1
|
Vorhees CV, Williams MT. Tests for learning and memory in rodent regulatory studies. Curr Res Toxicol 2024; 6:100151. [PMID: 38304257 PMCID: PMC10832385 DOI: 10.1016/j.crtox.2024.100151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 01/11/2024] [Accepted: 01/16/2024] [Indexed: 02/03/2024] Open
Abstract
For decades, regulatory guidelines for safety assessment in rodents for drugs, chemicals, pesticides, and food additives with developmental neurotoxic potential have recommended a single test of learning and memory (L&M). In recent years some agencies have requested two such tests. Given the importance of higher cognitive function to health, and the fact that different types of L&M are mediated by different brain regions assessing higher functions represents a step forward in providing better evidence-based protection against adverse brain effects. Given the myriad of tests available for assessing L&M in rodents this leads to the question of which tests best fit regulatory guidelines. To address this question, we begin by describing the central role of two types of L&M essential to all mammalian species and the regions/networks that mediate them. We suggest that the tests recommended possess characteristics that make them well suited to the needs in regulatory safety studies. By brain region, these are (1) the hippocampus and entorhinal cortex for spatial navigation, which assesses explicit L&M for reference and episodic memory and (2) the striatum and related structures for egocentric navigation, which assesses implicit or procedural memory and path integration. Of the tests available, we suggest that in this context, the evidence supports the use of water mazes, specifically, the Morris water maze (MWM) for spatial L&M and the Cincinnati water maze (CWM) for egocentric/procedural L&M. We review the evidentiary basis for these tests, describe their use, and explain procedures that optimize their sensitivity.
Collapse
Affiliation(s)
- Charles V. Vorhees
- Corresponding author at: Div. of Neurology, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH 45229, USA.
| | | |
Collapse
|
2
|
Harry GJ, McBride S, Witchey SK, Mhaouty-Kodja S, Trembleau A, Bridge M, Bencsik A. Roadbumps at the Crossroads of Integrating Behavioral and In Vitro Approaches for Neurotoxicity Assessment. FRONTIERS IN TOXICOLOGY 2022; 4:812863. [PMID: 35295216 PMCID: PMC8915899 DOI: 10.3389/ftox.2022.812863] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 01/25/2022] [Indexed: 12/15/2022] Open
Abstract
With the appreciation that behavior represents the integration and complexity of the nervous system, neurobehavioral phenotyping and assessment has seen a renaissance over the last couple of decades, resulting in a robust database on rodent performance within various testing paradigms, possible associations with human disorders, and therapeutic interventions. The interchange of data across behavior and other test modalities and multiple model systems has advanced our understanding of fundamental biology and mechanisms associated with normal functions and alterations in the nervous system. While there is a demonstrated value and power of neurobehavioral assessments for examining alterations due to genetic manipulations, maternal factors, early development environment, the applied use of behavior to assess environmental neurotoxicity continues to come under question as to whether behavior represents a sensitive endpoint for assessment. Why is rodent behavior a sensitive tool to the neuroscientist and yet, not when used in pre-clinical or chemical neurotoxicity studies? Applying new paradigms and evidence on the biological basis of behavior to neurobehavioral testing requires expertise and refinement of how such experiments are conducted to minimize variability and maximize information. This review presents relevant issues of methods used to conduct such test, sources of variability, experimental design, data analysis, interpretation, and reporting. It presents beneficial and critical limitations as they translate to the in vivo environment and considers the need to integrate across disciplines for the best value. It proposes that a refinement of behavioral assessments and understanding of subtle pronounced differences will facilitate the integration of data obtained across multiple approaches and to address issues of translation.
Collapse
Affiliation(s)
- G. Jean Harry
- Neurotoxicology Group, Molecular Toxicology Branch, Division National Toxicology Program, National Institute of Environmental Health Sciences, Durham, NC, United States
| | - Sandra McBride
- Social & Scientific Systems, Inc., a DLH Holdings Company, Durham, NC, United States
| | - Shannah K. Witchey
- Division National Toxicology Program, National Institute of Environmental Health Sciences, Durham, NC, United States
| | - Sakina Mhaouty-Kodja
- Sorbonne Université, CNRS, INSERM, Neuroscience Paris Seine – Institut de Biologie Paris Seine, Paris, France
| | - Alain Trembleau
- Sorbonne Université, CNRS UMR8246, Inserm U1130, Institut de Biologie Paris Seine (IBPS), Neuroscience Paris Seine (NPS), Paris, France
| | - Matthew Bridge
- Social & Scientific Systems, Inc., a DLH Holdings Company, Durham, NC, United States
| | - Anna Bencsik
- Anses Laboratoire de Lyon, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Université de Lyon 1, Lyon, France
| |
Collapse
|
3
|
Vorhees CV, Williams MT. Issues in the design, analysis, and application of rodent developmental neurotoxicology studies. Neurotoxicol Teratol 2021; 87:107018. [PMID: 34256163 PMCID: PMC8440477 DOI: 10.1016/j.ntt.2021.107018] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 07/02/2021] [Accepted: 07/09/2021] [Indexed: 12/16/2022]
Abstract
Developmental neurotoxicity (DNT) studies could benefit from revisions to study design, data analysis, and some behavioral test methods to enhance reproducibility. The Environmental Protection Agency (EPA) reviewed 69 studies submitted to the Office of Pesticide Programs. Two of the behavioral tests identified the lowest observable adverse effect level (LOAEL) 20 and 13 times, respectively, while the other two tests identified the LOAEL only 3 and 4 times, respectively. The EPA review showed that the functional observational battery (FOB) was least effective at detecting the LOAEL, whereas tests of learning and memory (L&M) had methodological shortcomings. Human neurodevelopmental toxicity studies over the past 30 years show that most of the adverse effects are on higher cognitive functions such as L&M. The results of human studies together with structure-function relationships from neuroscience, suggest that tests of working memory, spatial navigation/memory, and egocentric navigation/memory should be added to guideline studies. Collectively, the above suggest that EPA and EU DNT studies would better reflect human findings and be more relevant to children by aligning L&M tests to the same domains that are affected in children, removing less useful methods (FOB), and using newer statistical models to better account for random factors of litter and litter × sex. Common issues in study design and data analyses are discussed: sample size, random group assignment, blinding, elimination of subjective rating methods, avoiding confirmation bias, more complete reporting of species, housing, test protocols, age, test order, and litter effects. Litter in DNT studies should at least be included as a random factor in ANOVA models and may benefit from inclusion of litter × sex as random factors.
Collapse
Affiliation(s)
- Charles V Vorhees
- Department of Pediatrics, College of Medicine, University of Cincinnati and Division of Pediatric Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, United States of America.
| | - Michael T Williams
- Department of Pediatrics, College of Medicine, University of Cincinnati and Division of Pediatric Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, United States of America
| |
Collapse
|
4
|
Vorhees CV, Williams MT, Hawkey AB, Levin ED. Translating Neurobehavioral Toxicity Across Species From Zebrafish to Rats to Humans: Implications for Risk Assessment. FRONTIERS IN TOXICOLOGY 2021; 3:629229. [PMID: 35295117 PMCID: PMC8915800 DOI: 10.3389/ftox.2021.629229] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 01/27/2021] [Indexed: 12/12/2022] Open
Abstract
There is a spectrum of approaches to neurotoxicological science from high-throughput in vitro cell-based assays, through a variety of experimental animal models to human epidemiological and clinical studies. Each level of analysis has its own advantages and limitations. Experimental animal models give essential information for neurobehavioral toxicology, providing cause-and-effect information regarding risks of neurobehavioral dysfunction caused by toxicant exposure. Human epidemiological and clinical studies give the closest information to characterizing human risk, but without randomized treatment of subjects to different toxicant doses can only give information about association between toxicant exposure and neurobehavioral impairment. In vitro methods give much needed high throughput for many chemicals and mixtures but cannot provide information about toxicant impacts on behavioral function. Crucial to the utility of experimental animal model studies is cross-species translation. This is vital for both risk assessment and mechanistic determination. Interspecies extrapolation is important to characterize from experimental animal models to humans and between different experimental animal models. This article reviews the literature concerning extrapolation of neurobehavioral toxicology from established rat models to humans and from zebrafish a newer experimental model to rats. The functions covered include locomotor activity, emotion, and cognition and the neurotoxicants covered include pesticides, metals, drugs of abuse, flame retardants and polycyclic aromatic hydrocarbons. With more complete understanding of the strengths and limitations of interspecies translation, we can better use animal models to protect humans from neurobehavioral toxicity.
Collapse
Affiliation(s)
- Charles V. Vorhees
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Division of Neurology, Cincinnati Children's Research Foundation, Cincinnati, OH, United States
| | - Michael T. Williams
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Division of Neurology, Cincinnati Children's Research Foundation, Cincinnati, OH, United States
| | - Andrew B. Hawkey
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC, United States
| | - Edward D. Levin
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC, United States
| |
Collapse
|
5
|
Holahan MR, Tzakis N, Oliveira FA. Developmental Aspects of Glucose and Calcium Availability on the Persistence of Memory Function Over the Lifespan. Front Aging Neurosci 2019; 11:253. [PMID: 31572169 PMCID: PMC6749050 DOI: 10.3389/fnagi.2019.00253] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 08/27/2019] [Indexed: 01/09/2023] Open
Abstract
An important aspect concerning the underlying nature of memory function is an understanding of how memories are acquired and lost. The stability, and ultimate demise, of memory over the lifespan of an organism remains a critical topic in determining the neurobiological mechanisms that mediate memory representations. This has important implications for the elucidation and treatment of neurodegenerative diseases such as Alzheimer's disease (AD). One important question in the context of preserving functional plasticity over the lifespan is the determination of the neurobiological structural and functional changes that contribute to the formation of memory during the juvenile time frame that might provide protection against later memory dysfunction by promoting the establishment of redundant neural pathways. The main question being, if memory formation during the juvenile period does strengthen and preserve memory stability over the lifespan, what are the neurobiological structural or functional substrates that mediate this effect? One neural attribute whose function may be altered with early life experience and provide a mechanism to preserve memory through the lifespan is glucose transport-linked calcium (Ca2+) buffering. Because peak increases in glucose utilization overlap with a timeframe during which spatial training can enhance later memory processing, it might be the case that learning-associated changes in glucose utilization would provide an important neural functional change to preserve memory function throughout the lifespan. The glucose transporters are proteins that are reduced in AD pathology and there is evidence that glucose reductions can impair Ca2+ buffering. In the absence of an appropriate supply of ATP, provided via glucose transport and glycolysis, Ca2+ levels can rise leading to neural vulnerability with ensuing pathological outcomes. In this review, we explore the hypothesis that enhancing glucose utilization with spatial training during the preadolescent period will provide a functional enhancement that regulates glucose-dependent Ca2+ signaling during aging or neurodegeneration and provide essential neural resources to preserve functional plasticity and memory function.
