1
|
Bârsan IC, Iluţ S, Tohănean N, Pop R, Vesa ŞC, Perju-Dumbravă L. Resistin and In-Hospital Mortality in Patients with Acute Ischemic Stroke: A Prospective Study. J Clin Med 2024; 13:4889. [PMID: 39201031 PMCID: PMC11355181 DOI: 10.3390/jcm13164889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 08/18/2024] [Accepted: 08/18/2024] [Indexed: 09/02/2024] Open
Abstract
Background/Objectives: Understanding the prognostic factors of acute ischemic stroke (AIS) is essential for improving patient outcomes. The aim of this study was to establish the predictive role of plasmatic resistin and leptin on short-term mortality in adult patients with a first episode of AIS. Methods: This study enrolled 277 patients who were consecutively hospitalized for AIS. Demographic data, cardiovascular risk, comorbidities, and laboratory tests were collected. Death was noted if it occurred during hospitalization. Results: Death was recorded in 33 (11.9%) patients. Conducting multivariate analysis, the following variables were independent variables associated with in-hospital mortality: a resistin value of >11 ng/mL (OR 10.81 (95%CI 2.31;50.57), p = 0.002), a lesion volume of >18.8 mL (OR 4.87 (95%CI 1.87;12.67), p = 0.001), a NIHSS score of >7 (OR 5.88 (95%CI 2.01;17.16), p = 0.001), and the presence of IHD (OR 4.33 (95%CI 1.66;11.27), p = 0.003). This study has some limitations: single-center design (which may affect the generalizability of the results) and the potential impact of the COVID-19 pandemic on patient outcomes. Conclusions: This study demonstrated that resistin is a significant predictor of in-hospital mortality in AIS patients. Other established factors, such as a high NIHSS score, large lesion volume, and the presence of IHD, were reaffirmed as important predictors.
Collapse
Affiliation(s)
- Ioana Cristina Bârsan
- Faculty of Medicine, Iuliu Hațieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
| | - Silvina Iluţ
- Department of Neurosciences, Faculty of Medicine, Iuliu Hațieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (N.T.); (L.P.-D.)
| | - Nicoleta Tohănean
- Department of Neurosciences, Faculty of Medicine, Iuliu Hațieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (N.T.); (L.P.-D.)
| | - Raluca Pop
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Iuliu Haţieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania; (R.P.); (Ş.C.V.)
| | - Ştefan Cristian Vesa
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Iuliu Haţieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania; (R.P.); (Ş.C.V.)
| | - Lăcrămioara Perju-Dumbravă
- Department of Neurosciences, Faculty of Medicine, Iuliu Hațieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (N.T.); (L.P.-D.)
| |
Collapse
|
2
|
Li S, Yang D, Zhou X, Chen L, Liu L, Lin R, Li X, Liu Y, Qiu H, Cao H, Liu J, Cheng Q. Neurological and metabolic related pathophysiologies and treatment of comorbid diabetes with depression. CNS Neurosci Ther 2024; 30:e14497. [PMID: 37927197 PMCID: PMC11017426 DOI: 10.1111/cns.14497] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 09/26/2023] [Accepted: 10/03/2023] [Indexed: 11/07/2023] Open
Abstract
BACKGROUND The comorbidity between diabetes mellitus and depression was revealed, and diabetes mellitus increased the prevalence of depressive disorder, which ranked 13th in the leading causes of disability-adjusted life-years. Insulin resistance, which is common in diabetes mellitus, has increased the risk of depressive symptoms in both humans and animals. However, the mechanisms behind the comorbidity are multi-factorial and complicated. There is still no causal chain to explain the comorbidity exactly. Moreover, Selective serotonin reuptake inhibitors, insulin and metformin, which are recommended for treating diabetes mellitus-induced depression, were found to be a risk factor in some complications of diabetes. AIMS Given these problems, many researchers made remarkable efforts to analyze diabetes complicating depression from different aspects, including insulin resistance, stress and Hypothalamic-Pituitary-Adrenal axis, neurological system, oxidative stress, and inflammation. Drug therapy, such as Hydrogen Sulfide, Cannabidiol, Ascorbic Acid and Hesperidin, are conducive to alleviating diabetes mellitus and depression. Here, we reviewed the exact pathophysiology underlying the comorbidity between depressive disorder and diabetes mellitus and drug therapy. METHODS The review refers to the available literature in PubMed and Web of Science, searching critical terms related to diabetes mellitus, depression and drug therapy. RESULTS In this review, we found that brain structure and function, neurogenesis, brain-derived neurotrophic factor and glucose and lipid metabolism were involved in the pathophysiology of the comorbidity. Obesity might lead to diabetes mellitus and depression through reduced adiponectin and increased leptin and resistin. In addition, drug therapy displayed in this review could expand the region of potential therapy. CONCLUSIONS The review summarizes the mechanisms underlying the comorbidity. It also overviews drug therapy with anti-diabetic and anti-depressant effects.
