1
|
González-Flores O, Garcia-Juárez M, Tecamachaltzi-Silvarán MB, Lucio RA, Ordoñez RD, Pfaus JG. Cellular and molecular mechanisms of action of ovarian steroid hormones. I: Regulation of central nervous system function. Neurosci Biobehav Rev 2024; 167:105937. [PMID: 39510217 DOI: 10.1016/j.neubiorev.2024.105937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/25/2024] [Accepted: 10/31/2024] [Indexed: 11/15/2024]
Abstract
The conventional way steroid hormones work through receptors inside cells is widely acknowledged. There are unanswered questions about what happens to the hormone in the end and why there isn't always a strong connection between how much tissue takes up and its biological effects through receptor binding. Steroid hormones can also have non-traditional effects that happen quickly but don't involve entering the cell. Several possible mechanisms for these non-traditional actions include (a) changes in membrane fluidity, (b) steroid hormones acting on receptors on the outer surface of cells, (c) steroid hormones regulating GABAA receptors on cell membranes, and (d) activation of steroid receptors by factors like EGF, IGF-1, and dopamine. Data also suggests that steroid hormones may be inserted into DNA through receptors, acting as transcription factors. These proposed new mechanisms of action should not be seen as challenging the conventional mechanism. Instead, they contribute to a more comprehensive understanding of how hormones work, allowing for rapid, short-term, and prolonged effects to meet the body's physiological needs.
Collapse
Affiliation(s)
- Oscar González-Flores
- Centro de Investigación en Reproducción Animal, Universidad Autónoma de Tlaxcala-CINVESTAV, Tlaxcala, Mexico.
| | - Marcos Garcia-Juárez
- Centro de Investigación en Reproducción Animal, Universidad Autónoma de Tlaxcala-CINVESTAV, Tlaxcala, Mexico
| | | | - Rosa Angélica Lucio
- Centro Tlaxcala de Biología de la Conducta, Universidad Autónoma de Tlaxcala, Tlaxcala, Mexico
| | - Raymundo Domínguez Ordoñez
- Centro de Investigación en Reproducción Animal, Universidad Autónoma de Tlaxcala-CINVESTAV, Tlaxcala, Mexico; Licenciatura en Ingeniería Agronómica y Zootecnia, Complejo Regional Centro, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - James G Pfaus
- Center for Sexual Health and Intervention, Czech National Institute of Mental Health, Klecany, Czech Republic; Department of Psychology and Life Sciences, Faculty of Humanities, Charles University, Prague, Czech Republic
| |
Collapse
|
2
|
Proffitt MR, Smith GT. Species variation in steroid hormone-related gene expression contributes to species diversity in sexually dimorphic communication in electric fishes. Horm Behav 2024; 164:105576. [PMID: 38852479 PMCID: PMC11330740 DOI: 10.1016/j.yhbeh.2024.105576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/08/2024] [Accepted: 05/31/2024] [Indexed: 06/11/2024]
Abstract
Sexually dimorphic behaviors are often regulated by gonadal steroid hormones. Species diversity in behavioral sex differences may arise as expression of genes mediating steroid action in brain regions controlling these behaviors evolves. The electric communication signals of apteronotid knifefishes are an excellent model for comparatively studying neuroendocrine regulation of sexually dimorphic behavior. These fish produce and detect weak electric organ discharges (EODs) for electrolocation and communication. EOD frequency (EODf), controlled by the medullary pacemaker nucleus (Pn), is sexually dimorphic and regulated by androgens and estrogens in some species, but is sexually monomorphic and unaffected by hormones in other species. We quantified expression of genes for steroid receptors, metabolizing enzymes, and cofactors in the Pn of two species with sexually dimorphic EODf (Apteronotus albifrons and Apteronotus leptorhynchus) and two species with sexually monomorphic EODf ("Apteronotus" bonapartii and Parapteronotus hasemani). The "A." bonapartii Pn expressed lower levels of androgen receptor (AR) genes than the Pn of species with sexually dimorphic EODf. In contrast, the P. hasemani Pn robustly expressed AR genes, but expressed lower levels of genes for 5α-reductases, which convert androgens to more potent metabolites, and higher levels of genes for 17β-hydroxysteroid dehydrogenases that oxidize androgens and estrogens to less potent forms. These findings suggest that sexual monomorphism of EODf arose convergently via two different mechanisms. In "A." bonapartii, reduced Pn expression of ARs likely results in insensitivity of EODf to androgens, whereas in P. hasemani, gonadal steroids may be metabolically inactivated in the Pn, reducing their potential to influence EODf.
Collapse
Affiliation(s)
- Melissa R Proffitt
- Department of Biology, Indiana University, 1001 E. 3(rd) St., Bloomington, IN 47405, USA; Center for the Integrative Study of Animal Behavior, Indiana University, 409 N. Park Ave., Bloomington, IN 47505, USA
| | - G Troy Smith
- Department of Biology, Indiana University, 1001 E. 3(rd) St., Bloomington, IN 47405, USA; Center for the Integrative Study of Animal Behavior, Indiana University, 409 N. Park Ave., Bloomington, IN 47505, USA.
| |
Collapse
|
3
|
Meng W. Editorial: Application and research progress of avian models in neuroscience. Front Mol Neurosci 2023; 16:1319308. [PMID: 37942300 PMCID: PMC10628669 DOI: 10.3389/fnmol.2023.1319308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 10/13/2023] [Indexed: 11/10/2023] Open
Affiliation(s)
- Wei Meng
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, China
| |
Collapse
|
4
|
Zhang Y, Sun Y, Wu Y, Sun W, Zhang K, Meng W, Wang S. Estradiol decreases the excitability of RA projection neurons in adult male zebra finches. Front Cell Neurosci 2023; 17:1046984. [PMID: 36866064 PMCID: PMC9971012 DOI: 10.3389/fncel.2023.1046984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 01/23/2023] [Indexed: 02/16/2023] Open
Abstract
Zebra finches are essential animal models for studying learned vocal signals. The robust nucleus of the arcopallium (RA) plays an important role in regulating singing behavior. Our previous study showed that castration inhibited the electrophysiological activity of RA projection neurons (PNs) in male zebra finches, demonstrating that testosterone modulates the excitability of RA PNs. Testosterone can be converted into estradiol (E2) in the brain through aromatase; however, the physiological functions of E2 in RA are still unknown. This study aimed to investigate the electrophysiological activities of E2 on the RA PNs of male zebra finches through patch-clamp recording. E2 rapidly decreased the rate of evoked and spontaneous action potentials (APs) of RA PNs, hyperpolarized the resting membrane potential, and decreased the membrane input resistance. Moreover, the G-protein-coupled membrane-bound estrogen receptor (GPER) agonist G1 decreased both the evoked and spontaneous APs of RA PNs. Furthermore, the GPER antagonist G15 had no effect on the evoked and spontaneous APs of RA PNs; E2 and G15 together also had no effect on the evoked and spontaneous APs of RA PNs. These findings suggested that E2 rapidly decreased the excitability of RA PNs and its binding to GPER suppressed the excitability of RA PNs. These pieces of evidence helped us fully understand the principle of E2 signal mediation via its receptors to modulate the excitability of RA PNs in songbirds.
Collapse
Affiliation(s)
- Yutao Zhang
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Yalun Sun
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Yanran Wu
- School of Life Science, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Wei Sun
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Kun Zhang
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Wei Meng
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, China,Wei Meng ✉
| | - Songhua Wang
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, China,*Correspondence: Songhua Wang ✉
| |
Collapse
|
5
|
Scarpa GB, Starrett JR, Li GL, Brooks C, Morohashi Y, Yazaki-Sugiyama Y, Remage-Healey L. Estrogens rapidly shape synaptic and intrinsic properties to regulate the temporal precision of songbird auditory neurons. Cereb Cortex 2022; 33:3401-3420. [PMID: 35849820 PMCID: PMC10068288 DOI: 10.1093/cercor/bhac280] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 06/20/2022] [Accepted: 06/22/2022] [Indexed: 01/14/2023] Open
Abstract
Sensory neurons parse millisecond-variant sound streams like birdsong and speech with exquisite precision. The auditory pallial cortex of vocal learners like humans and songbirds contains an unconventional neuromodulatory system: neuronal expression of the estrogen synthesis enzyme aromatase. Local forebrain neuroestrogens fluctuate when songbirds hear a song, and subsequently modulate bursting, gain, and temporal coding properties of auditory neurons. However, the way neuroestrogens shape intrinsic and synaptic properties of sensory neurons remains unknown. Here, using a combination of whole-cell patch clamp electrophysiology and calcium imaging, we investigate estrogenic neuromodulation of auditory neurons in a region resembling mammalian auditory association cortex. We found that estradiol rapidly enhances the temporal precision of neuronal firing via a membrane-bound G-protein coupled receptor and that estradiol rapidly suppresses inhibitory synaptic currents while sparing excitation. Notably, the rapid suppression of intrinsic excitability by estradiol was predicted by membrane input resistance and was observed in both males and females. These findings were corroborated by analysis of in vivo electrophysiology recordings, in which local estrogen synthesis blockade caused acute disruption of the temporal correlation of song-evoked firing patterns. Therefore, on a modulatory timescale, neuroestrogens alter intrinsic cellular properties and inhibitory neurotransmitter release to regulate the temporal precision of higher-order sensory neurons.
Collapse
Affiliation(s)
- Garrett B Scarpa
- Neuroscience and Behavior, Center for Neuroendocrine Studies, University of Massachusetts, 639 N. Pleasant St., Amherst, MA 01003, United States
| | - Joseph R Starrett
- Neuroscience and Behavior, Center for Neuroendocrine Studies, University of Massachusetts, 639 N. Pleasant St., Amherst, MA 01003, United States
| | - Geng-Lin Li
- Department of Otorhinolaryngology, Eye and ENT Hospital, Fudan University, 83 Fenyang Rd, Xuhui District, Shanghai 200031, China
| | - Colin Brooks
- Neuroscience and Behavior, Center for Neuroendocrine Studies, University of Massachusetts, 639 N. Pleasant St., Amherst, MA 01003, United States
| | - Yuichi Morohashi
- Okinawa Institute of Science and Technology (OIST) Graduate University, 1919-1 Tancha, Onna, Kunigami District, Okinawa, Japan
| | - Yoko Yazaki-Sugiyama
- Okinawa Institute of Science and Technology (OIST) Graduate University, 1919-1 Tancha, Onna, Kunigami District, Okinawa, Japan
| | - Luke Remage-Healey
- Neuroscience and Behavior, Center for Neuroendocrine Studies, University of Massachusetts, 639 N. Pleasant St., Amherst, MA 01003, United States
| |
Collapse
|
6
|
Hanlon C, Ziezold CJ, Bédécarrats GY. The Diverse Roles of 17β-Estradiol in Non-Gonadal Tissues and Its Consequential Impact on Reproduction in Laying and Broiler Breeder Hens. Front Physiol 2022; 13:942790. [PMID: 35846017 PMCID: PMC9283702 DOI: 10.3389/fphys.2022.942790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Abstract
Estradiol-17β (E2) has long been studied as the primary estrogen involved in sexual maturation of hens. Due to the oviparous nature of avian species, ovarian production of E2 has been indicated as the key steroid responsible for activating the formation of the eggshell and internal egg components in hens. This involves the integration and coordination between ovarian follicular development, liver metabolism and bone physiology to produce the follicle, yolk and albumen, and shell, respectively. However, the ability of E2 to be synthesized by non-gonadal tissues such as the skin, heart, muscle, liver, brain, adipose tissue, pancreas, and adrenal glands demonstrates the capability of this hormone to influence a variety of physiological processes. Thus, in this review, we intend to re-establish the role of E2 within these tissues and identify direct and indirect integration between the control of reproduction, metabolism, and bone physiology. Specifically, the sources of E2 and its activity in these tissues via the estrogen receptors (ERα, ERβ, GPR30) is described. This is followed by an update on the role of E2 during sexual differentiation of the embryo and maturation of the hen. We then also consider the implications of the recent discovery of additional E2 elevations during an extended laying cycle. Next, the specific roles of E2 in yolk formation and skeletal development are outlined. Finally, the consequences of altered E2 production in mature hens and the associated disorders are discussed. While these areas of study have been previously independently considered, this comprehensive review intends to highlight the critical roles played by E2 to alter and coordinate physiological processes in preparation for the laying cycle.
