1
|
Salo TE, Hakola L, Niinistö S, Takkinen HM, Ahonen S, Puustinen L, Ilonen J, Toppari J, Veijola R, Hyöty H, Knip M, Virtanen SM. Gut Inflammation Markers, Diet, and Risk of Islet Autoimmunity in Finnish Children - A Nested Case-Control Study. J Nutr 2024; 154:2244-2254. [PMID: 38795745 PMCID: PMC11282497 DOI: 10.1016/j.tjnut.2024.05.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/19/2024] [Accepted: 05/18/2024] [Indexed: 05/28/2024] Open
Abstract
BACKGROUND Gut dysbiosis and increased intestinal permeability have been reported to precede type 1 diabetes-related autoimmunity. The role of gut inflammation in autoimmunity is not understood. OBJECTIVES This study aimed to assess whether gut inflammation markers are associated with risk of islet autoimmunity and whether diet is associated with gut inflammation markers. METHODS A nested case-control sample of 75 case children with islet autoimmunity and 88 control children was acquired from the Finnish Type 1 Diabetes Prediction and Prevention cohort. Diet was assessed with 3-d food records, and calprotectin and human β-defensin-2 (HBD-2) were analyzed from stool samples at 6 and 12 mo of age. Conditional logistic regression analysis was used in a matched case-control setting to assess risk of autoimmunity. Analysis of variance, independent samples t test, and a general linear model were used in secondary analyses to test associations of background characteristics and dietary factors with inflammation markers. RESULTS In unadjusted analyses, calprotectin was not associated with risk of islet autoimmunity, whereas HBD-2 in the middle (odds ratio [OR]: 3.23; 95% confidence interval [CI]: 1.03, 10.08) or highest tertile (OR: 3.02; 95% CI: 1.05, 8.69) in comparison to the lowest at 12 mo of age showed borderline association (P-trend = 0.063) with higher risk of islet autoimmunity. Excluding children with cow milk allergy in sensitivity analyses strengthened the association of HBD-2 with islet autoimmunity, whereas adjusting for dietary factors and maternal education weakened it. At age 12 mo, higher fat intake was associated with higher HBD-2 (β: 0.219; 95% CI: 0.110, 0.328) and higher intake of dietary fiber (β: -0.294; 95% CI: -0.510, -0.078), magnesium (β: -0.036; 95% CI: -0.059, -0.014), and potassium (β: -0.003; 95% CI: -0.005, -0.001) with lower HBD-2. CONCLUSIONS Higher HBD-2 in infancy may be associated with higher risk of islet autoimmunity. Dietary factors play a role in gut inflammatory status.
Collapse
Affiliation(s)
- Tuuli Ei Salo
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, Finland; Unit of Health Sciences, Faculty of Social Sciences, Tampere University, Tampere, Finland.
| | - Leena Hakola
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, Finland; Unit of Health Sciences, Faculty of Social Sciences, Tampere University, Tampere, Finland; Tampere University Hospital, Wellbeing Services County of Pirkanmaa, Tampere, Finland
| | - Sari Niinistö
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Hanna-Mari Takkinen
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, Finland; Unit of Health Sciences, Faculty of Social Sciences, Tampere University, Tampere, Finland; Tampere University Hospital, Wellbeing Services County of Pirkanmaa, Tampere, Finland
| | - Suvi Ahonen
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, Finland; Unit of Health Sciences, Faculty of Social Sciences, Tampere University, Tampere, Finland; Tampere University Hospital, Wellbeing Services County of Pirkanmaa, Tampere, Finland
| | - Leena Puustinen
- Department of Virology, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Jorma Ilonen
- Immunogenetics Laboratory, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Jorma Toppari
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, and Centre for Population Health Research, University of Turku, Turku, Finland; Department of Pediatrics, Turku University Hospital, Turku, Finland
| | - Riitta Veijola
- Department of Pediatrics, PEDEGO Research Unit, Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland; Department of Children and Adolescents, Oulu University Hospital, Oulu, Finland
| | - Heikki Hyöty
- Department of Virology, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland; Fimlab laboratories, Tampere, Finland
| | - Mikael Knip
- Pediatric Research Center, Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Department of Pediatrics, Tampere University Hospital, Tampere, Finland
| | - Suvi M Virtanen
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, Finland; Unit of Health Sciences, Faculty of Social Sciences, Tampere University, Tampere, Finland; Tampere University Hospital, Wellbeing Services County of Pirkanmaa, Tampere, Finland; Center for Child Health Research, Tampere University and Tampere University Hospital, Tampere, Finland
| |
Collapse
|
2
|
Bass LE, Bonami RH. Factors Governing B Cell Recognition of Autoantigen and Function in Type 1 Diabetes. Antibodies (Basel) 2024; 13:27. [PMID: 38651407 PMCID: PMC11036271 DOI: 10.3390/antib13020027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/15/2024] [Accepted: 03/18/2024] [Indexed: 04/25/2024] Open
Abstract
Islet autoantibodies predict type 1 diabetes (T1D) but can be transient in murine and human T1D and are not thought to be directly pathogenic. Rather, these autoantibodies signal B cell activity as antigen-presenting cells (APCs) that present islet autoantigen to diabetogenic T cells to promote T1D pathogenesis. Disrupting B cell APC function prevents T1D in mouse models and has shown promise in clinical trials. Autoantigen-specific B cells thus hold potential as sophisticated T1D biomarkers and therapeutic targets. B cell receptor (BCR) somatic hypermutation is a mechanism by which B cells increase affinity for islet autoantigen. High-affinity B and T cell responses are selected in protective immune responses, but immune tolerance mechanisms are known to censor highly autoreactive clones in autoimmunity, including T1D. Thus, different selection rules often apply to autoimmune disease settings (as opposed to protective host immunity), where different autoantigen affinity ceilings are tolerated based on variations in host genetics and environment. This review will explore what is currently known regarding B cell signaling, selection, and interaction with T cells to promote T1D pathogenesis.