Collapse
Affiliation(s)
- Sixin Li
- Department of Psychiatry, The School of Clinical MedicineHunan University of Chinese MedicineChangshaHunanChina
- Department of PsychiatryBrain Hospital of Hunan Province (The Second People's Hospital of Hunan Province)ChangshaHunanChina
| | - Dong Yang
- Department of Psychiatry, The School of Clinical MedicineHunan University of Chinese MedicineChangshaHunanChina
- Department of PsychiatryBrain Hospital of Hunan Province (The Second People's Hospital of Hunan Province)ChangshaHunanChina
| | - Xuhui Zhou
- Department of Psychiatry, The School of Clinical MedicineHunan University of Chinese MedicineChangshaHunanChina
- Department of PsychiatryBrain Hospital of Hunan Province (The Second People's Hospital of Hunan Province)ChangshaHunanChina
| | - Lu Chen
- Department of Gastroenterology, The School of Clinical MedicineHunan University of Chinese MedicineChangshaHunanChina
- Department of GastroenterologyBrain Hospital of Hunan Province (The Second People's Hospital of Hunan Province)ChangshaHunanChina
| | - Lini Liu
- Department of Psychiatry, The School of Clinical MedicineHunan University of Chinese MedicineChangshaHunanChina
- Department of PsychiatryBrain Hospital of Hunan Province (The Second People's Hospital of Hunan Province)ChangshaHunanChina
| | - Ruoheng Lin
- Department of Psychiatry, National Clinical Research Center for Mental DisordersThe Second Xiangya Hospital of Central South UniversityChangshaHunanChina
| | - Xinyu Li
- Department of Psychiatry, The School of Clinical MedicineHunan University of Chinese MedicineChangshaHunanChina
- Department of PsychiatryBrain Hospital of Hunan Province (The Second People's Hospital of Hunan Province)ChangshaHunanChina
| | - Ying Liu
- Department of Psychiatry, The School of Clinical MedicineHunan University of Chinese MedicineChangshaHunanChina
- Department of PsychiatryBrain Hospital of Hunan Province (The Second People's Hospital of Hunan Province)ChangshaHunanChina
| | - Huiwen Qiu
- Department of Psychiatry, The School of Clinical MedicineHunan University of Chinese MedicineChangshaHunanChina
- Department of PsychiatryBrain Hospital of Hunan Province (The Second People's Hospital of Hunan Province)ChangshaHunanChina
| | - Hui Cao
- Department of Psychiatry, The School of Clinical MedicineHunan University of Chinese MedicineChangshaHunanChina
- Department of PsychiatryBrain Hospital of Hunan Province (The Second People's Hospital of Hunan Province)ChangshaHunanChina
| | - Jian Liu
- Center for Medical Research and Innovation, The First Hospital, Hunan University of Chinese MedicineChangshaHunanChina
| | - Quan Cheng
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaHunanChina
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaHunanChina
| |
Collapse
|
3
|
Zhao Y, Yue R. Aging adipose tissue, insulin resistance, and type 2 diabetes. Biogerontology 2024; 25:53-69. [PMID: 37725294 DOI: 10.1007/s10522-023-10067-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 08/28/2023] [Indexed: 09/21/2023]
Abstract
With the increase of population aging, the prevalence of type 2 diabetes (T2D) is also rising. Aging affects the tissues and organs of the whole body, which is the result of various physiological and pathological processes. Adipose tissue has a high degree of plasticity and changes with aging. Aging changes the distribution of adipose tissue, affects adipogenesis, browning characteristics, inflammatory status and adipokine secretion, and increases lipotoxicity. These age-dependent changes in adipose tissue are an important cause of insulin resistance and T2D. Understanding adipose tissue changes can help promote healthy aging process. This review summarizes changes in adipose tissue ascribable to aging, with a focus on the role of aging adipose tissue in insulin resistance and T2D.
