1
|
Jalise SZ, Habibi S, Fath-Bayati L, Habibi MA, Ababzadeh S, Hosseinzadeh F. Role and Interplay of Different Signaling Pathways Involved in Sciatic Nerve Regeneration. J Mol Neurosci 2024; 74:108. [PMID: 39531101 DOI: 10.1007/s12031-024-02286-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 10/27/2024] [Indexed: 11/16/2024]
Abstract
Regeneration of the sciatic nerve is a sophisticated process that involves the interplay of several signaling pathways that orchestrate the cellular responses critical to regeneration. Among the key pathways are the mitogen-activated protein kinase (MAPK), phosphatidylinositol 3-kinase (PI3K)/AKT, cyclic adenosine monophosphate (cAMP), and Janus kinase/signal transducers and transcription activators (JAK/STAT) pathways. In particular, the cAMP pathway modulates neuronal survival and axonal regrowth. It influences various cellular behaviors and gene expression that are essential for nerve regeneration. MAPK is indispensable for Schwann cell differentiation and myelination, whereas PI3K/AKT is integral to the transcription, translation, and cell survival processes that are vital for nerve regeneration. Furthermore, GTP-binding proteins, including those of the Ras homolog gene family (Rho), regulate neural cell adhesion, migration, and survival. Notch signaling also appears to be effective in the early stages of nerve regeneration and in preventing skeletal muscle fibrosis after injury. Understanding the intricate mechanisms and interactions of these pathways is vital for the development of effective therapeutic strategies for sciatic nerve injuries. This review underscores the need for further research to fill existing knowledge gaps and improve therapeutic outcomes.
Collapse
Affiliation(s)
- Saeedeh Zare Jalise
- Department of Tissue Engineering and Applied Cell Sciences, School of Medicine, Qom University of Medical Sciences, Qom, Iran
- Cellular and Molecular Research Centre, Qom University of Medical Sciences, Qom, Iran
| | - Sina Habibi
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Leyla Fath-Bayati
- Department of Tissue Engineering and Applied Cell Sciences, School of Medicine, Qom University of Medical Sciences, Qom, Iran
- Cellular and Molecular Research Centre, Qom University of Medical Sciences, Qom, Iran
| | - Mohammad Amin Habibi
- Clinical Research Development Center, Shahid Beheshti Hospital, Qom University of Medical Sciences, Qom, Iran
| | - Shima Ababzadeh
- Department of Tissue Engineering and Applied Cell Sciences, School of Medicine, Qom University of Medical Sciences, Qom, Iran.
- Cellular and Molecular Research Centre, Qom University of Medical Sciences, Qom, Iran.
| | - Faezeh Hosseinzadeh
- Department of Tissue Engineering and Applied Cell Sciences, School of Medicine, Qom University of Medical Sciences, Qom, Iran.
- Cellular and Molecular Research Centre, Qom University of Medical Sciences, Qom, Iran.
- Clinical Trial Center, Qom University of Medical Sciences, Qom, Iran.
| |
Collapse
|
2
|
Moreira JF, Solá S. Dynamics of Neurogenic Signals as Biological Switchers of Brain Plasticity. Stem Cell Rev Rep 2024; 20:2032-2044. [PMID: 39259446 PMCID: PMC11554707 DOI: 10.1007/s12015-024-10788-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/03/2024] [Indexed: 09/13/2024]
Abstract
The discovery of adult neurogenesis in the middle of the past century is considered one of the most important breakthroughs in neuroscience. Despite its controversial nature, this discovery shaped our concept of neural plasticity, revolutionizing the way we look at our brains. In fact, after the discovery of adult neurogenesis, we started to consider the brain as something even more dynamic and highly adaptable. In neurogenic niches, adult neurogenesis is supported by neural stem cells (NSCs). These cells possess a unique set of characteristics such as being quiescent for long periods while actively sensing and reacting to their surroundings to influence a multitude of processes, including the generation of new neurons and glial cells. Therefore, NSCs can be viewed as sentinels to our brain's homeostasis, being able to replace damaged cells and simultaneously secrete numerous factors that restore regular brain function. In addition, it is becoming increasingly evident that NSCs play a central role in memory formation and consolidation. In this review, we will dissect how NSCs influence their surroundings through paracrine and autocrine types of action. We will also depict the mechanism of action of each factor. Finally, we will describe how NSCs integrate different and often opposing signals to guide their fate.
Collapse
Affiliation(s)
- João F Moreira
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisbon, Portugal
| | - Susana Solá
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisbon, Portugal.
| |
Collapse
|
3
|
Gao C, Yang B, Li Y, Pei W. Monocarboxylate transporter dependent mechanism is involved in proliferation, migration, and invasion of human glioblastoma cell lines via activation of PI3K/Akt signaling pathway. PLoS One 2024; 19:e0312939. [PMID: 39475905 PMCID: PMC11524508 DOI: 10.1371/journal.pone.0312939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 10/15/2024] [Indexed: 11/02/2024] Open
Abstract
Glioblastoma multiforme is one of the most common primary tumors of the central nervous system, with a very poor prognosis. Cancer cells have been observed to upregulate pH regulators, such as monocarboxylate transporters (MCTs), with an increase in MCT4 expression being observed in several malignancies. MCT4/ recombinant cluster of differentiation 147 (CD147) transporter complex was reported to stimulate vascular endothelial growth factor (VEGF) via the phosphatidylinositol 3 kinase (PI3K) /protein kinase B (Akt) pathway, which has been proven to mediate glioblastoma invasion and migration. The present study aimed to clarify the role of the MCT4/CD147 transporter complex in glioblastoma cell proliferation, migration, and invasion. In this work, lentiviral vectors were used to overexpress MCT4/CD147 and small interfering RNA (siRNA) was used to silence MCT4/CD147 in the human glioma cell lines U87 and U251, respectively. The effects on cell proliferation, migration and invasiveness, as well as the protein expression levels of MCT4 and CD147, extracellular lactate content and Akt activation were assessed by MTT, wound-healing and invasion assays, western blotting and colorimetric method, respectively. The analysis results suggested that cell proliferation, migration, invasion, and Akt activation were decreased by siRNA in all cell lines, but were increased by lentivirus-mediated MCT4 overexpression. These findings suggest that inhibiting the activity and expression of the MCT4/CD147 transporter complex via metabolic-targeting drugs, particularly in cells with a high rate of glycolysis, should be explored as a novel strategy for glioblastoma treatment.
Collapse
Affiliation(s)
- Chen Gao
- Department of General Practice, The 940th Hospital of Joint Logistics Support Force of Chinese People’s Liberation Army, Lanzhou, China
| | - Binni Yang
- Department of General Practice, The 940th Hospital of Joint Logistics Support Force of Chinese People’s Liberation Army, Lanzhou, China
| | - Yurong Li
- Department of General Practice, The 940th Hospital of Joint Logistics Support Force of Chinese People’s Liberation Army, Lanzhou, China
| | - Wenjuan Pei
- Department of General Practice, The 940th Hospital of Joint Logistics Support Force of Chinese People’s Liberation Army, Lanzhou, China
| |
Collapse
|
4
|
Osborne OM, Daftari M, Naranjo O, Johar AN, Brooks S, Colbert BM, Torices S, Lewis E, Sendaydiego J, Drexler G, Bashti M, Margetts AV, Tuesta LM, Mason C, Bilbao D, Vontell R, Griswold AJ, Dykxhoorn DM, Toborek M. Post-stroke hippocampal neurogenesis is impaired by microvascular dysfunction and PI3K signaling in cerebral amyloid angiopathy. Cell Rep 2024; 43:114848. [PMID: 39392753 PMCID: PMC11562893 DOI: 10.1016/j.celrep.2024.114848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/05/2024] [Accepted: 09/23/2024] [Indexed: 10/13/2024] Open
Abstract
Ischemic stroke and cerebral amyloid angiopathy (CAA) pose significant challenges in an aging population, particularly in post-stroke recovery. Using the 5xFAD mouse model, we explore the relationship between CAA, ischemic stroke, and tissue recovery. We hypothesize that amyloid-beta accumulation worsens stroke outcomes by inducing blood-brain barrier (BBB) dysfunction, leading to impaired neurogenesis. Our findings show that CAA exacerbates stroke outcomes, with mice exhibiting constricted BBB microvessels, reduced cerebral blood flow, and impaired tissue recovery. Transcriptional analysis shows that endothelial cells and neural progenitor cells (NPCs) in the hippocampus exhibit differential gene expression in response to CAA and stroke, specifically targeting the phosphatidylinositol 3-kinase (PI3K) pathway. In vitro experiments with human NPCs validate these findings, showing that disruption of the CXCL12-PIK3C2A-CREB3L2 axis impairs neurogenesis. Notably, PI3K pathway activation restores neurogenesis, highlighting a potential therapeutic approach. These results suggest that CAA combined with stroke induces microvascular dysfunction and aberrant neurogenesis through this specific pathway.
Collapse
Affiliation(s)
- Olivia M Osborne
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, USA.
| | - Manav Daftari
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Oandy Naranjo
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Adarsh N Johar
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Samantha Brooks
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Brett M Colbert
- Medical Scientist Training Program, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Silvia Torices
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Elizabeth Lewis
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Jet Sendaydiego
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Gillian Drexler
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Malek Bashti
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Alexander V Margetts
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA; Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL, USA; Center for Therapeutic Innovation, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Luis M Tuesta
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA; Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL, USA; Center for Therapeutic Innovation, University of Miami Miller School of Medicine, Miami, FL, USA; Department of Neurology and Evelyn F. McKnight Brain Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Christian Mason
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Daniel Bilbao
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA; Department of Pathology and Laboratory Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Regina Vontell
- Department of Pathology and Laboratory Medicine, University of Miami Miller School of Medicine, Miami, FL, USA; Brain Endowment Bank, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Anthony J Griswold
- The Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA; John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Derek M Dykxhoorn
- The Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA; John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Michal Toborek
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, USA.
| |
Collapse
|
5
|
Hasan S, Mahmud Z, Hossain M, Islam S. Harnessing the role of aberrant cell signaling pathways in glioblastoma multiforme: a prospect towards the targeted therapy. Mol Biol Rep 2024; 51:1069. [PMID: 39424705 DOI: 10.1007/s11033-024-09996-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 10/07/2024] [Indexed: 10/21/2024]
Abstract
Glioblastoma Multiforme (GBM), designated as grade IV by the World Health Organization, is the most aggressive and challenging brain tumor within the central nervous system. Around 80% of GBM patients have a poor prognosis, with a median survival of 12-15 months. Approximately 90% of GBM cases originate from normal glial cells via oncogenic processes, while the remainder arise from low-grade tumors. GBM is notorious for its heterogeneity, high recurrence rates, invasiveness, and aggressive behavior. Its malignancy is driven by increased invasive migration, proliferation, angiogenesis, and reduced apoptosis. Throughout various stages of central nervous system (CNS) development, pivotal signaling pathways, including Wnt/β-catenin, Sonic hedgehog signaling (Shh), PI3K/AKT/mTOR, Ras/Raf/MAPK/ERK, STAT3, NF-КB, TGF-β, and Notch signaling, orchestrate the growth, proliferation, differentiation, and migration of neural progenitor cells in the brain. Numerous upstream and downstream regulators within these signaling pathways have been identified as significant contributors to the development of human malignancies. Disruptions or aberrant activations in these pathways are linked to gliomagenesis, enhancing the invasiveness, progression, and aggressiveness of GBM, along with epithelial to mesenchymal transition (EMT) and the presence of glioma stem cells (GSCs). Traditional GBM treatment involves surgery, radiotherapy, and chemotherapy with Temozolomide (TMZ). However, most patients experience tumor recurrence, leading to low survival rates. This review provides an overview of the major cell signaling pathways involved in gliomagenesis. Furthermore, we explore the signaling pathways leading to therapy resistance and target key molecules within these signaling pathways, paving the way for the development of novel therapeutic approaches.
Collapse
Affiliation(s)
- Subbrina Hasan
- Laboratory of Neuroscience and Neurogenetics, Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Zimam Mahmud
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, 1000, Bangladesh.
| | - Mahmud Hossain
- Laboratory of Neuroscience and Neurogenetics, Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, 1000, Bangladesh.
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, 1000, Bangladesh.
| | - Sohidul Islam
- Department of Biochemistry & Microbiology, North South University, Dhaka, 1229, Bangladesh
| |
Collapse
|
6
|
Kathanadan Chackochan B, Johnson S, Thameemul Ansari HJ, Vengellur A, Sivan U, Koyyappurath S, P S BC. Transcriptomic analysis of CNTF-treated mouse subventricular zone-derived neurosphere culture reveals key transcription factor genes related to adult neurogenesis. Heliyon 2024; 10:e38496. [PMID: 39430537 PMCID: PMC11490819 DOI: 10.1016/j.heliyon.2024.e38496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 09/03/2024] [Accepted: 09/25/2024] [Indexed: 10/22/2024] Open
Abstract
Neural Stem Progenitor Cells (NSPCs) maintenance and neuronal cell differentiation are the two key aspects of sustained neurogenesis in the adult mammalian brain. Transcription factors (TFs) are known to regulate these biological processes under the influence of various neurotrophic factors. Understanding the role of key TF genes in regulating adult neurogenesis is essential for determining the functional complexity and neuronal diversity seen in the adult mammalian brain. Although several molecular mechanisms leading to adult neurogenesis have been reported, details on its transcriptional regulation are still limited. Our initial results showed that Ciliary Neurotrophic Factor (CNTF) induced neuronal differentiation in SVZ-derived NSPC cultures. To investigate further the role of CNTF in inducing the expression of TF genes related to adult neurogenesis and the potential pathways involved, whole transcriptome RNA-sequencing (RNA-seq) analysis was done in CNTF-treated Sub-ventricular Zone derived neurosphere cultures from the mouse brain. The study revealed 483 differentially expressed genes (DEGs), among which 33 DEGs were identified as coding for transcription factors (TFs). Kyoto Encyclopedia of Gene and Genomes (KEGG) analysis revealed MAPK, PI3K-Akt, and FoxO as the significantly enriched signaling pathways. Gene co-expression network analysis identified five upregulated TF genes related to adult neurogenesis (Runx1, Hmga2, Fos, ID2, and Prrx1) in a single cluster, interacting with each other, and was also validated by quantitative PCR. Our data suggest several potential TFs that may act as critical regulators in the intrinsic transcriptional networks driving the adult neurogenesis process. Further investigation into these molecular regulators may yield a homogeneous population of neuronal progenitors for translational stem cell studies in the future.
