI 53201, United States
| | - Alexander L Wallace
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093, United States
| | - Christine L Larson
- Department of Psychology, University of Wisconsin at Milwaukee, Milwaukee, WI 53201, United States
| | - Krista M Lisdahl
- Department of Psychology, University of Wisconsin at Milwaukee, Milwaukee, WI 53201, United States.
| |
Collapse
|
6
|
Ferber SG, Weller A. Diverse Underlying Mechanisms and Sex Differences Found in Translational Models of Cannabinoids Use: Towards Validation in Human Studies. Int J Mol Sci 2023; 24:16586. [PMID: 38068909 PMCID: PMC10706558 DOI: 10.3390/ijms242316586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 11/13/2023] [Indexed: 12/18/2023] Open
Abstract
This Special Issue represents a continuation of our previous Special Issue entitled "Endocannabinoids, Cannabinoids and Psychiatry: Biological Mechanisms" [...].
Collapse
Affiliation(s)
- Sari Goldstein Ferber
- Psychology Department and the Gonda Brain Research Center, Bar-Ilan University, Ramat Gan 5290002, Israel;
- Department of Psychology and Brain Sciences, University of Delaware, Newark, DE 19716, USA
| | - Aron Weller
- Psychology Department and the Gonda Brain Research Center, Bar-Ilan University, Ramat Gan 5290002, Israel;
| |
Collapse
|
7
|
Marinelli S, Basile G, Manfredini R, Zaami S. Sex- and Gender-Specific Drug Abuse Dynamics: The Need for Tailored Therapeutic Approaches. J Pers Med 2023; 13:965. [PMID: 37373954 DOI: 10.3390/jpm13060965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/06/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Sex and gender have been gaining ever greater attention due to their associated risks, dynamics, patterns and protective factors underlying substance abuse and addiction. Such differentiations and the clarification of complexities thereof take on even greater relevance in light of drug abuse scope worldwide. According to the 2022 World Drug Report released by the United Nations Office on Drugs and Crime (UNODC), in 2020 an estimated 284 million people worldwide aged 15-64 had used a drug within the last 12 months. The authors have set out to shed a light on determinants and contributing factors of drug abuse based on sex and gender and outline policy and medicolegal remarks aimed at delineating sex- and gender-based approaches towards drug abuse therapeutic interventions that are both therapeutically and ethically/legally viable and grounded in an evidence-based set of standards. Neurobiological data suggest that estrogen may facilitate drug taking by interacting with reward- and stress-related systems. In animal research, the administration of estrogen increases drug taking and facilitates the acquisition, escalation, and reinstatement of cocaine-seeking behavior. From a medicolegal perspective, it is of utmost importance to take into account the whole picture constituting each patient profile, which certainly includes gender factors and contributors, when outlining a therapeutic approach. Failure to do so could lead to negligence-based malpractice allegations, in light of the scientific findings representing best practices with which clinicians need to comply when caring for SUD patients.
Collapse
Affiliation(s)
- Susanna Marinelli
- School of Law, Università Politecnica delle Marche, 60121 Ancona, Italy
| | | | - Roberto Manfredini
- University Center for Studies on Gender Medicine, Department of Medical Sciences, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy
| | - Simona Zaami
- Department of Anatomical, Histological, Forensic and Orthopedic Sciences, "Sapienza" University of Rome, 00161 Rome, Italy
| |
Collapse
|
8
|
Hernández-Guerrero C, García-Salcedo V, Buenrostro-Jauregui M, Sanchez-Castillo H, Aguilera-Reyes U, Martínez-Castro N, Galicia-Castillo O. Exposure to anandamide on young rats causes deficits in learning, temporal perception and induces changes in NMDA receptor expression. Behav Brain Res 2023; 445:114377. [PMID: 36868364 DOI: 10.1016/j.bbr.2023.114377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/21/2023] [Accepted: 03/01/2023] [Indexed: 03/05/2023]
Abstract
Human use of marijuana at an early age has been reported to lead to cognitive impairment. However, researchers have not yet clearly determined whether this impairment is due to marijuana-induced alterations in the developing nervous system and whether this deficit persists into adulthood after marijuana use has ceased. We administered anandamide to developing rats to assess the effect of cannabinoids on development. We subsequently evaluated learning and performance on a temporal bisection task in adulthood and assessed the expression of genes encoding principal subunits of NMDA receptors (Grin1, Grin2A, and Grin2B) in the hippocampus and prefrontal cortex. Rats in two age groups, namely, 21-day-old and 150-day-old rats, received intraperitoneal injections of anandamide or the vehicle for 14 days. Both groups performed a temporal bisection test, which included listening to tones of different durations and classifying them as short or long. The expression of the Grin1, Grin2A and Grin2B mRNAs was evaluated using quantitative PCR in both age groups after extracting mRNA from the hippocampus and prefrontal cortex. We observed a learning impairment in the temporal bisection task (p < 0.05) and changes in the response latency (p < 0.05) in rats that received anandamide. Furthermore, these rats exhibited decreased expression of Grin2b (p = 0.001) compared to those that received the vehicle. In human subjects, the use of cannabinoids during development induces a long-term deficit, but this deficit is not observed in subjects who use cannabinoids in adulthood. Rats treated with anandamide earlier in development took longer to learn the task, suggesting that anandamide exerts a harmful effect on cognition in developing rats. Administration of anandamide during early stages of development induced deficits in learning and other cognitive processes that depend on an adequate estimation of time. The cognitive demands of the environment must be considered when evaluating the cognitive effects of cannabinoids on developing or mature brains. High cognitive demands might induce differential expression of NMDA receptors that improves cognitive capacity, overcoming altered glutamatergic function.