Collapse
Affiliation(s)
- Yixuan Zhao
- Hospital of Chengdu University of Traditional Chinese Medicine, NO. 39 Shi-Er-Qiao Road, Chengdu, 610072, Sichuan Province, People's Republic of China
| | - Rensong Yue
- Hospital of Chengdu University of Traditional Chinese Medicine, NO. 39 Shi-Er-Qiao Road, Chengdu, 610072, Sichuan Province, People's Republic of China.
| |
Collapse
|
4
|
Rajkov B, Zdravković M, Ninić A, Brajković M, Klašnja S, Gardijan V, Memon L, Munjas J, Mihajlović M, Spasojević-Kalimanovska V, Radosavljević V, Sopić M. Upregulation of peripheral blood mononuclear cells resistin gene expression in severe obstructive sleep apnea and obstructive sleep apnea with coexisting type 2 diabetes mellitus. Sleep Breath 2023; 27:2031-2039. [PMID: 36917442 DOI: 10.1007/s11325-023-02809-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/27/2023] [Accepted: 03/06/2023] [Indexed: 03/16/2023]
Abstract
PURPOSE Obstructive sleep apnea (OSA) is characterised by increased systemic inflammation, and is often accompanied with type 2 diabetes mellitus (T2DM) and cardiovascular disease. The aim of this investigation was to evaluate gene expression of resistin, its receptor CAP1 and CD36 as the indicators of the inflammatory changes in PBMCs in relation to the severity of OSA, and the presence of type 2 diabetes mellitus (T2DM) in OSA. METHODS Severity of OSA was defined by the apnea/hypopnea index (AHI): AHI < 30: mild to moderate OSA (MM-OSA), AHI ≥ 30: severe OSA (S-OSA). Presence of T2DM was captured: OSA with T2DM (OSA + T2DM), OSA without T2DM (OSA-T2DM). PBMC resistin, CAP1, and CD36 mRNA were determined by real-time PCR. RESULTS Resistin mRNA was significantly upregulated in S-OSA (N = 54) compared to the MM-OSA (N = 52, P = 0.043); CAP1 and CD36 mRNA levels did not differ between the groups (P = 0.302; P = 0.166, respectively). Resistin mRNA was significantly upregulated in OSA + T2DM (N = 29) compared to the OSA-T2DM (N = 77, P = 0.029); CAP1 and CD36 mRNA levels did not differ between the groups (P = 0.662; P = 0.108, respectively). AHI and T2DM were independent predictors of resistin mRNA above the 75th percentile (OR = 3.717 [1.152-11.991]; OR = 3.261 [1.000-10.630], P = 0.042 respectively). CONCLUSION Resistin gene upregulation in S-OSA indicates its possible contribution to increased inflammation in S-OSA and makes it a possible marker of the disease severity. Resistin gene upregulation in OSA + T2DM suggests that a joint effect of these two comorbidities may have a major contribution to increased inflammation and complications that arise from this state.
Collapse
Affiliation(s)
- Branislava Rajkov
- Department of Medical Biochemistry, University of Belgrade - Faculty of Pharmacy, Belgrade, Serbia
| | - Marija Zdravković
- Department of Cardiology, University Medical Center "Bežanijska Kosa", Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Ana Ninić
- Department of Medical Biochemistry, University of Belgrade - Faculty of Pharmacy, Belgrade, Serbia.
| | - Milica Brajković
- Department of Pulmology, University Medical Center "Bežanijska Kosa", Belgrade, Serbia
| | - Slobodan Klašnja
- Department of Cardiology, University Medical Center "Bežanijska Kosa", Belgrade, Serbia
| | - Vera Gardijan
- Department of Pulmology, University Medical Center "Bežanijska Kosa", Belgrade, Serbia
| | - Lidija Memon
- Department of Laboratory Diagnostics, University Medical Center "Bežanijska Kosa", Belgrade, Serbia
| | - Jelena Munjas
- Department of Medical Biochemistry, University of Belgrade - Faculty of Pharmacy, Belgrade, Serbia.
| | - Marija Mihajlović
- Department of Medical Biochemistry, University of Belgrade - Faculty of Pharmacy, Belgrade, Serbia
| | | | | | - Miron Sopić
- Department of Medical Biochemistry, University of Belgrade - Faculty of Pharmacy, Belgrade, Serbia.