Collapse
|
7
|
DeLeon C, Pemberton K, Green M, Kalajdzic V, Rosato M, Xu F, Arnatt C. Novel GPER Agonist, CITFA, Increases Neurite Growth in Rat Embryonic (E18) Hippocampal Neurons. ACS Chem Neurosci 2022; 13:1119-1128. [PMID: 35353510 DOI: 10.1021/acschemneuro.1c00811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Numerous studies have reported neuroprotective and procognitive effects of estrogens. The estrogen 17β-estradiol (E2) activates both the classical nuclear estrogen receptors ERα and ERβ as well as the G protein-coupled estrogen receptor (GPER). The differential effects of targeting the classical estrogen receptors over GPER are not well-understood. A limited number of selective GPER compounds have been described. In this study, 10 novel compounds were synthesized and exhibited half-maximal effective concentration values greater than the known GPER agonist G-1 in calcium mobilization assays performed in nonadherent HL-60 cells. Of these compounds, 2-cyclohexyl-4-isopropyl-N-((5-(tetrahydro-2H-pyran-2-yl)furan-2-yl)methyl)aniline, referred to as CITFA, significantly increased axonal and dendritic growth in neurons extracted from embryonic day 18 (E18) fetal rat hippocampal neurons. Confirmation of the results was performed by treating E18 hippocampal neurons with known GPER-selective antagonist G-36 and challenging with either E2, G-1, or CITFA. Results from these studies revealed an indistinguishable difference in neurite outgrowth between the treatment and control groups, exhibiting that neurite outgrowth in response to G-1 and CITFA originates from GPER activation and can be abolished with pretreatment of an antagonist. Subsequent docking studies using a homology model of GPER showed unique docking poses between G-1 and CIFTA. While docking poses differed between the ligands, CIFTA exhibited more favorable distance, bond angle, and strain for hydrogen-bonding and hydrophobic interactions.
Collapse
Affiliation(s)
- Chelsea DeLeon
- The Department of Chemistry, Saint Louis University, St. Louis, Missouri 63103, United States
| | - Kyle Pemberton
- The Department of Biology, College of Arts and Sciences, Saint Louis University, St. Louis, Missouri 63103, United States
- The Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University, St. Louis, Missouri 63104, United States
| | - Michael Green
- The Department of Chemistry, Saint Louis University, St. Louis, Missouri 63103, United States
| | - Vanja Kalajdzic
- The Department of Chemistry, Saint Louis University, St. Louis, Missouri 63103, United States
| | - Martina Rosato
- The Department of Biology, College of Arts and Sciences, Saint Louis University, St. Louis, Missouri 63103, United States
- The Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University, St. Louis, Missouri 63104, United States
| | - Fenglian Xu
- The Department of Biology, College of Arts and Sciences, Saint Louis University, St. Louis, Missouri 63103, United States
- The Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University, St. Louis, Missouri 63104, United States
- The Department of Pharmacology and Physiology, Saint Louis University, St. Louis, Missouri 63103, United States
| | - Christopher Arnatt
- The Department of Chemistry, Saint Louis University, St. Louis, Missouri 63103, United States
- The Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University, St. Louis, Missouri 63104, United States
- The Department of Pharmacology and Physiology, Saint Louis University, St. Louis, Missouri 63103, United States
| |
Collapse
|
8
|
The form, function, and evolutionary significance of neural aromatization. Front Neuroendocrinol 2022; 64:100967. [PMID: 34808232 DOI: 10.1016/j.yfrne.2021.100967] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 11/01/2021] [Accepted: 11/15/2021] [Indexed: 11/20/2022]
Abstract
Songbirds have emerged as exceptional research subjects for helping us appreciate and understand estrogen synthesis and function in brain. In the context of recognizing the vertebrate-wide importance of brain aromatase expression, in this review we highlight where we believe studies of songbirds have provided clarification and conceptual insight. We follow by focusing on more recent studies of aromatase and neuroestrogen function in the hippocampus and the pallial auditory processing region NCM of songbirds. With perspectives drawn from this body of work, we speculate that the evolution of enhanced neural estrogen signaling, including in the mediation of social behaviors, may have given songbirds the resilience to radiate into one of the most successful vertebrate groups on the planet.
Collapse
|
9
|
Balthazart J. Membrane-initiated actions of sex steroids and reproductive behavior: A historical account. Mol Cell Endocrinol 2021; 538:111463. [PMID: 34582978 DOI: 10.1016/j.mce.2021.111463] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 01/25/2023]
Abstract
It was assumed for a long time that sex steroids are activating reproductive behaviors by the same mechanisms that produce their morphological and physiological effects in the periphery. However during the last few decades an increasing number of examples were identified where behavioral effects of steroids were just too fast to be mediated via changes in DNA transcription. This progressively forced behavioral neuroendocrinologists to recognize that part of the effects of steroids on behavior are mediated by membrane-initiated events. In this review we present a selection of these early data that changed the conceptual landscape and we provide a summary the different types of membrane-associated receptors (estrogens, androgens and progestagens receptors) that are playing the most important role in the control of reproductive behaviors. Then we finally describe in more detail three separate behavioral systems in which membrane-initiated events have clearly been established to contribute to behavior control.
Collapse
|
10
|
Choe HN, Jarvis ED. The role of sex chromosomes and sex hormones in vocal learning systems. Horm Behav 2021; 132:104978. [PMID: 33895570 DOI: 10.1016/j.yhbeh.2021.104978] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 12/12/2022]
Abstract
Vocal learning is the ability to imitate and modify sounds through auditory experience, a rare trait found in only a few lineages of mammals and birds. It is a critical component of human spoken language, allowing us to verbally transmit speech repertoires and knowledge across generations. In many vocal learning species, the vocal learning trait is sexually dimorphic, where it is either limited to males or present in both sexes to different degrees. In humans, recent findings have revealed subtle sexual dimorphism in vocal learning/spoken language brain regions and some associated disorders. For songbirds, where the neural mechanisms of vocal learning have been well studied, vocal learning appears to have been present in both sexes at the origin of the lineage and was then independently lost in females of some subsequent lineages. This loss is associated with an interplay between sex chromosomes and sex steroid hormones. Even in species with little dimorphism, like humans, sex chromosomes and hormones still have some influence on learned vocalizations. Here we present a brief synthesis of these studies, in the context of sex determination broadly, and identify areas of needed investigation to further understand how sex chromosomes and sex steroid hormones help establish sexually dimorphic neural structures for vocal learning.
Collapse
Affiliation(s)
- Ha Na Choe
- Duke University Medical Center, The Rockefeller University, Howard Hughes Medical Institute, United States of America.
| | - Erich D Jarvis
- Duke University Medical Center, The Rockefeller University, Howard Hughes Medical Institute, United States of America.
| |
Collapse
|
11
|
Leslie CE, Walkowski W, Rosencrans RF, Gordon WC, Bazan NG, Ryan MJ, Farris HE. Estrogenic Modulation of Retinal Sensitivity in Reproductive Female Túngara Frogs. Integr Comp Biol 2021; 61:231-239. [PMID: 33901287 PMCID: PMC8300951 DOI: 10.1093/icb/icab032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although mate searching behavior in female túngara frogs (Physalaemus pustulosus) is nocturnal and largely mediated by acoustic cues, male signaling includes visual cues produced by the vocal sac. To compensate for these low light conditions, visual sensitivity in females is modulated when they are in a reproductive state, as retinal thresholds are decreased. This study tested whether estradiol (E2) plays a role in this modulation. Female túngara frogs were injected with either human chorionic gonadotropin (hCG) or a combination of hCG and fadrozole. hCG induces a reproductive state and increases retinal sensitivity, while fadrozole is an aromatase inhibitor that blocks hCG-induced E2 synthesis. In an analysis of scotopic electroretinograms (ERGs), hCG treatment lowered the threshold for eliciting a b-wave response, whereas the addition of fadrozole abolished this effect, matching thresholds in non-reproductive saline-injected controls. This suggests that blocking E2 synthesis blocked the hCG-mediated reproductive modulation of retinal sensitivity. By implicating E2 in control of retinal sensitivity, our data add to growing evidence that the targets of gonadal steroid feedback loops include sensory receptor organs, where stimulus sensitivity may be modulated, rather than more central brain nuclei, where modulation may affect mechanisms involved in motivation.