Collapse
Affiliation(s)
| | - Verónica García-Salcedo
- Laboratorio de Neurociencias, Departamento de Psicología, Universidad Iberoamericana Ciudad de México, Mexico City 01219, Mexico; Laboratorio de Comportamiento Animal, Facultad de Ciencias, Universidad Autónoma del Estado de México, Toluca de Lerdo 50200, Mexico.
| | - Mario Buenrostro-Jauregui
- Laboratorio de Neurociencias, Departamento de Psicología, Universidad Iberoamericana Ciudad de México, Mexico City 01219, Mexico.
| | - Hugo Sanchez-Castillo
- Laboratorio de Neuropsicofarmacología, Facultad de Psicología, UNAM, Mexico City 04510, Mexico.
| | - Ulises Aguilera-Reyes
- Laboratorio de Comportamiento Animal, Facultad de Ciencias, Universidad Autónoma del Estado de México, Toluca de Lerdo 50200, Mexico.
| | - Noemi Martínez-Castro
- Departamento de Salud, Universidad Iberoamericana Ciudad de México, Mexico City 01219, Mexico.
| | - Oscar Galicia-Castillo
- Laboratorio de Neurociencias, Departamento de Psicología, Universidad Iberoamericana Ciudad de México, Mexico City 01219, Mexico.
| |
Collapse
|
9
|
Demaili A, Portugalov A, Dudai M, Maroun M, Akirav I, Braun K, Bock J. Epigenetic (re)programming of gene expression changes of CB1R and FAAH in the medial prefrontal cortex in response to early life and adolescence stress exposure. Front Cell Neurosci 2023; 17:1129946. [PMID: 36909279 PMCID: PMC9992175 DOI: 10.3389/fncel.2023.1129946] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 02/07/2023] [Indexed: 02/24/2023] Open
Abstract
Environmental factors, including stress, that are experienced during early life (ELS) or adolescence are potential risk factors for the development of behavioral and mental disorders later in life. The endocannabinoid system plays a major role in the regulation of stress responses and emotional behavior, thereby acting as a mediator of stress vulnerability and resilience. Among the critical factors, which determine the magnitude and direction of long-term consequences of stress exposure is age, i.e., the maturity of brain circuits during stress exposure. Thus, the present study addressed the hypotheses that ELS and adolescent stress differentially affect the expression of regulatory elements of the endocannabinoid system, cannabinoid receptor 1 (CB1R) and fatty acid amide hydrolase (FAAH) in the medial prefrontal cortex (mPFC) of adult female rats. We also tested the hypothesis that the proposed gene expression changes are epigenetically modulated via altered DNA-methylation. The specific aims were to investigate if (i) ELS and adolescent stress as single stressors induce changes in CB1R and FAAH expression (ii) ELS exposure influences the effect of adolescent stress on CB1R and FAAH expression, and (iii) if the proposed gene expression changes are paralleled by changes of DNA methylation. The following experimental groups were investigated: (1) non-stressed controls (CON), (2) ELS exposure (ELS), (3) adolescent stress exposure (forced swimming; FS), (4) ELS + FS exposure. We found an up-regulation of CB1R expression in both single-stressor groups and a reduction back to control levels in the ELS + FS group. An up-regulation of FAAH expression was found only in the FS group. The data indicate that ELS, i.e., stress during a very immature stage of brain development, exerts a buffering programming effect on gene expression changes induced by adolescent stress. The detected gene expression changes were accompanied by altered DNA methylation patterns in the promoter region of these genes, specifically, a negative correlation of mean CB1R DNA methylation with gene expression was found. Our results also indicate that ELS induces a long-term "(re)programming" effect, characterized by CpG-site specific changes within the promoter regions of the two genes that influence gene expression changes in response to FS at adolescence.
