1
|
Noor S, Sun MS, Pasmay AA, Pritha AN, Ruffaner-Hanson CD, Nysus MV, Jimenez DC, Murphy M, Savage DD, Valenzuela CF, Milligan ED. Prenatal alcohol exposure promotes NLRP3 inflammasome-dependent immune actions following morphine treatment and paradoxically prolongs nerve injury-induced pathological pain in female mice. ALCOHOL, CLINICAL & EXPERIMENTAL RESEARCH 2023; 47:2262-2277. [PMID: 38151779 PMCID: PMC10764094 DOI: 10.1111/acer.15214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/23/2023] [Accepted: 10/18/2023] [Indexed: 12/29/2023]
Abstract
BACKGROUND Neuroimmune dysregulation from prenatal alcohol exposure (PAE) may contribute to neurological deficits associated with fetal alcohol spectrum disorders (FASD). PAE is a risk factor for developing peripheral immune and spinal glial sensitization and release of the proinflammatory cytokine IL-1β, which lead to neuropathic pain (allodynia) from minor nerve injury. Although morphine acts on μ-opioid receptors, it also activates immune receptors, TLR4, and the NLRP3 inflammasome that induces IL-1β. We hypothesized that PAE induces NLRP3 sensitization by morphine following nerve injury in adult mice. METHODS We used an established moderate PAE paradigm, in which adult PAE and non-PAE control female mice were exposed to a minor sciatic nerve injury, and subsequent allodynia was measured using the von Frey fiber test. In control mice with standard sciatic damage or PAE mice with minor sciatic damage, the effects of the NLRP3 inhibitor, MCC950, were examined during chronic allodynia. Additionally, minor nerve-injured mice were treated with morphine, with or without MCC950. In vitro studies examined the TLR4-NLRP3-dependent proinflammatory response of peripheral macrophages to morphine and/or lipopolysaccharide, with or without MCC950. RESULTS Mice with standard sciatic damage or PAE mice with minor sciatic damage developed robust allodynia. Blocking NLRP3 activation fully reversed allodynia in both control and PAE mice. Morphine paradoxically prolonged allodynia in PAE mice, while control mice with minor nerve injury remained stably non-allodynic. Allodynia resolved sooner in nerve-injured PAE mice without morphine treatment than in morphine-treated mice. MCC950 treatment significantly shortened allodynia in morphine-treated PAE mice. Morphine potentiated IL-1β release from TLR4-activated PAE immune cells, while MCC950 treatment greatly reduced it. CONCLUSIONS In female mice, PAE prolongs allodynia following morphine treatment through NLRP3 activation. TLR4-activated PAE immune cells showed enhanced IL-1β release with morphine via NLRP3 actions. Similar studies are needed to examine the adverse impact of morphine in males with PAE. These results are predictive of adverse responses to opioid pain therapeutics in individuals with FASD.
Collapse
Affiliation(s)
- Shahani Noor
- Department of Neurosciences, School of Medicine, University of New Mexico, Albuquerque, New Mexico, USA
| | - Melody S Sun
- Department of Neurosciences, School of Medicine, University of New Mexico, Albuquerque, New Mexico, USA
| | - Andrea A Pasmay
- Department of Neurosciences, School of Medicine, University of New Mexico, Albuquerque, New Mexico, USA
| | - Ariana N Pritha
- Department of Neurosciences, School of Medicine, University of New Mexico, Albuquerque, New Mexico, USA
| | | | - Monique V Nysus
- Department of Neurosciences, School of Medicine, University of New Mexico, Albuquerque, New Mexico, USA
| | - Diane C Jimenez
- Department of Neurosciences, School of Medicine, University of New Mexico, Albuquerque, New Mexico, USA
| | - Minerva Murphy
- Department of Neurosciences, School of Medicine, University of New Mexico, Albuquerque, New Mexico, USA
| | - Daniel D Savage
- Department of Neurosciences, School of Medicine, University of New Mexico, Albuquerque, New Mexico, USA
| | - C Fernando Valenzuela
- Department of Neurosciences, School of Medicine, University of New Mexico, Albuquerque, New Mexico, USA
| | - Erin D Milligan
- Department of Neurosciences, School of Medicine, University of New Mexico, Albuquerque, New Mexico, USA
| |
Collapse
|
2
|
Garcia-Baos A, Pastor A, Gallego-Landin I, de la Torre R, Sanz F, Valverde O. The role of PPAR-γ in memory deficits induced by prenatal and lactation alcohol exposure in mice. Mol Psychiatry 2023; 28:3373-3383. [PMID: 37491462 DOI: 10.1038/s41380-023-02191-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 07/11/2023] [Accepted: 07/13/2023] [Indexed: 07/27/2023]
Abstract