Collapse
Affiliation(s)
- Caitlin E Leslie
- Department of Integrative Biology, University of Texas, Austin, TX 78712, USA
| | - Whitney Walkowski
- Neuroscience Center, Louisiana State University School of Medicine, 2020 Gravier Street, New Orleans, LA 70112, USA.,Department of Cell Biology and Anatomy, Louisiana State University School of Medicine, New Orleans, LA 70112, USA
| | - Robert F Rosencrans
- Neuroscience Center, Louisiana State University School of Medicine, 2020 Gravier Street, New Orleans, LA 70112, USA
| | - William C Gordon
- Neuroscience Center, Louisiana State University School of Medicine, 2020 Gravier Street, New Orleans, LA 70112, USA.,Department of Ophthalmology, Louisiana State University School of Medicine, New Orleans, LA 70112, USA
| | - Nicolas G Bazan
- Neuroscience Center, Louisiana State University School of Medicine, 2020 Gravier Street, New Orleans, LA 70112, USA.,Department of Ophthalmology, Louisiana State University School of Medicine, New Orleans, LA 70112, USA
| | - Michael J Ryan
- Department of Integrative Biology, University of Texas, Austin, TX 78712, USA
| | - Hamilton E Farris
- Neuroscience Center, Louisiana State University School of Medicine, 2020 Gravier Street, New Orleans, LA 70112, USA.,Department of Cell Biology and Anatomy, Louisiana State University School of Medicine, New Orleans, LA 70112, USA.,Department of Otorhinolaryngology, Louisiana State University School of Medicine, New Orleans, LA 70112, USA
| |
Collapse
|
12
|
Krentzel AA, Willett JA, Johnson AG, Meitzen J. Estrogen receptor alpha, G-protein coupled estrogen receptor 1, and aromatase: Developmental, sex, and region-specific differences across the rat caudate-putamen, nucleus accumbens core and shell. J Comp Neurol 2020; 529:786-801. [PMID: 32632943 DOI: 10.1002/cne.24978] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 06/26/2020] [Accepted: 06/30/2020] [Indexed: 12/19/2022]
Abstract
Sex steroid hormones such as 17β-estradiol (estradiol) regulate neuronal function by binding to estrogen receptors (ERs), including ERα and GPER1, and through differential production via the enzyme aromatase. ERs and aromatase are expressed across the nervous system, including in the striatal brain regions. These regions, comprising the nucleus accumbens core, shell, and caudate-putamen, are instrumental for a wide-range of functions and disorders that show sex differences in phenotype and/or incidence. Sex-specific estrogen action is an integral component for generating these sex differences. A distinctive feature of the striatal regions is that in adulthood neurons exclusively express membrane but not nuclear ERs. This long-standing finding dominates models of estrogen action in striatal regions. However, the developmental etiology of ER and aromatase cellular expression in female and male striatum is unknown. This omission in knowledge is important to address, as developmental stage influences cellular estrogenic mechanisms. Thus, ERα, GPER1, and aromatase cellular immunoreactivity was assessed in perinatal, prepubertal, and adult female and male rats. We tested the hypothesis that ERα, GPER1, and aromatase exhibits sex, region, and age-specific differences, including nuclear expression. ERα exhibits nuclear expression in all three striatal regions before adulthood and disappears in a region- and sex-specific time-course. Cellular GPER1 expression decreases during development in a region- but not sex-specific time-course, resulting in extranuclear expression by adulthood. Somatic aromatase expression presents at prepuberty and increases by adulthood in a region- but not sex-specific time-course. These data indicate that developmental period exerts critical sex-specific influences on striatal cellular estrogenic mechanisms.
Collapse
Affiliation(s)
- Amanda A Krentzel
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, USA.,W.M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, North Carolina, USA
| | - Jaime A Willett
- Department of Neuroscience, Albert Einstein College of Medicine, New York, New York, USA
| | - Ashlyn G Johnson
- Neuroscience Graduate Program, Emory University, Atlanta, Georgia, USA
| | - John Meitzen
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, USA.,W.M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, North Carolina, USA.,Center for Human Health and the Environment, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
13
|
Attarhaie Tehrani M, Veney SL. Intramuscular antagonism of the G-protein coupled estrogen receptor 1 partially affects dimorphic characteristics of the syrinx, but is ineffective within the neural song circuit of zebra finches. Gen Comp Endocrinol 2020; 293:113492. [PMID: 32333912 DOI: 10.1016/j.ygcen.2020.113492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 04/17/2020] [Accepted: 04/21/2020] [Indexed: 10/24/2022]
Abstract
Within the zebra finch song system, robust sex differences exist that enable singing behavior in males, but not females. Estradiol is a potent contributor to this process, but how and through which receptor(s) it acts is not clear. Historically, pharmacological manipulations of nuclear estrogen receptors have yielded conflicting results possibly due to method of drug delivery. More recently, the membrane bound G-protein coupled estrogen receptor 1 (GPER1) has also been identified as a potential candidate, but its function has not been fully described. To further investigate the role of GPER1, and the importance of the route of drug administration, a specific antagonist (G-15) was intramuscularly administered to zebra finches for 25 days, starting on the day of hatching. G-15 significantly decreased muscle fiber sizes of ventralis and dorsalis in the syrinx of males only. Dimorphic characteristics of the neural song system were unaffected by this manipulation in either sex. These results contrast with a study in which G-15 was intracranially delivered. In males, select song nuclei were decreased in volume, and in females, syrinx muscle fiber size was increased. Together, these results support the hypothesis that estrogens acting through GPER1 influence dimorphic development of the song system, and that method of drug administration is important in this species.
Collapse
Affiliation(s)
- Mahtab Attarhaie Tehrani
- Department of Biological Sciences, 1275 University Esplanade, Kent State University, Kent, OH 44242, USA.
| | - Sean L Veney
- Department of Biological Sciences, 1275 University Esplanade, Kent State University, Kent, OH 44242, USA; School of Biomedical Sciences, 1275 University Esplanade, Kent State University, Kent, OH 44242, USA.
| |
Collapse
|
14
|
Neuroestrogen synthesis modifies neural representations of learned song without altering vocal imitation in developing songbirds. Sci Rep 2020; 10:3602. [PMID: 32108169 PMCID: PMC7046723 DOI: 10.1038/s41598-020-60329-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 02/05/2020] [Indexed: 12/20/2022] Open
Abstract
Birdsong learning, like human speech, depends on the early memorization of auditory models, yet how initial auditory experiences are formed and consolidated is unclear. In songbirds, a putative cortical locus is the caudomedial nidopallium (NCM), and one mechanism to facilitate auditory consolidation is 17β-estradiol (E2), which is associated with human speech-language development, and is abundant in both NCM and human temporal cortex. Circulating and NCM E2 levels are dynamic during learning, suggesting E2’s involvement in encoding recent auditory experiences. Therefore, we tested this hypothesis in juvenile male songbirds using a comprehensive assessment of neuroanatomy, behavior, and neurophysiology. First, we found that brain aromatase expression, and thus the capacity to synthesize neuroestrogens, remains high in the auditory cortex throughout development. Further, while systemic estrogen synthesis blockade suppressed juvenile song production, neither systemic nor unilateral E2 synthesis inhibition in NCM disrupted eventual song imitation. Surprisingly, early life neuroestrogen synthesis blockade in NCM enhanced the neural representations of both the birds’ own song and the tutor song in NCM and a downstream sensorimotor region, HVC, respectively. Taken together, these findings indicate that E2 plays a multifaceted role during development, and that, contrary to prediction, tutor song memorization is unimpaired by unilateral estrogen synthesis blockade in the auditory cortex.
Collapse
|
15
|
Abstract
Estrogens are critical in driving sex-typical social behaviours that are ethologically relevant in mammals. This is due to both production of local estrogens and signaling by these ligands, particularly in an interconnected set of nuclei called the social behavioural network (SBN). The SBN is a sexually dimorphic network studied predominantly in rodents that is thought to underlie the display of social behaviour in mammals. Signalling by the predominant endogenous estrogen, 17β-estradiol, can be either via the classical genomic or non-classical rapid pathway. In the classical genomic pathway, 17β-estradiol binds the intracellular estrogen receptors (ER) α and β which act as ligand-dependent transcription factors to regulate transcription. In the non-genomic pathway, 17β-estradiol binds a putative plasma membrane ER (mER) such as GPR30/GPER1 to rapidly signal via kinases or calcium flux. Though GPER1's role in sexual dimorphism has been explored to a greater extent in cardiovascular physiology, less is known about its role in the brain. In the last decade, activation of GPER1 has been shown to be important for lordosis and social cognition in females. In this review we will focus on several mechanisms that may contribute to sexually dimorphic behaviors including the colocalization of these estrogen receptors in the SBN, interplay between the signaling pathways activated by these different estrogen receptors, and the role of these receptors in development and the maintenance of the SBN, all of which remain underexplored.
Collapse
|
16
|
An Acoustic Password Enhances Auditory Learning in Juvenile Brood Parasitic Cowbirds. Curr Biol 2019; 29:4045-4051.e3. [DOI: 10.1016/j.cub.2019.09.046] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 09/14/2019] [Accepted: 09/17/2019] [Indexed: 12/26/2022]
|
17
|
Balthazart J. New concepts in the study of the sexual differentiation and activation of reproductive behavior, a personal view. Front Neuroendocrinol 2019; 55:100785. [PMID: 31430485 PMCID: PMC6858558 DOI: 10.1016/j.yfrne.2019.100785] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 08/13/2019] [Accepted: 08/16/2019] [Indexed: 01/09/2023]
Abstract
Since the beginning of this century, research methods in neuroendocrinology enjoyed extensive refinements and innovation. These advances allowed collection of huge amounts of new data and the development of new ideas but have not led to this point, with a few exceptions, to the development of new conceptual advances. Conceptual advances that took place largely resulted from the ingenious insights of several investigators. I summarize here some of these new ideas as they relate to the sexual differentiation and activation by sex steroids of reproductive behaviors and I discuss how our research contributed to the general picture. This selective review clearly demonstrates the importance of conceptual changes that have taken place in this field since beginning of the 21st century. The recent technological advances suggest that our understanding of hormones, brain and behavior relationships will continue to improve in a very fundamental manner over the coming years.
Collapse
|
18
|
Roque C, Mendes-Oliveira J, Duarte-Chendo C, Baltazar G. The role of G protein-coupled estrogen receptor 1 on neurological disorders. Front Neuroendocrinol 2019; 55:100786. [PMID: 31513775 DOI: 10.1016/j.yfrne.2019.100786] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 09/02/2019] [Accepted: 09/07/2019] [Indexed: 02/06/2023]
Abstract
G protein-coupled estrogen receptor 1 (GPER) is a membrane-associated estrogen receptor (ER) associated with rapid estrogen-mediated effects. Over recent years GPER emerged has a potential therapeutic target to induce neuroprotection, avoiding the side effects elicited by the activation of classical ERs. The putative neuroprotection triggered by GPER selective activation was demonstrated in mood disorders, Alzheimer's disease or Parkinson's disease of male and female in vivo rodent models. In others, like ischemic stroke, the results are contradictory and currently there is no consensus on the role played by this receptor. However, it seems clear that sex is a biological variable that may impact the results. The major objective of this review is to provide an overview about the physiological effects of GPER in the brain and its putative contribution in neurodegenerative disorders, discussing the data about the signaling pathways involved, as well as, the diverse effects observed.