| |
Collapse
|
5
|
Chen YZ, Gu J, Chuang WT, Du YF, Zhang L, Lu ML, Xu JY, Li HQ, Liu Y, Feng HT, Li YH, Qin LQ. Slowly Digestible Carbohydrate Diet Ameliorates Hyperglycemia and Hyperlipidemia in High-Fat Diet/Streptozocin-Induced Diabetic Mice. Front Nutr 2022; 9:854725. [PMID: 35495933 PMCID: PMC9051025 DOI: 10.3389/fnut.2022.854725] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 03/22/2022] [Indexed: 12/24/2022] Open
Abstract
Objective Given that the prevalence rate of type 2 diabetes mellitus (T2DM) continues to increase, it is important to find an effective method to prevent or treat this disease. Previous studies have shown that dietary intervention with a slowly digestible carbohydrate (SDC) diet can improve T2DM with almost no side effects. However, the underlying mechanisms of SDC protect against T2DM remains to be elucidated. Methods The T2DM mice model was established with a high-fat diet and streptozocin injection. Then, SDC was administered for 6 weeks. Bodyweight, food intake, organ indices, fasting blood glucose (FBG), oral glucose tolerance test (OGTT), homeostasis model assessment for insulin resistance (HOMA-IR), and other biochemical parameters were measured. Histopathological and lipid accumulation analyses were performed, and the glucose metabolism-related gene expressions in the liver and skeletal muscle were determined. Lastly, colonic microbiota was also analyzed. Results SDC intervention alleviated the weight loss in the pancreas, lowered blood glucose and glycosylated hemoglobin levels, and improved glucose tolerance and HOMA-IR. SDC intervention improved serum lipid profile, adipocytokines levels, and lowered the lipid accumulation in the liver, subcutaneous adipose tissue, and epididymal visceral adipose tissue. In addition, SDC intervention increased the expression levels of IRS-2 and GLUT-2 in liver tissues and elevated GLUT-4 expression levels in skeletal muscle tissues. Notably, SDC intervention decreased the Bacteroidetes/Firmicutes ratio, increased Desulfovibrio and Lachnospiraceae genus levels, and inhibited the relative abundance of potentially pathogenic bacteria. Conclusions SDC intervention can improve hyperglycemia and hyperlipidemia status in diabetic mice, suggesting that this intervention might be beneficial for T2DM.
Collapse
Affiliation(s)
- Yu-Zhong Chen
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, China
| | - Jia Gu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, China
| | - Wei-Ting Chuang
- Inner Mongolia Dairy Technology Research Institute Co., Ltd., Hohhot, China
| | - Ya-Fang Du
- Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, Suzhou, China
| | - Lin Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, Suzhou, China
| | - Meng-Lan Lu
- Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, Suzhou, China
| | - Jia-Ying Xu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, China
| | - Hao-Qiu Li
- Inner Mongolia Dairy Technology Research Institute Co., Ltd., Hohhot, China
| | - Yan Liu
- Inner Mongolia Dairy Technology Research Institute Co., Ltd., Hohhot, China
| | - Hao-Tian Feng
- Inner Mongolia Dairy Technology Research Institute Co., Ltd., Hohhot, China
- *Correspondence: Hao-Tian Feng
| | - Yun-Hong Li
- Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, Suzhou, China
- Yun-Hong Li
| | - Li-Qiang Qin
- Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, Suzhou, China
- Li-Qiang Qin
| |
Collapse
|
6
|
Podzolkov V, Pokrovskaya A, Bazhanova U, Vargina T, Knyazeva SA, Vanina D. The Role of Adipokines in Cardiovascular Pathology. Open Access Maced J Med Sci 2021. [DOI: 10.3889/oamjms.2021.7661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
The recent decades saw a steady growth of obesity incidence worldwide. Obesity is an independent risk factor for cardiovascular diseases (CVDs) and type 2 diabetes mellitus and is also associated with a shorter life expectancy. Not only hemodynamic but also hormone metabolic processes, arising from excessive accumulation of adipose tissue in human body, underlie the development of CVDs. Adipose tissue has now been proved to be a hormone-active substrate. Studies of the influence of adipokines will bring us closer to understanding cardiovascular pathogenesis and help personalize prophylactic strategies.