Collapse
Affiliation(s)
- Bins Kathanadan Chackochan
- Department of Biotechnology, Cochin University of Science and Technology, Cochin-682022, Kerala, India
- Centre for Neuroscience, Cochin University of Science and Technology, Cochin-682022, Kerala, India
| | - Sinoy Johnson
- Department of Biotechnology, Cochin University of Science and Technology, Cochin-682022, Kerala, India
| | - Hilmi Jaufer Thameemul Ansari
- Department of Biotechnology, Cochin University of Science and Technology, Cochin-682022, Kerala, India
- Centre for Neuroscience, Cochin University of Science and Technology, Cochin-682022, Kerala, India
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Ajith Vengellur
- Department of Biotechnology, Cochin University of Science and Technology, Cochin-682022, Kerala, India
- Centre for Neuroscience, Cochin University of Science and Technology, Cochin-682022, Kerala, India
| | - Unnikrishnan Sivan
- Department of Biotechnology, Cochin University of Science and Technology, Cochin-682022, Kerala, India
- Centre for Neuroscience, Cochin University of Science and Technology, Cochin-682022, Kerala, India
- Kerala University of Fisheries and Ocean Studies, Cochin -682506, Kerala, India
| | - Sayuj Koyyappurath
- Department of Biotechnology, Cochin University of Science and Technology, Cochin-682022, Kerala, India
| | - Baby Chakrapani P S
- Department of Biotechnology, Cochin University of Science and Technology, Cochin-682022, Kerala, India
- Centre for Neuroscience, Cochin University of Science and Technology, Cochin-682022, Kerala, India
- Centre for Excellence in Neurodegeneration and Brain Health, Kerala, India
| |
Collapse
|
7
|
Guo Z, Zhang H, Jingele X, Yan J, Wang X, Liu Y, Huang T, Liu C. Stanniocalcin 2 Promotes Neuronal Differentiation in Neural Stem/Progenitor Cells of the Mouse Subventricular Zone Through Activation of AKT Pathway. Stem Cells Dev 2024; 33:551-561. [PMID: 39028018 DOI: 10.1089/scd.2024.0094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024] Open
Abstract
Neural stem/progenitor cells (NSPCs) persist in the mammalian subventricular zone (SVZ) throughout life, responding to various pathophysiological stimuli and playing a crucial role in central nervous system repair. Although numerous studies have elucidated the role of stanniocalcin 2 (STC2) in regulating cell differentiation processes, its specific function in NSPCs differentiation remains poorly understood. Clarifying the role of STC2 in NSPCs is essential for devising novel strategies to enhance the intrinsic potential for brain regeneration postinjury. Our study revealed the expression of STC2 in NSPCs derived from the SVZ of the C57BL/6N mouse. In cultured SVZ-derived NSPCs, STC2 treatment significantly increased the number of Tuj1 and DCX-positive cells. Furthermore, STC2 injection into the lateral ventricle promoted the neuronal differentiation of NSPCs and migration to the olfactory bulb. Conversely, the STC2 knockdown produced the opposite effect. Further investigation showed that STC2 treatment enhanced AKT phosphorylation in cultured NSPCs, whereas STC2 inhibition hindered AKT activation. Notably, the neuronal differentiation induced by STC2 was blocked by the AKT inhibitor GSK690693, whereas the AKT activator SC79 reversed the impact of STC2 knockdown on neuronal differentiation. Our findings indicate that enhancing STC2 expression in SVZ-derived NSPCs facilitates neuronal differentiation, with AKT regulation potentially serving as a key intracellular target of STC2 signaling.
Collapse
Affiliation(s)
- Zhenyu Guo
- Department of Neurosurgery, The 2nd Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Hanyue Zhang
- Institute of Neurobiology, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Xinbate Jingele
- Institute of Neurobiology, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Jing Yan
- Institute of Neurobiology, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Xinxiang Wang
- Institute of Neurobiology, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Yingxi Liu
- Institute of Neurobiology, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Tingqin Huang
- Department of Neurosurgery, The 2nd Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Chongxiao Liu
- Department of Neurosurgery, The 2nd Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
8
|
Abdelhamid AH, Mantawy EM, Said RS, El-Demerdash E. Neuroprotective effects of saxagliptin against radiation-induced cognitive impairment: Insights on Akt/CREB/SIRT1/BDNF signaling pathway. Toxicol Appl Pharmacol 2024; 489:116994. [PMID: 38857790 DOI: 10.1016/j.taap.2024.116994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/10/2024] [Accepted: 06/05/2024] [Indexed: 06/12/2024]
Abstract
Radiation-induced cognitive impairment has recently fueled scientific interest with an increasing prevalence of cancer patients requiring whole brain irradiation (WBI) in their treatment algorithm. Saxagliptin (SAXA), a dipeptidyl peptidase-IV (DPP-IV) inhibitor, has exhibited competent neuroprotective effects against varied neurodegenerative disorders. Hence, this study aimed at examining the efficacy of SAXA in alleviating WBI-induced cognitive deficits. Male Sprague Dawley rats were distributed into control group, WBI group exposed to 20 Gy ϒ-radiation, SAXA group treated for three weeks with SAXA (10 mg/kg. orally, once daily), and WBI/SAXA group exposed to 20 Gy ϒ-radiation then treated with SAXA (10 mg/kg. orally, once daily). SAXA effectively reversed memory deterioration and motor dysfunction induced by 20 Gy WBI during behavioural tests and preserved normal histological architecture of the hippocampal tissues of irradiated rats. Mechanistically, SAXA inhibited WBI-induced hippocampal oxidative stress via decreasing lipid peroxidation while restoring catalase antioxidant activity. Moreover, SAXA abrogated radiation-induced hippocampal neuronal apoptosis through downregulating proapoptotic Bcl-2 Associated X-protein (Bax) and upregulating antiapoptotic B-cell lymphoma 2 (Bcl-2) expressions and eventually diminishing expression of cleaved caspase 3. Furthermore, SAXA boosted hippocampal neurogenesis by upregulating brain-derived neurotrophic factor (BDNF) expression. These valuable neuroprotective capabilities of SAXA were linked to activating protein kinase B (Akt), and cAMP-response element-binding protein (CREB) along with elevating the expression of sirtuin 1 (SIRT-1). SAXA successfully mitigated cognitive dysfunction triggered by WBI, attenuated oxidative injury, and neuronal apoptosis, and enhanced neurogenesis through switching on Akt/CREB/BDNF/SIRT-1 signaling axes. Such fruitful neurorestorative effects of SAXA provide an innovative therapeutic strategy for improving the cognitive capacity of cancer patients exposed to radiotherapy.
Collapse
Affiliation(s)
- Ashrakt H Abdelhamid
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Eman M Mantawy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Riham S Said
- Department of Drug Radiation Research, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Ebtehal El-Demerdash
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.
| |
Collapse
|
9
|
Dey AD, Mannan A, Dhiman S, Singh TG. Unlocking new avenues for neuropsychiatric disease therapy: the emerging potential of Peroxisome proliferator-activated receptors as promising therapeutic targets. Psychopharmacology (Berl) 2024; 241:1491-1516. [PMID: 38801530 DOI: 10.1007/s00213-024-06617-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 05/16/2024] [Indexed: 05/29/2024]
Abstract
RATIONALE Peroxisome proliferator-activated receptors (PPARs) are transcription factors that regulate various physiological processes such as inflammation, lipid metabolism, and glucose homeostasis. Recent studies suggest that targeting PPARs could be beneficial in treating neuropsychiatric disorders by modulating neuronal function and signaling pathways in the brain. PPAR-α, PPAR-δ, and PPAR-γ have been found to play important roles in cognitive function, neuroinflammation, and neuroprotection. Dysregulation of PPARs has been associated with neuropsychiatric disorders like bipolar disorder, schizophrenia, major depression disorder, and autism spectrum disorder. The limitations and side effects of current treatments have prompted research to target PPARs as a promising novel therapeutic strategy. Preclinical and clinical studies have shown the potential of PPAR agonists and antagonists to improve symptoms associated with these disorders. OBJECTIVE This review aims to provide an overview of the current understanding of PPARs in neuropsychiatric disorders, their potential as therapeutic targets, and the challenges and future directions for developing PPAR-based therapies. METHODS An extensive literature review of various search engines like PubMed, Medline, Bentham, Scopus, and EMBASE (Elsevier) databases was carried out with the keywords "PPAR, Neuropsychiatric disorders, Oxidative stress, Inflammation, Bipolar Disorder, Schizophrenia, Major depression disorder, Autism spectrum disorder, molecular pathway". RESULT & CONCLUSION Although PPARs present a hopeful direction for innovative therapeutic approaches in neuropsychiatric conditions, additional research is required to address obstacles and convert this potential into clinically viable and individualized treatments.
Collapse
Affiliation(s)
- Asmita Deka Dey
- Chitkara College of Pharmacy, Chitkara University, Chandigarh, Punjab, India
| | - Ashi Mannan
- Chitkara College of Pharmacy, Chitkara University, Chandigarh, Punjab, India
| | - Sonia Dhiman
- Chitkara College of Pharmacy, Chitkara University, Chandigarh, Punjab, India
| | | |
Collapse
|
10
|
Pan X, Gao Y, Guan K, Chen J, Ji B. Ghrelin/GHSR System in Depressive Disorder: Pathologic Roles and Therapeutic Implications. Curr Issues Mol Biol 2024; 46:7324-7338. [PMID: 39057075 PMCID: PMC11275499 DOI: 10.3390/cimb46070434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/03/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Depression is the most common chronic mental illness and is characterized by low mood, insomnia, and affective disorders. However, its pathologic mechanisms remain unclear. Numerous studies have suggested that the ghrelin/GHSR system may be involved in the pathophysiologic process of depression. Ghrelin plays a dual role in experimental animals, increasing depressed behavior and decreasing anxiety. By combining several neuropeptides and traditional neurotransmitter systems to construct neural networks, this hormone modifies signals connected to depression. The present review focuses on the role of ghrelin in neuritogenesis, astrocyte protection, inflammatory factor production, and endocrine disruption in depression. Furthermore, ghrelin/GHSR can activate multiple signaling pathways, including cAMP/CREB/BDNF, PI3K/Akt, Jak2/STAT3, and p38-MAPK, to produce antidepressant effects, given which it is expected to become a potential therapeutic target for the treatment of depression.
Collapse
Affiliation(s)
- Xingli Pan
- School of Biological Sciences, Jining Medical University, Jining 272067, China;
| | - Yuxin Gao
- School of Clinical Medicine, Jining Medical University, Jining 272067, China; (Y.G.); (K.G.)
| | - Kaifu Guan
- School of Clinical Medicine, Jining Medical University, Jining 272067, China; (Y.G.); (K.G.)
| | - Jing Chen
- Neurobiology Institute, Jining Medical University, Jining 272067, China
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
| | - Bingyuan Ji
- Institute of Precision Medicine, Jining Medical University, Jining 272067, China
| |
Collapse
|
11
|
Gutierrez-Castañeda NE, Martínez-Rojas VA, Ochoa-de la Paz LD, Galván EJ. The bidirectional role of GABAA and GABAB receptors during the differentiation process of neural precursor cells of the subventricular zone. PLoS One 2024; 19:e0305853. [PMID: 38913632 PMCID: PMC11195948 DOI: 10.1371/journal.pone.0305853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/05/2024] [Indexed: 06/26/2024] Open
Abstract
The intricate process of neuronal differentiation integrates multiple signals to induce transcriptional, morphological, and electrophysiological changes that reshape the properties of neural precursor cells during their maturation and migration process. An increasing number of neurotransmitters and biomolecules have been identified as molecular signals that trigger and guide this process. In this sense, taurine, a sulfur-containing, non-essential amino acid widely expressed in the mammal brain, modulates the neuronal differentiation process. In this study, we describe the effect of taurine acting via the ionotropic GABAA receptor and the metabotropic GABAB receptor on the neuronal differentiation and electrophysiological properties of precursor cells derived from the subventricular zone of the mouse brain. Taurine stimulates the number of neurites and favors the dendritic complexity of the neural precursor cells, accompanied by changes in the somatic input resistance and the strength of inward and outward membranal currents. At the pharmacological level, the blockade of GABAA receptors inhibits these effects, whereas the stimulation of GABAB receptors has no positive effects on the taurine-mediated differentiation process. Strikingly, the blockade of the GABAB receptor with CGP533737 stimulates neurite outgrowth, dendritic complexity, and membranal current kinetics of neural precursor cells. The effects of taurine on the differentiation process involve Ca2+ mobilization and the activation of intracellular signaling cascades since chelation of intracellular calcium with BAPTA-AM, and inhibition of the CaMKII, ERK1/2, and Src kinase inhibits the neurite outgrowth of neural precursor cells of the subventricular zone.
Collapse
Affiliation(s)
- Nadia Estefanía Gutierrez-Castañeda
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, México
| | - Vladimir Allex Martínez-Rojas
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, México
| | - Lenin David Ochoa-de la Paz
- Laboratorio de Neurobiología Molecular y Celular de la Glía, Unidad de Investigación UNAM-APEC, México City, México
| | - Emilio J. Galván
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, México
- Centro de Investigación sobre el Envejecimiento, Ciudad de México, México
| |
Collapse
|
12
|
Pasdaran A, Grice ID, Hamedi A. A review of natural products and small-molecule therapeutics acting on central nervous system malignancies: Approaches for drug development, targeting pathways, clinical trials, and challenges. Drug Dev Res 2024; 85:e22180. [PMID: 38680103 DOI: 10.1002/ddr.22180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/09/2023] [Accepted: 03/19/2024] [Indexed: 05/01/2024]
Abstract
In 2021, the World Health Organization released the fifth edition of the central nervous system (CNS) tumor classification. This classification uses histopathology and molecular pathogenesis to group tumors into more biologically and molecularly defined entities. The prognosis of brain cancer, particularly malignant tumors, has remained poor worldwide, approximately 308,102 new cases of brain and other CNS tumors were diagnosed in the year 2020, with an estimated 251,329 deaths. The cost and time-consuming nature of studies to find new anticancer agents makes it necessary to have well-designed studies. In the present study, the pathways that can be targeted for drug development are discussed in detail. Some of the important cellular origins, signaling, and pathways involved in the efficacy of bioactive molecules against CNS tumorigenesis or progression, as well as prognosis and common approaches for treatment of different types of brain tumors, are reviewed. Moreover, different study tools, including cell lines, in vitro, in vivo, and clinical trial challenges, are discussed. In addition, in this article, natural products as one of the most important sources for finding new chemotherapeutics were reviewed and over 700 reported molecules with efficacy against CNS cancer cells are gathered and classified according to their structure. Based on the clinical trials that have been registered, very few of these natural or semi-synthetic derivatives have been studied in humans. The review can help researchers understand the involved mechanisms and design new goal-oriented studies for drug development against CNS malignancies.