Collapse
Affiliation(s)
- C Roque
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - J Mendes-Oliveira
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - C Duarte-Chendo
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - G Baltazar
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal; Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal.
| |
Collapse
|
19
|
Mello CV, Kaser T, Buckner AA, Wirthlin M, Lovell PV. Molecular architecture of the zebra finch arcopallium. J Comp Neurol 2019; 527:2512-2556. [PMID: 30919954 DOI: 10.1002/cne.24688] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 03/12/2019] [Accepted: 03/13/2019] [Indexed: 12/23/2022]
Abstract
The arcopallium, a key avian forebrain region, receives inputs from numerous brain areas and is a major source of descending sensory and motor projections. While there is evidence of arcopallial subdivisions, the internal organization or the arcopallium is not well understood. The arcopallium is also considered the avian homologue of mammalian deep cortical layers and/or amygdalar subdivisions, but one-to-one correspondences are controversial. Here we present a molecular characterization of the arcopallium in the zebra finch, a passerine songbird species and a major model organism for vocal learning studies. Based on in situ hybridization for arcopallial-expressed transcripts (AQP1, C1QL3, CBLN2, CNTN4, CYP19A1, ESR1/2, FEZF2, MGP, NECAB2, PCP4, PVALB, SCN3B, SCUBE1, ZBTB20, and others) in comparison with cytoarchitectonic features, we have defined 20 distinct regions that can be grouped into six major domains (anterior, posterior, dorsal, ventral, medial, and intermediate arcopallium, respectively; AA, AP, AD, AV, AM, and AI). The data also help to establish the arcopallium as primarily pallial, support a unique topography of the arcopallium in passerines, highlight similarities between the vocal robust nucleus of the arcopallium (RA) and AI, and provide insights into the similarities and differences of cortical and amygdalar regions between birds and mammals. We also propose the use of AMV (instead of nucleus taenia/TnA), AMD, AD, and AI as initial steps toward a universal arcopallial nomenclature. Besides clarifying the internal organization of the arcopallium, the data provide a coherent basis for further functional and comparative studies of this complex avian brain region.
Collapse
Affiliation(s)
- Claudio V Mello
- Department of Behavioral Neuroscience, OHSU, Portland, Oregon
| | - Taylor Kaser
- Department of Behavioral Neuroscience, OHSU, Portland, Oregon
| | - Alexa A Buckner
- Department of Behavioral Neuroscience, OHSU, Portland, Oregon
| | - Morgan Wirthlin
- Department of Behavioral Neuroscience, OHSU, Portland, Oregon
| | - Peter V Lovell
- Department of Behavioral Neuroscience, OHSU, Portland, Oregon
| |
Collapse
|
20
|
Van der Linden A, Balthazart J. Rapid changes in auditory processing in songbirds following acute aromatase inhibition as assessed by fMRI. Horm Behav 2018; 104:63-76. [PMID: 29605635 DOI: 10.1016/j.yhbeh.2018.03.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 03/15/2018] [Accepted: 03/29/2018] [Indexed: 12/11/2022]
Abstract
Contribution to Special Issue on Fast effects of steroids. This review introduces functional MRI (fMRI) as an outstanding tool to assess rapid effects of sex steroids on auditory processing in seasonal songbirds. We emphasize specific advantages of this method as compared to other more conventional and invasive methods used for this purpose and summarize an exemplary auditory fMRI study performed on male starlings exposed to different types of starling song before and immediately after the inhibition of aromatase activity by an i.p. injection of Vorozole™. We describe how most challenges that relate to the necessity to anesthetize subjects and minimize image- and sound-artifacts can be overcome in order to obtain a voxel-based 3D-representation of changes in auditory brain activity to various sound stimuli before and immediately after a pharmacologically-induced depletion of endogenous estrogens. Analysis of the fMRI data by assumption-free statistical methods identified fast specific changes in activity in the auditory brain regions that were stimulus-specific, varying over different seasons, and in several instances lateralized to the left side of the brain. This set of results illustrates the unique features of fMRI that provides opportunities to localize and quantify the brain responses to rapid changes in hormonal status. fMRI offers a new image-guided research strategy in which the spatio-temporal profile of fast neuromodulations can be identified and linked to specific behavioral inputs or outputs. This approach can also be combined with more localized invasive methods to investigate the mechanisms underlying the observed neural changes.
Collapse
Affiliation(s)
- Annemie Van der Linden
- Bio-Imaging Laboratory, University of Antwerp, CDE, Universiteitsplein 1, B-2610 Antwerp, Belgium.
| | - Jacques Balthazart
- Research Group in Behavioral Neuroendocrinology, GIGA Neurosciences, University of Liège, B-4000 Liège, Belgium
| |
Collapse
|
21
|
Vahaba DM, Remage-Healey L. Neuroestrogens rapidly shape auditory circuits to support communication learning and perception: Evidence from songbirds. Horm Behav 2018; 104:77-87. [PMID: 29555375 PMCID: PMC7025793 DOI: 10.1016/j.yhbeh.2018.03.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 03/15/2018] [Accepted: 03/15/2018] [Indexed: 12/19/2022]
Abstract
Contribution to Special Issue on Fast effects of steroids. Steroid hormones, such as estrogens, were once thought to be exclusively synthesized in the ovaries and enact transcriptional changes over the course of hours to days. However, estrogens are also locally synthesized within neural circuits, wherein they rapidly (within minutes) modulate a range of behaviors, including spatial cognition and communication. Here, we review the role of brain-derived estrogens (neuroestrogens) as modulators within sensory circuits in songbirds. We first present songbirds as an attractive model to explore how neuroestrogens in auditory cortex modulate vocal communication processing and learning. Further, we examine how estrogens may enhance vocal learning and auditory memory consolidation in sensory cortex via mechanisms similar to those found in the hippocampus of rodents and birds. Finally, we propose future directions for investigation, including: 1) the extent of developmental and hemispheric shifts in aromatase and membrane estrogen receptor expression in auditory circuits; 2) how neuroestrogens may impact inhibitory interneurons to regulate audition and critical period plasticity; and, 3) dendritic spine plasticity as a candidate mechanism mediating estrogen-dependent effects on vocal learning. Together, this perspective of estrogens as neuromodulators in the vertebrate brain has opened new avenues in understanding sensory plasticity, including how hormones can act on communication circuits to influence behaviors in other vocal learning species, such as in language acquisition and speech processing in humans.
Collapse
Affiliation(s)
- Daniel M Vahaba
- Neuroscience and Behavior Program, Center for Neuroendocrine Studies, University of Massachusetts Amherst, Amherst, MA 01003, United States
| | - Luke Remage-Healey
- Neuroscience and Behavior Program, Center for Neuroendocrine Studies, University of Massachusetts Amherst, Amherst, MA 01003, United States.
| |
Collapse
|
22
|
Tehrani MA, Veney SL. Intracranial administration of the G-protein coupled estrogen receptor 1 antagonist, G-15, selectively affects dimorphic characteristics of the song system in zebra finches (Taeniopygia guttata). Dev Neurobiol 2018; 78:775-784. [PMID: 29675990 DOI: 10.1002/dneu.22599] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 03/23/2018] [Accepted: 04/13/2018] [Indexed: 12/18/2022]
Abstract
In zebra finches (Taeniopygia guttata), estradiol contributes to sexual differentiation of the song system but the receptor(s) underlying its action are not exactly known. Whereas mRNA and/or protein for nuclear estrogen receptors ERα and ERβ are minimally expressed, G-protein coupled estrogen receptor 1 (GPER1) has a much greater distribution within neural song regions and the syrinx. At present, however, it is unclear if this receptor contributes to dimorphic development of the song system. To test this, the specific GPER1 antagonist, G-15, was intracranially administered to zebra finches for 25 days beginning on the day of hatching. In males, G-15 significantly decreased nuclear volumes of HVC and Area X. It also decreased the muscle fiber sizes of ventralis and dorsalis in the syrinx. In females, G-15 had no effect on measures within the brain, but did increase fiber sizes of both muscle groups. In sum, these data suggest that GPER1 can have selective and opposing influences on dimorphisms within the song system, but since not all features were affected additional factors are likely involved. © 2018 Wiley Periodicals, Inc. Develop Neurobiol, 2018.
Collapse
Affiliation(s)
| | - Sean L Veney
- Department of Biological Sciences, University Esplanade, Kent, Ohio, 44242
- School of Biomedical Sciences, Kent State University, Kent, Ohio, 44242
| |
Collapse
|
23
|
Krentzel AA, Macedo-Lima M, Ikeda MZ, Remage-Healey L. A Membrane G-Protein-Coupled Estrogen Receptor Is Necessary but Not Sufficient for Sex Differences in Zebra Finch Auditory Coding. Endocrinology 2018; 159:1360-1376. [PMID: 29351614 PMCID: PMC5839738 DOI: 10.1210/en.2017-03102] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 01/11/2018] [Indexed: 12/24/2022]
Abstract
Estradiol acts as a neuromodulator in brain regions important for cognition and sensory processing. Estradiol also shapes brain sex differences but rarely have these concepts been considered simultaneously. In male and female songbirds, estradiol rapidly increases within the auditory forebrain during song exposure and enhances local auditory processing. We tested whether G-protein-coupled estrogen receptor 1 (GPER1), a membrane-bound estrogen receptor, is necessary and sufficient for neuroestrogen regulation of forebrain auditory processing in male and female zebra finches (Taeniopygia guttata). At baseline, we observed that females had elevated single-neuron responses to songs vs males. In males, narrow-spiking (NS) neurons were more responsive to conspecific songs than broad-spiking (BS) neurons, yet cell types were similarly auditory responsive in females. Following acute inactivation of GPER1, auditory responsiveness and coding were suppressed in male NS yet unchanged in female NS and in BS of both sexes. By contrast, GPER1 activation did not mimic previously established estradiol actions in either sex. Lastly, the expression of GPER1 and its coexpression with an inhibitory neuron marker were similarly abundant in males and females, confirming anatomical similarity in the auditory forebrain. In this study, we found: (1) a role for GPER1 in regulating sensory processing and (2) a sex difference in auditory processing of complex vocalizations in a cell type-specific manner. These results reveal sex specificity of a rapid estrogen signaling mechanism in which neuromodulation accounts and/or compensates for brain sex differences, dependent on cell type, in brain regions that are anatomically similar in both sexes.
Collapse
Affiliation(s)
- Amanda A. Krentzel
- Neuroscience and Behavior Program, University of Massachusetts Amherst, Amherst, Massachusetts 01002
- Correspondence: Amanda A. Krentzel, PhD, David Clark Laboratories, North Carolina State University, 100 Eugene Brooks Avenue, Raleigh, North Carolina 27607. E-mail:
| | - Matheus Macedo-Lima
- Neuroscience and Behavior Program, University of Massachusetts Amherst, Amherst, Massachusetts 01002
- Coordenação de Aperfeiçoamento de Pessoal de Nível Superior Foundation, Ministry of Education of Brazil, DF 70040-020 Brasília, Brazil
| | - Maaya Z. Ikeda
- Psychological and Brain Sciences, University of Massachusetts Amherst, Amherst, Massachusetts 01002
| | - Luke Remage-Healey
- Neuroscience and Behavior Program, University of Massachusetts Amherst, Amherst, Massachusetts 01002
- Psychological and Brain Sciences, University of Massachusetts Amherst, Amherst, Massachusetts 01002
- Center for Neuroendocrine Studies, University of Massachusetts Amherst, Amherst, Massachusetts 01002
| |
Collapse
|
24
|
Hadjimarkou MM, Vasudevan N. GPER1/GPR30 in the brain: Crosstalk with classical estrogen receptors and implications for behavior. J Steroid Biochem Mol Biol 2018; 176:57-64. [PMID: 28465157 DOI: 10.1016/j.jsbmb.2017.04.012] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 04/16/2017] [Accepted: 04/23/2017] [Indexed: 12/31/2022]
Abstract
The GPER1/GPR30 is a membrane estrogen receptor (mER) that binds 17β-estradiol (17β-E) with high affinity and is thought to play a role in cancer progression and cardiovascular health. Though widespread in the central nervous system, less is known about this receptor's function in the brain. GPER1 has been shown to activate kinase cascades and calcium flux within cells rapidly, thus fitting in with the idea of being a mER that mediates non-genomic signaling by estrogens. Signaling from GPER1 has been shown to improve spatial memory, possibly via release of neurotransmitters and generation of new spines on neurons in the hippocampus. In addition, GPER1 activation contributes to behaviors that denote anxiety and to social behaviors such as social memory and lordosis behavior in mice. In the male hippocampus, GPER1 activation has also been shown to phosphorylate the classical intracellular estrogen receptor (ER)α, suggesting that crosstalk with ERα is important in the display of these behaviors, many of which are absent in ERα-null mice. In this review, we present a number of categories of such crosstalk, using examples from literature. The function of GPER1 as an ERα collaborator or as a mER in different tissues is relevant to understanding both normal physiology and abnormal pathology, mediated by estrogen signaling.