Collapse
|
7
|
Giandalia A, Alibrandi A, Giorgianni L, Lo Piano F, Consolo F, Longo Elia G, Asztalos B, Cucinotta D, Squadrito G, Russo GT. Resistin levels and inflammatory and endothelial dysfunction markers in obese postmenopausal women with type 2 diabetes mellitus. Diabetol Metab Syndr 2021; 13:98. [PMID: 34496965 PMCID: PMC8427860 DOI: 10.1186/s13098-021-00715-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 08/29/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Obesity-associated coronary heart disease (CHD) risk is higher in women than in men with type 2 diabetes (T2DM). Resistin, an adipokine secreted by adispose tissue, may contribute to this higher risk. AIMS To explore the relationships among resistin levels and common inflammatory and endothelial dysfunction markers and CHD risk in obese post-menopausal T2DM women. METHODS Serum levels of resistin, hsCRP, IL-6, Soluble vascular cell adhesion molecule (sVCAM), homocysteine (tHcy), HOMA-IR and metabolic parameters were determined in a group of 132 T2DM women with and without documented CHD and in 55 non-diabetic women. RESULTS Resistin, sVCAM, IL-6 and tHcy levels were comparable in T2DM and controls. CHD women showed higher resistin, sVCAM and tHcy levels than those without CHD, and for resistin this difference remained significant after age-adjustment (P = 0.013); conversely hsCRP were ~ 2X higher in T2DM women than in controls (P = 0.0132) without any difference according to CHD history. At univariate analysis resistin levels were significantly associated with age, waist circumference, hypertension, tHcy, hsPCR, sVCAM, IL-6, HDL-cholesterol, triglycerides and creatinine levels, but only creatinine, triglycerides, hsCRP, IL-6 and sVCAM were independently associated to resistin levels at stepwise regression analysis. Resistin levels were independently associated to CHD, increasing the risk by 1.15 times (0.986-1.344 95% CI), together with age, tHcy, LDL-C and hypertension. CONCLUSIONS Circulating resistin levels were comparable in obese/overweight T2DM and control women. In T2DM women, resistin levels correlated with markers of renal function, systemic inflammation and endothelial dysfunction and were independently associated with a higher CHD risk.
Collapse
Affiliation(s)
- A Giandalia
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy.
| | - A Alibrandi
- Unit of Statistical and Mathematical Sciences, Department of Economics, University of Messina, Messina, Italy
| | - L Giorgianni
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - F Lo Piano
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - F Consolo
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - G Longo Elia
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - B Asztalos
- Lipid Metabolism Laboratory, JM-USDA-Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA
| | - D Cucinotta
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - G Squadrito
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - G T Russo
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| |
Collapse
|
8
|
MiR-126 Is an Independent Predictor of Long-Term All-Cause Mortality in Patients with Type 2 Diabetes Mellitus. J Clin Med 2021; 10:jcm10112371. [PMID: 34071189 PMCID: PMC8198825 DOI: 10.3390/jcm10112371] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/24/2021] [Accepted: 05/26/2021] [Indexed: 12/17/2022] Open
Abstract
MicroRNAs are endogenous non-coding RNAs that are involved in numerous biological processes through regulation of gene expression. The aim of our study was to determine the ability of several miRNAs to predict mortality and response to antiplatelet treatment among T2DM patients. Two hundred fifty-two patients with diabetes were enrolled in the study. Among the patients included, 26 (10.3%) patients died within a median observation time of 5.9 years. The patients were receiving either acetylsalicylic acid (ASA) 75 mg (65%), ASA 150 mg (15%) or clopidogrel (19%). Plasma miR-126, miR-223, miR-125a-3p and Let-7e expressions were assessed by quantitative real time PCR and compared between the patients who survived and those who died. Adjusted Cox-regression analysis was used for prediction of mortality. Differential miRNA expression due to different antiplatelet treatment was analyzed. After including all miRNAs into one multivariate Cox regression model, only miR-126 was predictive of future occurrence of long-term all-cause death (HR = 5.82, 95% CI: 1.3–24.9; p = 0.024). Furthermore, miR-126, Let-7e and miR-223 expressions in the clopidogrel group were significantly higher than in the ASA group (p = 0.014; p = 0.013; p = 0.028, respectively). To conclude, miR-126 expression is a strong and independent predictor of long-term all-cause mortality among patients with T2DM. Moreover, miR-223, miR-126 and Let-7e present significant interactions with antiplatelet treatment regimens and clinical outcomes.
Collapse
|
9
|
Balasubramanian P, Kiss T, Tarantini S, Nyúl-Tóth Á, Ahire C, Yabluchanskiy A, Csipo T, Lipecz A, Tabak A, Institoris A, Csiszar A, Ungvari Z. Obesity-induced cognitive impairment in older adults: a microvascular perspective. Am J Physiol Heart Circ Physiol 2021; 320:H740-H761. [PMID: 33337961 PMCID: PMC8091942 DOI: 10.1152/ajpheart.00736.2020] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 11/30/2020] [Accepted: 12/12/2020] [Indexed: 02/07/2023]
Abstract
Over two-thirds of individuals aged 65 and older are obese or overweight in the United States. Epidemiological data show an association between the degree of adiposity and cognitive dysfunction in the elderly. In this review, the pathophysiological roles of microvascular mechanisms, including impaired endothelial function and neurovascular coupling responses, microvascular rarefaction, and blood-brain barrier disruption in the genesis of cognitive impairment in geriatric obesity are considered. The potential contribution of adipose-derived factors and fundamental cellular and molecular mechanisms of senescence to exacerbated obesity-induced cerebromicrovascular impairment and cognitive decline in aging are discussed.