Collapse
Affiliation(s)
- Ardalan Pasdaran
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmacognosy, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Irwin Darren Grice
- Institute for Glycomics, Griffith University, Gold Coast Campus, Southport, Queensland, Australia
- School of Medical Science, Griffith University, Gold Coast, Southport, Queensland, Australia
| | - Azadeh Hamedi
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmacognosy, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
13
|
Ren X, Deng D, Xiang S, Feng J. Promoter hypomethylated PDZK1 acts as a tumorigenic gene in glioma by interacting with AKT1. Aging (Albany NY) 2024; 16:7174-7187. [PMID: 38669103 PMCID: PMC11087087 DOI: 10.18632/aging.205750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 03/25/2024] [Indexed: 04/28/2024]
Abstract
Glioma is the most frequently diagnosed primary brain tumor and typically has a poor prognosis because of malignant proliferation and invasion. It is urgent to elucidate the mechanisms driving glioma tumorigenesis and develop novel treatments to address this deadly disease. Here, we first revealed that PDZK1 is expressed at high levels in gliomas. Promoter hypomethylation may cause high expression of PDZK1 in glioma. Knockdown of PDZK1 inhibits glioma cell proliferation and invasion in vitro. Mechanistically, further investigations revealed that the loss of PDZK1 expression by siRNA inhibited the activation of the AKT/mTOR signaling pathway, leading to cell cycle arrest and apoptosis. Clinically, high expression of PDZK1 predicts a poorer prognosis for glioma patients than low expression of PDZK1. Overall, our study revealed that PDZK1 acts as a novel oncogene in glioma by binding to AKT1 and maintaining the activation of the AKT/mTOR signaling pathway. Thus, PDZK1 may be a potential therapeutic target for glioma.
Collapse
Affiliation(s)
- Xing Ren
- Clinical Laboratory Medicine Center, The First Affiliated Hospital of University of South China, Hengyang 421001, Hunan, P.R. China
- Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, P.R. China
| | - Dan Deng
- Clinical Laboratory Medicine Center, The First Affiliated Hospital of University of South China, Hengyang 421001, Hunan, P.R. China
- Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, P.R. China
| | - Shasha Xiang
- Clinical Laboratory Medicine Center, The First Affiliated Hospital of University of South China, Hengyang 421001, Hunan, P.R. China
- Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, P.R. China
| | - Jianbo Feng
- Clinical Laboratory Medicine Center, The First Affiliated Hospital of University of South China, Hengyang 421001, Hunan, P.R. China
- Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, P.R. China
| |
Collapse
|
14
|
Hoang NMH, Nguyen HD, Jo W, Kim MS. Role of prolactin in the protective effect of amisulpride against 1,2-Diacetylbenzene's neurotoxicity. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 107:104418. [PMID: 38493881 DOI: 10.1016/j.etap.2024.104418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 03/14/2024] [Indexed: 03/19/2024]
Abstract
Exposure to organic solvents is associated with various health problems, including neurodegenerative diseases. Among these solvents, 1,2-diethylbenzene is notable for its ability to produce a toxic metabolite, 1,2-Diacetylbenzene (DAB), which can cause memory impairment. Prolactin (PRL) is theorized to protect the central nervous system. Certain antipsychotic drugs, known for increasing PRL secretion, have shown to improve cognitive performance in psychotic Alzheimer's patients. Among these, amisulpride stands out for its high efficacy, limited side effects, and high selectivity for dopamine D2 receptors. In our study, we explored the potential of amisulpride to inhibit DAB-induced neurotoxicity via PRL activation. Our results show that amisulpride enhances the PRL/JAK/STAT, PI3K/AKT, and BDNF/ERK/CREB pathways, playing critical roles in PRL's neuroprotection pathways and memory formation. Additionally, amisulpride inhibited DAB-triggered NLRP3 inflammasome activation and apoptosis. Collectively, these findings suggest that amisulpride may be a promising therapeutic intervention for DAB-induced neurotoxicity, partly through activating the PRL pathway.
Collapse
Affiliation(s)
- Ngoc Minh-Hong Hoang
- Department of Pharmacy, College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon, Jeonnam 57922, Republic of Korea
| | - Hai Duc Nguyen
- Department of Pharmacy, College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon, Jeonnam 57922, Republic of Korea
| | - Wonhee Jo
- Department of Pharmacy, College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon, Jeonnam 57922, Republic of Korea
| | - Min-Sun Kim
- Department of Pharmacy, College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon, Jeonnam 57922, Republic of Korea.
| |
Collapse
|
15
|
Virijevic K, Spasojevic N, Stefanovic B, Ferizovic H, Jankovic M, Vasiljevic P, Dronjak S. Chronic mild stress-induced dysregulation of MAPK and PI3K/AKT signaling in the hippocampus and medial prefrontal cortex of WKY female rats. Neurosci Lett 2024; 825:137709. [PMID: 38431038 DOI: 10.1016/j.neulet.2024.137709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/22/2024] [Accepted: 02/28/2024] [Indexed: 03/05/2024]
Abstract
Wistar-Kyoto (WKY) rats subjected to chronic mild stress (CMS) represent a valid model of treatment-resistant depression (TRD). Considering that depression is more prevalent in women than in men, in the present study, female rats were used. We investigated the effect of CMS on behavior and different factors involved in neuroinflammatory processes and neuroplasticity in the hippocampus and medial prefrontal cortex (mPFC) of WKY female rats. The results show that unstressed WKY females exhibited hypolocomotion, decreased exploratory behavior, and an increase in the total grooming time. After exposure to CMS, WKY females displayed intensified grooming. To investigate potential neural mechanisms underlying these behavioral changes, we analyzed signaling and inflammatory pathways in the hippocampus and mPFC. The findings indicate reduced BDNF and elevated levels levels of IL-1β in both brain structures and NLRP3 in the mPFC of unstressed WKY female rats. WKY rats subjected to CMS showed a further decrease in BDNF levels and increased IL-1β and NLRP3 in these brain structures. WKY showed reduced pERK1/2 and increased pp38 levels in both brain structures, while CMS revealed a further increase of pp38 in WKY in these brain structures. Expressions of p110β and pAKT were decreased in the hippocampus and mPFC of WKY rats. The CMS further suppressed p110 and the downstream AKT phosphorylation in the hippocampus, but did not affect the p110 and pAKT in the mPFC. Our findings indicate behavioral and molecular differences in genetically vulnerable WKY female rats and in their response to CMS that may be involved in TRD.
Collapse
Affiliation(s)
- Kristina Virijevic
- Department of Molecular Biology and Endocrinology, Institute of Nuclear Sciences "Vinca", National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Natasa Spasojevic
- Department of Molecular Biology and Endocrinology, Institute of Nuclear Sciences "Vinca", National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Bojana Stefanovic
- Department of Molecular Biology and Endocrinology, Institute of Nuclear Sciences "Vinca", National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Harisa Ferizovic
- Department of Molecular Biology and Endocrinology, Institute of Nuclear Sciences "Vinca", National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Milica Jankovic
- Department of Molecular Biology and Endocrinology, Institute of Nuclear Sciences "Vinca", National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Perica Vasiljevic
- Department of Biology and Ecology, Faculty of Sciences and Mathematics, University of Nis, Niš, Serbia
| | - Sladjana Dronjak
- Department of Molecular Biology and Endocrinology, Institute of Nuclear Sciences "Vinca", National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia.
| |
Collapse
|
16
|
Jankovic M, Spasojevic N, Ferizovic H, Stefanovic B, Virijevic K, Vezmar M, Dronjak S. Sex-Related and Brain Regional Differences of URB597 Effects on Modulation of MAPK/PI3K Signaling in Chronically Stressed Rats. Mol Neurobiol 2024; 61:1495-1506. [PMID: 37725215 DOI: 10.1007/s12035-023-03649-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 09/08/2023] [Indexed: 09/21/2023]
Abstract
Gender differences exist in depression incidence and antidepressant efficacy. In addition to the neurotransmission theory of depression, inflammation and disrupted signaling pathways play crucial roles in the pathophysiology of depression. Endocannabinoids offer a novel approach to treat inflammatory and emotional disorders like depression. URB597, a FAAH inhibitor, reduces endocannabinoids breakdown. In this study, URB597 effects were investigated on the pro-inflammatory cytokine interleukin-1β (IL-1β), nucleotide binding and oligomerization domain-like receptor family pyrin domain-containing 3(NLRP3), and mitogen-activated protein kinase (MAPK)/ phosphatidylinositol 3-hydroxy kinase/ protein kinase B (PI3K) signaling in the hippocampus and the medial prefrontal cortex (mPFC) of male and female rats subjected to chronic unpredictable stress (CUS). The results show that CUS induces depression-like behaviors, and the URB597 exhibited antidepressant-like effects inboth sexes. URB597 reduced the CUS-induced NLRP3 and IL-1β increase in the hippocampus and mPFC of both sexes. URB597 increased the reduced pERK1/2 levels in the mPFC of both sexes and hippocampus of CUS males. URB597 also prevented the increase in p38 phosphorylation after chronic stress in the mPFC of both sexes and in the hippocampus of the females. The CUS suppressed the downstream Akt phosphorylation in the mPFC and hippocampi of both sexes. URB597 produced an up-regulation of the pAkt in the hippocampus of the CUS animals but did not affect the pAkt in the mPFC. These data demonstrated a sexual dimorphism in the neural cell signaling, and in the effects of endocannabinoids, and indicated these dimorphisms are region-specific.
Collapse
Affiliation(s)
- Milica Jankovic
- Department of Molecular Biology and Endocrinology, Institute of Nuclear Sciences "Vinca", National Institute of thе Republic of Serbia, University of Belgrade, P.O.B. 522 - 090, 11000, Belgrade, Serbia
| | - Natasa Spasojevic
- Department of Molecular Biology and Endocrinology, Institute of Nuclear Sciences "Vinca", National Institute of thе Republic of Serbia, University of Belgrade, P.O.B. 522 - 090, 11000, Belgrade, Serbia
| | - Harisa Ferizovic
- Department of Molecular Biology and Endocrinology, Institute of Nuclear Sciences "Vinca", National Institute of thе Republic of Serbia, University of Belgrade, P.O.B. 522 - 090, 11000, Belgrade, Serbia
| | - Bojana Stefanovic
- Department of Molecular Biology and Endocrinology, Institute of Nuclear Sciences "Vinca", National Institute of thе Republic of Serbia, University of Belgrade, P.O.B. 522 - 090, 11000, Belgrade, Serbia
| | - Kristina Virijevic
- Department of Molecular Biology and Endocrinology, Institute of Nuclear Sciences "Vinca", National Institute of thе Republic of Serbia, University of Belgrade, P.O.B. 522 - 090, 11000, Belgrade, Serbia
| | - Milica Vezmar
- Institute of Mental Health, University of Belgrade, Belgrade, Serbia
| | - Sladjana Dronjak
- Department of Molecular Biology and Endocrinology, Institute of Nuclear Sciences "Vinca", National Institute of thе Republic of Serbia, University of Belgrade, P.O.B. 522 - 090, 11000, Belgrade, Serbia.
| |
Collapse
|
17
|
Mattson MP, Leak RK. The hormesis principle of neuroplasticity and neuroprotection. Cell Metab 2024; 36:315-337. [PMID: 38211591 DOI: 10.1016/j.cmet.2023.12.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/06/2023] [Accepted: 12/18/2023] [Indexed: 01/13/2024]
Abstract
Animals live in habitats fraught with a range of environmental challenges to their bodies and brains. Accordingly, cells and organ systems have evolved stress-responsive signaling pathways that enable them to not only withstand environmental challenges but also to prepare for future challenges and function more efficiently. These phylogenetically conserved processes are the foundation of the hormesis principle, in which single or repeated exposures to low levels of environmental challenges improve cellular and organismal fitness and raise the probability of survival. Hormetic principles have been most intensively studied in physical exercise but apply to numerous other challenges known to improve human health (e.g., intermittent fasting, cognitive stimulation, and dietary phytochemicals). Here we review the physiological mechanisms underlying hormesis-based neuroplasticity and neuroprotection. Approaching natural resilience from the lens of hormesis may reveal novel methods for optimizing brain function and lowering the burden of neurological disorders.
Collapse
Affiliation(s)
- Mark P Mattson
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Rehana K Leak
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, USA
| |
Collapse
|
18
|
Zeng J, Xie Z, Chen L, Peng X, Luan F, Hu J, Xie H, Liu R, Zeng N. Rosmarinic acid alleviate CORT-induced depressive-like behavior by promoting neurogenesis and regulating BDNF/TrkB/PI3K signaling axis. Biomed Pharmacother 2024; 170:115994. [PMID: 38070249 DOI: 10.1016/j.biopha.2023.115994] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/25/2023] [Accepted: 12/06/2023] [Indexed: 01/10/2024] Open
Abstract
Rosmarinic acid (RA), a natural phenolic acid compound with a variety of bioactive properties. However, the antidepressant activity and mechanism of RA remain unclear. The aim of this study is to investigate the effects and potential mechanisms of RA on chronic CORT injection induced depression-like behavior in mice. Male C57BL/6 J mice were intraperitoneally injected with CORT (10 mg/kg) and were orally given RA daily (10 or 20 mg/kg) for 21 consecutive days. In vitro, the HT22 cells were exposed to CORT (200 μM) with RA (12.5, 25 or 50 μM) and LY294002 (a PI3K inhibitor) or ANA-12 (a TrkB inhibitor) treatment. The depression-like behavior and various neurobiological changes in the mice and cell injury and levels of target proteins in vitro were subsequently assessed. Here, RA treatment decreased the expression of p-GR/GR, HSP90, FKBP51, SGK-1 in mice hippocampi. Besides, RA increased the average optical density of Nissl bodies and number of dendritic spines in CA3 region, and enhanced Brdu and DCX expression and synaptic transduction in DG region, as well as up-regulated both the BDNF/TrkB/CREB and PI3K/Akt/mTOR signaling. Moreover, RA reduced structural damage and apoptosis in HT22 cells, increased the differentiation and maturation of them. More importantly, LY294002, but not ANA-12, reversed the effect of RA on GR nuclear translocation. Taken together, RA exerted antidepressant activities by modulating the hippocampal glucocorticoid signaling and hippocampal neurogenesis, which related to the BDNF/TrkB/PI3K signaling axis regulating GR nuclear translocation, provide evidence for the application of RA as a candidate for depression.