Collapse
Affiliation(s)
- Maria M Hadjimarkou
- School of Humanities and Social Sciences, University of Nicosia, 1700 Nicosia, Cyprus.
| | - Nandini Vasudevan
- School of Biological Sciences, University of Reading, Reading, United Kingdom RG6 6AS, United Kingdom.
| |
Collapse
|
25
|
Merritt JR, Davis MT, Jalabert C, Libecap TJ, Williams DR, Soma KK, Maney DL. Rapid effects of estradiol on aggression depend on genotype in a species with an estrogen receptor polymorphism. Horm Behav 2018; 98:210-218. [PMID: 29277700 PMCID: PMC5832363 DOI: 10.1016/j.yhbeh.2017.11.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 11/01/2017] [Accepted: 11/21/2017] [Indexed: 11/18/2022]
Abstract
The white-throated sparrow (Zonotrichia albicollis) represents a powerful model in behavioral neuroendocrinology because it occurs in two plumage morphs that differ with respect to steroid-dependent social behaviors. Birds of the white-striped (WS) morph engage in more territorial aggression than do birds of the tan-striped (TS) morph, and the TS birds engage in more parenting behavior. This behavioral polymorphism is caused by a chromosomal inversion that has captured many genes, including estrogen receptor alpha (ERα). In this study, we tested the hypothesis that morph differences in aggression might be explained by differential sensitivity to estradiol (E2). We administered E2 non-invasively to non-breeding white-throated sparrows and quantified aggression toward a conspecific 10 min later. E2 administration rapidly increased aggression in WS birds but not TS birds, consistent with our hypothesis that differential sensitivity to E2 may at least partially explain morph differences in aggression. To query the site of E2 action in the brain, we administered E2 and quantified Egr-1 expression in brain regions in which expression of ERα is known to differ between the morphs. E2 treatment decreased Egr-1 immunoreactivity in nucleus taeniae of the amygdala, but this effect did not depend on morph. Overall, our results support a role for differential effects of E2 on aggression in the two morphs, but more research will be needed to determine the neuroanatomical site of action.
Collapse
Affiliation(s)
- Jennifer R Merritt
- Department of Psychology, 36 Eagle Row, Emory University, Atlanta, GA 30322, USA.
| | - Matthew T Davis
- Department of Psychology, 36 Eagle Row, Emory University, Atlanta, GA 30322, USA
| | - Cecilia Jalabert
- Department of Psychology, 2136 West Mall, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Timothy J Libecap
- Department of Psychology, 36 Eagle Row, Emory University, Atlanta, GA 30322, USA
| | - Donald R Williams
- Department of Psychology, 36 Eagle Row, Emory University, Atlanta, GA 30322, USA
| | - Kiran K Soma
- Department of Psychology, 2136 West Mall, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Donna L Maney
- Department of Psychology, 36 Eagle Row, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
26
|
Sensory Coding and Sensitivity to Local Estrogens Shift during Critical Period Milestones in the Auditory Cortex of Male Songbirds. eNeuro 2017; 4:eN-NWR-0317-17. [PMID: 29255797 PMCID: PMC5732019 DOI: 10.1523/eneuro.0317-17.2017] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 10/25/2017] [Accepted: 10/26/2017] [Indexed: 11/21/2022] Open
Abstract
Vocal learning occurs during an experience-dependent, age-limited critical period early in development. In songbirds, vocal learning begins when presinging birds acquire an auditory memory of their tutor's song (sensory phase) followed by the onset of vocal production and refinement (sensorimotor phase). Hearing is necessary throughout the vocal learning critical period. One key brain area for songbird auditory processing is the caudomedial nidopallium (NCM), a telencephalic region analogous to mammalian auditory cortex. Despite NCM's established role in auditory processing, it is unclear how the response properties of NCM neurons may shift across development. Moreover, communication processing in NCM is rapidly enhanced by local 17β-estradiol (E2) administration in adult songbirds; however, the function of dynamically fluctuating E2 in NCM during development is unknown. We collected bilateral extracellular recordings in NCM coupled with reverse microdialysis delivery in juvenile male zebra finches (Taeniopygia guttata) across the vocal learning critical period. We found that auditory-evoked activity and coding accuracy were substantially higher in the NCM of sensory-aged animals compared to sensorimotor-aged animals. Further, we observed both age-dependent and lateralized effects of local E2 administration on sensory processing. In sensory-aged subjects, E2 decreased auditory responsiveness across both hemispheres; however, a similar trend was observed in age-matched control subjects. In sensorimotor-aged subjects, E2 dampened auditory responsiveness in left NCM but enhanced auditory responsiveness in right NCM. Our results reveal an age-dependent physiological shift in auditory processing and lateralized E2 sensitivity that each precisely track a key neural "switch point" from purely sensory (pre-singing) to sensorimotor (singing) in developing songbirds.
Collapse
|
27
|
Lampen J, McAuley JD, Chang SE, Wade J. ZENK induction in the zebra finch brain by song: Relationship to hemisphere, rhythm, oestradiol and sex. J Neuroendocrinol 2017; 29:10.1111/jne.12543. [PMID: 28983985 PMCID: PMC6034175 DOI: 10.1111/jne.12543] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 09/29/2017] [Accepted: 10/02/2017] [Indexed: 01/10/2023]
Abstract
Oestradiol is abundant in the zebra finch auditory forebrain and has the capacity to modulate neural responses to auditory stimuli with specificity as a result of both hemisphere and sex. Arrhythmic song induces greater ZENK expression than rhythmic song in the caudomedial nidopallium (NCM), caudomedial mesopallium (CMM) and nucleus taeniae (Tn) of adult zebra finches. The increases in the auditory regions (i.e. NCM and CMM) may result from detection of errors in the arrhythmic song relative to the learned template. In the present study, zebra finches were treated with oestradiol, the aromatase inhibitor fadrozole or a control and then exposed to rhythmic or arrhythmic song to assess the effect of oestradiol availability on neural responses to auditory rhythms. ZENK mRNA was significantly greater in the left hemisphere within the NCM, CMM and Tn. Main effects of sex were detected in both auditory regions, with increased ZENK in males in the NCM and in females in the CMM. In the CMM, an effect of hormone treatment also existed. Although no pairwise comparison was statistically significant, the pattern suggested greater ZENK expression in control compared to both fadrozole- and oestradiol-treated birds. In the NCM, an interaction between sex and hormone treatment suggested that the sex effect was restricted to control animals. An additional interaction in the NCM among sex, stimulus rhythmicity and hemisphere indicated that the strongest effect of laterality was present in males exposed to arrhythmic song. The hormone effects suggest that an optimal level of oestradiol may exist for processing rhythmicity of auditory stimuli. The overall pattern for left lateralisation parallels the left lateralisation of language processing in humans and may suggest that this hemisphere is specialised for processing conspecific vocalisations. The reversed sex differences in the NCM and CMM suggest that males and females differentially rely on components of the auditory forebrain for processing conspecific song.
Collapse
Affiliation(s)
- Jennifer Lampen
- Neuroscience Program, Michigan State University, East Lansing, MI 48824-1101, USA
- Corresponding author. Address: Neuroscience Program, Michigan State University, 293 Farm Lane, Room 108 East Lansing, MI 48824-1101, USA. Tel: +1-517-432-5113; fax: +1-517-432-2744.
| | - J. Devin McAuley
- Neuroscience Program, Michigan State University, East Lansing, MI 48824-1101, USA
- Department of Psychology, Michigan State University, East Lansing, MI 48824-1101, USA
| | - Soo-Eun Chang
- Department of Psychiatry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Juli Wade
- Neuroscience Program, Michigan State University, East Lansing, MI 48824-1101, USA
- Department of Psychology, Michigan State University, East Lansing, MI 48824-1101, USA
| |
Collapse
|
28
|
Bailey DJ, Makeyeva YV, Paitel ER, Pedersen AL, Hon AT, Gunderson JA, Saldanha CJ. Hippocampal Aromatization Modulates Spatial Memory and Characteristics of the Synaptic Membrane in the Male Zebra Finch. Endocrinology 2017; 158:852-859. [PMID: 28324066 PMCID: PMC5460803 DOI: 10.1210/en.2016-1692] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 01/23/2017] [Indexed: 11/19/2022]
Abstract
The estrogen-synthesizing enzyme aromatase is abundant at the synapse in the zebra finch hippocampus (HP), and its inhibition impairs spatial memory function. To more fully test the role of local estradiol (E2) synthesis in memory, the HP of adult male zebra finches was exposed to either control pellets or those containing the aromatase inhibitor 1,4,6-androstatriene-3,17-dione (ATD), ATD and E2, ATD and the G protein-coupled estrogen receptor (GPER) agonist G1, or the antagonist G15 alone. Birds were tested for spatial memory acquisition and performance, and HP levels of the postsynaptic protein PSD95 were measured. ATD-treated birds took longer to reach criterion than control birds, whereas acquisition in ATD+E2 and ATD+G1 birds was indistinguishable from control and ATD treatments. Interestingly, all G15 birds failed to acquire the task. Following a retention interval, ATD birds took the longest to reach the (formerly) baited cup and made the most mistakes. ATD+E2 animals displayed the lowest retention latencies and made fewer mistakes than ATD-treated birds, and ATD+G1 birds did not significantly differ from controls in retention latencies. The amount of PSD95 in the HP was lowest in ATD-treated animals compared with birds with silicone-only-implanted craniotomies, ATD+E2, and ATD+G1 birds, who did not differ in this expression. Thus, spatial memory acquisition and performance appear aromatase and E2 dependent, an effect more reliably revealed after consolidation and/or recall compared to acquisition. E2 may exert this effect via GPERs, resulting in an increase in PSD95 levels that may modify receptor activity or intracellular signaling pathways to increase synaptic strength.