Collapse
Affiliation(s)
- Lindsay E. Bass
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA;
| | - Rachel H. Bonami
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA;
- Department of Medicine, Division of Rheumatology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| |
Collapse
|
3
|
Sacks DB, Arnold M, Bakris GL, Bruns DE, Horvath AR, Lernmark Å, Metzger BE, Nathan DM, Kirkman MS. Guidelines and Recommendations for Laboratory Analysis in the Diagnosis and Management of Diabetes Mellitus. Diabetes Care 2023; 46:e151-e199. [PMID: 37471273 PMCID: PMC10516260 DOI: 10.2337/dci23-0036] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 05/11/2023] [Indexed: 07/22/2023]
Abstract
BACKGROUND Numerous laboratory tests are used in the diagnosis and management of diabetes mellitus. The quality of the scientific evidence supporting the use of these assays varies substantially. APPROACH An expert committee compiled evidence-based recommendations for laboratory analysis in screening, diagnosis, or monitoring of diabetes. The overall quality of the evidence and the strength of the recommendations were evaluated. The draft consensus recommendations were evaluated by invited reviewers and presented for public comment. Suggestions were incorporated as deemed appropriate by the authors (see Acknowledgments). The guidelines were reviewed by the Evidence Based Laboratory Medicine Committee and the Board of Directors of the American Association for Clinical Chemistry and by the Professional Practice Committee of the American Diabetes Association. CONTENT Diabetes can be diagnosed by demonstrating increased concentrations of glucose in venous plasma or increased hemoglobin A1c (HbA1c) in the blood. Glycemic control is monitored by the people with diabetes measuring their own blood glucose with meters and/or with continuous interstitial glucose monitoring (CGM) devices and also by laboratory analysis of HbA1c. The potential roles of noninvasive glucose monitoring, genetic testing, and measurement of ketones, autoantibodies, urine albumin, insulin, proinsulin, and C-peptide are addressed. SUMMARY The guidelines provide specific recommendations based on published data or derived from expert consensus. Several analytes are found to have minimal clinical value at the present time, and measurement of them is not recommended.
Collapse
Affiliation(s)
- David B. Sacks
- Department of Laboratory Medicine, National Institutes of Health, Bethesda, MD
| | - Mark Arnold
- Department of Chemistry, University of Iowa, Iowa City, IA
| | - George L. Bakris
- Department of Medicine, American Heart Association Comprehensive Hypertension Center, Section of Endocrinology, Diabetes and Metabolism, University of Chicago Medicine, Chicago, IL
| | - David E. Bruns
- Department of Pathology, University of Virginia Medical School, Charlottesville, VA
| | - Andrea R. Horvath
- New South Wales Health Pathology Department of Chemical Pathology, Prince of Wales Hospital, Sydney, New South Wales, Australia
| | - Åke Lernmark
- Department of Clinical Sciences, Lund University/CRC, Skane University Hospital Malmö, Malmö, Sweden
| | - Boyd E. Metzger
- Division of Endocrinology, Northwestern University, The Feinberg School of Medicine, Chicago, IL
| | - David M. Nathan
- Massachusetts General Hospital Diabetes Center and Harvard Medical School, Boston, MA
| | - M. Sue Kirkman
- Department of Medicine, University of North Carolina, Chapel Hill, NC
| |
Collapse
|
4
|
Sacks DB, Arnold M, Bakris GL, Bruns DE, Horvath AR, Lernmark Å, Metzger BE, Nathan DM, Kirkman MS. Guidelines and Recommendations for Laboratory Analysis in the Diagnosis and Management of Diabetes Mellitus. Clin Chem 2023:hvad080. [PMID: 37473453 DOI: 10.1093/clinchem/hvad080] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 05/12/2023] [Indexed: 07/22/2023]
Abstract
BACKGROUND Numerous laboratory tests are used in the diagnosis and management of diabetes mellitus. The quality of the scientific evidence supporting the use of these assays varies substantially. APPROACH An expert committee compiled evidence-based recommendations for laboratory analysis in screening, diagnosis, or monitoring of diabetes. The overall quality of the evidence and the strength of the recommendations were evaluated. The draft consensus recommendations were evaluated by invited reviewers and presented for public comment. Suggestions were incorporated as deemed appropriate by the authors (see Acknowledgments). The guidelines were reviewed by the Evidence Based Laboratory Medicine Committee and the Board of Directors of the American Association of Clinical Chemistry and by the Professional Practice Committee of the American Diabetes Association. CONTENT Diabetes can be diagnosed by demonstrating increased concentrations of glucose in venous plasma or increased hemoglobin A1c (Hb A1c) in the blood. Glycemic control is monitored by the people with diabetes measuring their own blood glucose with meters and/or with continuous interstitial glucose monitoring (CGM) devices and also by laboratory analysis of Hb A1c. The potential roles of noninvasive glucose monitoring, genetic testing, and measurement of ketones, autoantibodies, urine albumin, insulin, proinsulin, and C-peptide are addressed. SUMMARY The guidelines provide specific recommendations based on published data or derived from expert consensus. Several analytes are found to have minimal clinical value at the present time, and measurement of them is not recommended.
Collapse
Affiliation(s)
- David B Sacks
- Department of Laboratory Medicine, National Institutes of Health, Bethesda, MD, United States
| | - Mark Arnold
- Department of Chemistry, University of Iowa, Iowa City, IA, United States
| | - George L Bakris
- Department of Medicine, American Heart Association Comprehensive Hypertension Center, Section of Endocrinology, Diabetes and Metabolism, University of Chicago Medicine, Chicago, ILUnited States
| | - David E Bruns
- Department of Pathology, University of Virginia Medical School, Charlottesville, VA, United States
| | - Andrea R Horvath
- New South Wales Health Pathology Department of Chemical Pathology, Prince of Wales Hospital, Sydney, NSW, Australia
| | - Åke Lernmark
- Department of Clinical Sciences, Lund University/CRC, Skane University Hospital Malmö, Malmö, Sweden
| | - Boyd E Metzger
- Division of Endocrinology, Northwestern University, The Feinberg School of Medicine, Chicago, IL, United States
| | - David M Nathan
- Massachusetts General Hospital Diabetes Center and Harvard Medical School, Boston, MA, United States
| | - M Sue Kirkman
- Department of Medicine, University of North Carolina, Chapel Hill, NC, United States
| |
Collapse
|
5
|
Chandran L, Singh S A, Vellapandian C. Diagnostic Dilemmas and Current Treatment Approaches in Latent Onset Autoimmune Diabetes in Adults: A Concise Review. Curr Diabetes Rev 2023; 19:1-9. [PMID: 35331118 DOI: 10.2174/1573399818666220324095918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/22/2021] [Accepted: 12/29/2021] [Indexed: 11/22/2022]
Abstract
Latent Onset Autoimmune Diabetes in Adults (LADA) is an autoimmune disorder between T1DM and T2DM and is often misdiagnosed as T2DM due to its late-onset. The disease is characterized by β-cell failure and slow progression to insulin dependence. Early diagnosis is significant in limiting disease progression. C-peptide levels and autoantibodies against β-cells are the most critical diagnostic biomarkers in LADA. The review aims to provide an overview of the biomarkers used to diagnose LADA, and the following treatment approaches. We have summarized LADA's pathophysiology and the autoantibodies involved in the condition, diagnostic approaches, and challenges. There are clear shortcomings concerning the feasibility of autoantibody testing. Finally, we have explored the treatment strategies involved in the management of LADA. In conclusion, the usual management includes treatment with metformin and the addition of low doses of insulin. Newer oral hypoglycaemic agents, such as GLP-1RA and DPP-4 inhibitors, have been brought into use. Since the disease is not entirely understood at the research level and in clinical practice, we hope to encourage further research in this field to assess its prevalence. Large randomized controlled trials are required to compare the efficacy of different available treatment options.