Collapse
Affiliation(s)
- Jiuseng Zeng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Zhiqiang Xie
- Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Li Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Department of Pharmacy, Clinical Medical College and the First Affiliated Hospital of Chengdu Medical College, Chengdu 610500, China
| | - Xi Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Fei Luan
- School of Pharmacy, The Key Laboratory of Basic and New Drug Research of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang 712046, Shaanxi, China
| | - Jingwen Hu
- Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Hongxiao Xie
- Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Rong Liu
- Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Nan Zeng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
19
|
Huang D, Wang Y, Qi P, Ding H, Zhao H. Transcriptome analysis of divergent residual feed intake phenotypes in the M. longissimus thoracis et lumborum of Wannan Yellow rabbits. Front Genet 2023; 14:1247048. [PMID: 37937196 PMCID: PMC10625914 DOI: 10.3389/fgene.2023.1247048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 10/04/2023] [Indexed: 11/09/2023] Open
Abstract
Introduction: Feed efficiency is an important economic trait in rabbit meat production. The identification of molecular mechanisms and candidate genes for feed efficiency may improve the economic and environmental benefits of the rabbit meat industry. As an alternative to the conventional feed conversion ratio, residual feed intake (RFI) can be used as an accurate indicator of feed efficiency. Methods: RNA sequencing was used to identify the differentially expressed genes (DEGs) in the M. longissimus thoracis et lumborum of eight Wannan Yellow rabbits with excessively high or low RFIs (HRFI or LRFI, respectively). Thereafter, Gene Ontology (GO) analysis, enrichment using the Kyoto Encyclopedia of Genes and Genomes (KEGG) database, gene set enrichment analysis (GSEA), and protein-protein interaction (PPI) network analysis was conducted. Results: In total, 445 DEGs were identified in the M. longissimus thoracis et lumborum of rabbits with high and low RFIs. The significantly enriched GO terms identified in these two groups were primarily involved in energy and mitochondrial metabolism and oxidation-reduction processes. KEGG analysis identified 11 significantly enriched pathways, including oxidative phosphorylation, PI3K-Akt signaling, and extracellular matrix-receptor interaction pathways. According to GSEA, the expressions of genes and pathways related to mitochondrial function were upregulated in HRFI rabbits, whereas genes with upregulated expressions in LRFI rabbits were related to immune response and energy metabolism. Additionally, PPI network analysis revealed five potential candidate genetic markers. Conclusion: Comparative analysis of the M. longissimus thoracis et lumborum transcriptomes in HRFI and LRFI rabbits revealed FOS, MYC, PRKACB, ITGA2, and FN1 as potential candidate genes that affect feed efficiency in rabbits. In addition, key signaling pathways involved in oxidative phosphorylation and PI3K-Akt and ECM-receptor interaction signaling impact rabbit feed efficiency. These findings will aid in breeding programs to improve feed efficiency and optimize RFI selection of rabbits for meat production.
Collapse
Affiliation(s)
| | | | | | | | - Huiling Zhao
- Anhui Provincial Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei, China
| |
Collapse
|
20
|
Sills ES, Harrity C, Wood SH, Tan SL. mTOR Inhibition via Low-Dose, Pulsed Rapamycin with Intraovarian Condensed Platelet Cytokines: An Individualized Protocol to Recover Diminished Reserve? J Pers Med 2023; 13:1147. [PMID: 37511761 PMCID: PMC10381109 DOI: 10.3390/jpm13071147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/03/2023] [Accepted: 07/15/2023] [Indexed: 07/30/2023] Open
Abstract
No major breakthroughs have entered mainstream clinical fertility practice since egg donation and intracytoplasmic sperm injection decades ago, and oocyte deficits secondary to advanced age continue as the main manifestation of diminished ovarian reserve. In the meantime, several unproven IVF 'accessories' have emerged including so-called ovarian rejuvenation which entails placing fresh autologous platelet-rich plasma (PRP) directly into ovarian tissue. Among cellular responses attributed to this intervention are reduced oxidative stress, slowed apoptosis and improved metabolism. Besides having an impact on the existing follicle pool, platelet growth factors might also facilitate de novo oocyte recruitment by specified gene upregulation targeting uncommitted ovarian stem cells. Given that disordered activity at the mechanistic target of rapamycin (mTOR) has been shown to exacerbate or accelerate ovarian aging, PRP-discharged plasma cytokines combined with mTOR suppression by pulsed/cyclic rapamycin represents a novel fusion technique to enhance ovarian function. While beneficial effects have already been observed experimentally in oocytes and embryos with mTOR inhibition alone, this proposal is the first to discuss intraovarian platelet cytokines followed by low-dose, phased rapamycin. For refractory cases, this investigational, tailored approach could amplify or sustain ovarian capacity sufficient to permit retrieval of competent oocytes via distinct but complementary pathways-thus reducing dependency on oocyte donation.
Collapse
Affiliation(s)
- E Scott Sills
- Plasma Research Section, Regenerative Biology Group/CAG, San Clemente, CA 92673, USA
- Department of Obstetrics & Gynecology, Palomar Medical Center, Escondido, CA 92029, USA
| | - Conor Harrity
- Department of Obstetrics & Gynaecology, Royal College of Surgeons in Ireland, D02 HC66 Dublin, Ireland
| | - Samuel H Wood
- Department of Obstetrics & Gynecology, Palomar Medical Center, Escondido, CA 92029, USA
- Gen 5 Fertility Center, San Diego, CA 92121, USA
| | - Seang Lin Tan
- OriginElle Fertility Clinic, Montreal, QC H4A 3J3, Canada
- Department of Obstetrics & Gynecology, McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| |
Collapse
|
21
|
Watanabe M, Yano T, Sato T, Umetsu A, Higashide M, Furuhashi M, Ohguro H. mTOR Inhibitors Modulate the Physical Properties of 3D Spheroids Derived from H9c2 Cells. Int J Mol Sci 2023; 24:11459. [PMID: 37511214 PMCID: PMC10380298 DOI: 10.3390/ijms241411459] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/03/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
To establish an appropriate in vitro model for the local environment of cardiomyocytes, three-dimensional (3D) spheroids derived from H9c2 cardiomyoblasts were prepared, and their morphological, biophysical phase contrast and biochemical characteristics were evaluated. The 3D H9c2 spheroids were successfully obtained, the sizes of the spheroids decreased, and they became stiffer during 3-4 days. In contrast to the cell multiplication that occurs in conventional 2D planar cell cultures, the 3D H9c2 spheroids developed into a more mature form without any cell multiplication being detected. qPCR analyses of the 3D H9c2 spheroids indicated that the production of collagen4 (COL4) and fibronectin (FN), connexin43 (CX43), β-catenin, N-cadherin, STAT3, and HIF1 molecules had increased and that the production of COL6 and α-smooth muscle actin (α-SMA) molecules had decreased as compared to 2D cultured cells. In addition, treatment with rapamycin (Rapa), an mTOR complex (mTORC) 1 inhibitor, and Torin 1, an mTORC1/2 inhibitor, resulted in significantly decreased cell densities of the 2D cultured H9c2 cells, but the size and stiffness of the H9c2 cells within the 3D spheroids were reduced with the gene expressions of several of the above several factors being reduced. The metabolic responses to mTOR modulators were also different between the 2D and 3D cultures. These results suggest that as unique aspects of the local environments of the 3D spheroids, the spontaneous expression of GJ-related molecules and hypoxia within the core may be associated with their maturation, suggesting that this may become a useful in vitro model that replicates the local environment of cardiomyocytes.
Collapse
Affiliation(s)
- Megumi Watanabe
- Department of Ophthalmology, School of Medicine, Sapporo Medical University, Sapporo 060-8556, Japan; (M.W.); (A.U.); (M.H.)
| | - Toshiyuki Yano
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University, Sapporo 060-8556, Japan; (T.Y.); (T.S.); (M.F.)
| | - Tatsuya Sato
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University, Sapporo 060-8556, Japan; (T.Y.); (T.S.); (M.F.)
- Department of Cellular Physiology and Signal Transduction, Sapporo Medical University, Sapporo 060-8556, Japan
| | - Araya Umetsu
- Department of Ophthalmology, School of Medicine, Sapporo Medical University, Sapporo 060-8556, Japan; (M.W.); (A.U.); (M.H.)
| | - Megumi Higashide
- Department of Ophthalmology, School of Medicine, Sapporo Medical University, Sapporo 060-8556, Japan; (M.W.); (A.U.); (M.H.)
| | - Masato Furuhashi
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University, Sapporo 060-8556, Japan; (T.Y.); (T.S.); (M.F.)
| | - Hiroshi Ohguro
- Department of Ophthalmology, School of Medicine, Sapporo Medical University, Sapporo 060-8556, Japan; (M.W.); (A.U.); (M.H.)
| |
Collapse
|
22
|
Jian J, Li LG, Zhao PJ, Zheng RJ, Dong XW, Zhao YH, Yin BQ, Li S, Cheng H, Li HL, Li EY. Mouse nerve growth factor suppresses neuronal apoptosis in valproic acid-induced autism spectrum disorder rats by regulating the phosphoinositide-3-kinase/serine/threonine kinase signaling pathway. Pharmacogenet Genomics 2023; 33:101-110. [PMID: 37261937 DOI: 10.1097/fpc.0000000000000498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
BACKGROUND Autism spectrum disorder (ASD) is a group of neurodevelopmental disorders characterized by deficits in social communication and restrictive behaviors. Mouse nerve growth factor (mNGF), a neurotrophic factor, is critical for neuronal growth and survival, and the mNGF treatment is considered a promising therapy for neurodegeneration. In light of this, we aimed to evaluate the effect of mNGF on neurological function in ASD. METHODS An ASD rat model was established by intraperitoneal injection of valproic acid (VPA). Social behavior, learning, and memory of the rats were measured. TdT-mediated dUTP Nick-end labeling and Nissl assays were performed to detect neuronal apoptosis and survival in the hippocampus and prefrontal cortex. Apoptosis-related proteins and oxidative stress markers were detected. RESULTS mNGF improved locomotor activity, exploratory behavior, social interaction, and spatial learning and memory in VPA-induced ASD rats. In the hippocampus and prefrontal cortex, mNGF suppressed neuronal apoptosis, increased the number of neurons, superoxide dismutase, and glutathione levels, and decreased reactive oxygen species, nitric oxide, TNF-α, and IL-1β levels compared with the VPA group. In addition, mNGF increased the levels of Bcl-2, p-phosphoinositide-3-kinase (PI3K), and p-serine/threonine kinase (Akt), and decreased the levels of Bax and cleaved caspase-3, while the PI3K inhibitor LY294002 reversed these effects. CONCLUSION These data suggest that mNGF suppressed neuronal apoptosis and ameliorated the abnormal behaviors in VPA-induced ASD rats, in part, by activating the PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Jie Jian
- Department of Children Rehabilitation, Key Laboratory of Rehabilitation Medicine in Henan, the Fifth Affiliated Hospital of Zhengzhou University
| | - Li-Guo Li
- Department of Children Rehabilitation, Key Laboratory of Rehabilitation Medicine in Henan, the Fifth Affiliated Hospital of Zhengzhou University
- Institute of Health Engineering, Zhengzhou Health Vocational College, Zhengzhou
| | - Peng-Ju Zhao
- Department of Children Rehabilitation, Key Laboratory of Rehabilitation Medicine in Henan, the Fifth Affiliated Hospital of Zhengzhou University
| | - Rui-Juan Zheng
- Department of Children Rehabilitation, Key Laboratory of Rehabilitation Medicine in Henan, the Fifth Affiliated Hospital of Zhengzhou University
| | - Xian-Wen Dong
- Department of Children Rehabilitation, Key Laboratory of Rehabilitation Medicine in Henan, the Fifth Affiliated Hospital of Zhengzhou University
| | - Yong-Hong Zhao
- Department of Children Rehabilitation, Key Laboratory of Rehabilitation Medicine in Henan, the Fifth Affiliated Hospital of Zhengzhou University
| | - Bao-Qi Yin
- Department of Children Rehabilitation, Key Laboratory of Rehabilitation Medicine in Henan, the Fifth Affiliated Hospital of Zhengzhou University
| | - Sheng Li
- College of Life Sciences, Sichuan University, Chengdu, China
| | - Hui Cheng
- Department of Children Rehabilitation, Key Laboratory of Rehabilitation Medicine in Henan, the Fifth Affiliated Hospital of Zhengzhou University
| | - Hong-Lei Li
- Department of Children Rehabilitation, Key Laboratory of Rehabilitation Medicine in Henan, the Fifth Affiliated Hospital of Zhengzhou University
| | - En-Yao Li
- Department of Children Rehabilitation, Key Laboratory of Rehabilitation Medicine in Henan, the Fifth Affiliated Hospital of Zhengzhou University
| |
Collapse
|
23
|
Larsen K, Callesen H. Developmental expression of CREB1 and NFATC2 in pig embryos. Mol Biol Rep 2023:10.1007/s11033-023-08501-6. [PMID: 37171550 DOI: 10.1007/s11033-023-08501-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 05/02/2023] [Indexed: 05/13/2023]
Abstract
BACKGROUND The CREB1 gene encodes the cAMP response element binding protein 1 (CREB1), a leucine zipper transcription factor that regulates cellular gene expression in response to elevated levels of intracellular cAMP. When activated by phosphorylation, CREB1 binds to the cAMP response element (CRE) of the promoters of its target genes. CREB1 is an essential component in many physiological processes, and its function is correlated to neurodevelopment, plasticity and cell survival, and learning and memory. The NFATC2 gene codes for the nuclear factor of activated T-cells 2 protein. The NFATC2 protein is a DNA-binding protein that functions as an inducer of gene transcription during immune response. METHODS AND RESULTS The aim of the present study was to examine the developmental expression of porcine CREB1 and NFACT2 transcripts. The expression of CREB1 and NFACT2 mRNA was examined by quantitative real-time RT-PCR. For the CREB1 transcript, we found significant reduction in transcript levels in the brain stem and basal ganglia during porcine embryo development, determined from day 60 to day 115 of gestation. In contrast, a significant increase in CREB1 mRNA was detected in the lungs during embryo development. No significant changes in the NFATC2 transcript were detected in porcine brain tissue during embryo development. CONCLUSIONS Differential CREB1 mRNA expression was found in pig brain tissues during embryo development.