Collapse
Affiliation(s)
- Arijana Demaili
- Department of Zoology and Developmental Neurobiology, Institute of Biology, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Anna Portugalov
- Department of Psychology, School of Psychological Sciences, University of Haifa, Haifa, Israel.,The Integrated Brain and Behavior Research Center, University of Haifa, Haifa, Israel
| | - Michal Dudai
- Department of Psychology, School of Psychological Sciences, University of Haifa, Haifa, Israel.,The Integrated Brain and Behavior Research Center, University of Haifa, Haifa, Israel
| | - Mouna Maroun
- The Integrated Brain and Behavior Research Center, University of Haifa, Haifa, Israel.,Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Irit Akirav
- Department of Psychology, School of Psychological Sciences, University of Haifa, Haifa, Israel.,The Integrated Brain and Behavior Research Center, University of Haifa, Haifa, Israel
| | - Katharina Braun
- Department of Zoology and Developmental Neurobiology, Institute of Biology, Otto von Guericke University Magdeburg, Magdeburg, Germany.,Center for Brain and Behavioral Science, Magdeburg, Germany
| | - Jörg Bock
- Department of Zoology and Developmental Neurobiology, Institute of Biology, Otto von Guericke University Magdeburg, Magdeburg, Germany.,Center for Brain and Behavioral Science, Magdeburg, Germany.,Project Group (PG) Epigenetics and Structural Plasticity, Institute of Biology, Otto von Guericke University Magdeburg, Magdeburg, Germany
| |
Collapse
|
10
|
Manczak EM, Watamura SE. Introduction to the SEED Science special issue. Dev Psychobiol 2022; 64:e22312. [DOI: 10.1002/dev.22312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 06/17/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Erika M. Manczak
- Department of Psychology University of Denver Denver Colorado USA
| | | |
Collapse
|
11
|
Simone JJ, Green MR, McCormick CM. Endocannabinoid system contributions to sex-specific adolescent neurodevelopment. Prog Neuropsychopharmacol Biol Psychiatry 2022; 113:110438. [PMID: 34534603 DOI: 10.1016/j.pnpbp.2021.110438] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 08/13/2021] [Accepted: 09/08/2021] [Indexed: 01/08/2023]
Abstract
With an increasing number of countries and states adopting legislation permitting the use of cannabis for medical purposes, there is a growing interest among health and research professionals into the system through which cannabinoids principally act, the endocannabinoid system (ECS). Much of the seminal research into the ECS dates back only 30 years and, although there has been tremendous development within the field during this time, many questions remain. More recently, investigations have emerged examining the contributions of the ECS to normative development and the effect of altering this system during important critical periods. One such period is adolescence, a unique period during which brain and behaviours are maturing and reorganizing in preparation for adulthood, including shifts in endocannabinoid biology. The purpose of this review is to discuss findings to date regarding the maturation of the ECS during adolescence and the consequences of manipulations of the ECS during this period to normative neurodevelopmental processes, as well as highlight sex differences in ECS function, important technical considerations, and future directions. Because most of what we know is derived from preclinical studies on rodents, we provide relevant background of this model and some commentary on the translational relevance of the research in this area.
Collapse
Affiliation(s)
- Jonathan J Simone
- Department of Biological Sciences, 1812 Sir Isaac Brock Way, Brock University, St. Catharines, ON L2S 3A1, Canada; Centre for Neuroscience, 1812 Sir Isaac Brock Way, Brock University, St. Catharines, ON L2S 3A1, Canada; Huxley Health Inc., 8820 Jane St., Concord, ON, L4K 2M9, Canada; eCB Consulting Inc., PO Box 652, 3 Cameron St. W., Cannington, ON L0E 1E0, Canada; Medical Cannabis Canada, 601-3500 Lakeshore Rd. W., Oakville, ON L6L 0B4, Canada.
| | - Matthew R Green
- eCB Consulting Inc., PO Box 652, 3 Cameron St. W., Cannington, ON L0E 1E0, Canada; Medical Cannabis Canada, 601-3500 Lakeshore Rd. W., Oakville, ON L6L 0B4, Canada.
| | - Cheryl M McCormick
- Department of Biological Sciences, 1812 Sir Isaac Brock Way, Brock University, St. Catharines, ON L2S 3A1, Canada; Centre for Neuroscience, 1812 Sir Isaac Brock Way, Brock University, St. Catharines, ON L2S 3A1, Canada; Department of Psychology, 1812 Sir Isaac Brock Way, Brock University, St. Catharines, ON L2S 3A1, Canada.