Collapse
Affiliation(s)
- Lakshmi Chandran
- Department of Pharmacy Practice, SRM Institute of Science and Technology (SRMIST) (Formerly SRM University), Kattankulathur, Chengalpattu District, Chennai - 603203, Tamilnadu, India
| | - Ankul Singh S
- Department of Pharmacology, SRM Institute of Science and Technology (SRMIST) (Formerly SRM University), Kattankulathur, Chengalpattu District, Chennai - 603203, Tamilnadu, India
| | - Chitra Vellapandian
- Department of Pharmacology, SRM Institute of Science and Technology (SRMIST) (Formerly SRM University), Kattankulathur, Chengalpattu District, Chennai - 603203, Tamilnadu, India
| |
Collapse
|
6
|
He L, Jia X, Rasmussen CG, Waugh K, Miao D, Dong F, Frohnert B, Steck AK, Simmons KM, Rewers M, Yu L. High-Throughput Multiplex Electrochemiluminescence Assay Applicable to General Population Screening for Type 1 Diabetes and Celiac Disease. Diabetes Technol Ther 2022; 24:502-509. [PMID: 35238620 PMCID: PMC9464081 DOI: 10.1089/dia.2021.0517] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Objective: Large-scale screening of the general population for islet autoantibodies (IAbs) to detect type 1 diabetes (T1D) has started worldwide. The standard screening method of separate radio-binding assay (RBA) for each IAb is an inefficient bottleneck. Furthermore, most positive results by RBA in screening of general population individuals without a clinical diagnosis of T1D are low-affinity and not predictive of future diabetes. Research Design and Methods: We have developed and validated a novel 6-Plex assay based on electrochemiluminescence (ECL) technology that combines in a single well high-affinity IAbs (to insulin, GAD, IA-2, and ZnT8), transglutaminase autoantibodies for celiac disease, and severe acute respiratory syndrome coronavirus 2 antibodies. The Autoimmunity Screening for Kids (ASK) provided 880 serum samples, from 828 children aged 1-17 years without diabetes who were previously tested for IAbs using single ECL assays and RBA assays. Results: Levels of all six antibodies in the 6-Plex ECL assay correlated well with respective single ECL assay levels. Similar to single ECL assays, the 6-Plex ECL assay positivity was congruent with the RBA in 95% (35/37) of children who later developed T1D and in 88% (105/119) high-risk children with multiple IAbs. In contrast, only 56% (86/154, P < 0.0001) of children with persistent single IAb by RBA were found to be positive by 6-Plex ECL assay. Of 555 samples negative for all IAbs by RBA, few (0.2%-0.5%) were positive at low levels in the 6-Plex ECL assay. Conclusions: The study demonstrated that the 6-Plex ECL assay compares favorably to the standard RBAs in terms of disease specificity for general population screening in children. The 6-Plex ECL assay was therefore adopted as the primary screening tool in the general population screening ASK program with advantages of high efficiency, low cost, and low serum volume.
Collapse
Affiliation(s)
- Ling He
- Department of Endocrinology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Xiaofan Jia
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Cristy Geno Rasmussen
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Kathleen Waugh
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Dongmei Miao
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Fran Dong
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Brigitte Frohnert
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Andrea K. Steck
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Kimber M. Simmons
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Marian Rewers
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, Colorado, USA
- Address correspondence to: Marian Rewers, MD, PhD, Barbara Davis Center for Diabetes, University of Colorado School of Medicine, 1775 Aurora Ct, B140, Aurora, CO 80045, USA
| | - Liping Yu
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, Colorado, USA
- Address correspondence to: Liping Yu, MD, Barbara Davis Center for Diabetes, University of Colorado School of Medicine, 1775 Aurora Ct, B140, Aurora, CO 80045, USA
| |
Collapse
|
7
|
Jia X, He L, Miao D, Waugh K, Rasmussen CG, Dong F, Steck AK, Rewers M, Yu L. High-affinity ZnT8 Autoantibodies by Electrochemiluminescence Assay Improve Risk Prediction for Type 1 Diabetes. J Clin Endocrinol Metab 2021; 106:3455-3463. [PMID: 34343303 PMCID: PMC8864749 DOI: 10.1210/clinem/dgab575] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Indexed: 01/13/2023]
Abstract
CONTEXT Single ZnT8 autoantibody (ZnT8A) positivity by standard radiobinding assay (RBA) is commonly seen in nondiabetes population-based screening and the risk of progression to type 1 diabetes (T1D) in subjects with single ZnT8A is unknown. OBJECTIVE Identify the risk of progression to T1D in individuals positive only for ZnT8A. METHODS We developed an electrochemiluminescence (ECL) assay to detect high-affinity ZnT8A and validated it in 3 populations: 302 patients newly diagnosed with T1D, 135 nondiabetic children positive for ZnT8A by RBA among 23 400 children screened by the Autoimmunity Screening for Kids (ASK) study, and 123 nondiabetic children multiple autoantibody positive or single ZnT8A positive by RBA participating in the Diabetes Autoimmunity Study in the Young (DAISY). RESULTS In 302 patients with T1D at diagnosis, the positivity for ZnT8A was 62% both in RBA and ECL. Among ASK 135 participants positive for RBA-ZnT8A, 64 were detected ZnT8A as the only islet autoantibody. Of these 64, only 9 were confirmed by ECL-ZnT8A, found to be of high affinity with increased T1D risk. The overall positive predictive value of ECL-ZnT8A for T1D risk was 87.1%, significantly higher than that of RBA-ZnT8A (53.5%, P < .001). In DAISY, 11 of 2547 children who had no positivity previously detected for other islet autoantibodies were identified as single ZnT8A by RBA; of these, 3 were confirmed positive by ECL-ZnT8A and all 3 progressed to clinical T1D. CONCLUSION A large proportion of ZnT8A by RBA are single ZnT8A with low T1D risk, whereas ZnT8A by ECL was of high affinity and high prediction for T1D development.