Collapse
Affiliation(s)
- Knud Larsen
- Department of Molecular Biology and Genetics, Aarhus University, Universitetsbyen 81, Aarhus C, DK-8000, Denmark.
| | - Henrik Callesen
- Henrik Callesen, Department of Animal and Veterinary Sciences, Blichers Allé 20, Tjele, DK-8830, Denmark
| |
Collapse
|
24
|
Santos M, Lima L, Carvalho S, Mota-Pereira J, Pimentel P, Maia D, Correia D, Barroso MF, Gomes S, Cruz A, Medeiros R. The Impact of BDNF, NTRK2, NGFR, CREB1, GSK3B, AKT, MAPK1, MTOR, PTEN, ARC, and SYN1 Genetic Polymorphisms in Antidepressant Treatment Response Phenotypes. Int J Mol Sci 2023; 24:ijms24076758. [PMID: 37047730 PMCID: PMC10095078 DOI: 10.3390/ijms24076758] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/30/2023] [Accepted: 03/30/2023] [Indexed: 04/08/2023] Open
Abstract
This study aimed to investigate the influence of genetic variants in neuroplasticity-related genes on antidepressant treatment phenotypes. The BDNF-TrkB signaling pathway, as well as the downstream kinases Akt and ERK and the mTOR pathway, have been implicated in depression and neuroplasticity. However, clinicians still struggle with the unpredictability of antidepressant responses in depressed patients. We genotyped 26 polymorphisms in BDNF, NTRK2, NGFR, CREB1, GSK3B, AKT, MAPK1, MTOR, PTEN, ARC, and SYN1 in 80 patients with major depressive disorder treated according to the Texas Medical Algorithm for 27 months at Hospital Magalhães Lemos, Porto, Portugal. Our results showed that BDNF rs6265, PTEN rs12569998, and SYN1 rs1142636 SNP were associated with treatment-resistant depression (TRD). Additionally, MAPK1 rs6928 and GSK3B rs6438552 gene polymorphisms were associated with relapse. Moreover, we found a link between the rs6928 MAPK1 polymorphism and time to relapse. These findings suggest that the BDNF, PTEN, and SYN1 genes may play a role in the development of TRD, while MAPK1 and GSK3B may be associated with relapse. GO analysis revealed enrichment in synaptic and trans-synaptic transmission pathways and glutamate receptor activity with TRD-associated genes. Genetic variants in these genes could potentially be incorporated into predictive models of antidepressant response.
Collapse
Affiliation(s)
- Marlene Santos
- Centro de Investigação em Saúde e Ambiente (CISA), Escola Superior de Saúde, Instituto Politécnico do Porto, 4200-072 Porto, Portugal
- Molecular Oncology & Viral Pathology, IPO-Porto Research Center (CI-IPOP), Portuguese Institute of Oncology, 4200-072 Porto, Portugal
| | - Luis Lima
- Experimental Pathology and Therapeutics Group, IPO-Porto Research Center (CI-IPOP), Portuguese Institute of Oncology, 4200-072 Porto, Portugal
| | - Serafim Carvalho
- Hospital de Magalhães Lemos, 4149-003 Porto, Portugal
- Instituto Universitário de Ciências da Saúde, 4585-116 Gandra, Portugal
| | | | - Paulo Pimentel
- Trás-os-Montes e Alto Douro Hospital Centre, 5000-508 Vila Real, Portugal
| | - Dulce Maia
- Trás-os-Montes e Alto Douro Hospital Centre, 5000-508 Vila Real, Portugal
| | - Diana Correia
- Hospital de Magalhães Lemos, 4149-003 Porto, Portugal
| | - M. Fátima Barroso
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Instituto Politécnico do Porto, 4200-072 Porto, Portugal
| | - Sofia Gomes
- Hospital de Magalhães Lemos, 4149-003 Porto, Portugal
| | - Agostinho Cruz
- Centro de Investigação em Saúde e Ambiente (CISA), Escola Superior de Saúde, Instituto Politécnico do Porto, 4200-072 Porto, Portugal
| | - Rui Medeiros
- Molecular Oncology & Viral Pathology, IPO-Porto Research Center (CI-IPOP), Portuguese Institute of Oncology, 4200-072 Porto, Portugal
- Research Department, Portuguese League Against Cancer (Norte), 4200-172 Porto, Portugal
| |
Collapse
|
25
|
Yi XX, Zhou HF, He Y, Yang C, Yu L, Wan HT, Chen J. The potential mechanism of the Ruhao Dashi formula in treating acute pneumonia via network pharmacology and molecular docking. Medicine (Baltimore) 2023; 102:e33276. [PMID: 36930096 PMCID: PMC10019263 DOI: 10.1097/md.0000000000033276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 02/23/2023] [Indexed: 03/18/2023] Open
Abstract
BACKGROUND Acute pneumonia (AP) has a high seasonal prevalence every year, which seriously threatens the lives and health of patients. Six traditional Chinese medicines in Ruhao Dashi formula (RDF) have excellent antiinflammatory, antibacterial, and antiviral effects. RDF is commonly used in the clinical treatment of AP. However, the mechanism and target of RDF are unclear. Therefore, this study aimed to use network pharmacology and molecular docking to evaluate the target and mechanism of RDF in the treatment of AP. METHODS The Herbs and Disease Gene databases were searched to identify common targets of AP and RDF. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis, and Protein-Protein Interaction (PPI) network analyses were performed to identify the potential molecular mechanisms behind RDF. Molecular docking was performed to compare the binding activities of the active molecules with that of the target protein. RESULTS The "drug-component-common target" network contained 64 active compounds and 134 targets. GO and KEGG analyses indicated that RDF could act by regulating cell death, cell proliferation, apoptosis, and hypoxic response. The PPI network and "pathway-target" network identified 31 core targets. Molecular docking revealed that the 14 active ingredients of RDF bind vigorously to the core targets. CONCLUSION Through network pharmacology and molecular docking, we found that RDF contains 14 active components and 31 core AP targets. These targets were linked to the development of an antiinflammatory response and could be used to develop new drugs to treat AP.
Collapse
Affiliation(s)
- Xiu-Xiu Yi
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Hui-Fen Zhou
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yu He
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Can Yang
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Li Yu
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Hai-Tong Wan
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jing Chen
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
26
|
Ren XQ, Huang X, Xing SY, Long Y, Yuan DH, Hong H, Tang SS. Neuroprotective effects of novel compound FMDB on cognition, neurogenesis and apoptosis in APP/PS1 transgenic mouse model of Alzheimer's disease. Neurochem Int 2023; 165:105510. [PMID: 36893915 DOI: 10.1016/j.neuint.2023.105510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 02/02/2023] [Accepted: 03/05/2023] [Indexed: 03/09/2023]
Abstract
Clinical and experimental studies have shown that the sharp reduction of estrogen is one of the important reasons for the high incidence of Alzheimer's disease (AD) in elderly women, but there is currently no such drug for treatment of AD. Our group first designed and synthesized a novel compound R-9-(4fluorophenyl)-3-methyl-10,10,-Hydrogen-6-hydrogen-benzopyran named FMDB. In this study, our aim is to investigate the neuroprotective effects and mechanism of FMDB in APP/PS1 transgenic mice. 6 months old APP/PS1 transgenic mice were intragastrical administered with FMDB (1.25, 2.5 and 5 mg/kg) every other day for 8 weeks. LV-ERβ-shRNA was injected bilaterally into the hippocampus of APP/PS1 mice to knockdown estrogen receptor β (ERβ). We found that FMDB ameliorated cognitive impairment in the Morris water maze and novel object recognition tests, increased hippocampal neurogenesis and prevented hippocampal apoptotic responses in APP/PS1 mice. Importantly, FMDB activated nuclear ERβ mediated CBP/p300, CREB and brain-derived neurotrophic factor (BDNF) signaling, and membrane ERβ mediated PI3K/Akt, CREB and BDNF signaling in the hippocampus. Our study demonstrated the contributions and mechanism of FMDB to cognition, neurogenesis and apoptosis in APP/PS1 mice. These lay the experimental foundation for the development of new anti-AD drugs.
Collapse
Affiliation(s)
- Xiao-Qian Ren
- Department of Pharmacology, China Pharmaceutical University, Nanjing, China
| | - Xin Huang
- Department of Pharmacology, China Pharmaceutical University, Nanjing, China
| | - Shu-Yun Xing
- Department of Pharmacology, China Pharmaceutical University, Nanjing, China
| | - Yan Long
- Department of Pharmacology, China Pharmaceutical University, Nanjing, China
| | - Dan-Hua Yuan
- Department of Pharmacology, China Pharmaceutical University, Nanjing, China
| | - Hao Hong
- Department of Pharmacology, China Pharmaceutical University, Nanjing, China
| | - Su-Su Tang
- Department of Pharmacology, China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
27
|
Fan X, Zhao Z, Huang Z, Wu M, Wang D, Xiao J. Mineralocorticoid receptor agonist aldosterone rescues hippocampal neural stem cell proliferation defects and improves postoperative cognitive function in aged mice. World J Biol Psychiatry 2023; 24:149-161. [PMID: 35615969 DOI: 10.1080/15622975.2022.2082524] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
OBJECTIVES Hippocampal neurogenesis is closely related to learning and memory, and hippocampal neurogenesis disorders are involved in the development of many neurodegenerative diseases. Mineralocorticoid receptor (MR) plays a vital role in regulating stress response, neuroendocrine and cognitive functions, and is involved in regulating the integrity and stability of neural networks. However, the potential role of MR in the pathogenesis of postoperative cognitive dysfunction (POCD) is unclear. Therefore, this study evaluated the effect and mechanism of MR activation on postoperative hippocampal neurogenesis and cognitive function in aged mice. METHODS 18-month-old male Kunming mice were randomly divided into Control group (C group), Surgery group (S group), Surgery+ Aldosterone group (S+Aldo group), Surgery + Wortmannin group (S+Wort group), Surgery + Aldosterone + Wortmannin group (S+Aldo+Wort group). Laparotomy was used to establish an animal model of postoperative cognitive dysfunction. After surgery, mice were intraperitoneally injected with aldosterone (100 ug/kg,150 ug/kg,200 ug/kg) and / or wortmannin (1 mg/kg); One day before the sacrifice, mice were injected intraperitoneally with BrdU (100 mg / kg / time, 3 times in total). Mice were subjected to Morris water maze and field tests at 1, 3, 7, and 14 days after surgery. Immunofluorescence was used to detect the number of BrdU +, Nestin +, BrdU/Nestin + positive cells in the hippocampal dentate gyrus of mice at 1, 3, 7 and 14 days after surgery. Western-blot was used to detect PI3K/Akt/GSK-3β signaling pathway related proteins Akt, p-Akt, GSK-3β, P-GSK-3β expression. RESULTS Stress impairs the performance of aged mice in water maze and open field tests, reduces the number of BrdU/Nestin+ cells in the hippocampal dentate gyrus, and inhibits the phosphorylation of Akt and GSK-3β proteins in the hippocampus. Aldosterone treatment promotes P-Akt, P-GSK-3β protein expression and hippocampal neural stem cell proliferation, and improves postoperative cognitive dysfunction. However, wortmannin treatment significantly reversed these effects of aldosterone. CONCLUSIONS The mineralocorticoid receptor agonist aldosterone promotes the proliferation of hippocampal neural stem cells and improves cognitive dysfunction in aged mice after surgery, and the mechanism may be related to activation of PI3K/Akt/GSK-3β signaling.
Collapse
Affiliation(s)
- Xuhong Fan
- Department of Anesthesiology, The Second Affiliated Hospital of University of South China, Hengyang, China
| | - Zhenyu Zhao
- Department of Anesthesiology, The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Zixia Huang
- Department of Anesthesiology, The Second Affiliated Hospital of University of South China, Hengyang, China
| | - Mingyue Wu
- Department of Anesthesiology, The Second Affiliated Hospital of University of South China, Hengyang, China
| | - Deming Wang
- Department of Anesthesiology, The Second Affiliated Hospital of University of South China, Hengyang, China
| | - Ji Xiao
- Department of Anesthesiology, The Second Affiliated Hospital of University of South China, Hengyang, China
| |
Collapse
|
28
|
Eupafolin regulates non-small-cell lung cancer cell proliferation, migration, and invasion by suppressing MMP9 and RhoA via FAK/PI3K/AKT signaling pathway. J Biosci 2023. [DOI: 10.1007/s12038-022-00323-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
29
|
Kim J, Kaang BK. Cyclic AMP response element-binding protein (CREB) transcription factor in astrocytic synaptic communication. Front Synaptic Neurosci 2023; 14:1059918. [PMID: 36685081 PMCID: PMC9845270 DOI: 10.3389/fnsyn.2022.1059918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 10/24/2022] [Indexed: 01/05/2023] Open
Abstract
Astrocytes are known to actively participate in synaptic communication by forming structures called tripartite synapses. These synapses consist of presynaptic axon terminals, postsynaptic dendritic spines, and astrocytic processes where astrocytes release and receive transmitters. Although the transcription factor cyclic AMP response element (CRE)-binding protein (CREB) has been actively studied as an important factor for mediating synaptic activity-induced responses in neurons, its role in astrocytes is relatively unknown. Synaptic signals are known to activate various downstream pathways in astrocytes, which can activate the CREB transcription factor. Therefore, there is a need to summarize studies on astrocytic intracellular pathways that are induced by synaptic communication resulting in activation of the CREB pathway. In this review, we discuss the various neurotransmitter receptors and intracellular pathways that can induce CREB activation and CREB-induced gene regulation in astrocytes.
Collapse
|
30
|
Sadiq IZ. Free Radicals and Oxidative Stress: Signaling Mechanisms, Redox Basis for Human Diseases, and Cell Cycle Regulation. Curr Mol Med 2023; 23:13-35. [PMID: 34951363 DOI: 10.2174/1566524022666211222161637] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 11/03/2021] [Accepted: 11/08/2021] [Indexed: 12/16/2022]
Abstract
Free radicals contain one or more unpaired electrons in their valence shell, thus making them unstable, short-lived, and highly reactive species. Excessive generation of these free radicals ultimately leads to oxidative stress causing oxidation and damage to significant macromolecules in the living system and essentially disrupting signal transduction pathways and antioxidants equilibrium. At lower concentrations, ROS serves as "second messengers," influencing many physiological processes in the cell. However, higher concentrations beyond cell capacity cause oxidative stress, contributing to human pathologies such as diabetes, cancer, Parkinson's disease, cardiovascular diseases, cataract, asthma, hypertension, atherosclerosis, arthritis, and Alzheimer's disease. Signaling pathways such as NF-κB, MAPKs, PI3K/Akt/ mTOR, and Keap1-Nrf2- ARE modulate the detrimental effects of oxidative stress by increasing the expression of cellular antioxidant defenses, phase II detoxification enzymes, and decreased production of ROS. Free radicals such as H2O2 are indeed needed for the advancement of the cell cycle as these molecules influence DNA, proteins, and enzymes in the cell cycle pathway. In the course of cell cycle progression, the cellular redox environment becomes more oxidized, moving from the G1 phase, becoming higher in G2/M and moderate in the S phase. Signals in the form of an increase in cellular pro-oxidant levels are required, and these signals are often terminated by a rise in the amount of antioxidants and MnSOD with a decrease in the level of cyclin D1 proteins. Therefore, understanding the mechanism of cell cycle redox regulation will help in the therapy of many diseases.