Collapse
Affiliation(s)
- Priya Balasubramanian
- Vascular Cognitive Impairment and Neurodegeneration Program, Department of Biochemistry and Molecular Biology, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Tamas Kiss
- Vascular Cognitive Impairment and Neurodegeneration Program, Department of Biochemistry and Molecular Biology, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- International Training Program in Geroscience, Theoretical Medicine Doctoral School, Departments of Medical Physics and Informatics & Cell Biology and Molecular Medicine, University of Szeged, Szeged, Hungary
| | - Stefano Tarantini
- Vascular Cognitive Impairment and Neurodegeneration Program, Department of Biochemistry and Molecular Biology, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine, Department of Public Health, Semmelweis University, Budapest, Hungary
- Department of Health Promotion Sciences, the Hudson College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Ádám Nyúl-Tóth
- Vascular Cognitive Impairment and Neurodegeneration Program, Department of Biochemistry and Molecular Biology, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- International Training Program in Geroscience, Institute of Biophysics, Biological Research Centre, Szeged, Hungary
| | - Chetan Ahire
- Vascular Cognitive Impairment and Neurodegeneration Program, Department of Biochemistry and Molecular Biology, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Andriy Yabluchanskiy
- Vascular Cognitive Impairment and Neurodegeneration Program, Department of Biochemistry and Molecular Biology, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Tamas Csipo
- Vascular Cognitive Impairment and Neurodegeneration Program, Department of Biochemistry and Molecular Biology, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine, Department of Public Health, Semmelweis University, Budapest, Hungary
- International Training Program in Geroscience, Division of Clinical Physiology, Department of Cardiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Agnes Lipecz
- Vascular Cognitive Impairment and Neurodegeneration Program, Department of Biochemistry and Molecular Biology, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine, Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Adam Tabak
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine, Department of Public Health, Semmelweis University, Budapest, Hungary
- Department of Internal Medicine and Oncology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
- Department of Epidemiology and Public Health, University College London, London, United Kingdom
| | - Adam Institoris
- Hotchkiss Brain Institute, Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Anna Csiszar
- Vascular Cognitive Impairment and Neurodegeneration Program, Department of Biochemistry and Molecular Biology, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- International Training Program in Geroscience, Theoretical Medicine Doctoral School, Departments of Medical Physics and Informatics & Cell Biology and Molecular Medicine, University of Szeged, Szeged, Hungary
| | - Zoltan Ungvari
- Vascular Cognitive Impairment and Neurodegeneration Program, Department of Biochemistry and Molecular Biology, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- International Training Program in Geroscience, Theoretical Medicine Doctoral School, Departments of Medical Physics and Informatics & Cell Biology and Molecular Medicine, University of Szeged, Szeged, Hungary
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine, Department of Public Health, Semmelweis University, Budapest, Hungary
- Department of Health Promotion Sciences, the Hudson College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| |
Collapse
|
10
|
Berezin AE, Berezin AA, Lichtenauer M. Emerging Role of Adipocyte Dysfunction in Inducing Heart Failure Among Obese Patients With Prediabetes and Known Diabetes Mellitus. Front Cardiovasc Med 2020; 7:583175. [PMID: 33240938 PMCID: PMC7667132 DOI: 10.3389/fcvm.2020.583175] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 10/05/2020] [Indexed: 12/13/2022] Open
Abstract
Adipose tissue dysfunction is a predictor for cardiovascular (CV) events and heart failure (HF) in patient population with obesity, metabolic syndrome, and known type 2 diabetes mellitus. Previous preclinical and clinical studies have yielded controversial findings regarding the role of accumulation of adipose tissue various types in CV risk and HF-related clinical outcomes in obese patients. There is evidence for direct impact of infiltration of epicardial adipocytes into the underlying myocardium to induce adverse cardiac remodeling and mediate HF development and atrial fibrillation. Additionally, perivascular adipocytes accumulation is responsible for release of proinflammatory adipocytokines (adiponectin, leptin, resistin), stimulation of oxidative stress, macrophage phenotype switching, and worsening vascular reparation, which all lead to microvascular inflammation, endothelial dysfunction, atherosclerosis acceleration, and finally to increase in CV mortality. However, systemic effects of white and brown adipose tissue can be different, and adipogenesis including browning of adipose tissue and deficiency of anti-inflammatory adipocytokines (visfatin, omentin, zinc-α2-glycoprotein, glypican-4) was frequently associated with adipose triglyceride lipase augmentation, altered glucose homeostasis, resistance to insulin of skeletal muscles, increased cardiomyocyte apoptosis, lowered survival, and weak function of progenitor endothelial cells, which could significantly influence on HF development, as well as end-organ fibrosis and multiple comorbidities. The exact underlying mechanisms for these effects are not fully understood, while they are essential to help develop improved treatment strategies. The aim of the review is to summarize the evidence showing that adipocyte dysfunction may induce the onset of HF and support advance of HF through different biological mechanisms involving inflammation, pericardial, and perivascular adipose tissue accumulation, adverse and electrical cardiac remodeling, and skeletal muscle dysfunction. The unbalancing effects of natriuretic peptides, neprilysin, and components of renin–angiotensin system, as exacerbating cause of altered adipocytokine signaling on myocardium and vasculature, in obesity patients at high risk of HF are disputed. The profile of proinflammatory and anti-inflammatory adipocytokines as promising biomarker for HF risk stratification is discussed in the review.