Collapse
Affiliation(s)
- Matthew R. Holahan
- Department of Neuroscience, Carleton University, Ottawa, ON, Canada
- Laboratory of Cellular and Molecular Neurobiology (LaNeC), Center for Mathematics, Computing and Cognition, Federal University of ABC (UFABC), São Bernardo do Campo, Brazil
| | - Niko Tzakis
- Department of Neuroscience, Carleton University, Ottawa, ON, Canada
| | - Fernando A. Oliveira
- Department of Neuroscience, Carleton University, Ottawa, ON, Canada
- Laboratory of Cellular and Molecular Neurobiology (LaNeC), Center for Mathematics, Computing and Cognition, Federal University of ABC (UFABC), São Bernardo do Campo, Brazil
| |
Collapse
|
6
|
Maternal Flavonoids Intake Reverts Depression-Like Behaviour in Rat Female Offspring. Nutrients 2019; 11:nu11030572. [PMID: 30866491 PMCID: PMC6470771 DOI: 10.3390/nu11030572] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 02/28/2019] [Accepted: 02/28/2019] [Indexed: 12/18/2022] Open
Abstract
Maternal hypercaloric exposure during pregnancy and lactation is a risk factor for developing diseases associated with inflammation such as obesity, diabetes and, neurological diseases in the offspring. Neuroinflammation might modulate neuronal activation and flavonoids are dietary compounds that have been proven to exert anti-inflammatory properties. Thus, the aim of the present study is to evaluate the effect of maternal supplementation with flavonoids (kaempferol-3-O-glucoside and narirutin) on the prevention of depression-like behaviour in the female offspring of dams fed with an obesogenic diet during the perinatal period. Maternal programming was induced by high fat (HFD), high sugar (HSD), or cafeteria diets exposure and depressive like-behaviour, referred to as swimming, climbing, and immobility events, was evaluated around postnatal day 56–60 before and after 30 mg/kg i.p. imipramine administration in the female offspring groups. Central inflammation was analyzed by measuring the TANK binding kinase 1 (TBK1) expression. We found that the offspring of mothers exposed to HSD programming failed to show the expected antidepressant effect of imipramine. Also, imipramine injection, to the offspring of mothers exposed to cafeteria diet, displayed a pro-depressive like-behaviour phenotype. However, dietary supplementation with flavonoids reverted the depression-like behaviour in the female offspring. Finally, we found that HSD programming increases the TBK1 inflammatory protein marker in the hippocampus. Our data suggest that maternal HSD programming disrupts the antidepressant effect of imipramine whereas cafeteria diet exposure leads to depressive-like behaviour in female offspring, which is reverted by maternal flavonoid supplementation.
Collapse
|
7
|
Reyes-Castro LA, Padilla-Gómez E, Parga-Martínez NJ, Castro-Rodríguez DC, Quirarte GL, Díaz-Cintra S, Nathanielsz PW, Zambrano E. Hippocampal mechanisms in impaired spatial learning and memory in male offspring of rats fed a low-protein isocaloric diet in pregnancy and/or lactation. Hippocampus 2017; 28:18-30. [PMID: 28843045 DOI: 10.1002/hipo.22798] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 08/15/2017] [Accepted: 08/22/2017] [Indexed: 01/08/2023]
Abstract
Maternal nutritional challenges during fetal and neonatal development result in developmental programming of multiple offspring organ systems including brain maturation and function. A maternal low-protein diet during pregnancy and lactation impairs associative learning and motivation. We evaluated effects of a maternal low-protein diet during gestation and/or lactation on male offspring spatial learning and hippocampal neural structure. Control mothers (C) ate 20% casein and restricted mothers (R) 10% casein, providing four groups: CC, RR, CR, and RC (first letter pregnancy, second lactation diet). We evaluated the behavior of young adult male offspring around postnatal day 110. Corticosterone and ACTH were measured. Males were tested for 2 days in the Morris water maze (MWM). Stratum lucidum mossy fiber (MF) area, total and spine type in basal dendrites of stratum oriens in the hippocampal CA3 field were measured. Corticosterone and ACTH were higher in RR vs. CC. In the MWM acquisition test CC offspring required two, RC three, and CR seven sessions to learn the maze. RR did not learn in eight trials. In a retention test 24 h later, RR, CR, and RC spent more time locating the platform and performed fewer target zone entries than CC. RR and RC offspring spent less time in the target zone than CC. MF area, total, and thin spines were lower in RR, CR, and RC than CC. Mushroom spines were lower in RR and RC than CC. Stubby spines were higher in RR, CR, and RC than CC. We conclude that maternal low-protein diet impairs spatial acquisition and memory retention in male offspring, and that alterations in hippocampal presynaptic (MF), postsynaptic (spines) elements and higher glucocorticoid levels are potential mechanisms to explain these learning and memory deficits.
Collapse
Affiliation(s)
- L A Reyes-Castro
- Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición SZ, México 14080, México
| | - E Padilla-Gómez
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla, Querétaro 76230, México
| | - N J Parga-Martínez
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla, Querétaro 76230, México
| | - D C Castro-Rodríguez
- Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición SZ, México 14080, México
| | - G L Quirarte
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla, Querétaro 76230, México
| | - S Díaz-Cintra
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla, Querétaro 76230, México
| | - P W Nathanielsz
- Department of Animal Science, University of Wyoming, Laramie, Wyoming 82071-3684
| | - E Zambrano
- Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición SZ, México 14080, México
| |
Collapse
|
8
|
Xiong M, Jones OD, Peppercorn K, Ohline SM, Tate WP, Abraham WC. Secreted amyloid precursor protein-alpha can restore novel object location memory and hippocampal LTP in aged rats. Neurobiol Learn Mem 2017; 138:291-299. [DOI: 10.1016/j.nlm.2016.08.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 07/27/2016] [Accepted: 08/08/2016] [Indexed: 12/12/2022]
|
9
|
The effect of AMPA receptor blockade on spatial information acquisition, consolidation and expression in juvenile rats. Neurobiol Learn Mem 2016; 133:145-156. [PMID: 27353718 DOI: 10.1016/j.nlm.2016.06.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 05/26/2016] [Accepted: 06/25/2016] [Indexed: 11/21/2022]
Abstract
Improvement on spatial tasks in rats is observed during a late, postnatal developmental period (post-natal day (PND) 18 - PND 20). The developmental emergence of this spatial function occurs in conjunction with hippocampal connectivity changes and enhanced hippocampal-AMPA receptor-mediated synaptic responses. The current work investigated the effect of AMPAr blockade on the emergence and long-term storage of spatial information in juvenile rats and associated neural activity patterns in the dorsal hippocampus CA1 region. Male, Long Evans rats between the ages of PND 18 and PND 20 were systemically (i.p.) administered the AMPAr antagonist, NBQX, (0, 5 or 10mg/kg) every day prior to hidden platform water maze training (PND 18, 19 and 20), every day immediately post-training or immediately before the probe test (PND 41). NBQX administration prior to training prolonged latencies, pathlength and increased thigmotaxis during the acquisition phase. Administration of NBQX immediately posttraining had no effect on the day-to-day performance. When given a probe test 3weeks later, the saline group across all conditions spent more time in the target quadrant. Rats treated with pretraining 5mg NBQX dose showed a preference for the target quadrant while the posttraining and pretesting 5mg NBQX doses impaired the target quadrant preference. Groups injected with 10mg of NBQX pretraining, posttraining or pretesting did not show a preference for the target quadrant. c-Fos labeling in the CA1 reflected these differences in probe performance in that groups showing greater than chance dwell time in the target quadrant showed more c-Fos labeling in the CA1 region than groups that did not show a target quadrant preference. These findings provide support for the critical role of AMPA receptor-mediated function in the organization and long-term storage of spatial memories acquired during the juvenile period.
Collapse
|
10
|
Ku KM, Weir RK, Silverman JL, Berman RF, Bauman MD. Behavioral Phenotyping of Juvenile Long-Evans and Sprague-Dawley Rats: Implications for Preclinical Models of Autism Spectrum Disorders. PLoS One 2016; 11:e0158150. [PMID: 27351457 PMCID: PMC4924796 DOI: 10.1371/journal.pone.0158150] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Accepted: 06/10/2016] [Indexed: 11/18/2022] Open
Abstract
The laboratory rat is emerging as an attractive preclinical animal model of autism spectrum disorder (ASD), allowing investigators to explore genetic, environmental and pharmacological manipulations in a species exhibiting complex, reciprocal social behavior. The present study was carried out to compare two commonly used strains of laboratory rats, Sprague-Dawley (SD) and Long-Evans (LE), between the ages of postnatal day (PND) 26-56 using high-throughput behavioral phenotyping tools commonly used in mouse models of ASD that we have adapted for use in rats. We detected few differences between young SD and LE strains on standard assays of exploration, sensorimotor gating, anxiety, repetitive behaviors, and learning. Both SD and LE strains also demonstrated sociability in the 3-chamber social approach test as indexed by spending more time in the social chamber with a constrained age/strain/sex matched novel partner than in an identical chamber without a partner. Pronounced differences between the two strains were, however, detected when the rats were allowed to freely interact with a novel partner in the social dyad paradigm. The SD rats in this particular testing paradigm engaged in play more frequently and for longer durations than the LE rats at both juvenile and young adult developmental time points. Results from this study that are particularly relevant for developing preclinical ASD models in rats are threefold: (i) commonly utilized strains exhibit unique patterns of social interactions, including strain-specific play behaviors, (ii) the testing environment may profoundly influence the expression of strain-specific social behavior and (iii) simple, automated measures of sociability may not capture the complexities of rat social interactions.