| |
Collapse
|
12
|
Ferber SG, Weller A. The Inanimate Third: Going Beyond Psychodynamic Approaches for Remote Psychotherapy during the
COVID
‐19 Pandemic. BRITISH JOURNAL OF PSYCHOTHERAPY 2022; 38:316-337. [PMID: 35601049 PMCID: PMC9111788 DOI: 10.1111/bjp.12720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/13/2021] [Accepted: 01/16/2022] [Indexed: 11/29/2022]
Abstract
The COVID‐19 pandemic exposed the field of psychotherapy to the need to provide treatment remotely. We discuss the question of whether remote therapy can be curative and if the electronic device used to manage these sessions unites or separates the therapist and the patient. We term the electronic device as ‘the inanimate third’ in the therapeutic process and discuss the objectivity of the device as opposed to the subjective emotional processes involved. We deal with emotional themes relevant to the COVID‐19 pandemic and associated social distancing practices, such as longing, loneliness, the perception of the future and the lost past, and the efficacy of the therapeutic stimulation of fantasy and hope. We also evaluate the possibility of existing transference and countertransference processes while working remotely. We suggest the term ‘social paradox’ to describe the situation in which an objective entity such as the digital media symbolizes both distance and intimacy as well as separation and unity. We conclude by stating that containment of the social paradox by the therapeutic dialogue is possible as the existence of the dialogue eliminates elements of the paradox.
Collapse
|
13
|
Almeida MM, Dias-Rocha CP, Calviño C, Trevenzoli IH. Lipid endocannabinoids in energy metabolism, stress and developmental programming. Mol Cell Endocrinol 2022; 542:111522. [PMID: 34843899 DOI: 10.1016/j.mce.2021.111522] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 11/09/2021] [Accepted: 11/23/2021] [Indexed: 12/12/2022]
Abstract
The endocannabinoid system (ECS) regulates brain development and function, energy metabolism and stress in a sex-, age- and tissue-dependent manner. The ECS comprises mainly the bioactive lipid ligands anandamide (AEA) and 2-aracdonoylglycerol (2-AG), cannabinoid receptors 1 and 2 (CB1 and CB2), and several metabolizing enzymes. The endocannabinoid tonus is increased in obesity, stimulating food intake and a preference for fat, reward, and lipid accumulation in peripheral tissues, as well as favoring a positive energy balance. Energy balance and stress responses share adaptive mechanisms regulated by the ECS that seem to underlie the complex relationship between feeding and emotional behavior. The ECS is also a key regulator of development. Environmental insults (diet, toxicants, and stress) in critical periods of developmental plasticity, such as gestation, lactation and adolescence, alter the ECS and may predispose individuals to the development of chronic diseases and behavioral changes in the long term. This review is focused on the ECS and the developmental origins of health and disease (DOHaD).
Collapse
Affiliation(s)
- Mariana Macedo Almeida
- Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, RJ, Brazil
| | | | - Camila Calviño
- Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, RJ, Brazil
| | - Isis Hara Trevenzoli
- Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
14
|
Joaquim HPG, Costa AC, Pereira CAC, Talib LL, Bilt MMV, Loch AA, Gattaz WF. Plasmatic endocannabinoids are decreased in subjects with ultra-high risk of psychosis. Eur J Neurosci 2021; 55:1079-1087. [PMID: 34716624 DOI: 10.1111/ejn.15509] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 10/13/2021] [Accepted: 10/17/2021] [Indexed: 11/27/2022]
Abstract
The onset of frank psychosis is usually preceded by a prodromal phase characterized by attenuated psychotic symptoms. Currently, research on schizophrenia prodromal phase (ultra-high risk for psychosis [UHR]) has focused on the risk of developing psychosis, on the transition to full blown psychosis and on its prediction. Neurobiological differences between UHR individuals who fully recover (remitters) versus those who show persistent/progressive prodromal symptoms (nonremitters) have been little explored. The endocannabinoid system constitutes a neuromodulatory system that plays a major role in brain development, synaptic plasticity, emotional behaviours and cognition. It comprises two cannabinoid receptors (CB1/CB2), two endocannabinoid ligands, arachidonylethanolamide (AEA) and 2-arachidonoylglycerol (2AG) along with their inactivation enzymes. Despite much evidence that the endocannabinoid system is imbalanced during psychosis, very little is known about it in UHR. Therefore, we aimed to quantify the plasma endocannabinoid levels in UHR and healthy controls (HC) and verify if these metabolites could differentiate between remitters and nonremitters. Circulating concentrations of AEA (p = .003) and 2AG (p < .001) were lower in UHR when compared with HC, with no difference between remitters and nonremitters. Regarding clinical evolution, it was observed that out of 91 UHRs initially considered, 16 had psychiatric complaints (3 years of follow-up). Considering those subjects, there were weak correlations between clinical parameters and plasma concentrations of endocannabinoids. Our results suggest that the endocannabinoids are imbalanced before frank psychosis and that changes can be seen in plasma of UHR individuals. These molecules proved to be potential biomarkers to identify individuals in the prodromal phase of psychosis.