Collapse
Affiliation(s)
- Alexander E Berezin
- Internal Medicine Department, State Medical University, Ministry of Health of Ukraine, Zaporozhye, Ukraine
| | - Alexander A Berezin
- Internal Medicine Department, Medical Academy of Post-Graduate Education, Ministry of Health of Ukraine, Zaporozhye, Ukraine
| | - Michael Lichtenauer
- Division of Cardiology, Department of Internal Medicine II, Paracelsus Medical University Salzburg, Salzburg, Austria
| |
Collapse
|
11
|
Ji C, Wang Y, Wang Y, Luan J, Yao L, Wang Y, Song N. Immune-related genes play an important role in the prognosis of patients with testicular germ cell tumor. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:866. [PMID: 32793710 DOI: 10.21037/atm-20-654] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Background Testicular cancer is a very common malignancy in young men. Although testicular cancer has a high cure rate, patients have a high long-term risk of secondary malignant tumors and cardiovascular disease. In addition, for patients resistant to traditional treatment methods, new treatment methods and methods for predicting prognosis are also urgently needed. Methods Gene expression profiles of 165 normal testicular tissues and 156 testicular germ cell tumor (TGCT) tissues from GTEx database and TCGA database were used to obtain differentially expressed genes (DEGs) in TGCT. Through the ImmPort database, we obtained immune-related genes (IRGs). Univariate Cox regression analysis was used to identify prognostic IRGs. A transcription factor regulatory network was constructed to clarify the possible regulatory mechanism for the differential expression of these IRGs. Multivariate Cox regression analysis was used to establish a prognostic model. Gene expression data and related survival data of 108 TCGT patients from GEO database were used for external validation. Survival analysis, receiver operating characteristic curves (ROC) curve analysis, independent prognostic analysis, principal component analysis (PCA) and clinical correlation analysis were performed to evaluate this model. Results Three hundred and thirty-three IRGs were differentially expressed between TGCT and normal testicular tissues. We established a prognostic model (riskScore) based on 5 risk genes (SEMA6B, SEMA3G, OBP2B, INSL6 and RETN). Whether in the training cohort, the testing cohort or the entire TCGA cohort, this model could accurately stratify patients with different survival outcomes. The prognostic value of riskScore and 5 risk genes was also confirmed in the GEO database. GSEA analysis showed that DEGs in patients with better prognosis were enriched in immune-related pathways, while DEGs in patients with poorer prognosis were enriched in cancer-related pathways and cardiovascular disease-related pathways. Finally, a new Nomogram with higher prognostic value was constructed to better predict the 1-year PFS, 3-year PFS and 5-year PFS of TCGT patients. Conclusions We successfully established an immune-related risk model with high prognostic value and created a new Nomogram. We found that different immune status in tumor microenvironment may be responsible for the different survival outcomes among TGCT patients.