Collapse
Affiliation(s)
- Xiaofan Jia
- Barbara Davis Center for Diabetes University of Colorado School of Medicine, Aurora, Colorado 80045, USA
- Department of Endocrinology, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, P. R. China
| | - Ling He
- Barbara Davis Center for Diabetes University of Colorado School of Medicine, Aurora, Colorado 80045, USA
- Department of Endocrinology, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510180, P. R. China
| | - Dongmei Miao
- Barbara Davis Center for Diabetes University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | - Kathleen Waugh
- Barbara Davis Center for Diabetes University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | - Cristy Geno Rasmussen
- Barbara Davis Center for Diabetes University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | - Fran Dong
- Barbara Davis Center for Diabetes University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | - Andrea K Steck
- Barbara Davis Center for Diabetes University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | - Marian Rewers
- Barbara Davis Center for Diabetes University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | - Liping Yu
- Barbara Davis Center for Diabetes University of Colorado School of Medicine, Aurora, Colorado 80045, USA
- Correspondence: Liping Yu, MD, Barbara Davis Center for Diabetes, University of Colorado School of Medicine, 1775 Aurora Ct, B-140, Aurora, CO 80045, USA.
| |
Collapse
|
8
|
So M, Speake C, Steck AK, Lundgren M, Colman PG, Palmer JP, Herold KC, Greenbaum CJ. Advances in Type 1 Diabetes Prediction Using Islet Autoantibodies: Beyond a Simple Count. Endocr Rev 2021; 42:584-604. [PMID: 33881515 DOI: 10.1210/endrev/bnab013] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Indexed: 02/06/2023]
Abstract
Islet autoantibodies are key markers for the diagnosis of type 1 diabetes. Since their discovery, they have also been recognized for their potential to identify at-risk individuals prior to symptoms. To date, risk prediction using autoantibodies has been based on autoantibody number; it has been robustly shown that nearly all multiple-autoantibody-positive individuals will progress to clinical disease. However, longitudinal studies have demonstrated that the rate of progression among multiple-autoantibody-positive individuals is highly heterogenous. Accurate prediction of the most rapidly progressing individuals is crucial for efficient and informative clinical trials and for identification of candidates most likely to benefit from disease modification. This is increasingly relevant with the recent success in delaying clinical disease in presymptomatic subjects using immunotherapy, and as the field moves toward population-based screening. There have been many studies investigating islet autoantibody characteristics for their predictive potential, beyond a simple categorical count. Predictive features that have emerged include molecular specifics, such as epitope targets and affinity; longitudinal patterns, such as changes in titer and autoantibody reversion; and sequence-dependent risk profiles specific to the autoantibody and the subject's age. These insights are the outworking of decades of prospective cohort studies and international assay standardization efforts and will contribute to the granularity needed for more sensitive and specific preclinical staging. The aim of this review is to identify the dynamic and nuanced manifestations of autoantibodies in type 1 diabetes, and to highlight how these autoantibody features have the potential to improve study design of trials aiming to predict and prevent disease.
Collapse
Affiliation(s)
- Michelle So
- Diabetes Clinical Research Program, and Center for Interventional Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA 98101, USA
| | - Cate Speake
- Diabetes Clinical Research Program, and Center for Interventional Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA 98101, USA
| | - Andrea K Steck
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Markus Lundgren
- Department of Clinical Sciences Malmö, Lund University, Malmö 22200, Sweden
| | - Peter G Colman
- Department of Diabetes and Endocrinology, Royal Melbourne Hospital, Melbourne, Victoria 3050, Australia
| | - Jerry P Palmer
- VA Puget Sound Health Care System, Department of Medicine, University of Washington, Seattle, WA 98108, USA
| | - Kevan C Herold
- Department of Immunobiology, and Department of Internal Medicine, Yale University, New Haven, CT 06520, USA
| | - Carla J Greenbaum
- Diabetes Clinical Research Program, and Center for Interventional Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA 98101, USA
| |
Collapse
|
9
|
Zhu Y, Qian L, Liu Q, Zou J, Zhou Y, Yang T, Huang G, Zhou Z, Liu Y. Glutamic Acid Decarboxylase Autoantibody Detection by Electrochemiluminescence Assay Identifies Latent Autoimmune Diabetes in Adults with Poor Islet Function. Diabetes Metab J 2020; 44:260-266. [PMID: 31769235 PMCID: PMC7188968 DOI: 10.4093/dmj.2019.0007] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 04/30/2019] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND The detection of glutamic acid decarboxylase 65 (GAD65) autoantibodies is essential for the prediction and diagnosis of latent autoimmune diabetes in adults (LADA). The aim of the current study was to compare a newly developed electrochemiluminescence (ECL)-GAD65 antibody assay with the established radiobinding assay, and to explore whether the new assay could be used to define LADA more precisely. METHODS Serum samples were harvested from 141 patients with LADA, 95 with type 1 diabetes mellitus, and 99 with type 2 diabetes mellitus, and tested for GAD65 autoantibodies using both the radiobinding assay and ECL assay. A glutamic acid decarboxylase antibodies (GADA) competition assay was also performed to assess antibody affinity. Furthermore, the clinical features of these patients were compared. RESULTS Eighty-eight out of 141 serum samples (62.4%) from LADA patients were GAD65 antibody-positive by ECL assay. Compared with ECL-GAD65 antibody-negative patients, ECL-GAD65 antibody-positive patients were leaner (P<0.0001), had poorer β-cell function (P<0.05), and were more likely to have other diabetes-associated autoantibodies. The β-cell function of ECL-GAD65 antibody-positive patients was similar to that of type 1 diabetes mellitus patients, whereas ECL-GAD65 antibody-negative patients were more similar to type 2 diabetes mellitus patients. CONCLUSION Patients with ECL-GAD65 antibody-negative share a similar phenotype with type 2 diabetes mellitus patients, whereas patients with ECL-GAD65 antibody-positive resemble those with type 1 diabetes mellitus. Thus, the detection of GADA using ECL may help to identify the subtype of LADA.