Patients diagnosed with fetal alcohol spectrum disorder (FASD) show persistent cognitive disabilities, including memory deficits. However, the neurobiological substrates underlying these deficits remain unclear. Here, we show that prenatal and lactation alcohol exposure (PLAE) in mice induces FASD-like memory impairments. This is accompanied by a reduction of N-acylethanolamines (NAEs) and peroxisome proliferator-activated receptor gamma (PPAR-γ) in the hippocampus specifically in a childhood-like period (at post-natal day (PD) 25). To determine their role in memory deficits, two pharmacological approaches were performed during this specific period of early life. Thus, memory performance was tested after the repeated administration (from PD25 to PD34) of: i) URB597, to increase NAEs, with GW9662, a PPAR-γ antagonist; ii) pioglitazone, a PPAR-γ agonist. We observed that URB597 suppresses PLAE-induced memory deficits through a PPAR-γ dependent mechanism, since its effects are prevented by GW9662. Direct PPAR-γ activation, using pioglitazone, also ameliorates memory impairments. Lastly, to further investigate the region and cellular specificity, we demonstrate that an early overexpression of PPAR-γ, by means of a viral vector, in hippocampal astrocytes mitigates memory deficits induced by PLAE. Together, our data reveal that disruptions of PPAR-γ signaling during neurodevelopment contribute to PLAE-induced memory dysfunction. In turn, PPAR-γ activation during a childhood-like period is a promising therapeutic approach for memory deficits in the context of early alcohol exposure. Thus, these findings contribute to the gaining insight into the mechanisms that might underlie memory impairments in FASD patients.
Collapse
Affiliation(s)
- Alba Garcia-Baos
- Neurobiology of Behavior Research Group (GReNeC-NeuroBio), Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
- Neuroscience Research Program, IMIM-Hospital del Mar Research Institute, Barcelona, Spain
| | - Antoni Pastor
- Neuroscience Research Program, IMIM-Hospital del Mar Research Institute, Barcelona, Spain
| | - Ines Gallego-Landin
- Neurobiology of Behavior Research Group (GReNeC-NeuroBio), Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Rafael de la Torre
- Neurobiology of Behavior Research Group (GReNeC-NeuroBio), Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
- Neuroscience Research Program, IMIM-Hospital del Mar Research Institute, Barcelona, Spain
| | - Ferran Sanz
- Research Program on Biomedical Informatics (GRIB), IMIM-Hospital del Mar Research Institute, Universitat Pompeu Fabra, Barcelona, Spain
| | - Olga Valverde
- Neurobiology of Behavior Research Group (GReNeC-NeuroBio), Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain.
- Neuroscience Research Program, IMIM-Hospital del Mar Research Institute, Barcelona, Spain.
| |
Collapse
|
3
|
Walter KR, Ricketts DK, Presswood BH, Smith SM, Mooney SM. Prenatal alcohol exposure causes persistent microglial activation and age- and sex- specific effects on cognition and metabolic outcomes in an Alzheimer's Disease mouse model. THE AMERICAN JOURNAL OF DRUG AND ALCOHOL ABUSE 2023; 49:302-320. [PMID: 36194703 PMCID: PMC11040461 DOI: 10.1080/00952990.2022.2119571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 08/22/2022] [Accepted: 08/28/2022] [Indexed: 11/06/2022]
Abstract
Background: Prenatal alcohol exposure (PAE) causes behavioral deficits and increases risk of metabolic diseases. Alzheimer's Disease (AD) is a neurodegenerative disease that has a higher risk in adults with metabolic diseases. Both present with persistent neuroinflammation.Objectives: We tested whether PAE exacerbates AD-related cognitive decline in a mouse model (3xTg-AD; presenilin/amyloid precursor protein/tau), and assessed associations among cognition, metabolic impairment, and microglial reactivity.Methods: Alcohol-exposed (ALC) pregnant 3xTg-AD mice received 3 g/kg alcohol from embryonic day 8.5-17.5. We evaluated recognition memory and associative memory (fear conditioning) in 8-10 males and females per group at 3 months of age (3mo), 7mo, and 11mo, then assessed glucose tolerance, body composition, and hippocampal microglial activation at 12mo.Results: ALC females had higher body weights than controls from 5mo (p < .0001). Controls showed improved recognition memory at 11mo compared with 3mo (p = .007); this was not seen in ALC mice. Older animals froze more during fear conditioning than younger, and ALC mice were hyper-responsive to the fear-related cue (p = .017). Fasting blood glucose was lower in ALC males and higher in ALC females than controls. Positive associations occurred between glucose and fear-related context (p = .04) and adiposity and fear-related cue (p = .0002) in ALC animals. Hippocampal microglial activation was higher in ALC than controls (p < .0001); this trended to correlate with recognition memory.Conclusions: ALC animals showed age-related cognitive impairments that did not interact with AD risk but did correlate with metabolic dysfunction and somewhat with microglial activation. Thus, metabolic disorders may be a therapeutic target for people with FASDs.