Collapse
Affiliation(s)
- Chengjian Ji
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yichun Wang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yi Wang
- Department of Urology, Affiliated Hospital of Nantong University, Nantong, China
| | - Jiaochen Luan
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Liangyu Yao
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yamin Wang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ninghong Song
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,The Affiliated Kezhou People's Hospital of Nanjing Medical University, Kezhou, China
| |
Collapse
|
12
|
Ferrari F, Bock PM, Motta MT, Helal L. Biochemical and Molecular Mechanisms of Glucose Uptake Stimulated by Physical Exercise in Insulin Resistance State: Role of Inflammation. Arq Bras Cardiol 2020; 113:1139-1148. [PMID: 31644699 PMCID: PMC7021273 DOI: 10.5935/abc.20190224] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Accepted: 03/15/2019] [Indexed: 12/12/2022] Open
Abstract
Obesity associated with systemic inflammation induces insulin resistance (IR), with consequent chronic hyperglycemia. A series of reactions are involved in this process, including increased release of proinflammatory cytokines, and activation of c-Jun N-terminal kinase (JNK), nuclear factor-kappa B (NF-κB) and toll-like receptor 4 (TLR4) receptors. Among the therapeutic tools available nowadays, physical exercise (PE) has a known hypoglycemic effect explained by complex molecular mechanisms, including an increase in insulin receptor phosphorylation, in AMP-activated protein kinase (AMPK) activity, in the Ca2+/calmodulin-dependent protein kinase kinase (CaMKK) pathway, with subsequent activation of peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α), Rac1, TBC1 domain family member 1 and 4 (TBC1D1 and TBC1D4), in addition to a variety of signaling molecules, such as GTPases, Rab and soluble N-ethylmaleimide-sensitive factor attached protein receptor (SNARE) proteins. These pathways promote greater translocation of GLUT4 and consequent glucose uptake by the skeletal muscle. Phosphoinositide-dependent kinase (PDK), atypical protein kinase C (aPKC) and some of its isoforms, such as PKC-iota/lambda also seem to play a fundamental role in the transport of glucose. In this sense, the association between autophagy and exercise has also demonstrated a relevant role in the uptake of muscle glucose. Insulin, in turn, uses a phosphoinositide 3-kinase (PI3K)-dependent mechanism, while exercise signal may be triggered by the release of calcium from the sarcoplasmic reticulum. The objective of this review is to describe the main molecular mechanisms of IR and the relationship between PE and glucose uptake.
Collapse
Affiliation(s)
- Filipe Ferrari
- Programa de Pós-graduação em Cardiologia e Ciências Cardiovasculares - Faculdade de Medicina - Hospital de Clínicas de Porto Alegre (HCPA) - Universidade Federal do Rio Grande do Sul, Porto Alegre, RS - Brazil.,Grupo de Pesquisa em Cardiologia do Exercício - CardioEx (HCPA/UFRGS), Porto Alegre, RS - Brazil
| | - Patrícia Martins Bock
- Laboratório de Fisiopatologia do Exercício (LaFiEx), (HCPA/UFRGS), Porto Alegre, RS - Brazil.,Instituto de Avaliação de Tecnologias em Saúde (IATS), Hospital de Clínicas de Porto Alegre, Porto Alegre, RS - Brazil.,Faculdades Integradas de Taquara, Taquara, RS - Brazil
| | - Marcelo Trotte Motta
- Departamento de Ciências Biológicas, Universidade Estadual de Feira de Santana (UEFS), Feira de Santana, BA - Brazil
| | - Lucas Helal
- Programa de Pós-graduação em Cardiologia e Ciências Cardiovasculares - Faculdade de Medicina - Hospital de Clínicas de Porto Alegre (HCPA) - Universidade Federal do Rio Grande do Sul, Porto Alegre, RS - Brazil.,Laboratório de Fisiopatologia do Exercício (LaFiEx), (HCPA/UFRGS), Porto Alegre, RS - Brazil
| |
Collapse
|
13
|
Ragino YI, Stakhneva EM, Polonskaya YV, Kashtanova EV. The Role of Secretory Activity Molecules of Visceral Adipocytes in Abdominal Obesity in the Development of Cardiovascular Disease: A Review. Biomolecules 2020; 10:biom10030374. [PMID: 32121175 PMCID: PMC7175189 DOI: 10.3390/biom10030374] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 02/25/2020] [Accepted: 02/26/2020] [Indexed: 12/11/2022] Open
Abstract
Adipose tissue is considered one of the endocrine organs in the body because of its ability to synthesize and release a large number of hormones, cytokines, and growth and vasoactive factors that influence a variety of physiological and pathophysiological processes, such as vascular tone, inflammation, vascular smooth muscle cell migration, endothelial function, and vascular redox state. Moreover, genetic factors substantially contribute to the risk of obesity. Research into the biochemical effects of molecules secreted by visceral adipocytes as well as their molecular genetic characteristics is actively conducted around the world mostly in relation to pathologies of the cardiovascular system, metabolic syndrome, and diabetes mellitus. Adipokines could be developed into biomarkers for diagnosis, prognosis, and therapeutic targets in different diseases. This review describes the relevance of secretory activity molecules of visceral adipocytes in cardiovascular disease associated abdominal obesity.
Collapse
|