Collapse
Affiliation(s)
- Idris Zubairu Sadiq
- Department of Biochemistry, Faculty of life Sciences, Ahmadu Bello University, Zaria-Nigeria
- Department of Biochemistry, Faculty of Sciences, Maryam Abacha American University of Niger, ADS Avenue, Roi Muhammad VI Du Maroc Maradi, Republique Du Niger
| |
Collapse
|
31
|
Arthur R, Navik U, Kumar P. Repurposing artemisinins as neuroprotective agents: a focus on the PI3k/Akt signalling pathway. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2022; 396:593-605. [PMID: 36464748 DOI: 10.1007/s00210-022-02350-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 11/22/2022] [Indexed: 12/09/2022]
Abstract
Artemisinin and its derivatives, since their discovery by professor Tu Youyou in the early 1970s, have been the bedrock for the management of malaria globally. Recent works have implied that they could be used to manage other diseases including neurodegenerative disorders. Neurodegenerative disorders mainly occur in the adult population resulting from a progressive deterioration of neuronal structures. These include Parkinson's disease (PD), Alzheimer's disease (AD), Huntington's disease (HD), and Multiple sclerosis (MS), among others. The PI3K/Akt signaling pathway plays a significant role in the central nervous system. It has been investigated extensively for its role in central nervous system physiological processes such as cell survival, autophagy, neuronal proliferation, and synaptic plasticity. Therefore, the modulation of this pathway will be crucial in the management of neurodegenerative disorders. This review seeks to compile most of the research findings on the possible neuroprotective role of artemisinins with special emphasis on their modulatory role on the PI3k/Akt pathway. A literature survey was conducted on PubMed, EBSCO, Web of Science, and EMBASE using the keyword artemisinins, and a total of 10,281 articles were retrieved from 1956 to 2022. Among these, 120 articles were examined using Mesh words like PI3k/Akt, neurodegeneration, and neuroinflammation coupled with boolean operators. Most research revealed that artemisinins could help neurodegenerative disorders by modulating the PI3k/Akt with subsequent inhibition of oxidative stress, neuroinflammation, and apoptosis. This paper illustrates that artemisinins could be repurposed as a neuroprotective agent.
Collapse
|
32
|
The Molecular Effects of Environmental Enrichment on Alzheimer's Disease. Mol Neurobiol 2022; 59:7095-7118. [PMID: 36083518 PMCID: PMC9616781 DOI: 10.1007/s12035-022-03016-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 08/23/2022] [Indexed: 12/02/2022]
Abstract
Environmental enrichment (EE) is an environmental paradigm encompassing sensory, cognitive, and physical stimulation at a heightened level. Previous studies have reported the beneficial effects of EE in the brain, particularly in the hippocampus. EE improves cognitive function as well as ameliorates depressive and anxiety-like behaviors, making it a potentially effective neuroprotective strategy against neurodegenerative diseases such as Alzheimer's disease (AD). Here, we summarize the current evidence for EE as a neuroprotective strategy as well as the potential molecular pathways that can explain the effects of EE from a biochemical perspective using animal models. The effectiveness of EE in enhancing brain activity against neurodegeneration is explored with a view to differences present in early and late life EE exposure, with its potential application in human being discussed. We discuss EE as one of the non pharmacological approaches in preventing or delaying the onset of AD for future research.
Collapse
|
33
|
Xu X, Johnson Z, Wang A, Padget RL, Smyth JW, Xie H. Folate regulates RNA m 5C modification and translation in neural stem cells. BMC Biol 2022; 20:261. [PMID: 36424632 PMCID: PMC9686110 DOI: 10.1186/s12915-022-01467-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 11/16/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Folate is an essential B-group vitamin and a key methyl donor with important biological functions including DNA methylation regulation. Normal neurodevelopment and physiology are sensitive to the cellular folate levels. Either deficiency or excess of folate may lead to neurological disorders. Recently, folate has been linked to tRNA cytosine-5 methylation (m5C) and translation in mammalian mitochondria. However, the influence of folate intake on neuronal mRNA m5C modification and translation remains largely unknown. Here, we provide transcriptome-wide landscapes of m5C modification in poly(A)-enriched RNAs together with mRNA transcription and translation profiles for mouse neural stem cells (NSCs) cultured in three different concentrations of folate. RESULTS NSCs cultured in three different concentrations of folate showed distinct mRNA methylation profiles. Despite uncovering only a few differentially expressed genes, hundreds of differentially translated genes were identified in NSCs with folate deficiency or supplementation. The differentially translated genes induced by low folate are associated with cytoplasmic translation and mitochondrial function, while the differentially translated genes induced by high folate are associated with increased neural stem cell proliferation. Interestingly, compared to total mRNAs, polysome mRNAs contained high levels of m5C. Furthermore, an integrative analysis indicated a transcript-specific relationship between RNA m5C methylation and mRNA translation efficiency. CONCLUSIONS Altogether, our study reports a transcriptome-wide influence of folate on mRNA m5C methylation and translation in NSCs and reveals a potential link between mRNA m5C methylation and mRNA translation.
Collapse
Affiliation(s)
- Xiguang Xu
- Epigenomics and Computational Biology Lab, Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA, 24061, USA
- Department of Biological Sciences, College of Science, Virginia Tech, Blacksburg, VA, 24061, USA
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Zachary Johnson
- Epigenomics and Computational Biology Lab, Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA, 24061, USA
- Genetics, Bioinformatics and Computational Biology Program, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Amanda Wang
- Epigenomics and Computational Biology Lab, Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Rachel L Padget
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Tech, Blacksburg, VA, 24061, USA
- Fralin Biomedical Research Institute at VTC, Virginia Tech, Roanoke, VA, 24016, USA
| | - James W Smyth
- Department of Biological Sciences, College of Science, Virginia Tech, Blacksburg, VA, 24061, USA
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Tech, Blacksburg, VA, 24061, USA
- Fralin Biomedical Research Institute at VTC, Virginia Tech, Roanoke, VA, 24016, USA
- Virginia Tech Carilion School of Medicine, Roanoke, VA, 24016, USA
| | - Hehuang Xie
- Epigenomics and Computational Biology Lab, Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA, 24061, USA.
- Department of Biological Sciences, College of Science, Virginia Tech, Blacksburg, VA, 24061, USA.
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, 24061, USA.
- Genetics, Bioinformatics and Computational Biology Program, Virginia Tech, Blacksburg, VA, 24061, USA.
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Tech, Blacksburg, VA, 24061, USA.
| |
Collapse
|
34
|
Co-Expression of Adaptor Protein FAM159B with Different Markers for Neuroendocrine Cells: An Immunocytochemical and Immunohistochemical Study. Int J Mol Sci 2022; 23:ijms232113503. [DOI: 10.3390/ijms232113503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 10/23/2022] [Accepted: 11/03/2022] [Indexed: 11/06/2022] Open
Abstract
Little is known about the adaptor protein FAM159B. Recently, FAM159B was shown to be particularly expressed in neuroendocrine cells and tissues, such as pancreatic islets and neuroendocrine cells of the bronchopulmonary and gastrointestinal tracts, as well as in different types of neuroendocrine tumours. To gain insights into possible interactions of FAM159B with other proteins and/or receptors, we analysed the co-expression of FAM159B and various neuroendocrine-specific markers in the cancer cell lines BON-1, PC-3, NCI-h82, OH-1, and A431 and also in human pancreatic tissues and pancreatic neuroendocrine tumours. The markers included prominent markers of neuroendocrine differentiation, such as chromogranin A (CgA), neuron-specific enolase (NSE), synaptophysin (SYP), insulinoma-associated protein 1 (INSM1), neural cell adhesion molecule 1 (NCAM1), serotonin (5-HT), somatostatin-14/28 (SST), and several receptors that are typically expressed by neuroendocrine cells, such as dopamine receptor 2 (D2R), somatostatin receptor (SSTR) 1, 2, 3, 4 and 5, and regulator of G-protein signalling 9 (RGS9). FAM159B was expressed evenly throughout the cytosol in all five cancer cell lines. Immunocytochemical and immunohistochemical analyses revealed co-expression of FAM159B with SYP, INSM1, RGS9, D2R, SSTR2, SSTR3, SSTR4, and SSTR5 and strong overlapping co-localisation with NSE. Double-labelling and co-immunoprecipitation Western blot analyses confirmed a direct association between FAM159B and NSE. These results suggest the involvement of FAM159B in several intracellular signalling pathways and a direct or indirect influence on diverse membrane proteins and receptors.
Collapse
|
35
|
Liu Y, Rao J, Mi Y, Chen L, Feng L, Li Q, Geng J, Yang X, Zhan X, Ren L, Chen J, Zhang X. SARS-CoV-2 RNAs are processed into 22-nt vsRNAs in Vero cells. Front Immunol 2022; 13:1008084. [DOI: 10.3389/fimmu.2022.1008084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/10/2022] [Indexed: 11/13/2022] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused the global pandemic, resulting in great fatalities around the world. Although the antiviral roles of RNA interference (RNAi) have been well studied in plants, nematodes and insects, the antiviral roles of RNAi in mammalians are still debating as RNAi effect is suspected to be suppressed by interferon (IFN) signaling pathways in most cell types. To determine the role of RNAi in mammalian resistance to SARS-CoV-2, we studied the profiling of host small RNAs and SARS-CoV-2 virus-derived small RNAs (vsRNAs) in the early infection stages of Vero cells, an IFN-deficient cell line. We found that host microRNAs (miRNAs) were dysregulated upon SARS-CoV-2 infection, resulting in downregulation of microRNAs playing antiviral functions and upregulation of microRNAs facilitating viral proliferations. Moreover, vsRNA peaked at 22 nt at negative strand but not the positive strand of SARS-CoV-2 and formed successive Dicer-spliced pattern at both strands. Similar characteristics of vsRNAs were observed in IFN-deficient cell lines infected with Sindbis and Zika viruses. Together, these findings indicate that host cell may deploy RNAi pathway to combat SARS-CoV-2 infection in IFN-deficient cells, informing the alternative antiviral strategies to be developed for patients or tissues with IFN deficiency.
Collapse
|
36
|
Wu C, Pu Y, Zhang Y, Liu X, Qiao Z, Xin N, Zhou T, Chen S, Zeng M, Tang J, Pi J, Wei D, Sun J, Luo F, Fan H. A Bioactive and Photoresponsive Platform for Wireless Electrical Stimulation to Promote Neurogenesis. Adv Healthc Mater 2022; 11:e2201255. [PMID: 35932207 DOI: 10.1002/adhm.202201255] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/14/2022] [Indexed: 02/05/2023]
Abstract
Delivering electrical signals to neural cells and tissue has attracted increasing attention in the treatment of nerve injuries. Unlike traditional wired electrical stimulation, wireless and remote light stimulation provides less invasive and longer-lasting interfaces, holding great promise in the treatment of nerve injuries and neurodegenerative diseases, as well as human-computer interaction. Additionally, a bioactive matrix that bridges the injured gap and induces nerve regeneration is essential for injured nerve repair. However, it is still challenging to construct a 3D biomimetic cell niche with optoelectrical responsiveness. Herein, a bioactive platform for remote and wireless optoelectrical stimulation is established by incorporating hydrophilic poly(3-hexylthiophene) nanoparticles (P3HT NPs) into a biomimetic hydrogel matrix. Moreover, the hydrogel matrix is modified by varying the composition and/or the crosslinking degree to meet the needs of different application scenarios. When exposed to pulsed green light, P3HT NPs in hydrogels convert light signals into electrical signals, resulting in the generation of tens of picoampere photocurrent, which is proved to promote the growth of cortical neurons that covered by hydrogels and the neuronal differentiation of bone marrow mesenchymal stem cells (BMSCs) encapsulated in hydrogels. This work is of great significance for the design of next-generation neural electrodes and scaffolds.
Collapse
Affiliation(s)
- Chengheng Wu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan, 610064, China.,Institute of Regulatory Science for Medical Devices, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Yiyao Pu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan, 610064, China
| | - Yusheng Zhang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan, 610064, China
| | - Xiaoyin Liu
- Department of Neurosurgery, West China School of Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Zi Qiao
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan, 610064, China
| | - Nini Xin
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan, 610064, China
| | - Ting Zhou
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan, 610064, China
| | - Suping Chen
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan, 610064, China
| | - Mingze Zeng
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan, 610064, China
| | - Jiajia Tang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan, 610064, China
| | - Jinkui Pi
- Core Facilities of West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Dan Wei
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan, 610064, China
| | - Jing Sun
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan, 610064, China
| | - Fang Luo
- The Center of Gerontology and Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, 610044, China
| | - Hongsong Fan
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan, 610064, China
| |
Collapse
|
37
|
Cho JH, Kim K, Cho HC, Lee J, Kim EK. Silencing of hypothalamic FGF11 prevents diet-induced obesity. Mol Brain 2022; 15:75. [PMID: 36064426 PMCID: PMC9447329 DOI: 10.1186/s13041-022-00962-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/21/2022] [Indexed: 11/18/2022] Open
Abstract
Fibroblast growth factor 11 (FGF11) is a member of the intracellular fibroblast growth factor family. Here, we report the central role of FGF11 in the regulation of metabolism. Lentiviral injection of Fgf11 shRNA into the arcuate nucleus of the mouse hypothalamus decreased weight gain and fat mass, increased brown adipose tissue thermogenesis, and improved glucose and insulin intolerances under high-fat diet conditions. Fgf11 was expressed in the NPY–expressing neurons, and Fgf11 knockdown considerably decreased Npy expression and projection, leading to increased expression of tyrosine hydroxylase in the paraventricular nucleus. Mechanistically, FGF11 regulated Npy gene expression through the glycogen synthase kinase 3–cAMP response element-binding protein pathway. Our study defines the physiological significance of hypothalamic FGF11 in the regulation of metabolism in response to overnutrition such as high-fat diet.