Collapse
Affiliation(s)
- Katherine M. Ku
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, Sacramento, California, United States of America
| | - Ruth K. Weir
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, Sacramento, California, United States of America
| | - Jill L. Silverman
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, Sacramento, California, United States of America
- The MIND Institute, University of California, Davis, Sacramento, California, United States of America
| | - Robert F. Berman
- Department of Neurological Surgery, University of California, Davis, Davis, California, United States of America
| | - Melissa D. Bauman
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, Sacramento, California, United States of America
- The MIND Institute, University of California, Davis, Sacramento, California, United States of America
- California National Primate Research Center, Davis, California, United States of America
- * E-mail:
| |
Collapse
|
11
|
Kapadia M, Xu J, Sakic B. The water maze paradigm in experimental studies of chronic cognitive disorders: Theory, protocols, analysis, and inference. Neurosci Biobehav Rev 2016; 68:195-217. [PMID: 27229758 DOI: 10.1016/j.neubiorev.2016.05.016] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 05/03/2016] [Accepted: 05/19/2016] [Indexed: 02/07/2023]
Abstract
An instrumental step in assessing the validity of animal models of chronic cognitive disorders is to document disease-related deficits in learning/memory capacity. The water maze (WM) is a popular paradigm because of its low cost, relatively simple protocol and short procedure time. Despite being broadly accepted as a spatial learning task, inference of generalized, bona fide "cognitive" dysfunction can be challenging because task accomplishment is also reliant on non-cognitive processes. We review theoretical background, testing procedures, confounding factors, as well as approaches to data analysis and interpretation. We also describe an extended protocol that has proven useful in detecting early performance deficits in murine models of neuropsychiatric lupus and Alzheimer's disease. Lastly, we highlight the need for standardization of inferential criteria on "cognitive" dysfunction in experimental rodents and exclusion of preparations of a limited scientific merit. A deeper appreciation for the multifactorial nature of performance in WM may also help to reveal other deficits that herald the onset of neurodegenerative brain disorders.
Collapse
Affiliation(s)
- Minesh Kapadia
- Department of Psychiatry and Behavioral Neurosciences, McMaster University, Psychology Building Rm. 303, 1280 Main St., West Hamilton, Ontario L8S 4K1, Canada
| | - Josie Xu
- Department of Psychiatry and Behavioral Neurosciences, McMaster University, Psychology Building Rm. 303, 1280 Main St., West Hamilton, Ontario L8S 4K1, Canada
| | - Boris Sakic
- Department of Psychiatry and Behavioral Neurosciences, McMaster University, Psychology Building Rm. 303, 1280 Main St., West Hamilton, Ontario L8S 4K1, Canada.
| |
Collapse
|
12
|
Comba R, Gervais N, Mumby D, Holahan M. Emergence of spatial behavioral function and associated mossy fiber connectivity and c-Fos labeling patterns in the hippocampus of rats. F1000Res 2015; 4:396. [PMID: 26925223 PMCID: PMC4712777 DOI: 10.12688/f1000research.6822.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/23/2015] [Indexed: 11/28/2022] Open
Abstract
Improvement on spatial tasks is observed during a late, postnatal developmental period (PND18 – PND24). The purpose of the current work was 1) to determine whether the emergence of spatial-behavioral function was based on the ability to generate appropriate behavioral output; 2) to assess whether mossy fiber connectivity patterns preceded the emergence of spatial-behavioral function; 3) to explore functional changes in the hippocampus to determine whether activity in hippocampal networks occurred in a training-dependent or developmentally-dependent fashion. To these ends, male, Long Evans rats were trained on a spatial water or dry maze task for one day (PND16, PND18 or PND20) then euthanized. Training on these 2 tasks with opposing behavioral demands (swimming versus exploration) was hypothesized to control for behavioral topology. Only at PND20 was there evidence of spatial-behavioral function for both tasks. Examination of synaptophysin staining in the CA3 region (i.e., mossy fiber projections) revealed enhanced connectivity patterns that preceded the emergence of spatial behavior. Analysis of c-Fos labeling (functional changes) revealed developmentally-dependent increases in c-Fos positive cells in the dentate gyrus, CA3 and CA1 regions whereas training-dependent increases were noted in the CA3 and CA1 regions for the water-maze trained groups. Results suggest that changes in mossy fiber connectivity in association with enhanced hippocampal functioning precede the emergence of spatial behavior observed at PND20. The combination of neuroanatomical and behavioural results confirms the hypothesis that this time represents a sensitive period for hippocampal development and modification and the emergence of spatial/ cognitive function.
Collapse
Affiliation(s)
- Rachel Comba
- Department of Neuroscience, Carleton University, Ottawa, ON, K1S 5B6, Canada
| | - Nicole Gervais
- Department of Psychology, Concordia University, Montreal, QC, H4B 1R6, Canada
| | - Dave Mumby
- Department of Psychology, Concordia University, Montreal, QC, H4B 1R6, Canada
| | - Matthew Holahan
- Department of Neuroscience, Carleton University, Ottawa, ON, K1S 5B6, Canada
| |
Collapse
|
13
|
Martínez-Membrives E, López-Aumatell R, Blázquez G, Cañete T, Tobeña A, Fernández-Teruel A. Spatial learning in the genetically heterogeneous NIH-HS rat stock and RLA-I/RHA-I rats: revisiting the relationship with unconditioned and conditioned anxiety. Physiol Behav 2015; 144:15-25. [PMID: 25747770 DOI: 10.1016/j.physbeh.2015.03.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 02/27/2015] [Accepted: 03/02/2015] [Indexed: 12/15/2022]
Abstract
To characterize learning/memory profiles for the first time in the genetically heterogeneous NIH-HS rat stock, and to examine whether these are associated with anxiety, we evaluated NIH-HS rats for spatial learning/memory in the Morris water maze (MWM) and in the following anxiety/fear tests: the elevated zero-maze (ZM; unconditioned anxiety), a context-conditioned fear test and the acquisition of two-way active avoidance (conditioned anxiety). NIH-HS rats were compared with the Roman High- (RHA-I) and Low-Avoidance (RLA-I) rat strains, given the well-known differences between the Roman strains/lines in anxiety-related behavior and in spatial learning/memory. The results show that: (i) As expected, RLA-I rats were more anxious in the ZM test, displayed more frequent context-conditioned freezing episodes and fewer avoidances than RHA-I rats. (ii) Scores of NIH-HS rats in these tests/tasks mostly fell in between those of the Roman rat strains, and were usually closer to the values of the RLA-I strain. (iii) Pigmented NIH-HS (only a small part of NIH-HS rats were albino) rats were the best spatial learners and displayed better spatial memory than the other three (RHA-I, RLA-I and NIH-HS albino) groups. (iv) Albino NIH-HS and RLA-I rats also showed better learning/memory than the RHA-I strain. (v) Within the NIH-HS stock, the most anxious rats in the ZM test presented the best learning and/or memory efficiency (regardless of pigmentation). In summary, NIH-HS rats display a high performance in spatial learning/memory tasks and a passive coping strategy when facing conditioned conflict situations. In addition, unconditioned anxiety in NIH-HS rats predicts better spatial learning/memory.
Collapse
Affiliation(s)
- Esther Martínez-Membrives
- Medical Psychology Unit, Department of Psychiatry and Forensic Medicine, Institute of Neurosciences, Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain.
| | - Regina López-Aumatell
- Medical Psychology Unit, Department of Psychiatry and Forensic Medicine, Institute of Neurosciences, Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain
| | - Gloria Blázquez
- Medical Psychology Unit, Department of Psychiatry and Forensic Medicine, Institute of Neurosciences, Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain
| | - Toni Cañete
- Medical Psychology Unit, Department of Psychiatry and Forensic Medicine, Institute of Neurosciences, Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain
| | - Adolf Tobeña
- Medical Psychology Unit, Department of Psychiatry and Forensic Medicine, Institute of Neurosciences, Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain
| | - Alberto Fernández-Teruel
- Medical Psychology Unit, Department of Psychiatry and Forensic Medicine, Institute of Neurosciences, Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain.
| |
Collapse
|
14
|
Abstract
Maneuvering safely through the environment is central to survival of almost all species. The ability to do this depends on learning and remembering locations. This capacity is encoded in the brain by two systems: one using cues outside the organism (distal cues), allocentric navigation, and one using self-movement, internal cues and nearby proximal cues, egocentric navigation. Allocentric navigation involves the hippocampus, entorhinal cortex, and surrounding structures; in humans this system encodes allocentric, semantic, and episodic memory. This form of memory is assessed in laboratory animals in many ways, but the dominant form of assessment is the Morris water maze (MWM). Egocentric navigation involves the dorsal striatum and connected structures; in humans this system encodes routes and integrated paths and, when overlearned, becomes procedural memory. In this article, several allocentric assessment methods for rodents are reviewed and compared with the MWM. MWM advantages (little training required, no food deprivation, ease of testing, rapid and reliable learning, insensitivity to differences in body weight and appetite, absence of nonperformers, control methods for proximal cue learning, and performance effects) and disadvantages (concern about stress, perhaps not as sensitive for working memory) are discussed. Evidence-based design improvements and testing methods are reviewed for both rats and mice. Experimental factors that apply generally to spatial navigation and to MWM specifically are considered. It is concluded that, on balance, the MWM has more advantages than disadvantages and compares favorably with other allocentric navigation tasks.