Collapse
Affiliation(s)
- Yuxiao Zhu
- Department of Endocrinology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China
| | - Li Qian
- Department of Endocrinology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China
| | - Qing Liu
- Department of Endocrinology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China
| | - Jing Zou
- Department of Endocrinology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China
| | - Ying Zhou
- Department of Endocrinology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China
| | - Tao Yang
- Department of Endocrinology, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Gan Huang
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, National Clinical Research Center for Metabolic Diseases, Changsha, China
| | - Zhiguang Zhou
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, National Clinical Research Center for Metabolic Diseases, Changsha, China
| | - Yu Liu
- Department of Endocrinology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
10
|
Inducing Specific Immune Tolerance to Prevent Type 1 Diabetes in NOD Mice. Pancreas 2016; 45:882-8. [PMID: 26784909 DOI: 10.1097/mpa.0000000000000603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
OBJECTIVES Proinsulin is the first autoantigen in type 1 diabetes (T1D). We reasoned that coupling hematopoietic stem cells (HSCs) transplantation with ex vivo transduction of syngeneic HSCs with lentiviral vectors to express proinsulin II could prevent T1D in nonobese diabetic (NOD) mice. METHODS Hematopoietic stem cells were isolated from 6- to 8-week-old NOD female mice and transduced in vitro with lentiviral vectors encoding proinsulin II. Preconditioned 3- to 4-week-old female NOD mice were transplanted with transduced or nontransduced HSCs and compared with age-matched unmanipulated control. The insulitis, T1D development, and immune reconstitution were assessed. RESULTS The mean (SD) insulitis score was significantly reduced (1.156 [0.575] vs 2.156 [0.892] or 3.043 [0.728], P = 0.009 or <0.001), and diabetes was nearly completely prevented (1/13 vs 5/12 or 4/9, P = 0.031 or 0.013) in recipients of transduced HSCs expressing proinsulin II as compared with recipients of nontransduced HSCs or unmanipulated control. Sialitis, reconstitution of peripheral blood leukocytes, and in vitro recall responses to ovalbumin were not different between 3 groups of mice. CONCLUSIONS Syngeneic transplantation of HSCs transduced ex vivo with lentiviral vectors to encode proinsulin II is a novel strategy to prevent T1D.
Collapse
|
11
|
Moulder R, Lahesmaa R. Early signs of disease in type 1 diabetes. Pediatr Diabetes 2016; 17 Suppl 22:43-8. [PMID: 27411436 DOI: 10.1111/pedi.12329] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 09/23/2015] [Indexed: 01/22/2023] Open
Abstract
As a severe chronic disease with long-term complications, type 1 diabetes (T1D) is a burden to the patients and their families as well as a challenge to the health care system. T1D is a heterogeneous disease with a variety of etiologies and a wide range in the rate of progression to the disease. In order to prevent and treat T1D it would be important to identify measures that could be used to predict and monitor disease progression, as well as to further understand the molecular mechanisms involved. During the past 20 yr since its initiation, the Finnish Diabetes Prediction and Prevention Project (DIPP) has collected longitudinal biological samples from children with a human leukocyte antigen gene-conferred risk of T1D. This large sample collection has provided detailed sample series that enable studies to map the progression from health to disease, as well as the healthy maturation of risk-matched children. The DIPP samples have been used in a large body of research to elucidate the factors involved in the development of T1D. Interestingly, results from recent studies exploiting omics platforms have revealed that signs of the disease process can be detected very early on, even prior to appearance of the first T1D-associated antibodies, which are currently considered the earliest indications of the emerging disease. Identification and validation of multi-modal molecular markers will we hope provide a means to subgroup the heterogeneous group of T1D patients and enable prediction, diagnosis, and monitoring of T1D. Discovery of such markers is important in the design and testing of prevention and therapies for T1D.
Collapse
Affiliation(s)
- Robert Moulder
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi, Turku, Finland
| | - Riitta Lahesmaa
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi, Turku, Finland
| |
Collapse
|
12
|
Miao D, Steck AK, Zhang L, Guyer KM, Jiang L, Armstrong T, Muller SM, Krischer J, Rewers M, Yu L. Electrochemiluminescence assays for insulin and glutamic acid decarboxylase autoantibodies improve prediction of type 1 diabetes risk. Diabetes Technol Ther 2015; 17:119-27. [PMID: 25562486 PMCID: PMC4321773 DOI: 10.1089/dia.2014.0186] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We recently developed new electrochemiluminescence (ECL) insulin autoantibody (IAA) and glutamic acid decarboxylase 65 autoantibody (GADA) assays that discriminate high-affinity, high-risk diabetes-specific autoantibodies from low-affinity, low-risk islet autoantibodies (iAbs) detected by radioassay (RAD). Here, we report a further validation of the ECL-IAA and -GADA assays in 3,484 TrialNet study participants. The ECL assay and RAD were congruent in those with prediabetes and in subjects with multiple autoantibodies, but only 24% (P<0.0001) of single RAD-IAA-positive and 46% (P<0.0001) of single RAD-GADA-positive were confirmed by the ECL-IAA and -GADA assays, respectively. During a follow-up (mean, 2.4 years), 51% of RAD-IAA-positive and 63% of RAD-GADA-positive subjects not confirmed by ECL became iAb negative, compared with only 17% of RAD-IAA-positive (P<0.0001) and 15% of RAD-GADA-positive (P<0.0001) subjects confirmed by ECL assays. Among subjects with multiple iAbs, diabetes-free survival was significantly shorter if IAA or GADA was positive by ECL and negative by RAD than if IAA or GADA was negative by ECL and positive by RAD (P<0.019 and P<0.0001, respectively). Both positive and negative predictive values in terms of progression to type 1 diabetes mellitus were superior for ECL-IAA and ECL-GADA, compared with RADs. The prevalence of the high-risk human leukocyte antigen-DR3/4, DQB1*0302 genotype was significantly higher in subjects with RAD-IAA or RAD-GADA confirmed by ECL. In conclusion, both ECL-IAA and -GADA are more disease-specific and better able to predict the risk of progression to type 1 diabetes mellitus than the current standard RADs.