Collapse
Affiliation(s)
- Jae Hyun Cho
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology, 333, Techno Jungang-Daero, Hyeonpung-Myeon, Daegu, Dalseonggun, 42988, South Korea
| | - Kyungchan Kim
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology, 333, Techno Jungang-Daero, Hyeonpung-Myeon, Daegu, Dalseonggun, 42988, South Korea
| | - Han Chae Cho
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology, 333, Techno Jungang-Daero, Hyeonpung-Myeon, Daegu, Dalseonggun, 42988, South Korea
| | - Jaemeun Lee
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology, 333, Techno Jungang-Daero, Hyeonpung-Myeon, Daegu, Dalseonggun, 42988, South Korea
| | - Eun-Kyoung Kim
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology, 333, Techno Jungang-Daero, Hyeonpung-Myeon, Daegu, Dalseonggun, 42988, South Korea. .,Neurometabolomics Research Center, Daegu Gyeongbuk Institute of Science and Technology, 333, Techno Jungang-Daero, Hyeonpung-Myeon, Daegu, Dalseonggun, 42988, South Korea.
| |
Collapse
|
38
|
Lemster AL, Sievers E, Pasternack H, Lazar-Karsten P, Klümper N, Sailer V, Offermann A, Brägelmann J, Perner S, Kirfel J. Histone Demethylase KDM5C Drives Prostate Cancer Progression by Promoting EMT. Cancers (Basel) 2022; 14:cancers14081894. [PMID: 35454801 PMCID: PMC9032772 DOI: 10.3390/cancers14081894] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/06/2022] [Accepted: 04/07/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary Prostate cancer is the most common cancer in men and is one of the leading causes of cancer-related deaths. During prostate cancer progression and metastasis, the epithelial cells can undergo epithelial–mesenchymal transition (EMT). Here, we show that the histone demethylase KDM5C is highly expressed in metastatic prostate cancer. We establish that stable clones silence KDM5C in prostate cancer cells. Knockdown of KDM5C leads to a reduced migratory and invasion capacity. This is associated with changes by multiple molecular mechanisms. This signaling subsequently modifies the expression of various transcription factors like Snail, Twist, and Zeb1/2, which are also known as master regulators of EMT. Taken together, our results indicate the potential to therapeutically target KDM5C either alone or in combination with Akt/mTOR-inhibitor in prostate cancer patients by targeting the EMT signaling pathways. Abstract Prostate cancer (PCa) poses a major public health problem in men. Metastatic PCa is incurable, and ultimately threatens the life of many patients. Mutations in tumor suppressor genes and oncogenes are important for PCa progression, whereas the role of epigenetic factors in prostate carcinogenesis is insufficiently examined. The histone demethylase KDM5C exerts important roles in tumorigenesis. KDM5C has been reported to be highly expressed in various cancer cell types, particularly in primary PCa. Here, we could show that KDM5C is highly upregulated in metastatic PCa. Functionally, in KDM5C knockdown cells migratory and invasion capacity was reduced. Interestingly, modulation of KDM5C expression influences several EMT signaling pathways (e.g., Akt/mTOR), expression of EMT transcription factors, epigenetic modifiers, and miR-205, resulting in increased expression of E-cadherin and reduced expression of N-cadherin. Mouse xenografts of KDM5C knockdown cells showed reduced tumor growth. In addition, the Akt/mTOR pathway is one of the classic signaling pathways to mediate tumor metabolic homeostasis, which is beneficial for tumor growth and metastasis. Taken together, our findings indicate that a combination of a selective KDM5C- and Akt/mTOR-inhibitor might be a new promising therapeutic strategy to reduce metastatic burden in PCa.
Collapse
Affiliation(s)
- Anna-Lena Lemster
- Institute of Pathology, University Hospital Schleswig-Holstein, 23538 Luebeck, Germany; (A.-L.L.); (H.P.); (P.L.-K.); (V.S.); (A.O.); (S.P.)
| | - Elisabeth Sievers
- Institute of Pathology, University Hospital Bonn, 53127 Bonn, Germany;
| | - Helen Pasternack
- Institute of Pathology, University Hospital Schleswig-Holstein, 23538 Luebeck, Germany; (A.-L.L.); (H.P.); (P.L.-K.); (V.S.); (A.O.); (S.P.)
| | - Pamela Lazar-Karsten
- Institute of Pathology, University Hospital Schleswig-Holstein, 23538 Luebeck, Germany; (A.-L.L.); (H.P.); (P.L.-K.); (V.S.); (A.O.); (S.P.)
| | - Niklas Klümper
- Department of Urology and Pediatric Urology, University Hospital Bonn, 53127 Bonn, Germany;
| | - Verena Sailer
- Institute of Pathology, University Hospital Schleswig-Holstein, 23538 Luebeck, Germany; (A.-L.L.); (H.P.); (P.L.-K.); (V.S.); (A.O.); (S.P.)
| | - Anne Offermann
- Institute of Pathology, University Hospital Schleswig-Holstein, 23538 Luebeck, Germany; (A.-L.L.); (H.P.); (P.L.-K.); (V.S.); (A.O.); (S.P.)
| | - Johannes Brägelmann
- Department of Translational Genomics, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany;
- Mildred Scheel School of Oncology Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
- Faculty of Medicine and University Hospital Cologne, Center for Molecular Medicine Cologne, University of Cologne, 50931 Cologne, Germany
| | - Sven Perner
- Institute of Pathology, University Hospital Schleswig-Holstein, 23538 Luebeck, Germany; (A.-L.L.); (H.P.); (P.L.-K.); (V.S.); (A.O.); (S.P.)
- Institute of Pathology, Research Center Borstel, Leibniz Lung Center, 23845 Borstel, Germany
| | - Jutta Kirfel
- Institute of Pathology, University Hospital Schleswig-Holstein, 23538 Luebeck, Germany; (A.-L.L.); (H.P.); (P.L.-K.); (V.S.); (A.O.); (S.P.)
- Correspondence:
| |
Collapse
|
39
|
Glycogen synthase kinase-3β inhibitor promotes the migration and osteogenic differentiation of rat dental pulp stem cells via the β-catenin/PI3K/Akt signaling pathway. J Dent Sci 2022; 17:802-810. [PMID: 35756816 PMCID: PMC9201544 DOI: 10.1016/j.jds.2021.09.035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/26/2021] [Indexed: 12/12/2022] Open
Abstract
Background/purpose Glycogen synthase kinase-3β (GSK3β) inhibitor enhances bone formation, while dental pulp stem cells (DPSC) are potentially used to repair bone defects. The present study aimed to investigate the effect of AR-A014418 (AR, a specific glycogen synthase kinase-3β inhibitor) on the migration and osteogenic differentiation of rat-derived dental pulp stem cells (rDPSCs), and further explore the underlying mechanism. Materials and methods rDPSCs were isolated from rats, and then cultured with different concentrations of AR with or without LY294002 (a PI3K inhibitor). Then, cell viability, migration, osteogenic differentiation, and the involvement of PI3K pathway were detected by CCK-8 assay, Transwell assay, Alizarin Red S Staining, Alkaline phosphatase (ALP) assay, Western blot, and RT-PCR, respectively. Results Our present study demonstrated that AR of various concentrations (1 μM, 2.5 μM, and 5 μM) not only promoted the rDPSC proliferation and migration, but also increased calcium deposition, the activity of alkaline phosphatase (ALP), and levels of osteogenic markers (RUNX2, OPN, OCN, and OSX) in rDPSCs. It was also found that the administration of AR resulted in an increase in the expression level of p-GSK3β (Ser), β-catenin, p-PI3K, and p-Akt, and a reduction in p-GSK3β (Tyr216). Furthermore, PI3K inhibitor LY294002 abrogated the enhanced cell migration and osteogenic differentiation of rDPSCs induced by AR. Conclusion Our results provide evidence that AR significantly promotes migration and osteogenic differentiation of rDPSCs by activating β-catenin/PI3K/Akt signaling pathway.
Collapse
|
40
|
Computational identification of host genomic biomarkers highlighting their functions, pathways and regulators that influence SARS-CoV-2 infections and drug repurposing. Sci Rep 2022; 12:4279. [PMID: 35277538 PMCID: PMC8915158 DOI: 10.1038/s41598-022-08073-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 02/15/2022] [Indexed: 12/13/2022] Open
Abstract
The pandemic threat of COVID-19 has severely destroyed human life as well as the economy around the world. Although, the vaccination has reduced the outspread, but people are still suffering due to the unstable RNA sequence patterns of SARS-CoV-2 which demands supplementary drugs. To explore novel drug target proteins, in this study, a transcriptomics RNA-Seq data generated from SARS-CoV-2 infection and control samples were analyzed. We identified 109 differentially expressed genes (DEGs) that were utilized to identify 10 hub-genes/proteins (TLR2, USP53, GUCY1A2, SNRPD2, NEDD9, IGF2, CXCL2, KLF6, PAG1 and ZFP36) by the protein–protein interaction (PPI) network analysis. The GO functional and KEGG pathway enrichment analyses of hub-DEGs revealed some important functions and signaling pathways that are significantly associated with SARS-CoV-2 infections. The interaction network analysis identified 5 TFs proteins and 6 miRNAs as the key regulators of hub-DEGs. Considering 10 hub-proteins and 5 key TFs-proteins as drug target receptors, we performed their docking analysis with the SARS-CoV-2 3CL protease-guided top listed 90 FDA approved drugs. We found Torin-2, Rapamycin, Radotinib, Ivermectin, Thiostrepton, Tacrolimus and Daclatasvir as the top ranked seven candidate drugs. We investigated their resistance performance against the already published COVID-19 causing top-ranked 11 independent and 8 protonated receptor proteins by molecular docking analysis and found their strong binding affinities, which indicates that the proposed drugs are effective against the state-of-the-arts alternatives independent receptor proteins also. Finally, we investigated the stability of top three drugs (Torin-2, Rapamycin and Radotinib) by using 100 ns MD-based MM-PBSA simulations with the two top-ranked proposed receptors (TLR2, USP53) and independent receptors (IRF7, STAT1), and observed their stable performance. Therefore, the proposed drugs might play a vital role for the treatment against different variants of SARS-CoV-2 infections.
Collapse
|
41
|
Maharati A, Zanguei AS, Khalili-Tanha G, Moghbeli M. MicroRNAs as the critical regulators of tyrosine kinase inhibitors resistance in lung tumor cells. Cell Commun Signal 2022; 20:27. [PMID: 35264191 PMCID: PMC8905758 DOI: 10.1186/s12964-022-00840-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/05/2022] [Indexed: 12/12/2022] Open
Abstract
Lung cancer is the second most common and the leading cause of cancer related deaths globally. Tyrosine Kinase Inhibitors (TKIs) are among the common therapeutic strategies in lung cancer patients, however the treatment process fails in a wide range of patients due to TKIs resistance. Given that the use of anti-cancer drugs can always have side effects on normal tissues, predicting the TKI responses can provide an efficient therapeutic strategy. Therefore, it is required to clarify the molecular mechanisms of TKIs resistance in lung cancer patients. MicroRNAs (miRNAs) are involved in regulation of various pathophysiological cellular processes. In the present review, we discussed the miRNAs that have been associated with TKIs responses in lung cancer. MiRNAs mainly exert their role on TKIs response through regulation of Tyrosine Kinase Receptors (TKRs) and down-stream signaling pathways. This review paves the way for introducing a panel of miRNAs for the prediction of TKIs responses in lung cancer patients. Video Abstract
Collapse
Affiliation(s)
- Amirhosein Maharati
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Sadra Zanguei
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ghazaleh Khalili-Tanha
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
42
|
The functional mechanism of bone marrow-derived mesenchymal stem cells in the treatment of animal models with Alzheimer's disease: crosstalk between autophagy and apoptosis. Stem Cell Res Ther 2022; 13:90. [PMID: 35241159 PMCID: PMC8895531 DOI: 10.1186/s13287-022-02765-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 11/24/2021] [Indexed: 12/25/2022] Open
Abstract
The transplantation of bone marrow-derived mesenchymal stem cells (BMMSCs) alleviates neuropathology and improves cognitive deficits in animal models with Alzheimer's disease. However, the underlying mechanism remains undefined. Based on meta-analysis and comprehensive review, high-profile studies support the theory that transplanted BMMSCs activate autophagy, as evidenced by the expression levels of signal molecules such as Beclin-1, Atg5, LC3-II, and mTOR. Functional autophagy mitigates neuronal apoptosis, which is reflected by the alterations of IAPs, Bcl-2, caspase-3, and so forth. Moreover, the transplantation of BMMSCs can decrease aberrant amyloid-beta peptides as well as tau aggregates, inhibit neuroinflammation, and stimulate synaptogenesis. There is a signal crosstalk between autophagy and apoptosis, which may be regulated to produce synergistic effect on the preconditioning of stem cells. Forasmuch, the therapeutic effect of transplanted BMMSCs can be enhanced by autophagy and/or apoptosis modulators.
Collapse
|
43
|
Cho SK, Gwon S, Kim HA, Kim J, Cho SY, Kim DE, Chae JH, Park DH, Hwang YK. Abnormal Development of Neural Stem Cell Niche in the Dentate Gyrus of Menkes Disease. Int J Stem Cells 2022; 15:270-282. [PMID: 35220279 PMCID: PMC9396019 DOI: 10.15283/ijsc21088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 12/16/2021] [Accepted: 12/19/2021] [Indexed: 11/09/2022] Open
Abstract
Background and Objectives Menkes disease (MNK) is a rare X-linked recessive disease, caused by mutations in the copper transporting ATP7A gene that is required for copper homeostasis. MNK patients experience various clinical symptoms including neurological defects that are closely related to the prognosis of MNK patients. Neural stem cells (NSCs) in the hippocampal dentate gyrus (DG) produce new neurons throughout life, and defects in DG neurogenesis are often correlated with cognitive and behavioral problems. However, neurodevelopmental defects in the DG during postnatal period in MNK have not been understood yet. Methods and Results Mottled-brindled (MoBr/y) mice (MNK mice) and littermate controls were used in this study. In vivo microCT imaging and immunohistochemistry results demonstrate that blood vasculatures in hippocampus are abnormally decreased in MNK mice. Furthermore, postnatal establishment of NSC population and their neurogenesis are severely compromised in the DG of MNK mice. In addition, in vitro analyses using hippocampal neurosphere culture followed by immunocytochemistry and immunoblotting suggest that neurogenesis from MNK NSCs is also significantly compromised, corresponding to defective neurogenic gene expression in MNK derived neurons. Conclusions Our study is the first reports demonstrating that improper expansion of the postnatal NSC population followed by significant reduction of neurogenesis may contribute to neurodevelopmental symptoms in MNK. In conclusion, our results provide new insight into early neurodevelopmental defects in MNK and emphasize the needs for early diagnosis and new therapeutic strategies in the postnatal central nerve system damage of MNK patients.