Collapse
|
15
|
Korgan AC, Green AD, Perrot TS, Esser MJ. Limbic system activation is affected by prenatal predator exposure and postnatal environmental enrichment and further moderated by dam and sex. Behav Brain Res 2013; 259:106-18. [PMID: 24185030 DOI: 10.1016/j.bbr.2013.10.037] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Revised: 10/18/2013] [Accepted: 10/24/2013] [Indexed: 02/07/2023]
Abstract
Epilepsy is a relatively common and chronic neurological condition, affecting 1-2% of the population. However, understanding of the underlying pathophysiology remains incomplete. To identify potential factors in the early environment that may increase the risk for experiencing seizures, maternal stress and environmental enrichment (EE) were utilized. Pregnant Long-Evans rats were exposed to an ethologically relevant predator stress (PS) and maternal glucocorticoid (GC) response was assessed across the exposure period. At birth, litters were divided into standard care (SC) and EE groups until postnatal day 14 (PD14) when a model of febrile convulsions was used to determine seizure susceptibility of the various groups. Pup brains were then processed for immunohistochemical detection of FosB from several structures in the limbic system as a measure of neuronal activation. Maternal PS-induced GC levels were elevated early in the exposure period, and pup birth weights, in both sexes, were lower in litters from dams exposed to PS. Seizure scores at PD14 were highly individualized and litter dependent, suggesting a dam-dependent and variable effect of controlled pre- and postnatal environmental factors. Further, analysis of FosB-immunoreactive (-ir) patterns revealed an activity dependent distribution, reflecting individual seizure susceptibility. EE had a varying effect on FosB-ir that was dependent on region. In the hippocampus FosB-ir levels were greater in the EE groups while extra-hippocampal regions showed lower levels of FosB-ir. Our results support the concept that pre- and postnatal environmental influences affect fetal programming and neurodevelopment of processes that could underlie seizure susceptibility, but that the magnitude of these effects appears to be dam- or litter-dependent.
Collapse
Affiliation(s)
- Austin C Korgan
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS, Canada
| | - Amanda D Green
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS, Canada
| | - Tara S Perrot
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS, Canada.
| | - Michael J Esser
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS, Canada; Departments of Pediatrics and Pharmacology, IWK Health Care Centre, Halifax, NS, Canada
| |
Collapse
|
16
|
Hurwitz ZE, Cobuzzi JL, Merluzzi AP, Wetzell B, Riley AL. Prepubertal Fischer 344 rats display stronger morphine-induced taste avoidance than prepubertal Lewis rats. Dev Psychobiol 2013; 56:979-88. [PMID: 24166592 DOI: 10.1002/dev.21176] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Accepted: 09/30/2013] [Indexed: 12/15/2022]
Abstract
The present report asked if the previously reported differences in morphine-induced conditioned taste avoidance between adult F344 and LEW rats (F344 > LEW) are also evident in prepubescence (early adolescence). To assess this possibility, adult (Experiment 1) and prepubertal (Experiment 2) F344 and LEW rats were assessed for their ability to acquire morphine-induced taste avoidance (0, 3.2, 10, or 18 mg/kg) in a modified taste avoidance procedure. In each experiment, rats of both strains were given repeated pairings of saccharin and morphine followed by a final two-bottle avoidance test. Adult and prepubertal F344 subjects displayed a more rapid acquisition of the avoidance response as well as stronger suppression of consumption than their LEW counterparts. These data suggest the strains differ in their sensitivity to the aversive effects of morphine and that this differential sensitivity is evident early in development and is developmentally stable. The basis for these strain differences in morphine-induced avoidance was discussed.
Collapse
Affiliation(s)
- Zachary E Hurwitz
- Psychopharmacology Laboratory, Department of Psychology, American University, 4400 Mass. Ave., NW, Washington, DC, 20016.
| | | | | | | | | |
Collapse
|
17
|
Cole PD, Vijayanathan V, Ali NF, Wagshul ME, Tanenbaum EJ, Price J, Dalal V, Gulinello ME. Memantine protects rats treated with intrathecal methotrexate from developing spatial memory deficits. Clin Cancer Res 2013; 19:4446-54. [PMID: 23833301 DOI: 10.1158/1078-0432.ccr-13-1179] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE To test whether memantine can prevent methotrexate-induced cognitive deficits in a preclinical model. EXPERIMENTAL DESIGN After noting that methotrexate exposure induces prolonged elevations of the glutamate analog homocysteic acid (HCA) within cerebrospinal fluid, we tested whether intrathecal injection of HCA would produce memory deficits similar to those observed after intrathecal methotrexate. We then tested whether memantine, an antagonist of the N-methyl-d-aspartate (NMDA) subclass of glutamate receptors, could protect animals treated with clinically relevant doses of intrathecal methotrexate against developing memory deficits. Finally, we asked whether memantine affected this pathway beyond inhibiting the NMDA receptor by altering expression of the NMDA receptor or affecting concentrations of HCA or glutamate within the central nervous system. RESULTS Four intrathecal doses of methotrexate induced deficits in spatial memory, persisting at least one month following the final injection. Intrathecal HCA was sufficient to reproduce this deficit. Concurrent administration of memantine during the period of methotrexate exposure was protective, decreasing the incidence of methotrexate-induced spatial memory deficits from 56% to 20% (P < 0.05). Memantine neither altered expression of NMDA receptors within the hippocampus nor blunted the methotrexate-induced increases in glutamate or HCA. CONCLUSIONS Excitotoxic glutamate analogs including HCA contribute to cognitive deficits observed after intrathecal methotrexate. Memantine, an NMDA receptor antagonist, reduces the incidence of cognitive deficits in rats treated with intrathecal methotrexate, and may therefore benefit patients with cancer receiving similar treatment.
Collapse
Affiliation(s)
- Peter D Cole
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, New York 10461, USA.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Filgueiras CC, Pohl-Guimarães F, Krahe TE, Medina AE. Sodium valproate exposure during the brain growth spurt transiently impairs spatial learning in prepubertal rats. Pharmacol Biochem Behav 2012. [PMID: 23178315 DOI: 10.1016/j.pbb.2012.11.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The brain is extremely vulnerable to teratogenic insults during the brain growth spurt, a period that starts during the third trimester of human gestation and is characterized by synaptogenesis establishment of neuronal circuits. While the treatment of epilepsy during pregnancy increases the risk of neurodevelopmental disorders in offspring, the consequences of exposure to anticonvulsants during the brain growth spurt remain poorly known. Here we investigate whether exposure to sodium valproate (VPA) during a similar period in rats impairs spatial learning of juvenile rats. Long-Evans rats were exposed to VPA (200mg/kg) or saline solution (SAL) every other day between postnatal day (PN) 4 and PN10. At PN23 and PN30, Morris water maze performance was evaluated during 6 consecutive days. In the group of animals which started their tests at PN23, the VPA exposure impaired both, swimming speed and learning/memory performance. Interestingly, no differences were observed between VPA and control animals tested from PN30 to PN35. Our data suggests that the neurobehavioral deficits caused by VPA exposure during the brain growth spurt are transitory.
Collapse
Affiliation(s)
- Cláudio C Filgueiras
- Departamento de Ciências Fisiológicas, Universidade do Estado do Rio de Janeiro, Brazil.
| | | | | | | |
Collapse
|
19
|
Bingham D, Martin SJ, Macrae IM, Carswell HVO. Watermaze performance after middle cerebral artery occlusion in the rat: the role of sensorimotor versus memory impairments. J Cereb Blood Flow Metab 2012; 32:989-99. [PMID: 22373646 PMCID: PMC3367220 DOI: 10.1038/jcbfm.2012.16] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In rodent stroke models, investigation of deficits in spatial memory using the Morris watermaze may be confounded by coexisting sensory or motor impairments. To target memory specifically, we devised a watermaze protocol to minimize the impact of sensory and motor impairments in female Lister-hooded rats exposed to proximal electrocoagulation of the middle cerebral artery (MCAO). Rats were trained in a reference-memory task comprising 4 trials/day; trial 1 being a probe trial (platform absent for the first 60 seconds). Training ended once animals reached a strict criterion based on the probe-trial performance. Memory retention was tested 1, 7, and 28 days later. The MCAO did not affect the number of days to reach criterion during acquisition or the time spent in target quadrant during retention testing, compared with sham or unoperated rats. However, MCAO rats showed slightly poorer accuracy in crossing the platform location and increased thigmotactic swimming compared with controls. Our results show that spatial memory deficits are minimal in this rodent stroke model, and suggest that previously published watermaze impairments are attributable to sensory and motor deficits but not memory deficits. We recommend using probe trials and training to a predetermined performance criterion in future studies assessing watermaze memory deficits in rodent stroke models.