Collapse
Affiliation(s)
- Helena P G Joaquim
- Laboratory of Neuroscience (LIM-27), Department and Institute of Psychiatry, University of São Paulo Medical School, São Paulo, Brazil.,Instituto Nacional de Biomarcadores em Neuropsiquiatria (INBioN), Conselho Nacional de Desenvolvimento Científico e Tecnológico, São Paulo, Brazil
| | - Alana C Costa
- Laboratory of Neuroscience (LIM-27), Department and Institute of Psychiatry, University of São Paulo Medical School, São Paulo, Brazil.,Instituto Nacional de Biomarcadores em Neuropsiquiatria (INBioN), Conselho Nacional de Desenvolvimento Científico e Tecnológico, São Paulo, Brazil
| | - Cícero A C Pereira
- Laboratory of Neuroscience (LIM-27), Department and Institute of Psychiatry, University of São Paulo Medical School, São Paulo, Brazil.,Instituto Nacional de Biomarcadores em Neuropsiquiatria (INBioN), Conselho Nacional de Desenvolvimento Científico e Tecnológico, São Paulo, Brazil
| | - Leda L Talib
- Laboratory of Neuroscience (LIM-27), Department and Institute of Psychiatry, University of São Paulo Medical School, São Paulo, Brazil.,Instituto Nacional de Biomarcadores em Neuropsiquiatria (INBioN), Conselho Nacional de Desenvolvimento Científico e Tecnológico, São Paulo, Brazil
| | - Martinus M V Bilt
- Laboratory of Neuroscience (LIM-27), Department and Institute of Psychiatry, University of São Paulo Medical School, São Paulo, Brazil.,Instituto Nacional de Biomarcadores em Neuropsiquiatria (INBioN), Conselho Nacional de Desenvolvimento Científico e Tecnológico, São Paulo, Brazil
| | - Alexandre A Loch
- Laboratory of Neuroscience (LIM-27), Department and Institute of Psychiatry, University of São Paulo Medical School, São Paulo, Brazil.,Instituto Nacional de Biomarcadores em Neuropsiquiatria (INBioN), Conselho Nacional de Desenvolvimento Científico e Tecnológico, São Paulo, Brazil
| | - Wagner F Gattaz
- Laboratory of Neuroscience (LIM-27), Department and Institute of Psychiatry, University of São Paulo Medical School, São Paulo, Brazil.,Instituto Nacional de Biomarcadores em Neuropsiquiatria (INBioN), Conselho Nacional de Desenvolvimento Científico e Tecnológico, São Paulo, Brazil
| |
Collapse
|
15
|
Ferber SG, Weller A, Maor R, Feldman Y, Harel-Fisch Y, Mikulincer M. Perceived social support in the social distancing era: the association between circles of potential support and COVID-19 reactive psychopathology. ANXIETY STRESS AND COPING 2021; 35:58-71. [PMID: 34652983 DOI: 10.1080/10615806.2021.1987418] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
BACKGROUND AND OBJECTIVES Stressors related to the COVID-19 pandemic are risk factors for psychopathology, but psychosocial protective factors might play a crucial role in buffering the pathogenic effects of the outbreak. DESIGN In the current study, we examined the association of inner resources and potential external sources of support for coping with the pandemic and related lockdowns to mental health during the pandemic, while controlling for sociodemographic variables as covariates. METHODS We tested the model in a probability-based internet survey of a representative sample of the Israeli adult population (N = 812) conducted during the COVID-19 pandemic. RESULTS Perceived support in close relationships was negatively associated with the intensity of depression, anxiety, obsessive-compulsive disorder (OCD) and post-traumatic stress disorder (PTSD). Larger rings of potential support such as perceived belongingness to a community and trust in government were also negatively related to anxiety and depression but were positively associated with the intensity of OCD and PTSD. CONCLUSIONS Findings support the "tend and befriend" theory in the social distancing era and highlight the importance of keeping personal relationships alive when facing a mass trauma.