Collapse
Affiliation(s)
| | | | | | - Alyssa L. Pedersen
- Department of Biology
- Center for Behavioral Neuroscience, American University, Washington, DC 20016
| | | | | | - Colin J. Saldanha
- Department of Biology
- Center for Behavioral Neuroscience, American University, Washington, DC 20016
| |
Collapse
|
29
|
London SE. Influences of non-canonical neurosteroid signaling on developing neural circuits. Curr Opin Neurobiol 2016; 40:103-110. [PMID: 27429051 DOI: 10.1016/j.conb.2016.06.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 05/21/2016] [Accepted: 06/22/2016] [Indexed: 12/31/2022]
Abstract
Developing neural circuits are especially susceptible to environmental perturbation. Endocrine signaling systems such as steroids provide a mechanism to encode physiological changes and integrate function across various biological systems including the brain. 'Neurosteroids' are synthesized and act within the brain across development. There is a long history of steroids sculpting developing neural circuits; more recently, evidence has demonstrated how neurosteroids influence the early potential for neural circuits to organize and transmit precise information via non-canonical receptor types.
Collapse
Affiliation(s)
- Sarah E London
- University of Chicago, Psychology, 940 E 57th Street, 125C BPSB, Chicago, IL 60637, United States.
| |
Collapse
|
30
|
Mangiamele LA, Gomez JR, Curtis NJ, Thompson RR. GPER/GPR30, a membrane estrogen receptor, is expressed in the brain and retina of a social fish (Carassius auratus) and colocalizes with isotocin. J Comp Neurol 2016; 525:252-270. [PMID: 27283982 DOI: 10.1002/cne.24056] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 04/01/2016] [Accepted: 06/08/2016] [Indexed: 12/20/2022]
Abstract
Estradiol rapidly (within 30 minutes) influences a variety of sociosexual behaviors in both mammalian and nonmammalian vertebrates, including goldfish, in which it rapidly stimulates approach responses to the visual cues of females. Such rapid neuromodulatory effects are likely mediated via membrane-associated estrogen receptors; however, the localization and distribution of such receptors within the nervous system is not well described. To begin to address this gap, we identified GPER/GPR30, a G-protein-coupled estrogen receptor, in goldfish (Carassius auratus) neural tissue and used reverse-transcription polymerase chain reaction (RT-PCR) and in situ hybridization to test if GPR30 is expressed in the brain regions that might mediate visually guided social behaviors in males. We then used immunohistochemistry to determine whether GPR30 colocalizes with isotocin-producing cells in the preoptic area, a critical node in the highly conserved vertebrate social behavior network. We used quantitative (q)PCR to test whether GPR30 mRNA levels differ in males in breeding vs. nonbreeding condition and in males that were socially interacting with a female vs. a rival male. Our results show that GPR30 is expressed in the retina and in many brain regions that receive input from the retina and/or optic tectum, as well as in a few nodes in the social behavior network, including cell populations that produce isotocin. J. Comp. Neurol. 525:252-270, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Lisa A Mangiamele
- Department of Biological Sciences, Smith College, Northampton, Massachusetts, USA
| | - Julia R Gomez
- Program in Neuroscience, Bowdoin College, Brunswick, Maine, USA
| | - Nancy J Curtis
- Program in Neuroscience, Bowdoin College, Brunswick, Maine, USA
| | - Richmond R Thompson
- Program in Neuroscience, Bowdoin College, Brunswick, Maine, USA.,Department of Psychology, Bowdoin College, Brunswick, Maine, USA
| |
Collapse
|
31
|
Shen M, Shi H. Estradiol and Estrogen Receptor Agonists Oppose Oncogenic Actions of Leptin in HepG2 Cells. PLoS One 2016; 11:e0151455. [PMID: 26982332 PMCID: PMC4794158 DOI: 10.1371/journal.pone.0151455] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 02/28/2016] [Indexed: 11/19/2022] Open
Abstract
Obesity is a significant risk factor for certain cancers, including hepatocellular carcinoma (HCC). Leptin, a hormone secreted by white adipose tissue, precipitates HCC development. Epidemiology data show that men have a much higher incidence of HCC than women, suggesting that estrogens and its receptors may inhibit HCC development and progression. Whether estrogens antagonize oncogenic action of leptin is uncertain. To investigate potential inhibitory effects of estrogens on leptin-induced HCC development, HCC cell line HepG2 cells were treated with leptin in combination with 17 β-estradiol (E2), estrogen receptor-α (ER-α) selective agonist PPT, ER-β selective agonist DPN, or G protein-coupled ER (GPER) selective agonist G-1. Cell number, proliferation, and apoptosis were determined, and leptin- and estrogen-related intracellular signaling pathways were analyzed. HepG2 cells expressed a low level of ER-β mRNA, and leptin treatment increased ER-β expression. E2 suppressed leptin-induced HepG2 cell proliferation and promoted cell apoptosis in a dose-dependent manner. Additionally E2 reversed leptin-induced STAT3 and leptin-suppressed SOCS3, which was mainly achieved by activation of ER-β. E2 also enhanced ERK via activating ER-α and GPER and activated p38/MAPK via activating ER-β. To conclude, E2 and its receptors antagonize the oncogenic actions of leptin in HepG2 cells by inhibiting cell proliferation and stimulating cell apoptosis, which was associated with reversing leptin-induced changes in SOCS3/STAT3 and increasing p38/MAPK by activating ER-β, and increasing ERK by activating ER-α and GPER. Identifying roles of different estrogen receptors would provide comprehensive understanding of estrogenic mechanisms in HCC development and shed light on potential treatment for HCC patients.
Collapse
Affiliation(s)
- Minqian Shen
- Department of Biology, Cell, Molecular, and Structural Biology, Miami University, Oxford, Ohio, United States of America
| | - Haifei Shi
- Department of Biology, Cell, Molecular, and Structural Biology, Miami University, Oxford, Ohio, United States of America
- * E-mail:
| |
Collapse
|
32
|
Brenowitz EA, Remage-Healey L. It takes a seasoned bird to be a good listener: communication between the sexes. Curr Opin Neurobiol 2016; 38:12-7. [PMID: 26820470 DOI: 10.1016/j.conb.2016.01.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 01/06/2016] [Accepted: 01/07/2016] [Indexed: 12/29/2022]
Abstract
Birds commonly use sound for communication between the sexes. In many songbird species, only males sing and there are pronounced sex differences in the neural song control circuits. By contrast, the auditory circuitry is largely similar in males and females. Both sexes learn to recognize vocalizations heard as juveniles and this shapes auditory response selectivity. Mating vocalizations are restricted to the breeding season, when sex steroid levels are elevated. Auditory cells, from the ear to the cortex, are hormone sensitive. Estrogens are synthesized in the brain and can modulate the activity of auditory neurons. In species that breed seasonally, elevated levels of estradiol in females transiently enhance their auditory responses to conspecific vocalizations, resulting in sex differences in audition.
Collapse
Affiliation(s)
- Eliot A Brenowitz
- Department of Psychology, University of Washington, Box 351525, Seattle, WA 98195, USA; Department of Biology, University of Washington, Box 351525, Seattle, WA 98195, USA; Virginia Merrill Bloedel Hearing Research Center, University of Washington, Box 351525, Seattle, WA 98195, USA.
| | - Luke Remage-Healey
- Neuroscience and Behavior Program, Center for Neuroendocrine Studies, Department of Psychological and Brain Sciences, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
33
|
Schlinger BA. Steroids in the Avian Brain: Heterogeneity across Space and Time. JOURNAL OF ORNITHOLOGY 2015; 156:419-424. [PMID: 26924851 PMCID: PMC4767503 DOI: 10.1007/s10336-015-1184-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Sex steroids influence a diversity of neural and behavioral endpoints in birds, including some that have little to do with reproduction per se. Recent advances in neurochemistry and molecular biology further indicate that the avian brain is comprised of a network of unique sex steroid microenvironments. Factors involved in steroid synthesis and metabolism are present in the avian brain with expression levels that vary from region to region and with activities that are, in some cases, subject to regulation over relatively slow or rapid time intervals. Advances in our ability to a) isolate steroids from brain tissue and b) precisely measure their concentrations reveal how steroid levels vary spatially and temporally. A full appreciation of sex steroid effects on the avian brain require not only measures of hormones in blood but also an understanding of the numerous and varied mechanisms whereby the brain creates such a heterogeneous steroidal environment.
Collapse
Affiliation(s)
- Barney A Schlinger
- Department of Integrative Biology and Physiology & Ecology and Evolutionary Biology, UCLA, Los Angeles, CA 90290, USA
| |
Collapse
|
34
|
Vahaba DM, Remage-Healey L. Brain estrogen production and the encoding of recent experience. Curr Opin Behav Sci 2015; 6:148-153. [PMID: 27453921 DOI: 10.1016/j.cobeha.2015.11.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The vertebrate central nervous system integrates cognition and behavior, and it also acts as both a source and target for steroid hormones like estrogens. Recent exploration of brain estrogen production in the context of learning and memory has revealed several common themes. First, across vertebrates, the enzyme that synthesizes estrogens is expressed in brain regions that are characterized by elevated neural plasticity and is also integral to the acquisition, consolidation, and retrieval of recent experiences. Second, measurement and manipulation of estrogens reveal that the period following recent sensory experience is linked to estrogenic signaling in brain circuits underlying both spatial and vocal learning. Local brain estrogen production within cognitive circuits may therefore be important for the acquisition and/or consolidation of memories, and new directions testing these ideas will be discussed.
Collapse
Affiliation(s)
- Daniel M Vahaba
- Neuroscience & Behavior Program, Center for Neuroendocrine Studies, University of Massachusetts, Amherst, MA, USA 01003
| | - Luke Remage-Healey
- Neuroscience & Behavior Program, Center for Neuroendocrine Studies, University of Massachusetts, Amherst, MA, USA 01003
| |
Collapse
|
35
|
Bailey DJ, Saldanha CJ. The importance of neural aromatization in the acquisition, recall, and integration of song and spatial memories in passerines. Horm Behav 2015; 74:116-24. [PMID: 26122300 PMCID: PMC9366902 DOI: 10.1016/j.yhbeh.2015.06.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 06/11/2015] [Accepted: 06/12/2015] [Indexed: 01/13/2023]
Abstract
This article is part of a Special Issue "Estradiol and cognition". In addition to their well-studied and crucial effects on brain development and aging, an increasing number of investigations across vertebrate species indicate that estrogens like 17β-estradiol (E2) have pronounced and rapid effects on cognitive function. The incidence and regulation of the E2-synthesizing enzyme aromatase at the synapse in regions of the brain responsible for learning, memory, social communication and other complex cognitive processes suggest that local E2 production and action affect the acute and chronic activity of individual neurons and circuits. Songbirds in particular are excellent models for the study of this "synaptocrine" hormone provision given that aromatase is abundantly expressed in neuronal soma, dendrites, and at the synapse across many brain regions in both sexes. Additionally, songbirds readily acquire and recall memories in laboratory settings, and their stereotyped behaviors may be manipulated and measured with relative ease. This leads to a rather unparalleled advantage in the use of these animals in studies of the role of neural aromatization in cognition. In this review we describe the results of a number of experiments in songbird species with a focus on the influence of synaptic E2 provision on two cognitive processes: auditory discrimination reliant on the caudomedial nidopallium (NCM), a telencephalic region likely homologous to the auditory cortex in mammals, and spatial memory dependent on the hippocampus. Data from these studies are providing evidence that the local and acute provision of E2 modulates the hormonal, electrical, and cognitive outputs of the vertebrate brain and aids in memory acquisition, retention, and perhaps the confluence of memory systems.