Collapse
Affiliation(s)
- Deborah Bingham
- Department of Neurosurgery, San Francisco Veterans Affairs Medical Center, San Francisco, California, USA
| | | | | | | |
Collapse
|
20
|
Bowden JB, Abraham WC, Harris KM. Differential effects of strain, circadian cycle, and stimulation pattern on LTP and concurrent LTD in the dentate gyrus of freely moving rats. Hippocampus 2011; 22:1363-70. [PMID: 21853503 DOI: 10.1002/hipo.20972] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/14/2011] [Indexed: 01/09/2023]
Abstract
Because long-term potentiation (LTP) and long-term depression (LTD) are thought to be involved in learning and memory, it is important to delineate factors that modulate their induction and persistence, especially as studied in freely moving animals. Here, we investigated the effects of rat strain, circadian cycle, and high-frequency stimulation (HFS) pattern on LTP and concurrently induced LTD in the dentate gyrus (DG). Comparison of two commonly used rat strains revealed that medial perforant path field EPSP-population spike (E-S) coupling and LTP were greater in Long-Evans than Sprague-Dawley rats. Circadian cycle experiments conducted in Long-Evans rats revealed greater E-S coupling and enhanced LTP during the dark phase. Interestingly, concurrent LTD in the lateral perforant path did not significantly differ across strains or circadian cycle. Testing HFS protocols during the dark phase revealed that theta burst stimulation (100 Hz bursts at 5 Hz intervals) was ineffective in eliciting either LTP or concurrent LTD in DG, whereas 400 Hz bursts delivered at theta (5 Hz) or delta (1 Hz) frequencies produced substantial LTP and concurrent LTD. Thus, these natural and experimental factors regulate granule cell excitability, and differentially affect LTP and concurrent LTD in the DG of freely moving rats. © 2011 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Jared B Bowden
- Center for Learning and Memory, University of Texas at Austin, Austin, TX 78712, USA
| | | | | |
Collapse
|
21
|
Spritzer MD, Daviau ED, Coneeny MK, Engelman SM, Prince WT, Rodriguez-Wisdom KN. Effects of testosterone on spatial learning and memory in adult male rats. Horm Behav 2011; 59:484-96. [PMID: 21295035 PMCID: PMC3081396 DOI: 10.1016/j.yhbeh.2011.01.009] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2010] [Revised: 01/20/2011] [Accepted: 01/26/2011] [Indexed: 10/18/2022]
Abstract
A male advantage over females for spatial tasks has been well documented in both humans and rodents, but it remains unclear how the activational effects of testosterone influence spatial ability in males. In a series of experiments, we tested how injections of testosterone influenced the spatial working and reference memory of castrated male rats. In the eight-arm radial maze, testosterone injections (0.500 mg/rat) reduced the number of working memory errors during the early blocks of testing but had no effect on the number of reference memory errors relative to the castrated control group. In a reference memory version of the Morris water maze, injections of a wide range of testosterone doses (0.0625-1.000 mg/rat) reduced path lengths to the hidden platform, indicative of improved spatial learning. This improved learning was independent of testosterone dose, with all treatment groups showing better performance than the castrated control males. Furthermore, this effect was only observed when rats were given testosterone injections starting 7 days prior to water maze testing and not when injections were given only on the testing days. We also observed that certain doses of testosterone (0.250 and 1.000 mg/rat) increased perseverative behavior in a reversal-learning task. Finally, testosterone did not have a clear effect on spatial working memory in the Morris water maze, although intermediate doses seemed to optimize performance. Overall, the results indicate that testosterone can have positive activational effects on spatial learning and memory, but the duration of testosterone replacement and the nature of the spatial task modify these effects.
Collapse
Affiliation(s)
- Mark D Spritzer
- Department of Biology, Middlebury College, Middlebury, VT 05753, USA.
| | | | | | | | | | | |
Collapse
|
22
|
Epp J, Scott N, Galea L. Strain differences in neurogenesis and activation of new neurons in the dentate gyrus in response to spatial learning. Neuroscience 2011; 172:342-54. [DOI: 10.1016/j.neuroscience.2010.10.025] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2010] [Revised: 10/09/2010] [Accepted: 10/11/2010] [Indexed: 10/18/2022]
|
23
|
Akers KG, Candelaria-Cook FT, Rice JP, Johnson TE, Hamilton DA. Cued platform training reveals early development of directional responding among preweanling rats in the Morris water task. Dev Psychobiol 2010; 53:1-12. [DOI: 10.1002/dev.20480] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
24
|
Tan AA, Quigley A, Smith DC, Hoane MR. Strain differences in response to traumatic brain injury in Long-Evans compared to Sprague-Dawley rats. J Neurotrauma 2009; 26:539-48. [PMID: 19216636 PMCID: PMC2748727 DOI: 10.1089/neu.2008.0611] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The selected strain of rodent used in experimental models of traumatic brain injury is typically dependent upon the experimental questions asked and the familiarity of the investigator with a specific rodent strain. This archival study compares the injury responsiveness and recovery profiles of two popular outbred strains, the Long-Evans (LE) and the Sprague-Dawley (SD), after brain injury induced by lateral fluid percussion injury (LFPI). General findings include a significantly longer duration of unconsciousness in LE rats, but similar durations of apnea. Both strains displayed the same level of initial FPI-induced behavioral deficits, followed by a more rapid rate of functional recovery in SD rats. Cortical volume loss was not significantly different, but close inspection of the data suggests the possibility that LE rats may be more susceptible to damage in the hemisphere contralateral to the injury site than are SD rats. It is hoped that the information provided here encourages greater attention to the subtle differences and similarities between strains in future pre-clinical efficacy studies of traumatic brain injury.
Collapse
Affiliation(s)
- Arlene A Tan
- Restorative Neuroscience Laboratory, Brain and Cognitive Sciences Program, Department of Psychology, Southern Illinois University, Carbondale, Illinois 62901, USA
| | | | | | | |
Collapse
|
25
|
Harris AP, D'eath RB, Healy SD. Sex differences, or not, in spatial cognition in albino rats: acute stress is the key. Anim Behav 2008. [DOI: 10.1016/j.anbehav.2008.07.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
26
|
Tian YM, Chen X, Luo DZ, Zhang XH, Xue H, Zheng LF, Yang N, Wang XM, Zhu JX. Alteration of dopaminergic markers in gastrointestinal tract of different rodent models of Parkinson's disease. Neuroscience 2008; 153:935-43. [PMID: 18420351 DOI: 10.1016/j.neuroscience.2008.03.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2007] [Revised: 03/03/2008] [Accepted: 03/03/2008] [Indexed: 11/29/2022]
Abstract
Parkinson's disease (PD) is a progressive neurological disorder that is often associated with various gastrointestinal (GI) symptoms. The link between the alteration of dopaminergic system and the symptoms of the GI tract in PD is complicated. To determine the changes in the dopaminergic system in the GI tract in PD, two kinds of rodent PD models were used in the present study. One was 6-hydroxydopamine (6-OHDA) -treated rats in which 6-OHDA was microinjected in the bilateral substantia nigra (SN). The other was 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) -treated mice in which MPTP was injected intraperitoneally. Immunofluorescence, reverse transcription (RT)-real time polymerase chain reaction (PCR) and Western blot were used to evaluate and compare the levels of mRNA and protein expression of tyrosine hydroxylase (TH) and dopamine transporter (DAT) in the GI tract between normal and rodent PD models, as well as between 6-OHDA-treated rats and MPTP-treated mice. The results indicated that TH- and DAT-positive cells were widely distributed in the GI tract. There were significant differences in TH and DAT expression in the GI tract between normal and PD models, as well as between 6-OHDA-treated rats and MPTP-treated mice. The protein levels of TH and DAT in the GI tract were significantly increased in 6-OHDA-treated rats, but the protein level of TH was significantly decreased in MPTP-treated mice. In addition, there was visible atrophy of gastric epithelial parietal cells in MPTP-treated mice, although the protein level of DAT was not significantly changed. The different alterations of dopaminergic system in the GI tract of the two kinds of PD models might underline the differences in GI symptoms in PD patients and might be correlated with the disease severity and disease process affecting the GI tract.
Collapse
Affiliation(s)
- Y-M Tian
- Department of Physiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Akers KG, Hamilton DA. Comparison of developmental trajectories for place and cued navigation in the morris water task. Dev Psychobiol 2007; 49:553-64. [PMID: 17680604 DOI: 10.1002/dev.20227] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Previous studies investigating the development of place and cued learning using the Morris water task are in disagreement regarding the day in development that each type of learning emerges. Here, place and cued navigation in the water task were examined in differently aged groups of young male and female rats (P17, P18, P19, P20, and P24) during a single day of training. When only distal cues were present, P20 and P24 but not younger rats learned the location of the hidden platform. In contrast, when a proximal cue marked the platform location, rats as young as P17 showed evidence of cue-controlled navigation, although only P18 and older rats exhibited cued learning. In line with most previous studies, these results indicate that cued learning emerges earlier in development than place learning and support a dissociation of developmental trajectories for the neural systems underlying the two types of navigation.
Collapse
Affiliation(s)
- Katherine G Akers
- Department of Psychology, University of New Mexico, Albuquerque, NM 87131, USA.
| | | |
Collapse
|
28
|
Baskerville KA, Kent C, Nicolle MM, Gallagher M, McKinney M. Aging causes partial loss of basal forebrain but no loss of pontine reticular cholinergic neurons. Neuroreport 2006; 17:1819-23. [PMID: 17164671 DOI: 10.1097/wnr.0b013e32800fef5a] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Cholinergic degeneration occurs in several neurodegenerative diseases. To investigate whether normal aging causes selective neurodegeneration, we compared counts of cholinergic neurons in the medial septum/vertical limb of the diagonal band and pedunculopontine and laterodorsal tegmental nuclei of the brainstem in young and aged Long-Evans rats characterized for their spatial learning ability in the Morris water maze. A subset of aged rats (aged-unimpaired) learned the spatial learning task as young rats, whereas another group (age-impaired) showed poorer learning than young animals. In the medial septum/diagonal band, there was a significant loss (-23%, P < 0.02) of cholinergic neurons in aged-impaired animals compared with young subjects. In the brainstem, there were no significant differences in cholinergic cell number in any group. This selective loss of cholinergic neurons may, in part, account for the cognitive deficits observed in aging and, considering previous findings in this model, may be related to oxidative stress.