Collapse
Affiliation(s)
- Dongmei Miao
- Barbara Davis Center for Childhood Diabetes, University of Colorado Denver, Aurora, Colorado
| | - Andrea K. Steck
- Barbara Davis Center for Childhood Diabetes, University of Colorado Denver, Aurora, Colorado
| | - Li Zhang
- Barbara Davis Center for Childhood Diabetes, University of Colorado Denver, Aurora, Colorado
| | - K. Michelle Guyer
- Barbara Davis Center for Childhood Diabetes, University of Colorado Denver, Aurora, Colorado
| | - Ling Jiang
- Barbara Davis Center for Childhood Diabetes, University of Colorado Denver, Aurora, Colorado
| | - Taylor Armstrong
- Barbara Davis Center for Childhood Diabetes, University of Colorado Denver, Aurora, Colorado
| | | | | | - Marian Rewers
- Barbara Davis Center for Childhood Diabetes, University of Colorado Denver, Aurora, Colorado
| | - Liping Yu
- Barbara Davis Center for Childhood Diabetes, University of Colorado Denver, Aurora, Colorado
| |
Collapse
|
13
|
Grönholm J, Lenardo MJ. Novel diagnostic and therapeutic approaches for autoimmune diabetes--a prime time to treat insulitis as a disease. Clin Immunol 2014; 156:109-18. [PMID: 25486604 DOI: 10.1016/j.clim.2014.11.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 11/22/2014] [Indexed: 02/09/2023]
Abstract
Type 1 diabetes is a progressive autoimmune disease with no curative treatment, making prevention critical. At the time of diagnosis, a majority of the insulin secreting β-cells have already been destroyed. Insulitis, lymphocytic infiltration to the pancreatic islets, is believed to begin months to years before the clinical symptoms of insulin deficiency appear. Insulitis should be treated as its own disease, for it is a known precursor to autoimmune diabetes. Because it is difficult to detect insulitic cellular infiltrates noninvasively, considerable interest has been focused on the levels of islet autoantibodies in blood as measurable diagnostic markers for islet autoimmunity. The traditional islet autoantibody detection assays have many limitations. New electrochemiluminescence-based autoantibody detection assays have the potential to overcome these challenges and they offer promising, cost-effective screening tools in identifying high-risk individuals for trials of preventive interventions. Here, we outline diagnostic and therapeutic strategies to overcome pancreatic β-cell destroying insulitis.
Collapse
Affiliation(s)
- Juha Grönholm
- Molecular Development of the Immune System Section, Laboratory of Immunology, NIAID Clinical Genomics Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Michael J Lenardo
- Molecular Development of the Immune System Section, Laboratory of Immunology, NIAID Clinical Genomics Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
14
|
Bender C, Schlosser M, Christen U, Ziegler AG, Achenbach P. GAD autoantibody affinity in schoolchildren from the general population. Diabetologia 2014; 57:1911-8. [PMID: 24939430 DOI: 10.1007/s00125-014-3294-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 05/16/2014] [Indexed: 12/27/2022]
Abstract
AIMS/HYPOTHESIS Subtyping GAD autoantibody (GADA) responses using affinity measurement allows the identification of GADA-positive children with a family history of type 1 diabetes who are at risk of developing diabetes. Here, we asked whether GADA affinity is a useful marker to stratify the risk of type 1 diabetes in GADA-positive schoolchildren from the general population. METHODS GADA affinity was measured by competitive binding experiments with [(125)I]-labelled and unlabelled human 65 kDa isoform of GAD (GAD65) in sera from 97 GADA-positive children identified in the Karlsburg Type 1 Diabetes Risk Study of a general schoolchild population in north-eastern Germany. GADA epitope specificity was determined using radiobinding assays with [(35)S]-labelled GAD65/67 kDa isoform of GAD (GAD67) chimeric proteins. RESULTS GADA affinity was high, ≥ 10(10) l/mol, in 33 of 35 multiple islet autoantibody-positive children. In contrast, the affinity ranged widely among 62 single GADA-positive children (median 3.1 × 10(9) l/mol; range 5.6 × 10(6) to >4.0 × 10(11) l/mol; p < 0.0001). High-affinity GADA were associated with HLA-DRB1*03 (p = 0.02) and predominantly directed against the C-terminal and/or middle part of the GAD65 protein. At follow-up, the affinity remained relatively constant. Five of the single GADA-positive children developed additional islet autoantibodies and had high-affinity GADA. Twenty-six children progressed to type 1 diabetes; among them, 23 had GADA affinities of ≥ 10(10) l/mol before disease onset. CONCLUSIONS/INTERPRETATION Schoolchildren from the general population may develop heterogeneous GADA responses, and a high affinity can identify those GADA-positive children who are more likely to progress to type 1 diabetes.
Collapse
Affiliation(s)
- Christine Bender
- Pharmazentrum Frankfurt/ZAFES, Goethe University Hospital Frankfurt, Theodor-Stern Kai 7, 60590, Frankfurt am Main, Germany,
| | | | | | | | | |
Collapse
|
15
|
Miao D, Guyer KM, Dong F, Jiang L, Steck AK, Rewers M, Eisenbarth GS, Yu L. GAD65 autoantibodies detected by electrochemiluminescence assay identify high risk for type 1 diabetes. Diabetes 2013; 62:4174-8. [PMID: 23974918 PMCID: PMC3837058 DOI: 10.2337/db13-0534] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The identification of diabetes-relevant islet autoantibodies is essential for predicting and preventing type 1 diabetes (T1D). The aim of the current study was to evaluate a newly developed electrochemiluminescence (ECL)-GAD antibody (GADA) assay and compare its sensitivity and disease relevance with standard radioassay. The assay was validated with serum samples from 227 newly diagnosed diabetic children; 68 prediabetic children who were prospectively followed to T1D; 130 nondiabetic children with confirmed islet autoantibodies to insulin, GAD65, IA-2, and/or ZnT8 longitudinally followed for 12 ± 3.7 years; and 181 age-matched, healthy, antibody-negative children. The ECL-GADA assay had a sensitivity similar to that of the standard GADA radioassay in children newly diagnosed with T1D, prediabetic children, and high-risk children with multiple positive islet autoantibodies. On the other hand, only 9 of 39 nondiabetic children with only a single islet autoantibody (GADA only) by radioassay were positive for ECL-GADA. GADA not detectable by ECL assay is shown to be of low affinity and likely not predictive of future diabetes. In conclusion, the new ECL assay identifies disease-relevant GADA by radioassay. It may help to improve the prediction and correct diagnosis of T1D among subjects positive only for GADA and no other islet autoantibodies.