Collapse
Affiliation(s)
- Sung-kuk Cho
- Cell Therapy Research Center, GC Cell, Yongin, Korea
| | - Suhyun Gwon
- Cell Therapy Research Center, GC Cell, Yongin, Korea
| | - Hyun Ah Kim
- Cell Therapy Research Center, GC Cell, Yongin, Korea
| | - Jiwon Kim
- Department of Neurology, Dongguk University Ilsan Hospital, Goyang, Korea
| | - Sung Yoo Cho
- Cell Therapy Research Center, GC Cell, Yongin, Korea
| | - Dong-Eog Kim
- Department of Neurology, Dongguk University Ilsan Hospital, Goyang, Korea
| | - Jong-Hee Chae
- Department of Pediatrics, Seoul National University Children’s Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Dae Hwi Park
- Cell Therapy Research Center, GC Cell, Yongin, Korea
| | | |
Collapse
|
44
|
Kang Y, Pei W. Transcriptomic analysis and biological evaluation reveals that LMO3 regulates the osteogenic differentiation of human adipose derived stem cells via PI3K/Akt signaling pathway. J Mol Histol 2022; 53:379-394. [PMID: 35165791 DOI: 10.1007/s10735-021-10047-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 12/06/2021] [Indexed: 10/19/2022]
Abstract
Autologous bone transplantation which is a common treatment method for bone defects needs a large quantity of bone cells. In order to develop new treatments to regenerating bone tissues, this research aimed at identifying the key genes and finding their mechanism in human adipose-derived stem cells (hADSCs) osteogenesis. GSE63754, GSE89330 and GSE72429 were downloaded to perform GO functional and KEGG pathway analyses, construct a competing endogenous RNA (ceRNA) network, construct a PPI network and identify hub genes. The expression level of LMO3 during the osteogenesis of hADSCs was examined by quantitative reverse transcription polymerase chain reaction and western blot. Lentivirus transfection was used to knock down or overexpress LMO3, which enabled us to investigate the effect of LMO3 on osteogenic differentiation of hADSCs. Wortmannin were used to identify the mechanism of the LMO3/PI3K/Akt axis in regulating osteogenic differentiation of hADSCs. Moreover, ectopic bone formation in nude mice was used to investigate the effect of LMO3 on osteogenesis in vivo. In this study, we found the expression of LMO3 was significantly upregulated during the osteogenic differentiation of hADSCs. LMO3 knockdown remarkably suppressed osteogenic differentiation of hADSCs, while LMO3 overexpression promoted osteogenic differentiation of hADSCs both in vitro and in vivo. Moreover, we discovered that the enhancing effect of LMO3 overexpression on osteogenic differentiation was related to the activation of PI3K/Akt signaling pathway. Inhibition of PI3K/Akt signaling pathway with wortmannin effectively blocked the stimulation of osteogenic differentiation induced by LMO3 overexpression. In conclusion, based on transcriptomic analysis, we identified key genes involved in regulating the osteogenic differentiation of hADSCs. In addition, we found that LMO3 might act as a positive modulator of hADSC osteogenic differentiation by mediating PI3K/Akt signaling pathway. Manipulating the expression of LMO3 and its associated pathways might contribute to advances in bone regeneration and tissue engineering.
Collapse
Affiliation(s)
- Yue Kang
- Department of Breast Surgery, Cancer Hospital of China Medical University, No. 44 Xiaoheyan Road, Dadong District, Shenyang, 110042, Liaoning Province, People's Republic of China
| | - Wenye Pei
- Department of Information Management, Cancer Hospital of China Medical University, No. 44 Xiaoheyan Road, Dadong District, Shenyang, 110042, Liaoning Province, People's Republic of China.
| |
Collapse
|
45
|
Du X, Li C, Zhang S, Sun C, Zhang X, Chen C, Wang X, Cheng F, Wang Q. Exploring the pharmacological mechanism of calculus bovis in cerebral ischaemic stroke using a network pharmacology approach. JOURNAL OF ETHNOPHARMACOLOGY 2022; 284:114507. [PMID: 34384847 DOI: 10.1016/j.jep.2021.114507] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/27/2021] [Accepted: 08/05/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Calculus bovis is commonly used in traditional Chinese medicine for the treatment of cerebrovascular diseases given its roles in clearing away heat, detoxification and pain relief. Calculus bovis is used the treatment of cerebral ischaemia, liver and gallbladder diseases and various inflammatory conditions. However, the mechanism of action of calculus bovis in the treatment of ischaemic stroke is not well understood. AIM OF THE STUDY In this study, the anti-inflammatory, antioxidative and antiapoptotic effects of calculus bovis on neurovascular units were studied, and the mechanism of action of calculus bovis on neurovascular units was also discussed. MATERIALS AND METHODS Neurons, astrocytes, and endothelial cells were used to construct models of brain neurovascular units in vitro. The oxygen-glucose deprivation/reoxygenation and glucose (OGD/R) model was used to assess the effects of in vitro cultured calculus bovis on inflammatory factors, oxidative stress, and apoptosis. ZO-1, Occludin, Claudin-5, HIF-1, VEGF, PI3K, Akt, Bax, Bcl-2, and Caspase-3 expression was detected. RESULTS In vitro cultured calculus bovis protects the blood-brain barrier; repairs tight junction proteins; increases ZO-1, Occludin and Claudin-5 protein expression; maintains TEER(transepithelial electrical resistance) values; repairs damaged endothelial cells; increases γ-GT activity; reduces LDH and inflammatory injury; and reduces TNF-α, LI-6, and IL-1β levels. In vitro cultured calculus bovis reduces oxidative stress damage and NO and improves SOD activity. In vitro cultured calculus bovis protects neurons through antiapoptotic activities, including reductions in the apoptotic proteins Bax and Caspase-3, increases in Bcl-2 protein expression, and protection of brain neurovascular units through the HIF/VEGF and PI3K/Akt signalling pathways. CONCLUSION In summary, the protective effect of calculus bovis on neurovascular units is achieved through antioxidative, anti-inflammatory and antiapoptotic effects. The mechanism of action of in vitro cultured calculus bovis in ischaemic stroke involves multiple targets and signalling pathways. The PI3K/Akt, HIF-1α and VEGF pathways effectively protect neurovascular units in the brain.
Collapse
Affiliation(s)
- Xin Du
- School of Basic Medical Sciences, Beijing University of Chinese Medicine, China
| | - Changxiang Li
- School of Basic Medical Sciences, Beijing University of Chinese Medicine, China
| | - Shuang Zhang
- School of Basic Medical Sciences, Beijing University of Chinese Medicine, China
| | - Chunyan Sun
- School of Basic Medical Sciences, Beijing University of Chinese Medicine, China
| | - Xiaole Zhang
- School of Basic Medical Sciences, Beijing University of Chinese Medicine, China
| | - Congai Chen
- School of Basic Medical Sciences, Beijing University of Chinese Medicine, China
| | - Xueqian Wang
- School of Basic Medical Sciences, Beijing University of Chinese Medicine, China
| | - Fafeng Cheng
- School of Basic Medical Sciences, Beijing University of Chinese Medicine, China
| | - Qingguo Wang
- School of Basic Medical Sciences, Beijing University of Chinese Medicine, China.
| |
Collapse
|
46
|
Querfurth H, Marshall J, Parang K, Rioult-Pedotti MS, Tiwari R, Kwon B, Reisinger S, Lee HK. A PDK-1 allosteric agonist neutralizes insulin signaling derangements and beta-amyloid toxicity in neuronal cells and in vitro. PLoS One 2022; 17:e0261696. [PMID: 35061720 PMCID: PMC8782417 DOI: 10.1371/journal.pone.0261696] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 12/08/2021] [Indexed: 01/09/2023] Open
Abstract
The Alzheimer's brain is affected by multiple pathophysiological processes, which include a unique, organ-specific form of insulin resistance that begins early in its course. An additional complexity arises from the four-fold risk of Alzheimer's Disease (AD) in type 2 diabetics, however there is no definitive proof of causation. Several strategies to improve brain insulin signaling have been proposed and some have been clinically tested. We report findings on a small allosteric molecule that reverses several indices of insulin insensitivity in both cell culture and in vitro models of AD that emphasize the intracellular accumulation of β-amyloid (Aβi). PS48, a chlorophenyl pentenoic acid, is an allosteric activator of PDK-1, which is an Akt-kinase in the insulin/PI3K pathway. PS48 was active at 10 nM to 1 μM in restoring normal insulin-dependent Akt activation and in mitigating Aβi peptide toxicity. Synaptic plasticity (LTP) in prefrontal cortical slices from normal rat exposed to Aβ oligomers also benefited from PS48. During these experiments, neither overstimulation of PI3K/Akt signaling nor toxic effects on cells was observed. Another neurotoxicity model producing insulin insensitivity, utilizing palmitic acid, also responded to PS48 treatment, thus validating the target and indicating that its therapeutic potential may extend outside of β-amyloid reliance. The described in vitro and cell based-in vitro coupled enzymatic assay systems proved suitable platforms to screen a preliminary library of new analogs.
Collapse
Affiliation(s)
- Henry Querfurth
- Department of Neurology, Tufts Medical Center, Boston, MA, United States of America
| | - John Marshall
- Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, RI, United States of America
| | - Keykavous Parang
- Center for Targeted Drug Delivery, Chapman University, School of Pharmacology, Irvine, CA United States of America
| | - Mengia S. Rioult-Pedotti
- Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, RI, United States of America
- Department of Neurology, Clinical Neurorehabilitation, University of Zurich, Zurich, Switzerland
| | - Rakesh Tiwari
- Center for Targeted Drug Delivery, Chapman University, School of Pharmacology, Irvine, CA United States of America
| | - Bumsup Kwon
- Department of Neurology, Rhode Island Hospital, Providence, RI, United States of America
| | | | - Han-Kyu Lee
- Department of Neurology, Tufts Medical Center, Boston, MA, United States of America
| |
Collapse
|
47
|
Vliora M, Grillo E, Corsini M, Ravelli C, Nintou E, Karligiotou E, Flouris AD, Mitola S. Irisin regulates thermogenesis and lipolysis in 3T3-L1 adipocytes. Biochim Biophys Acta Gen Subj 2022; 1866:130085. [PMID: 35016977 DOI: 10.1016/j.bbagen.2022.130085] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 12/27/2021] [Accepted: 01/04/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND Adipose tissue plays a pivotal role in the development and progression of the metabolic syndrome which along with its complications is an epidemic of the 21st century. Irisin is an adipo-myokine secreted mainly by skeletal muscle and targeting, among others, adipose tissue. In brown adipose tissue it upregulates uncoupling protein-1 (UCP1) which is responsible for mitochondrial non-shivering thermogenesis. METHODS Here we analyzed the effects of irisin on the metabolic activity of 3T3-L1 derived adipocytes through a mitochondrial flux assay. We also assessed the effects of irisin on the intracellular signaling through Western Blot. Finally, the gene expression of ucp1 and lipolytic genes was examined through RT-qPCR. RESULTS Irisin affects mitochondrial respiration and lipolysis in a time-dependent manner through the regulation of PI3K-AKT pathway. Irisin also induces the expression of UCP1 and the regulation of NF-κB, and CREB and ERK pathways. CONCLUSION Our data supports the role of irisin in the induction of non-shivering thermogenesis, the regulation of energy expenditure and lipolysis in adipocytes. GENERAL SIGNIFICANCE Irisin may be an attractive therapeutic target in the treatment of obesity and related metabolic disorders.
Collapse
Affiliation(s)
- Maria Vliora
- FAME Laboratory, Department of Exercise Science, University of Thessaly, Trikala, Greece; Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy.
| | - Elisabetta Grillo
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Michela Corsini
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Cosetta Ravelli
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Eleni Nintou
- FAME Laboratory, Department of Exercise Science, University of Thessaly, Trikala, Greece
| | - Eleni Karligiotou
- FAME Laboratory, Department of Exercise Science, University of Thessaly, Trikala, Greece
| | - Andreas D Flouris
- FAME Laboratory, Department of Exercise Science, University of Thessaly, Trikala, Greece
| | - Stefania Mitola
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy.
| |
Collapse
|
48
|
MicroRNAs in the pathophysiology of Alzheimer's disease and Parkinson's disease: an overview. Mol Neurobiol 2022; 59:1589-1603. [PMID: 35001356 DOI: 10.1007/s12035-022-02727-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 12/30/2021] [Indexed: 12/12/2022]
Abstract
Neurodegenerative diseases are characterized by a progressive loss of neurons of the central nervous system (CNS) and serve as a major cause of morbidity, mortality and functional dependence especially among the elderly. Despite extensive research and development efforts, the success rate of clinical pipelines has been very limited. However, microRNAs (miRs) have been proved to be of crucial importance in regulating intracellular pathways for various pathologic conditions including those of a neurodegenerative nature. There is ample evidence of altered levels of various miRs in clinical samples of Alzheimer's disease and Parkinson's disease patients with potentially major clinical implications. In the current review, we aim to summarize the relevant literature on the role of miRs in the pathophysiology of Alzheimer's disease (AD) and Parkinson's disease (PD) as the two globally predominant neurodegenerative conditions.
Collapse
|
49
|
Wang Q, Wang H, Ma Y, Cao X, Gao H. Effects of Electroactive materials on nerve cell behaviors and applications in peripheral nerve repair. Biomater Sci 2022; 10:6061-6076. [DOI: 10.1039/d2bm01216b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Peripheral nerve damage can lead to loss of function or even complete disability, which bring about a huge burden on both the patient and society. Regulating nerve cell behavior and...
Collapse
|
50
|
Xu Z, Liu X, Zhuang D. Artesunate inhibits cell proliferation, migration, and invasion of thyroid cancer by regulating the PI3K/AKT/FKHR pathway. Biochem Cell Biol 2021; 100:85-92. [PMID: 34797728 DOI: 10.1139/bcb-2021-0275] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This study characterized the effects of artesunate on thyroid cancer and partially identified its related molecular mechanism. We determined the effect of artesunate on the proliferation of thyroid cancer cells using the MTT assay, cell colony formation experiments, and western blotting, and used flow cytometry to detect the apoptosis of cancer cells. Using a wound-healing assay, Transwell chamber experiments, and western blotting, we determined the effect of artesunate on cancer cell migration. By co-cultivating artesunate with the PI3K agonist, 740Y-P, we also partially identified the molecular mechanism. Artesunate significantly inhibited the growth, proliferation, migration, and invasion of thyroid cancer cells, and promoted the apoptosis of cancer cells. Using co-cultivation with a PI3K agonist, we found that the inhibitory effect of artesunate on cancer cells was mainly due to suppressing the PI3K/AKT/FKHR signaling pathway. By inhibiting the PI3K/AKT/FKHR signaling pathway, artesunate induced apoptosis of thyroid cancer cells and inhibited their proliferation and migration.
Collapse
Affiliation(s)
- Zhiwei Xu
- Tongxiang First People's Hospital, Jiaxing, China;
| | - Xiaojian Liu
- Tongxiang First People's Hospital, Jiaxing, China;
| | | |
Collapse
|