Collapse
|
29
|
van den Bos R, Lasthuis W, den Heijer E, van der Harst J, Spruijt B. Toward a rodent model of the Iowa gambling task. Behav Res Methods 2006; 38:470-8. [PMID: 17186757 DOI: 10.3758/bf03192801] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The Iowa gambling task in humans is, in principle, suited for the study of the long-term efficiency of behavior in a biologically relevant context. Key features of this task are uncertainty of outcomes and a conflict between the immediate and the long-term payoff options. Animal models allow us to study the underlying neurobiology of decision-making processes and the long-term efficiency of behavior in more detail and at a greater depth than is possible in humans. Therefore, we set out to develop a model of this task in rodents, using the task's key features. In this article, we describe the results of the first series of experiments with rats and mice. The data thus far suggest that mice and rats behave in a way similar to humans; that is, they tend to choose the option with the best long-term payoff more often as the test progresses.
Collapse
Affiliation(s)
- Ruud van den Bos
- Faculty of Veterinary Medicine, Ethology and Welfare, Utrecht University, Yalelaan 2, NL-3584 CM, Utrecht, The Netherlands.
| | | | | | | | | |
Collapse
|
30
|
GALLER JR, TONKISS J. The Effects of Prenatal Protein Malnutrition and Cocaine on the Development of the Rata. Ann N Y Acad Sci 2006; 846:29-39. [DOI: 10.1111/j.1749-6632.1998.tb09724.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
31
|
Paulson PE, Gorman AL, Yezierski RP, Casey KL, Morrow TJ. Differences in forebrain activation in two strains of rat at rest and after spinal cord injury. Exp Neurol 2005; 196:413-21. [PMID: 16182286 PMCID: PMC1838964 DOI: 10.1016/j.expneurol.2005.08.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2005] [Accepted: 08/25/2005] [Indexed: 01/17/2023]
Abstract
Forebrain activation patterns in normal and spinal-injured Sprague-Dawley (SD) rats were determined by measuring regional cerebral blood flow as an indicator of neuronal activity. Data are compared to our previously published findings from normal and spinal-injured Long-Evans (LE) rats and reveal a striking degree of overlap, as well as differences, between strains in the basal (unstimulated) forebrain activation in normal animals. Specifically, 81% of the structures sampled showed similar activation in both strains, suggesting a consistent and identifiable pattern of basal cerebral activation in the rat. LE controls showed significantly greater basal activation in the remaining structures compared to SD control group, including the anterior dorsal thalamus, basolateral amygdala, SII cortex, and the hypothalamic paraventricular nucleus. In contrast, spinal cord injury (SCI) resulted in strain-specific changes in forebrain activation categorized by structures that showed significant increases in: (1) only LE SCI rats (posterior, ventrolateral, and ventroposterolateral thalamic nuclei); (2) only SD SCI rats (anterior-dorsal and medial thalamus, basolateral amygdala, cingulate and retrosplenial cortex, habenula, interpeduncular nucleus, hypothalamic paraventricular nucleus, periaqueductal gray); or (3) both strains (arcuate nucleus, ventroposteromedial thalamus, SI and SII somatosensory cortex). These results provide information related to the remote, i.e. supraspinal, effects of spinal cord injury and suggest that genetic differences play an important part in the forebrain response to such injury. Brain activation studies therefore provide a useful tool in understanding the full extent of secondary consequences following spinal injury and for identifying potential central mechanism responsible for the development of pain.
Collapse
Affiliation(s)
- Pamela E Paulson
- Neurology Research Laboratory, VA Medical Center, Ann Arbor, MI 48105, USA.
| | | | | | | | | |
Collapse
|
32
|
Jutkiewicz EM, Rice KC, Woods JH, Winsauer PJ. Effects of the delta-opioid receptor agonist SNC80 on learning relative to its antidepressant-like effects in rats. Behav Pharmacol 2004; 14:509-16. [PMID: 14557718 DOI: 10.1097/00008877-200311000-00003] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Delta-opioid receptor agonists produce decreases in immobility in the forced swim test, suggesting that these compounds have antidepressant-like activity. There is also the possibility that these compounds decrease immobility in the forced swim test by disrupting learning processes that occur during the swim, or with successive swim exposures, thus falsely identifying them as having "antidepressant" potential. This study investigated the effects of the delta-opioid receptor agonist, SNC80, on responding in a repeated-acquisition procedure and in the forced swim test in rats, and the effects were compared directly to those of scopolamine, a compound known to disrupt memory and learning. SNC80 disrupted acquisition of a response sequence (learning) and produced a significant antidepressant-like effect in the forced swim test. Scopolamine, however, produced larger decrements in learning without producing behavioral changes consistent with an antidepressant-like profile of action. These results suggest that SNC80 produces antidepressant-like activity through a mechanism independent of its disruptive effects on learning.
Collapse
Affiliation(s)
- E M Jutkiewicz
- Department of Pharmacology, University of Michigan Medical School, 1301 MSRB III, Ann Arbor, MI 48104-0632, USA
| | | | | | | |
Collapse
|
33
|
Abstract
The hippocampal formation participates in learning and memory, particularly that of a spatial nature. In adult rats, individual CA1 pyramidal neurons only fire when the animal visits specific locations in an environment, the "place field" of the neuron. Other structures (postsubiculum, thalamus, cingulum) contain neurons that code for the animal's instantaneous head direction. Previous work has shown that the rat hippocampal formation undergoes anatomical and neurophysiological maturation during the first 2 months of life and that rats <40 days of age are impaired in spatial navigation tasks. Here we show that the locational firing of CA1 pyramidal neurons is both less specific and less stable in animals aged <50 days. However, preliminary results indicate that head directional firing recorded around day 30 is essentially identical to that seen in adult animals. Therefore, the development of reliable, spatially specific place cell activity parallels the developmental time course of spatial navigational ability, but head directional firing appears before full maturation of the hippocampus.
Collapse
Affiliation(s)
- Patrick D Martin
- Department of Anatomy, School of Medical Sciences, University of Bristol, UK.
| | | |
Collapse
|
34
|
Prusky GT, Harker KT, Douglas RM, Whishaw IQ. Variation in visual acuity within pigmented, and between pigmented and albino rat strains. Behav Brain Res 2002; 136:339-48. [PMID: 12429395 DOI: 10.1016/s0166-4328(02)00126-2] [Citation(s) in RCA: 201] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Many researchers assume that laboratory rats have poor vision, and accordingly, that they need not consider differences in the visual function of rats as a consequence of strain or experience. Currently, it is not specifically known whether rat domestication has negatively affected the visual function of laboratory rat strains, what the effects of strain albinism are on rat visual function, or whether there are strain differences in the visual function of laboratory rats that are independent of pigmentation. In order to address these questions, we measured psychophysically the vertical grating acuity of three pigmented (Dark Agouti, Fisher-Norway, Long-Evans) and three albino (Fisher-344, Sprague-Dawley, Wistar) strains of laboratory rats, and compared their acuity with that of wild rats. The grating thresholds of Dark Agouti, Long-Evans and wild strains clustered around 1.0 cycle/degree (c/d) and did not significantly differ from one another. Fisher-Norway rats, however, had a significantly higher threshold of 1.5 c/d. The grating thresholds of Fisher-344, Sprague-Dawley, and Wistar strains, which were clustered around 0.5 c/d, were significantly lower than those of the pigmented strains. These data demonstrate that there is significant strain variability in the visual function of laboratory rats. Domestication of Long-Evans and Dark Agouti strains does not appear to have compromised visual acuity, but in the case of Fisher-Norway rats, selective breeding may have enhanced their acuity. Strain selection associated with albinism, however, appears to have consistently impaired visual acuity. Therefore, a consideration of strain differences in visual function should accompany the selection of a rat model for behavioral tasks that involve vision, or when comparing visuo-behavioral measurements across rat strains.
Collapse
Affiliation(s)
- Glen T Prusky
- Department of Psychology and Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, 4401 University Drive, Lethbridge, AB, Canada T1K 3M4.
| | | | | | | |
Collapse
|
35
|
Girard TA, Wainwright PE. Testing the spatial- versus object-learning distinction: water-maze performance of male rats exposed to ethanol during the brain growth spurt. Behav Brain Res 2002; 134:493-503. [PMID: 12191836 DOI: 10.1016/s0166-4328(02)00091-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This study investigated the effects of exposure to ethanol during the brain growth spurt on a visual-discrimination (VD) and a place-learning task (PL) using intra-maze cues in the water maze. Artificially reared male Long-Evans rats were exposed to ethanol (ET) in a binge pattern from postnatal days 6-9 (6.5 g kg(-1) x day(-1); BAC approximately 330 mg/dl) or an isocaloric maltose-dextrin solution (gastrostomy control). A third suckled control group was reared by lactating dams. In experiment 1, rats were trained to discriminate horizontal- (H) versus vertical-striped (V) cues, with the positive cue providing escape from water. Groups did not differ with V+, but ET rats made more errors with H+. In experiment 2, the ET group was impaired in learning the spatial location of a submerged platform relative to intra-maze cues. In both tasks, acquisition deficits among ET rats were characterized by impairment emerging at trial 2, with intact reference memory on trial 1, and the ET group reached a comparable level of performance to controls by the end of training. In summary, because impairment was related to task characteristics, a clear distinction between impaired spatial- versus cue-based learning was not supported. However, these findings do support an effect of exposure to ethanol during the brain growth spurt on recent event, but not reference, memory.