Collapse
|
16
|
Krause S, Chmiel R, Bonifacio E, Scholz M, Powell M, Furmaniak J, Rees Smith B, Ziegler AG, Achenbach P. IA-2 autoantibody affinity in children at risk for type 1 diabetes. Clin Immunol 2012; 145:224-9. [PMID: 23110943 DOI: 10.1016/j.clim.2012.09.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Revised: 09/19/2012] [Accepted: 09/22/2012] [Indexed: 11/30/2022]
Abstract
Autoantibodies to insulinoma-associated protein 2 (IA-2A) are associated with increased risk for type 1 diabetes. Here we examined IA-2A affinity and epitope specificity to assess heterogeneity in response intensity in relation to pathogenesis and diabetes risk in 50 children who were prospectively followed from birth. At first IA-2A appearance, affinity ranged from 10(7) to 10(11)L/mol and was high (>1.0×10(9)L/mol) in 41 (82%) children. IA-2A affinity was not associated with epitope specificity or HLA class II haplotype. On follow-up, affinity increased or remained high, and IA-2A were commonly against epitopes within the protein tyrosine phosphatase-like IA-2 domain and the homologue protein IA-2β. IA-2A were preceded or accompanied by other islet autoantibodies in 49 (98%) children, of which 34 progressed to diabetes. IA-2A affinity did not stratify diabetes risk. In conclusion, the IA-2A response in children is intense with rapid maturation against immunogenic epitopes and a strong association with diabetes development.
Collapse
Affiliation(s)
- Stephanie Krause
- Institute of Diabetes Research, Helmholtz Zentrum München, and Forschergruppe Diabetes, Klinikum rechts der Isar, Technische Universität München, Ingolstaedter Landstrasse 1, 85764, Neuherberg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Curnock RM, Reed CR, Rokni S, Broadhurst JW, Bingley PJ, Williams AJK. 'Insulin autoantibody affinity measurement using a single concentration of unlabelled insulin competitor discriminates risk in relatives of patients with type 1 diabetes. Clin Exp Immunol 2012; 167:67-72. [PMID: 22132886 DOI: 10.1111/j.1365-2249.2011.04495.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Development of high-risk combinations of multiple islet autoantibodies and type 1 diabetes is associated with high-affinity insulin autoantibodies (IAA), but IAA affinity measurements require large serum volumes. We therefore investigated whether a simplified method of IAA affinity measurement using a low concentration of unlabelled insulin (ULI) competitor discriminated between moderate-high- and low-affinity IAA and identified individuals at highest risk of disease. Samples were assayed by radiobinding microassay using high (4·0 × 10(-5) mol/l) and low (7 × 10(-9) mol/l) ULI concentrations for competitive displacement in three cohorts of IAA-positive individuals; (1) 68 patients with newly-diagnosed type 1 diabetes; (2) 40 healthy schoolchildren; and (3) 114 relatives of patients with type 1 diabetes followed prospectively for disease development (median follow-up 13 years). IAA results obtained with low ULI were expressed as a percentage of those obtained with high ULI and this was used to classify samples as low or moderate-high affinity (0-50% and >50%, respectively). Sixty-eight patient samples were positive with high and 67 (99%) with low ULI. Forty schoolchildren were IAA-positive with high and 22 (55%) with low ULI (P < 0·001). Of the relatives, 113 were positive with high and 83 (73%) with low ULI (P < 0·001). In relatives, moderate-high affinity IAA were associated with multiple islet antibodies (P < 0·001) and greater diabetes risk than low affinity IAA (P < 0·001). A single low concentration of ULI competitor can act as a surrogate for complex IAA affinity measurements and identifies those IAA-positive relatives at highest risk of disease progression.
Collapse
Affiliation(s)
- R M Curnock
- School of Clinical Sciences, University of Bristol, Southmead Hospital, Bristol, UK
| | | | | | | | | | | |
Collapse
|
18
|
Antibodies against insulin measured by electrochemiluminescence predicts insulitis severity and disease onset in non-obese diabetic mice and can distinguish human type 1 diabetes status. J Transl Med 2011; 9:203. [PMID: 22123298 PMCID: PMC3283543 DOI: 10.1186/1479-5876-9-203] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Accepted: 11/28/2011] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND The detection of insulin autoantibodies (IAA) aids in the prediction of autoimmune diabetes development. However, the long-standing, gold standard 125I-insulin radiobinding assay (RBA) has low reproducibility between laboratories, long sample processing times and requires the use of newly synthesized radiolabeled insulin for each set of assays. Therefore, a rapid, non-radioactive, and reproducible assay is highly desirable. METHODS We have developed electrochemiluminescence (ECL)-based assays that fulfill these criteria in the measurement of IAA and anti-insulin antibodies (IA) in non-obese diabetic (NOD) mice and in type 1 diabetic individuals, respectively. Using the murine IAA ECL assay, we examined the correlation between IAA, histopathological insulitis, and blood glucose in a cohort of female NOD mice from 4 up to 36 weeks of age. We developed a human IA ECL assay that we compared to conventional RBA and validated using samples from 34 diabetic and 59 non-diabetic individuals in three independent laboratories. RESULTS Our ECL assays were rapid and sensitive with a broad dynamic range and low background. In the NOD mouse model, IAA levels measured by ECL were positively correlated with insulitis severity, and the values measured at 8-10 weeks of age were predictive of diabetes onset. Using human serum and plasma samples, our IA ECL assay yielded reproducible and accurate results with an average sensitivity of 84% at 95% specificity with no statistically significant difference between laboratories. CONCLUSIONS These novel, non-radioactive ECL-based assays should facilitate reliable and fast detection of antibodies to insulin and its precursors sera and plasma in a standardized manner between laboratories in both research and clinical settings. Our next step is to evaluate the human IA assay in the detection of IAA in prediabetic subjects or those at risk of type 1 diabetes and to develop similar assays for other autoantibodies that together are predictive for the diagnosis of this common disorder, in order to improve prediction and facilitate future therapeutic trials.