Collapse
Affiliation(s)
- Sari Goldstein Ferber
- Department of Psychology and the Gonda Brain Research Center, Bar-Ilan University, Ramat Gan, Israel
| | - Aron Weller
- Department of Psychology and the Gonda Brain Research Center, Bar-Ilan University, Ramat Gan, Israel
| | - Rotem Maor
- The International Research Program on Adolescent Well-Being and Health, School of Education, Bar-Ilan University, Ramat Gan, Israel
| | | | - Yossi Harel-Fisch
- The International Research Program on Adolescent Well-Being and Health, School of Education, Bar-Ilan University, Ramat Gan, Israel
| | - Mario Mikulincer
- Baruch Ivcher School of Psychology, Interdisciplinary Center (IDC) Herzliya, Herzliya, Israel
| |
Collapse
|
16
|
Netzahualcoyotzi C, Rodríguez-Serrano LM, Chávez-Hernández ME, Buenrostro-Jáuregui MH. Early Consumption of Cannabinoids: From Adult Neurogenesis to Behavior. Int J Mol Sci 2021; 22:7450. [PMID: 34299069 PMCID: PMC8306314 DOI: 10.3390/ijms22147450] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/25/2021] [Accepted: 06/26/2021] [Indexed: 01/31/2023] Open
Abstract
The endocannabinoid system (ECS) is a crucial modulatory system in which interest has been increasing, particularly regarding the regulation of behavior and neuroplasticity. The adolescent-young adulthood phase of development comprises a critical period in the maturation of the nervous system and the ECS. Neurogenesis occurs in discrete regions of the adult brain, and this process is linked to the modulation of some behaviors. Since marijuana (cannabis) is the most consumed illegal drug globally and the highest consumption rate is observed during adolescence, it is of particular importance to understand the effects of ECS modulation in these early stages of adulthood. Thus, in this article, we sought to summarize recent evidence demonstrating the role of the ECS and exogenous cannabinoid consumption in the adolescent-young adulthood period; elucidate the effects of exogenous cannabinoid consumption on adult neurogenesis; and describe some essential and adaptive behaviors, such as stress, anxiety, learning, and memory. The data summarized in this work highlight the relevance of maintaining balance in the endocannabinoid modulatory system in the early and adult stages of life. Any ECS disturbance may induce significant modifications in the genesis of new neurons and may consequently modify behavioral outcomes.
Collapse
Affiliation(s)
- Citlalli Netzahualcoyotzi
- Laboratorio de Neurociencias, Departamento de Psicología, Universidad Iberoamericana Ciudad de México, Prolongación Paseo de la Reforma 880, Lomas de Santa Fé, Ciudad de México 01219, Mexico; (C.N.); (L.M.R.-S.); (M.E.C.-H.)
- Centro de Investigación en Ciencias de la Salud (CICSA), FCS, Universidad Anáhuac México Campus Norte, Huixquilucan 52786, Mexico
| | - Luis Miguel Rodríguez-Serrano
- Laboratorio de Neurociencias, Departamento de Psicología, Universidad Iberoamericana Ciudad de México, Prolongación Paseo de la Reforma 880, Lomas de Santa Fé, Ciudad de México 01219, Mexico; (C.N.); (L.M.R.-S.); (M.E.C.-H.)
- Laboratorio de Neurobiología de la alimentación, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Mexico
| | - María Elena Chávez-Hernández
- Laboratorio de Neurociencias, Departamento de Psicología, Universidad Iberoamericana Ciudad de México, Prolongación Paseo de la Reforma 880, Lomas de Santa Fé, Ciudad de México 01219, Mexico; (C.N.); (L.M.R.-S.); (M.E.C.-H.)
| | - Mario Humberto Buenrostro-Jáuregui
- Laboratorio de Neurociencias, Departamento de Psicología, Universidad Iberoamericana Ciudad de México, Prolongación Paseo de la Reforma 880, Lomas de Santa Fé, Ciudad de México 01219, Mexico; (C.N.); (L.M.R.-S.); (M.E.C.-H.)