Collapse
Affiliation(s)
- Todd A Girard
- Department of Psychology, University of Waterloo, Waterloo, Ont, Canada N2L 3G1.
| | | |
Collapse
|
36
|
Harker KT, Whishaw IQ. Place and matching-to-place spatial learning affected by rat inbreeding (Dark-Agouti, Fischer 344) and albinism (Wistar, Sprague-Dawley) but not domestication (wild rat vs. Long-Evans, Fischer-Norway). Behav Brain Res 2002; 134:467-77. [PMID: 12191833 DOI: 10.1016/s0166-4328(02)00083-9] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Domestication has been shown to produce a shift in both morphological and behavioral characteristics of animals. While changes in body weight, brain size, reproductive rates, and temperament are well documented, the effects of domestication on learning and memory are not as clearly understood. This issue is of particular importance to the use of rodent models in learning and memory where the domestication of Rattus norvegicus for research has resulted in the availability of numerous strains. To investigate cognitive effects resulting frm domestication, we examined the spatial performance of a number of rat strains: wild, Long-Evans, Fischer-Norway, Dark-Agouti, Wistar, Fischer 344, Sprague-Dawley. The wild rats served as a baseline for comparing inbred and outbred domestic strains and pigmented and albino domestic strains. Place (a measure of nonspatial and procedural learning), matching-to-place (spatial working memory), and probe (retention) performance were measured in the Morris swimming pool task. The task is an ideal means for comparing different rat strains because place learning has not been selected for in the domestication of Rattus norvegicus and because the task is ethologically relevant. The results indicated that wild rats and Long-Evans rats did not differ on any measure, with Fischer-Norway rats being only slightly inferior. Larger impairments were found in Wistar > Fischer 344 > Dark-Agouti > Sprague-Dawley strains. Impairments were more obvious on place acquisition but also occurred in matching-to-place performance. Platform crosses, but not quadrant preference was found to be correlated with place learning. In general, although nonspatial and spatial deficits were associated with both inbreeding and albinism, impaired spatial performance is not a necessary result of domestication.
Collapse
Affiliation(s)
- K Troy Harker
- Canadian Center for Behavioral Neuroscience, University of Lethbridge, 4401 University Drive, Lethbridge, Alta, Canada.
| | | |
Collapse
|
37
|
Carman HM, Booze RM, Mactutus CF. Long-term retention of spatial navigation by preweanling rats. Dev Psychobiol 2002; 40:68-77. [PMID: 11835152 DOI: 10.1002/dev.10014] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The present study was designed to examine retention of spatial information in the immature, Fischer-344N rat using a savings paradigm. Following training to locate a hidden platform using extramaze cues, preweanling animals (17 days of age) were immediately probed by testing in the tank with the platform removed. One week later, pups (26 days of age) were given an additional four training trials immediately followed by a second probe test to examine the animals' memory for the location of the platform. Animals that received initial training at 17 days of age demonstrated significant savings of information when tested after the retention interval. These data replicate our recent report of spatial navigation capabilities in the preweanling rat, and extend those findings by demonstrating that preweanling spatial navigation performance permits more rapid and accurate navigation following a 7-day retention interval after a "reinstatement" insufficient to produce accurate navigation in maturation controls.
Collapse
Affiliation(s)
- Heidi M Carman
- Research and Graduate Studies, University of Kentucky, Lexington, KY 40546-0236, USA
| | | | | |
Collapse
|
38
|
Cimadevilla JM, Fenton AA, Bures J. Transient sex differences in the between-sessions but not in the within-session memory underlying an active place avoidance task in weanling rats. Behav Neurosci 2001; 115:695-703. [PMID: 11439458 DOI: 10.1037/0735-7044.115.3.695] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Spatial abilities were tested in male and female rats by training them to avoid an area in which there was a mild footshock while the arena rotated at 1 revolution/minute. The to-be-avoided area was stable in the coordinates of the room, so extramaze landmarks had to be used for accurate navigation, as the rotation made intramaze cues and substrate-based path integration useless for the avoidance. From Postnatal Day (PD) 19, rats were trained for 22 consecutive days. When the shock area was the same across sessions male rats reached optimal performance on PDs 23-24, 10 days before female rats, but when the location of the shock changed daily there were no sex differences. The results indicate that there are separate memory components underlying spatial competence: a within-session component that develops similarly in male and female rats and a between-sessions component that lasts at least 24 hr and appears earlier in male than in female rats.
Collapse
Affiliation(s)
- J M Cimadevilla
- Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | | | | |
Collapse
|
39
|
Paredes-Olay C, López M. Comparison of the instrumental reinforcer devaluation effect in two strains of rats (Wistar and Lister). Behav Processes 2000; 50:165-169. [PMID: 10969193 DOI: 10.1016/s0376-6357(00)00097-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In this experiment, the effect of the reinforcer devaluation upon instrumental performance was analysed in two strains of rats (Wistar and Lister): Food deprived rats were trained to press a lever for sucrose pellets in a single session. Immediately after the fulfilment of this session, half of the Wistar and Lister rats received an injection of lithium chloride (LiCl), while the remaining animals were injected with a sodium chloride (NaCl) solution. A subsequent extinction test showed that the subjects who had received immediate LiCl did not press the lever as often as those injected with NaCl. No differences in response suppression were found between the two strains of rats. These results also show that a single devaluation experience is sufficient for an impact on instrumental performance.
Collapse
Affiliation(s)
- C Paredes-Olay
- Departamento de Psicología, Universidad de Jaén, Paraje Las Lagunillas s/n, 23071, Jaén, Spain
| | | |
Collapse
|
40
|
Cimadevilla J, González-Pardo H, López L, Dı́az F, Cueto E, Garcı́a-Moreno L, Arias J. Sex-related differences in spatial learning during the early postnatal development of the rat. Behav Processes 1999; 46:159-71. [DOI: 10.1016/s0376-6357(99)00034-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/1998] [Revised: 10/08/1998] [Accepted: 03/22/1999] [Indexed: 10/27/2022]
|
41
|
Chapillon P. Very brief exposure to visual distal cues is sufficient for young mice to navigate in the Morris water maze. Behav Processes 1999; 46:15-24. [DOI: 10.1016/s0376-6357(98)00057-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/1998] [Revised: 11/09/1998] [Accepted: 11/19/1998] [Indexed: 11/29/2022]
|
42
|
Engelmann M, Landgraf R, Lörscher P, Conzelmann C, Probst JC, Holsboer F, Reul JM. Downregulation of brain mineralocorticoid and glucocorticoid receptor by antisense oligodeoxynucleotide treatment fails to alter spatial navigation in rats. Eur J Pharmacol 1998; 361:17-26. [PMID: 9851537 DOI: 10.1016/s0014-2999(98)00702-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Adult male Brown Norway rats were long-term intracerebroventricularly (i.c.v.) infused with antisense oligodeoxynucleotides (18-mer, double endcapped phosphorothioate protected) targeting either mineralocorticoid or glucocorticoid receptor mRNA, or received the respective mixed bases sequence or vehicle. Mineralocorticoid receptor-mixed bases and glucocorticoid receptor-mixed bases oligodeoxynucleotide infusion (1 microg/0.5 microl/h) over a time period of seven days did not alter hippocampal mineralocorticoid receptor and glucocorticoid receptor binding when compared to vehicle treatment. In contrast, i.c.v. administration of mineralocorticoid receptor, as well as glucocorticoid receptor-antisense over the same time period resulted in a significantly reduced binding of mineralocorticoid receptor and glucocorticoid receptor in the hippocampus [mineralocorticoid receptor-antisense group approx. 72% of mineralocorticoid receptor-mixed bases and vehicle groups (100%); glucocorticoid receptor antisense group approx. 77% of glucocorticoid receptor-mixed bases and vehicle]. The specificity of these antisense effects is indicated by the finding that rats treated with mineralocorticoid receptor-antisense did not show any changes in glucocorticoid receptor and vice versa. Animals treated according to this infusion protocol and tested in the Morris water maze for their spatial navigation abilities failed to show significant differences among the groups. These data indicate that a reduction of hippocampal mineralocorticoid receptor or glucocorticoid receptor binding capacity by 20-30% does not interfere with spatial navigation.
Collapse
MESH Headings
- Animals
- Brain/drug effects
- Brain/metabolism
- Down-Regulation
- Hippocampus/drug effects
- Hippocampus/metabolism
- Infusion Pumps, Implantable
- Injections, Intraventricular
- Male
- Maze Learning/drug effects
- Oligodeoxyribonucleotides, Antisense/genetics
- Oligodeoxyribonucleotides, Antisense/pharmacology
- Rats
- Rats, Inbred BN
- Receptors, Glucocorticoid/drug effects
- Receptors, Glucocorticoid/genetics
- Receptors, Glucocorticoid/metabolism
- Receptors, Mineralocorticoid/drug effects
- Receptors, Mineralocorticoid/genetics
- Receptors, Mineralocorticoid/metabolism
- Spatial Behavior/drug effects
- Swimming
Collapse
Affiliation(s)
- M Engelmann
- Max Planck Institute of Psychiatry, Munich, Germany
| | | | | | | | | | | | | |
Collapse
|
43
|
Strother WN, Vorhees CV, Lehman MN. Long-term effects of early cocaine exposure on the light responsiveness of the adult circadian timing system. Neurotoxicol Teratol 1998; 20:555-64. [PMID: 9761595 DOI: 10.1016/s0892-0362(98)00014-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Early cocaine exposure is associated with a wide variety of neurobehavioral and teratogenic effects. The current study was conducted to determine the long-term effects of such exposure on the hamster circadian timing system. The circadian system drives rhythms in a tremendous diversity of physiological, behavioral, and endocrine functions. The fetal circadian pacemaker has recently been shown to express a functional D1 dopamine system that is involved in maternal-fetal entrainment. Maternally administered cocaine, acting on the fetal clock, could therefore potentially have long-lasting effects on exposed offspring. Pregnant SCN-lesioned hamsters or their pups, maintained in constant dim illumination (DD), were administered cocaine (30 mg/kg, SC, N = 10 litters) or saline vehicle (N = 5 litters) from embryonic (E) day 15 [day of mating = E0] through postnatal (P) day 5. Upon weaning (P21), cocaine- and saline-treated offspring were placed in individual running wheels for a period of 5-6 weeks. Individuals were then challenged with 1-h light pulses at three circadian times (CT7, CT14, CT18). Cocaine-treated litters had a statistically significant mean phase advance of +0.32 h at CT14 compared with the mean phase delay of 2.13 h of the saline-treated litters. No significant differences were seen at the other two circadian times, although there was heterogeneity in the responses among cocaine-treated animals. This represents the first demonstration of an effect of perinatal cocaine on the circadian timing system. Together with the recent demonstration of D1 receptors in the human SCN, these findings raise the possibility that gestational cocaine abuse by humans may also lead to later disturbances in the circadian timing system.