Collapse
|
19
|
Ryhänen SJ, Härkönen T, Siljander H, Näntö-Salonen K, Simell T, Hyöty H, Ilonen J, Veijola R, Simell O, Knip M. Impact of intranasal insulin on insulin antibody affinity and isotypes in young children with HLA-conferred susceptibility to type 1 diabetes. Diabetes Care 2011; 34:1383-8. [PMID: 21515841 PMCID: PMC3114329 DOI: 10.2337/dc10-1449] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Despite promising results from studies on mouse models, intranasal insulin failed to prevent or delay the development of type 1 diabetes in autoantibody-positive children with HLA-conferred disease susceptibility. To analyze whether the insulin dose was inadequate to elicit an immunomodulatory response, we compared the changes observed in insulin antibody (IA) affinity and isotypes after treatment with nasal insulin or placebo. RESEARCH DESIGN AND METHODS Ninety-five children (47 in the placebo group and 48 in the insulin group of the total of 224 children randomized for the trial) with HLA-conferred susceptibility to type 1 diabetes derived from the intervention arm of the Finnish Type 1 Diabetes Prediction and Prevention study were included in these analyses. Blood samples drawn before or at the beginning of the treatment and after treatment for 3 and 6 months were analyzed for IA affinity and isotype-specific IAs (IgG1-4, IgA, IgM, and IgE). RESULTS IgG3- and IgA-IA levels (P = 0.031 and 0.015, respectively) and the number of IgG3-IA-positive subjects (P = 0.022) were significantly higher at 6 months after the initiation of the treatment in the insulin group. No significant differences were observed between the two groups in IA affinity or other IA isotypes. CONCLUSIONS The insulin dose administered induced a modest change in the IA isotype profile. The lack of impact of nasal insulin on IA affinity implies that the immune response of study subjects was already mature at the beginning of the intervention.
Collapse
Affiliation(s)
- Samppa J Ryhänen
- Scientific Laboratory, Hospital for Children and Adolescents and Folkhälsan Research Center, University of Helsinki, Helsinki, Finland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Sacks DB, Arnold M, Bakris GL, Bruns DE, Horvath AR, Kirkman MS, Lernmark A, Metzger BE, Nathan DM. Guidelines and recommendations for laboratory analysis in the diagnosis and management of diabetes mellitus. Diabetes Care 2011; 34:e61-99. [PMID: 21617108 PMCID: PMC3114322 DOI: 10.2337/dc11-9998] [Citation(s) in RCA: 320] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2010] [Accepted: 02/28/2011] [Indexed: 02/06/2023]
Abstract
BACKGROUND Multiple laboratory tests are used to diagnose and manage patients with diabetes mellitus. The quality of the scientific evidence supporting the use of these tests varies substantially. APPROACH An expert committee compiled evidence-based recommendations for the use of laboratory testing for patients with diabetes. A new system was developed to grade the overall quality of the evidence and the strength of the recommendations. Draft guidelines were posted on the Internet and presented at the 2007 Arnold O. Beckman Conference. The document was modified in response to oral and written comments, and a revised draft was posted in 2010 and again modified in response to written comments. The National Academy of Clinical Biochemistry and the Evidence-Based Laboratory Medicine Committee of the American Association for Clinical Chemistry jointly reviewed the guidelines, which were accepted after revisions by the Professional Practice Committee and subsequently approved by the Executive Committee of the American Diabetes Association. CONTENT In addition to long-standing criteria based on measurement of plasma glucose, diabetes can be diagnosed by demonstrating increased blood hemoglobin A(1c) (HbA(1c)) concentrations. Monitoring of glycemic control is performed by self-monitoring of plasma or blood glucose with meters and by laboratory analysis of HbA(1c). The potential roles of noninvasive glucose monitoring, genetic testing, and measurement of autoantibodies, urine albumin, insulin, proinsulin, C-peptide, and other analytes are addressed. SUMMARY The guidelines provide specific recommendations that are based on published data or derived from expert consensus. Several analytes have minimal clinical value at present, and their measurement is not recommended.
Collapse
Affiliation(s)
- David B Sacks
- Department of Laboratory Medicine, National Institutes of Health, Bethesda, Maryland, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Sacks DB, Arnold M, Bakris GL, Bruns DE, Horvath AR, Kirkman MS, Lernmark A, Metzger BE, Nathan DM. Guidelines and recommendations for laboratory analysis in the diagnosis and management of diabetes mellitus. Clin Chem 2011; 57:e1-e47. [PMID: 21617152 DOI: 10.1373/clinchem.2010.161596] [Citation(s) in RCA: 306] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Multiple laboratory tests are used to diagnose and manage patients with diabetes mellitus. The quality of the scientific evidence supporting the use of these tests varies substantially. APPROACH An expert committee compiled evidence-based recommendations for the use of laboratory testing for patients with diabetes. A new system was developed to grade the overall quality of the evidence and the strength of the recommendations. Draft guidelines were posted on the Internet and presented at the 2007 Arnold O. Beckman Conference. The document was modified in response to oral and written comments, and a revised draft was posted in 2010 and again modified in response to written comments. The National Academy of Clinical Biochemistry and the Evidence Based Laboratory Medicine Committee of the AACC jointly reviewed the guidelines, which were accepted after revisions by the Professional Practice Committee and subsequently approved by the Executive Committee of the American Diabetes Association. CONTENT In addition to long-standing criteria based on measurement of plasma glucose, diabetes can be diagnosed by demonstrating increased blood hemoglobin A(1c) (Hb A(1c)) concentrations. Monitoring of glycemic control is performed by self-monitoring of plasma or blood glucose with meters and by laboratory analysis of Hb A(1c). The potential roles of noninvasive glucose monitoring, genetic testing, and measurement of autoantibodies, urine albumin, insulin, proinsulin, C-peptide, and other analytes are addressed. SUMMARY The guidelines provide specific recommendations that are based on published data or derived from expert consensus. Several analytes have minimal clinical value at present, and their measurement is not recommended.
Collapse
Affiliation(s)
- David B Sacks
- Department of Laboratory Medicine, National Institutes of Health, Bethesda, MD 20892-1508, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Achenbach P, Guo LH, Gick C, Adler K, Krause S, Bonifacio E, Colman PG, Ziegler AG. A simplified method to assess affinity of insulin autoantibodies. Clin Immunol 2010; 137:415-21. [DOI: 10.1016/j.clim.2010.09.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Revised: 09/07/2010] [Accepted: 09/07/2010] [Indexed: 11/24/2022]
|
23
|
Current literature in diabetes. Diabetes Metab Res Rev 2010; 26:i-xi. [PMID: 20474064 DOI: 10.1002/dmrr.1019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|