| |
Collapse
|
17
|
Goldstein Ferber S, Weller A, Yadid G, Friedman A. Discovering the Lost Reward: Critical Locations for Endocannabinoid Modulation of the Cortico-Striatal Loop That Are Implicated in Major Depression. Int J Mol Sci 2021; 22:1867. [PMID: 33668515 PMCID: PMC7918043 DOI: 10.3390/ijms22041867] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/01/2021] [Accepted: 02/10/2021] [Indexed: 12/14/2022] Open
Abstract
Depression, the most prevalent psychiatric disorder in the Western world, is characterized by increased negative affect (i.e., depressed mood, cost value increase) and reduced positive affect (i.e., anhedonia, reward value decrease), fatigue, loss of appetite, and reduced psychomotor activity except for cases of agitative depression. Some forms, such as post-partum depression, have a high risk for suicidal attempts. Recent studies in humans and in animal models relate major depression occurrence and reoccurrence to alterations in dopaminergic activity, in addition to other neurotransmitter systems. Imaging studies detected decreased activity in the brain reward circuits in major depression. Therefore, the location of dopamine receptors in these circuits is relevant for understanding major depression. Interestingly, in cortico-striatal-dopaminergic pathways within the reward and cost circuits, the expression of dopamine and its contribution to reward are modulated by endocannabinoid receptors. These receptors are enriched in the striosomal compartment of striatum that selectively projects to dopaminergic neurons of substantia nigra compacta and is vulnerable to stress. This review aims to show the crosstalk between endocannabinoid and dopamine receptors and their vulnerability to stress in the reward circuits, especially in corticostriatal regions. The implications for novel treatments of major depression are discussed.
Collapse
Affiliation(s)
- Sari Goldstein Ferber
- Department of Psychology and the Leslie and Susan Gonda (Goldschmied) Multidisciplinary Brain Research Center, Bar Ilan University, Ramat Gan 5290002, Israel; (S.G.F.); (A.W.)
| | - Aron Weller
- Department of Psychology and the Leslie and Susan Gonda (Goldschmied) Multidisciplinary Brain Research Center, Bar Ilan University, Ramat Gan 5290002, Israel; (S.G.F.); (A.W.)
| | - Gal Yadid
- The Mina and Everard Goodman Faculty of Life Sciences and the Leslie and Susan Gonda (Goldschmied) Multidisciplinary Brain Research Center, Bar Ilan University, Ramat Gan 5290002, Israel;
| | - Alexander Friedman
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX 79968, USA
| |
Collapse
|
18
|
Babicola L, Ventura R, D'Addario SL, Ielpo D, Andolina D, Di Segni M. Long term effects of early life stress on HPA circuit in rodent models. Mol Cell Endocrinol 2021; 521:111125. [PMID: 33333214 DOI: 10.1016/j.mce.2020.111125] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/23/2020] [Accepted: 12/10/2020] [Indexed: 01/06/2023]
Abstract
Adaptation to environmental challenges represents a critical process for survival, requiring the complex integration of information derived from both external cues and internal signals regarding current conditions and previous experiences. The Hypothalamic-pituitary-adrenal axis plays a central role in this process inducing the activation of a neuroendocrine signaling cascade that affects the delicate balance of activity and cross-talk between areas that are involved in sensorial, emotional, and cognitive processing such as the hippocampus, amygdala, Prefrontal Cortex, Ventral Tegmental Area, and dorsal raphe. Early life stress, especially early critical experiences with caregivers, influences the functional and structural organization of these areas, affects these processes in a long-lasting manner and may result in long-term maladaptive and psychopathological outcomes, depending on the complex interaction between genetic and environmental factors. This review summarizes the results of studies that have modeled this early postnatal stress in rodents during the first 2 postnatal weeks, focusing on the long-term effects on molecular and structural alteration in brain areas involved in Hypothalamic-pituitary-adrenal axis function. Moreover, a brief investigation of epigenetic mechanisms and specific genetic targets mediating the long-term effects of these early environmental manipulations and at the basis of differential neurobiological and behavioral effects during adulthood is provided.
Collapse
Affiliation(s)
- Lucy Babicola
- Dept. of Psychology and Center "Daniel Bovet", Sapienza University, 00184, Rome, Italy; IRCCS Fondazione Santa Lucia, Via Del Fosso di Fiorano, 64, 00143, Rome, Italy
| | - Rossella Ventura
- Dept. of Psychology and Center "Daniel Bovet", Sapienza University, 00184, Rome, Italy; IRCCS Fondazione Santa Lucia, Via Del Fosso di Fiorano, 64, 00143, Rome, Italy.
| | - Sebastian Luca D'Addario
- Dept. of Psychology and Center "Daniel Bovet", Sapienza University, 00184, Rome, Italy; IRCCS Fondazione Santa Lucia, Via Del Fosso di Fiorano, 64, 00143, Rome, Italy; Behavioral Neuroscience PhD Programme, Sapienza University, Piazzale Aldo Moro 5, 00184, Rome, Italy
| | - Donald Ielpo
- Dept. of Psychology and Center "Daniel Bovet", Sapienza University, 00184, Rome, Italy; IRCCS Fondazione Santa Lucia, Via Del Fosso di Fiorano, 64, 00143, Rome, Italy; Behavioral Neuroscience PhD Programme, Sapienza University, Piazzale Aldo Moro 5, 00184, Rome, Italy
| | - Diego Andolina
- Dept. of Psychology and Center "Daniel Bovet", Sapienza University, 00184, Rome, Italy; IRCCS Fondazione Santa Lucia, Via Del Fosso di Fiorano, 64, 00143, Rome, Italy
| | - Matteo Di Segni
- IRCCS Fondazione Santa Lucia, Via Del Fosso di Fiorano, 64, 00143, Rome, Italy.