Collapse
Affiliation(s)
- David J Bailey
- Biology, St. Norbert College, De Pere, WI 54115, United States.
| | - Colin J Saldanha
- Department of Biology, American University, Washington, DC 20016, United States; Department of Psychology, American University, Washington, DC 20016, United States.
| |
Collapse
|
36
|
Krentzel AA, Remage-Healey L. Sex differences and rapid estrogen signaling: A look at songbird audition. Front Neuroendocrinol 2015; 38:37-49. [PMID: 25637753 PMCID: PMC4484764 DOI: 10.1016/j.yfrne.2015.01.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 01/13/2015] [Accepted: 01/17/2015] [Indexed: 02/07/2023]
Abstract
The actions of estrogens have been associated with brain differentiation and sexual dimorphism in a wide range of vertebrates. Here we consider the actions of brain-derived 'neuroestrogens' in the forebrain and the accompanying differences and similarities observed between males and females in a variety of species. We summarize recent evidence showing that baseline and fluctuating levels of neuroestrogens within the auditory forebrain of male and female zebra finches are largely similar, and that neuroestrogens enhance auditory representations in both sexes. With a comparative perspective we review evidence that non-genomic mechanisms of neuroestrogen actions are sexually differentiated, and we propose a working model for nonclassical estrogen signaling via the MAPK intracellular signaling cascade in the songbird auditory forebrain that is informed by the way sex differences may be compensated. This view may lead to a more comprehensive understanding of how sex influences estradiol-dependent modulation of sensorimotor representations.
Collapse
Affiliation(s)
- Amanda A Krentzel
- Neuroscience and Behavior Program, Center for Neuroendocrine Studies, Department of Psychological and Brain Sciences, University of Massachusetts Amherst, Amherst, MA 01003, United States
| | - Luke Remage-Healey
- Neuroscience and Behavior Program, Center for Neuroendocrine Studies, Department of Psychological and Brain Sciences, University of Massachusetts Amherst, Amherst, MA 01003, United States.
| |
Collapse
|
37
|
Beach LQ, Wade J. Masculinisation of the zebra finch song system: roles of oestradiol and the Z-chromosome gene tubulin-specific chaperone protein A. J Neuroendocrinol 2015; 27:324-34. [PMID: 25702708 PMCID: PMC4422980 DOI: 10.1111/jne.12267] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 02/10/2015] [Accepted: 02/14/2015] [Indexed: 11/26/2022]
Abstract
Robust sex differences in brain and behaviour exist in zebra finches. Only males sing, and forebrain song control regions are more developed in males. The factors driving these differences are not clear, although numerous experiments have shown that oestradiol (E2 ) administered to female hatchlings partially masculinises brain and behaviour. Recent studies suggest that an increased expression of Z-chromosome genes in males (ZZ; females: ZW) might also play a role. The Z-gene tubulin-specific chaperone A (TBCA) exhibits increased expression in the lateral magnocellular nucleus of the anterior nidopallium (LMAN) of juvenile males compared to females; TBCA+ cells project to the robust nucleus of the arcopallium (RA). In the present study, we investigated the role of TBCA and tested hypotheses with respect to the interactive or additive effects of E2 and TBCA. We first examined whether E2 in hatchling zebra finches modulates TBCA expression in the LMAN. It affected neither the mRNA, nor protein in either sex. We then unilaterally delivered TBCA small interfering (si)RNA to the LMAN of developing females treated with E2 or vehicle and males treated with the aromatase inhibitor, fadrozole, or its control. In both sexes, decreasing TBCA in LMAN reduced RA cell number, cell size and volume. It also decreased LMAN volume in females. Fadrozole in males increased LMAN volume and RA cell size. TBCA siRNA delivered to the LMAN also decreased the projection from this brain region to the RA, as indicated by anterograde tract tracing. The results suggest that TBCA is involved in masculinising the song system. However, because no interactions between the siRNA and hormone manipulations were detected, TBCA does not appear to modulate effects of E2 in the zebra finch song circuit.
Collapse
Affiliation(s)
- L. Q. Beach
- Neuroscience Program, Michigan State University, East Lansing, MI, USA
| | - J. Wade
- Neuroscience Program, Michigan State University, East Lansing, MI, USA
- Departments of Psychology and Zoology, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
38
|
Heimovics SA, Ferris JK, Soma KK. Non-invasive administration of 17β-estradiol rapidly increases aggressive behavior in non-breeding, but not breeding, male song sparrows. Horm Behav 2015; 69:31-8. [PMID: 25483754 DOI: 10.1016/j.yhbeh.2014.11.012] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 11/25/2014] [Accepted: 11/27/2014] [Indexed: 12/19/2022]
Abstract
17β-Estradiol (E2) acts in the brain via genomic and non-genomic mechanisms to influence physiology and behavior. There is seasonal plasticity in the mechanisms by which E2 activates aggression, and non-genomic mechanisms appear to predominate during the non-breeding season. Male song sparrows (Melospiza melodia) display E2-dependent territorial aggression throughout the year. Field studies show that song sparrow aggression during a territorial intrusion is similar in the non-breeding and breeding seasons, but aggression after an intrusion ends differs seasonally. Non-breeding males stop behaving aggressively within minutes whereas breeding males remain aggressive for hours. We hypothesize that this seasonal plasticity in the persistence of aggression relates to seasonal plasticity in E2 signaling. We used a non-invasive route of E2 administration to compare the non-genomic (within 20min) effects of E2 on aggressive behavior in captive non-breeding and breeding season males. E2 rapidly increased barrier contacts (attacks) during an intrusion by 173% in non-breeding season males only. Given that these effects were observed within 20min of E2 administration, they likely occurred via a non-genomic mechanism of action. The present data, taken together with past work, suggest that environmental cues associated with the non-breeding season influence the molecular mechanisms through which E2 influences behavior. In song sparrows, transient expression of aggressive behavior during the non-breeding season is highly adaptive: it minimizes energy expenditure and maximizes the amount of time available for foraging. In all, these data suggest the intriguing possibility that aggression in the non-breeding season may be activated by a non-genomic E2 mechanism due to the fitness benefits associated with rapid and transient expression of aggression.
Collapse
Affiliation(s)
- Sarah A Heimovics
- Department of Biology, University of St. Thomas, St. Paul, MN, USA; Neuroscience Program, University of St. Thomas, St. Paul, MN, USA.
| | - Jennifer K Ferris
- Department of Psychology, University of British Columbia, Vancouver, BC, Canada; Graduate Program in Neuroscience, University of British Columbia, Vancouver, BC, Canada
| | - Kiran K Soma
- Department of Psychology, University of British Columbia, Vancouver, BC, Canada; Department of Zoology, University of British Columbia, Vancouver, BC, Canada; Graduate Program in Neuroscience, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
39
|
Chao A, Paon A, Remage-Healey L. Dynamic variation in forebrain estradiol levels during song learning. Dev Neurobiol 2014; 75:271-86. [PMID: 25205304 DOI: 10.1002/dneu.22228] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 08/18/2014] [Accepted: 09/02/2014] [Indexed: 12/24/2022]
Abstract
Estrogens shape brain circuits during development, and the capacity to synthesize estrogens locally has consequences for both sexual differentiation and the acute modulation of circuits during early learning. A recently optimized method to detect and quantify fluctuations in brain estrogens in vivo provides a direct means to explore how brain estrogen production contributes to both differentiation and neuromodulation during development. Here, we use this method to test the hypothesis that neuroestrogens are sexually differentiated as well as dynamically responsive to song tutoring (via passive video/audio playback) during the period of song learning in juvenile zebra finches. Our results show that baseline neuroestradiol levels in the caudal forebrain do not differ between males and females during an early critical masculinization window. Instead, we observe a prominent difference between males and females in baseline neuroestradiol that emerges during the subadult stage as animals approach sexual maturity. Second, we observe that fluctuating neuroestradiol levels during periods of passive song tutoring exhibit a markedly different profile in juveniles as compared to adults. Specifically, neuroestrogens in the caudal forebrain are elevated following (rather than during) tutor song exposure in both juvenile males and females, suggesting an important role for the early consolidation of tutor song memories. These results further reveal a circadian influence on the fluctuations in local neuroestrogens during sensory/cognitive tasks. Taken together, these findings uncover several unexpected features of brain estrogen synthesis in juvenile animals that may have implications for secondary masculinization as well as the consolidation of recent sensory experiences.
Collapse
Affiliation(s)
- Andrew Chao
- Neuroscience and Behavior Program, Center for Neuroendocrine Studies, Department of Psychological and Brain Sciences, University of Massachusetts, Amherst, Massachusetts, 01003
| | | | | |
Collapse
|
40
|
Schlinger BA, Remage-Healey L, Rensel M. Establishing regional specificity of neuroestrogen action. Gen Comp Endocrinol 2014; 205:235-41. [PMID: 24726987 PMCID: PMC4348095 DOI: 10.1016/j.ygcen.2014.03.043] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Revised: 03/10/2014] [Accepted: 03/25/2014] [Indexed: 01/03/2023]
Abstract
The specificity of estrogen signaling in brain is defined at one level by the types and distributions of receptor molecules that are activated by estrogens. At another level, as our understanding of the neurobiology of the estrogen synthetic enzyme aromatase has grown, questions have emerged as to how neuroactive estrogens reach specific target receptors in functionally relevant concentrations. Here we explore the spatial specificity of neuroestrogen signaling with a focus on studies of songbirds to provide perspective on some as-yet unresolved questions. Studies conducted in both male and female songbirds have helped to clarify these interesting facets of neuroestrogen physiology.