Collapse
Affiliation(s)
- W N Strother
- Department of Cell Biology, Neurobiology, and Anatomy, University of Cincinnati College of Medicine, OH, USA.
| | | | | |
Collapse
|
44
|
Tonkiss J, Shultz PL, Shumsky JS, Galler JR. Development of spatial navigation following prenatal cocaine and malnutrition in rats: lack of additive effects. Neurotoxicol Teratol 1997; 19:363-72. [PMID: 9380003 DOI: 10.1016/s0892-0362(97)90027-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The effects of prenatal cocaine exposure and protein malnutrition on the development of spatial navigation were assessed in rats. Sprague-Dawley dams were fed a low-protein (6% casein), adequate protein (25% casein), or a laboratory chow diet prior to mating and throughout pregnancy. Within each diet group, rats received either cocaine injections (30 mg/kg i.p. two times per week prior to mating and then 30 mg/kg s.c. daily from day 3 to 18 of pregnancy) or saline injections. All litters were fostered on the day of birth to saline-injected mothers fed either the 25% casein diet or the chow diet. Gestation length was decreased by prenatal cocaine exposure whereas litter size was reduced by prenatal malnutrition. On postnatal days 21, 25, 30, or 70, rats were tested for their ability to locate a submerged platform in a Morris water maze. In well-nourished rats, prenatal cocaine increased the mean distance swum during acquisition over days 21-30, a difference that was abolished in rats with prenatal malnutrition. In the absence of drug exposure (saline groups), prenatal malnutrition was itself associated with longer swim paths. Neither prenatal insult affected the accuracy of the spatial navigation at these ages, as determined by their search pattern when the platform was removed. On postnatal day 25, rats raised on the chow diet exhibited superior performance to that of rats raised on the 25% casein diet, but by day 30 these two well-nourished groups were comparable. At day 70, prenatal cocaine impaired spatial performance on the first session, in well-nourished rats only. Thus, these results provide no support for the hypothesis that prenatal cocaine and protein malnutrition combine to produce a greater effect on behavioral development than either insult alone.
Collapse
Affiliation(s)
- J Tonkiss
- Center for Behavioral Development & Mental Retardation, Boston University School of Medicine, MA 02118, USA
| | | | | | | |
Collapse
|
45
|
Abstract
Two experiments examined retention of spatial learning in rats using a Morris water maze. Retention was scored in terms of probe trial performance when the platform was removed. Latency to reach the platform location, percent of time in the quadrant that had contained the platform, and relative frequency of visits to the platform location were analyzed. Results of the first experiment showed that preweanlings and juveniles exhibited substantial forgetting at 3- and 7-day retention intervals. Forgetting in adults was much lower than that found in the younger animals, and no differences in amount of forgetting appeared between the 3- and 7-day retention intervals at any age. The second experiment showed that forgetting in juveniles was alleviated by a single training trial administered just prior to the probe trial. These results are discussed in terms of ontogenetic differences in memory processing and measurement issues pertinent to the Morris water maze test procedure.
Collapse
Affiliation(s)
- R W Brown
- Department of Psychology, University of Kentucky, Lexington, KY 40506, USA
| | | |
Collapse
|
46
|
Abstract
The ontogeny of the ability of C57BL/6 mice to use different cues for spatial learning was examined in several Morris water maze tasks. In the first two studies, three learning procedures were used, in which only distal cues (place learning), only proximal cues (cue learning), or both proximal and distal cues (cue + place learning) were pertinent to localize the platform. The results indicated that whatever the procedure, 22-day-old mice showed the same capabilities as adults. Moreover, in the cue + place-learning procedure, although the distal cues were not necessary to solve the task, both young and adult mice demonstrated the integration of distal information by exhibiting a strong spatial bias during a probe test. However, in the third experiment, it was shown that nonpertinent proximal cues perturbed 22-day-old mice in a place-learning procedure. Taken together, these results suggest that while even the youngest mice show striking spatial navigation abilities, young mice give greater importance to proximal cues for orientation whereas adults preferentially use distal information.
Collapse
Affiliation(s)
- P Chapillon
- Laboratoire d'Ethologie et de Psychophysiologie, Faculté des Sciences et Techniques, Tours, France
| | | |
Collapse
|
47
|
Jones HC, Rivera KM, Harris NG. Learning deficits in congenitally hydrocephalic rats and prevention by early shunt treatment. Childs Nerv Syst 1995; 11:655-60. [PMID: 8608583 DOI: 10.1007/bf00300725] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Shunt surgery is the usual treatment for infantile hydrocephalus; however, the extent to which it avoids subsequent neurological deficits is uncertain. The effect of early-onset hydrocephalus was tested in H-Tx rats using the Morris water maze. Spatial learning was assessed at 21 days after birth in control (n = 18), hydrocephalic (n = 18) and hydrocephalic rats shunt-treated at 4-5 (n = 7) or at 10-12 days of life (n = 13). The time taken to find a hidden platform was measured in five trials on 2 consecutive days and the data analyzed by one- and two-way ANOVA and t-tests. The latencies of the control rats decreased significantly between the first and second trial on the 1st day, and learning was retained until the 2nd day. The hydrocephalic group had longer latencies than controls on both days, with no significant decrease between any trials. Performance was not significantly different between the two shunt groups. Overall, the shunted rats had latencies which were not significantly different from controls but were significantly lower than hydrocephalics. Despite this, the shunted rats did not perform as well as the controls. It is concluded that, although shunt treatment improved learning, some effects of early-onset hydrocephalus may not be reversible and/or a longer recovery time is required.
Collapse
Affiliation(s)
- H C Jones
- Department of Pharmacology and Therapeutics, University of Florida health Science Center, Gainesville 32610, USA
| | | | | |
Collapse
|
48
|
Rahner-Welsch S, Frölich L, Stoll S, Hoyer S. Decline and preservation of reversal learning abilities and acquisition in the course of senescence. Neurosci Lett 1995; 194:121-3. [PMID: 7478192 DOI: 10.1016/0304-3940(95)11712-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Different types of learning and memory functions decrease at different rates in senescence. The present study examines which types of mental functions show a relatively early decline and which learning abilities are relatively preserved in late senescence by investigating different types of learning abilities in water maze tests. Two groups of senescent male Wistar rats aged 24 months (group W24) and 30 months (group W30), respectively, were compared to adult rats (12 months, group W12). Group W24 represents 'senescent' and group W30 'late-senescent' rats. Whereas acquisition showed a relatively late decline (in group W30), reversal learning was impaired relatively early (group W24).
Collapse
|
49
|
Tonkiss J, Shultz P, Galler JR. An analysis of spatial navigation in prenatally protein malnourished rats. Physiol Behav 1994; 55:217-24. [PMID: 8153158 DOI: 10.1016/0031-9384(94)90126-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Developing rats were either malnourished or adequately nourished during the prenatal period by feeding their dams diets of low (6% casein) or adequate (25% casein) protein content 5 weeks prior to mating and throughout pregnancy. All pups received adequate nutrition from the day of birth onwards. Male offspring were tested in one of two spatial navigation tests in the Morris water tank. In proximal-cue tests (postnatal days 16-20), the position of a platform, which provided a means to escape from swimming, was denoted by an obvious visual cue located directly on the platform. In distal-cue tests (postnatal days 20-27 and adult ages, days 70-71 and days 220-221), the escape platform was submerged below the surface of the water so that the rats were required to use extramaze visual cues to guide them to the platform. Neither proximal-cue nor distal-cue navigation was significantly impaired in the prenatally malnourished rats relative to controls, at any of the ages tested.
Collapse
Affiliation(s)
- J Tonkiss
- Center for Behavioral Development & Mental Retardation, Boston University School of Medicine, MA 02118
| | | | | |
Collapse
|
50
|
Galea LA, Ossenkopp KP, Kavaliers M. Developmental changes in spatial learning in the Morris water-maze in young meadow voles, Microtus pennsylvanicus. Behav Brain Res 1994; 60:43-50. [PMID: 8185851 DOI: 10.1016/0166-4328(94)90061-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Spatial learning in pre- and postweaning meadow voles, (Microtus pennsylvanicus) was examined in a Morris water-maze task. The learning performance of 10-day-old (preweaning) and 15-, 20- and 25-day-old (postweaning) male and female voles was assessed by measuring the latency to reach a hidden platform by each animal twice a day for 5 days. Voles of all age groups were able to learn the spatial task with Day 10 and Day 15 voles acquiring the task more slowly than did Day 20 and Day 25 voles. There were no significant sex differences in task acquisition in any of the four age groups. In addition, although swimming speed was related to age, with older animals swimming faster than younger ones, differences in swim speed did not account for the faster acquisition by the older animals. These results show that both preweaning and postweaning voles can successfully learn a spatial task. This is in contrast to preweaning laboratory rats which cannot successfully acquire a similar spatial task. These findings indicate that there are species differences in the ontogeny of spatial learning, which are likely related to the ecological and behavioural developmental characteristics of the species. Furthermore, in contrast to the sex difference in water-maze performance obtained in adult, breeding meadow voles who demonstrate a sex difference, there were no significant sex differences in the spatial performance of the juvenile voles. This suggests that sex differences in spatial learning in the meadow vole do not appear until voles reach reproductive adulthood.
Collapse
Affiliation(s)
- L A Galea
- Neuroscience Program, University of Western Ontario, London, Canada
| | | | | |
Collapse
|