| |
Collapse
|
19
|
Ferber SG, Hazani R, Shoval G, Weller A. Targeting the Endocannabinoid System in Borderline Personality Disorder: Corticolimbic and Hypothalamic Perspectives. Curr Neuropharmacol 2021; 19:360-371. [PMID: 32351183 PMCID: PMC8033970 DOI: 10.2174/1570159x18666200429234430] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/09/2020] [Accepted: 04/24/2020] [Indexed: 12/15/2022] Open
Abstract
Borderline Personality Disorder (BPD) is a chronic debilitating psychiatric disorder characterized mainly by emotional instability, chaotic interpersonal relationships, cognitive disturbance (e.g., dissociation and suicidal thoughts) and maladaptive behaviors. BPD has a high rate of comorbidity with other mental disorders and a high burden on society. In this review, we focused on two compromised brain regions in BPD - the hypothalamus and the corticolimbic system, emphasizing the involvement and potential contribution of the endocannabinoid system (ECS) to improvement in symptoms and coping. The hypothalamus-regulated endocrine axes (hypothalamic pituitary - gonadal, thyroid & adrenal) have been found to be dysregulated in BPD. There is also substantial evidence for limbic system structural and functional changes in BPD, especially in the amygdala and hippocampus, including cortical regions within the corticolimbic system. Extensive expression of CB1 and CB2 receptors of the ECS has been found in limbic regions and the hypothalamus. This opens new windows of opportunity for treatment with cannabinoids such as cannabidiol (CBD) as no other pharmacological treatment has shown long-lasting improvement in the BPD population to date. This review aims to show the potential role of the ECS in BPD patients through their most affected brain regions, the hypothalamus and the corticolimbic system. The literature reviewed does not allow for general indications of treatment with CBD in BPD. However, there is enough knowledge to indicate a treatment ratio of a high level of CBD to a low level of THC. A randomized controlled trial investigating the efficacy of cannabinoid based treatments in BPD is warranted.
Collapse
Affiliation(s)
| | | | - Gal Shoval
- Address correspondence to this author at the Geha Mental Health Center, Petah Tiqva, Israel; Tel: 972-3-925-8440; Fax: 972-3-925-8276;, E-mail:
| | | |
Collapse
|
20
|
Becoming Stressed: Does the Age Matter? Reviewing the Neurobiological and Socio-Affective Effects of Stress throughout the Lifespan. Int J Mol Sci 2020; 21:ijms21165819. [PMID: 32823723 PMCID: PMC7460954 DOI: 10.3390/ijms21165819] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 08/10/2020] [Accepted: 08/11/2020] [Indexed: 12/25/2022] Open
Abstract
Social and affective relations occur at every stage of our lives. Impairments in the quality of this “social world” can be exceptionally detrimental and lead to psychopathology or pathological behavior, including schizophrenia, autism spectrum disorder, affective disorders, social phobia or violence, among other things. Exposure to highly stressful or traumatic events, depending on the stage of life in which stress exposure occurs, could severely affect limbic structures, including the amygdala, and lead to alterations in social and affective behaviors. This review summarizes recent findings from stress research and provides an overview of its age-dependent effects on the structure and function of the amygdala, which includes molecular and cellular changes, and how they can trigger deviant social and affective behaviors. It is important to highlight that discoveries in this field may represent a breakthrough both for medical science and for society, as they may help in the development of new therapeutic approaches and prevention strategies in neuropsychiatric disorders and pathological behaviors.
Collapse
|
21
|
Ferber SG, Roth TL, Weller A. Epigenetic fragility of the endocannabinoid system under stress: risk for mood disorders and pharmacogenomic implications. Epigenomics 2020; 12:657-660. [PMID: 32396405 DOI: 10.2217/epi-2020-0037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Affiliation(s)
- Sari Goldstein Ferber
- Psychology Department, Bar-Ilan University, Ramat Gan, Israel.,Gonda Brain Research Center, Bar-Ilan University, Ramat Gan, Israel
| | - Tania L Roth
- Department of Psychological & Brain Sciences, University of Delaware, DE 19716, USA
| | - Aron Weller
- Psychology Department, Bar-Ilan University, Ramat Gan, Israel.,Gonda Brain Research Center, Bar-Ilan University, Ramat Gan, Israel
| |
Collapse
|