Collapse
Affiliation(s)
- Barney A Schlinger
- Dept. of Integrative Biology and Physiology and the Laboratory of Neuroendocrinology, Brain Research Institute, University of California, Los Angeles, CA, USA.
| | - Luke Remage-Healey
- Neuroscience and Behavior Program, Molecular and Cellular Biology Program, Center for Neuroendocrine Studies, University of Massachusetts, Amherst, MA, USA
| | - Michelle Rensel
- Dept. of Integrative Biology and Physiology and the Laboratory of Neuroendocrinology, Brain Research Institute, University of California, Los Angeles, CA, USA
| |
Collapse
|
41
|
Remage-Healey L, Jeon SD, Joshi NR. Recent evidence for rapid synthesis and action of oestrogens during auditory processing in a songbird. J Neuroendocrinol 2013; 25:1024-31. [PMID: 23746380 PMCID: PMC4153829 DOI: 10.1111/jne.12055] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Revised: 05/13/2013] [Accepted: 06/01/2013] [Indexed: 11/28/2022]
Abstract
It is now clear that oestrogens are not only circulating reproductive hormones, but that they also have neurotransmitter-like properties in a wide range of brain circuits. The view of oestrogens as intrinsic neuromodulators that shape behaviour has been bolstered by a series of recent developments from multiple vertebrate model systems. Here, we review several recent findings from studies of songbirds showing how the identified neural circuits that govern auditory processing and sensorimotor integration are modulated by the local and acute production of oestrogens. First, studies using in vivo microdialysis demonstrate that oestrogens fluctuate in the auditory cortex (30-min time bin resolution) when songbirds are hearing song and interacting with conspecifics. Second, oestrogens rapidly boost the auditory-evoked activity of neurones in the same auditory cortical region, enhancing auditory processing. Third, local pharmacological blockade of oestrogen signalling in this region impairs auditory neuronal responsiveness, as well as behavioural song preferences. Fourth, the rapid actions of oestrogens that occur within the auditory cortex can propagate downstream (trans-synaptically) to sensorimotor circuits to enhance the neural representation of song. Lastly, we present new evidence showing that the receptor for the rapid actions of oestradiol is likely in neuronal membranes, and that traditional nuclear oestrogen receptor agonists do not mimic these rapid actions. Broadly speaking, many of these findings are observed in both males and females, emphasising the fundamental importance of oestrogens in neural circuit function. Together, these and other emergent studies provide support for rapid, brain-derived oestrogen signalling in regulating sensorimotor integration, learning and perception.
Collapse
|
42
|
Srivastava DP, Evans PD. G-protein oestrogen receptor 1: trials and tribulations of a membrane oestrogen receptor. J Neuroendocrinol 2013; 25:1219-30. [PMID: 23822769 DOI: 10.1111/jne.12071] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 06/20/2013] [Accepted: 06/29/2013] [Indexed: 11/29/2022]
Abstract
Oestrogens are now recognised to be able to initiate rapid, fast responses, in addition to their classical, longer-term actions. There is a growing appreciation of the potential implications of this mode of action for oestrogenic signalling in both neuronal and non-neuronal systems. As such, much effort has been made to determine the mechanisms that are critical for transducing these rapid effects into cellular responses. Recently, an orphan G-protein-coupled receptor (GPCR), termed GPR30, was identified as an oestrogen-sensitive receptor in cancer cells. This receptor, now term G-protein oestrogen receptor 1 (GPER1) has been the subject of many investigations, and a role for this receptor in the nervous system is now emerging. In this review, we highlight some of the more recent advances in our understanding of the distribution and subcellular localisation of this receptor in the brain, as well as some of the evidence for the potential role that this receptor may play in the brain. We then discuss some of the controversies surrounding the pharmacology of this receptor, and attempt to reconcile these by suggesting that the 'agonist-specific coupling' model of GPCR function may provide a potential explanation for some of the divergent reports of GPER1 pharmacology.
Collapse
Affiliation(s)
- D P Srivastava
- Department of Neuroscience & Centre for the Cellular Basis of Behaviour, The James Black Centre, Institute of Psychiatry, King's College London, London, UK
| | | |
Collapse
|
43
|
Acharya KD, Veney SL. Sexually dimorphic expression and estradiol mediated up-regulation of a sex-linked ribosomal gene, RPS6, in the zebra finch brain. Dev Neurobiol 2013; 73:599-608. [PMID: 23554148 DOI: 10.1002/dneu.22085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Revised: 03/12/2013] [Accepted: 03/26/2013] [Indexed: 12/24/2022]
Abstract
Sex-linked genes are considered to be a major contributor to neural sex differences in zebra finches. While several candidates have been identified, additional ones are continuously being discovered. Here we report on a novel Z-linked ribosomal gene (rpS6) that is enhanced in the male brain as compared to the female's throughout life. In both sexes, expression of rpS6 is highest at P3 and P8 (just before the onset of morphologically detectable sex differences), decreases around P15, and then remains decreased through adulthood. Analysis of rpS6 mRNA revealed widespread distribution throughout the brain. However, within song regions HVC and RA, mRNA containing cells were greater in males as compared to females. Hormones are also involved in the development of neural dimorphisms, so we additionally investigated whether rpS6 might interact with estradiol (E2 ). An up-regulation of rpS6 gene was observed in both sexes following treatment with E2 and the effect was approximately twice as large in males as compared with females. These data suggest that rpS6 may be involved in sexual differentiation of the zebra finch brain, and that the effect is facilitated by E2 .
Collapse
Affiliation(s)
- Kalpana D Acharya
- School of Biomedical Sciences, Kent State University, Kent, OH 44242, USA
| | | |
Collapse
|
44
|
Abstract
Sex steroids modulate vertebrate sensory processing, but the impact of circulating hormone levels on forebrain function remains unclear. We tested the hypothesis that circulating sex steroids modulate single-unit responses in the avian telencephalic auditory nucleus, field L. We mimicked breeding or nonbreeding conditions by manipulating plasma 17β-estradiol levels in wild-caught female Gambel's white-crowned sparrows (Zonotrichia leucophrys gambelii). Extracellular responses of single neurons to tones and conspecific songs presented over a range of intensities revealed that estradiol selectively enhanced auditory function in cells that exhibited monotonic rate level functions to pure tones. In these cells, estradiol treatment increased spontaneous and maximum evoked firing rates, increased pure tone response strengths and sensitivity, and expanded the range of intensities over which conspecific song stimuli elicited significant responses. Estradiol did not significantly alter the sensitivity or dynamic ranges of cells that exhibited non-monotonic rate level functions. Notably, there was a robust correlation between plasma estradiol concentrations in individual birds and physiological response properties in monotonic, but not non-monotonic neurons. These findings demonstrate that functionally distinct classes of anatomically overlapping forebrain neurons are differentially regulated by sex steroid hormones in a dose-dependent manner.
Collapse
|
45
|
Cornil CA, Ball GF, Balthazart J. Rapid control of male typical behaviors by brain-derived estrogens. Front Neuroendocrinol 2012; 33:425-46. [PMID: 22983088 PMCID: PMC3496013 DOI: 10.1016/j.yfrne.2012.08.003] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Revised: 08/13/2012] [Accepted: 08/17/2012] [Indexed: 01/01/2023]
Abstract
Beside their genomic mode of action, estrogens also activate a variety of cellular signaling pathways through non-genomic mechanisms. Until recently, little was known regarding the functional significance of such actions in males and the mechanisms that control local estrogen concentration with a spatial and time resolution compatible with these non-genomic actions had rarely been examined. Here, we review evidence that estrogens rapidly modulate a variety of behaviors in male vertebrates. Then, we present in vitro work supporting the existence of a control mechanism of local brain estrogen synthesis by aromatase along with in vivo evidence that rapid changes in aromatase activity also occur in a region-specific manner in response to changes in the social or environmental context. Finally, we suggest that the brain estrogen provision may also play a significant role in females. Together these data bolster the hypothesis that brain-derived estrogens should be considered as neuromodulators.
Collapse
Affiliation(s)
- Charlotte A Cornil
- GIGA Neurosciences, Research Group in Behavioral Neuroendocrinology, University of Liège, Liège, Belgium.
| | | | | |
Collapse
|
46
|
Changing neuroestrogens within the auditory forebrain rapidly transform stimulus selectivity in a downstream sensorimotor nucleus. J Neurosci 2012; 32:8231-41. [PMID: 22699904 DOI: 10.1523/jneurosci.1114-12.2012] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The activity of sensory circuits is shaped by neuromodulators, which can have downstream consequences for both sensorimotor integration and behavioral output. Recent evidence indicates that brain-derived estrogens ("neuroestrogens") can act as local circuit modulators in the songbird auditory forebrain. Specifically, neuroestrogens fluctuate in the auditory caudomedial nidopallium (NCM) during social interactions and in response to song stimuli. Within minutes of elevation, neuroestrogens also enhance auditory response properties of NCM neurons, and acute blockade of estrogen production in NCM disrupts behavioral song preferences. Here, we test the hypothesis that fluctuating neuroestrogens within NCM influence stimulus selectivity in a downstream sensorimotor nucleus (HVC, used as a proper name) that receives indirect auditory input from NCM. Dual extracellular recordings coupled with retrodialysis delivery show that song selectivity in HVC is rapidly enhanced by increasing neuroestrogens in NCM in adult males. Conversely, inhibiting neuroestrogen production in NCM causes a rapid decline in song selectivity in HVC, demonstrating the endogenous nature of this modulatory network. In contrast, HVC selectivity is unaffected by neuroestrogen delivery to either nearby caudomedial mesopallium or into HVC itself, indicating that neuroestrogen actions are restricted to NCM. In juvenile males, identical neuroestrogen treatment in NCM also does not alter HVC selectivity, consistent with a developmental maturation of the auditory network. Lastly, the rapid actions of estrogens leading to enhanced HVC selectivity appear to be mediated by membrane-bound receptors in NCM. These findings indicate that steroid-dependent modulation of sensory processing is not locally restricted and can be transmitted transynaptically to influence downstream sensorimotor and premotor targets.
Collapse
|
47
|
Barton M. Position paper: The membrane estrogen receptor GPER--Clues and questions. Steroids 2012; 77:935-42. [PMID: 22521564 DOI: 10.1016/j.steroids.2012.04.001] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Revised: 03/13/2012] [Accepted: 04/01/2012] [Indexed: 12/25/2022]
Abstract
Rapid signaling of estrogen involves membrane estrogen receptors (ERs), including membrane subpopulations of ERα and ERβ. In the mid-1990s, several laboratories independently reported the cloning of an orphan G protein-coupled receptor from vascular and cancer cells that was named GPR30. Research published between 2000 and 2005 provided evidence that GPR30 binds and signals via estrogen indicating that this intracellular receptor is involved in rapid, non-genomic estrogen signaling. The receptor has since been designated as the G protein-coupled estrogen receptor (GPER) by the International Union of Pharmacology. The availability of genetic tools such as different lines of GPER knock-out mice, as well as GPER-selective agonists and antagonists has advanced our understanding, but also added some confusion about the new function of this receptor. GPER not only binds estrogens but also other substances, including SERMs, SERDs, and environmental ER activators (endocrine disruptors; xenoestrogens) and also interacts with other proteins. This article represents a summary of a lecture given at the 7(th) International Meeting on Rapid Responses to Steroid Hormones in September 2011 in Axos, Crete, and reviews the current knowledge and questions about GPER-dependent signaling and function. Controversies that have complicated our understanding of GPER, including interactions with human ERα-36 and aldosterone as a potential ligand, will also be discussed.
Collapse
Affiliation(s)
- Matthias Barton
- Molecular Internal Medicine, University of Zurich, LTK Y44 G22, Winterthurerstrasse 190, 8057 Zürich, Switzerland.
| |
Collapse
|