Collapse
Affiliation(s)
- Kathleen R. Walter
- UNC Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis NC 28081, USA
| | - Dane K. Ricketts
- UNC Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis NC 28081, USA
| | - Brandon H. Presswood
- UNC Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis NC 28081, USA
| | - Susan M. Smith
- UNC Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis NC 28081, USA
- Department of Nutrition, University of North Carolina at Chapel Hill, Kannapolis NC 28081, USA
| | - Sandra M. Mooney
- UNC Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis NC 28081, USA
- Department of Nutrition, University of North Carolina at Chapel Hill, Kannapolis NC 28081, USA
| |
Collapse
|
4
|
Baker JA, Bodnar TS, Breit KR, Weinberg J, Thomas JD. Choline Supplementation Alters Hippocampal Cytokine Levels in Adolescence and Adulthood in an Animal Model of Fetal Alcohol Spectrum Disorders. Cells 2023; 12:546. [PMID: 36831213 PMCID: PMC9953782 DOI: 10.3390/cells12040546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/05/2023] [Accepted: 02/07/2023] [Indexed: 02/10/2023] Open
Abstract
Alcohol (ethanol) exposure during pregnancy can adversely affect development, with long-lasting consequences that include neuroimmune, cognitive, and behavioral dysfunction. Alcohol-induced alterations in cytokine levels in the hippocampus may contribute to abnormal cognitive and behavioral outcomes in individuals with fetal alcohol spectrum disorders (FASD). Nutritional intervention with the essential nutrient choline can improve hippocampal-dependent behavioral impairments and may also influence neuroimmune function. Thus, we examined the effects of choline supplementation on hippocampal cytokine levels in adolescent and adult rats exposed to alcohol early in development. From postnatal day (PD) 4-9 (third trimester-equivalent), Sprague-Dawley rat pups received ethanol (5.25 g/kg/day) or sham intubations and were treated with choline chloride (100 mg/kg/day) or saline from PD 10-30; hippocampi were collected at PD 35 or PD 60. Age-specific ethanol-induced increases in interferon gamma (IFN-γ), tumor necrosis factor alpha (TNF-α), and keratinocyte chemoattractant/human growth-regulated oncogene (KC/GRO) were identified in adulthood, but not adolescence, whereas persistent ethanol-induced increases of interleukin-6 (IL-6) levels were present at both ages. Interestingly, choline supplementation reduced age-related changes in interleukin-1 beta (IL-1β) and interleukin-5 (IL-5) as well as mitigating the long-lasting increase in IFN-γ in ethanol-exposed adults. Moreover, choline influenced inflammatory tone by modulating ratios of pro- to -anti-inflammatory cytokines. These results suggest that ethanol-induced changes in hippocampal cytokine levels are more evident during adulthood than adolescence, and that choline can mitigate some effects of ethanol exposure on long-lasting inflammatory tone.
Collapse
Affiliation(s)
- Jessica A. Baker
- Center for Behavioral Teratology, San Diego State University, San Diego, CA 92120, USA
| | - Tamara S. Bodnar
- Department of Cellular and Physiological Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Kristen R. Breit
- Center for Behavioral Teratology, San Diego State University, San Diego, CA 92120, USA
- Department of Psychology, West Chester University, West Chester, PA 19383, USA
| | - Joanne Weinberg
- Department of Cellular and Physiological Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Jennifer D. Thomas
- Center for Behavioral Teratology, San Diego State University, San Diego, CA 92120, USA
| |
Collapse
|
5
|
Pervin Z, Pinner J, Flynn L, Cerros CM, Williams ME, Hill DE, Stephen JM. School-aged children diagnosed with an FASD exhibit visuo-cortical network disturbance: A magnetoencephalography (MEG) study. Alcohol 2022; 99:59-69. [PMID: 34915151 PMCID: PMC9113084 DOI: 10.1016/j.alcohol.2021.12.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/30/2021] [Accepted: 12/08/2021] [Indexed: 12/01/2022]
Abstract
Children with prenatal alcohol exposure (PAE) often suffer from cognitive and neurobehavioral dysfunction throughout their lives, which may rise to a level of concern such that children receive a diagnosis under the fetal alcohol spectrum disorders (FASD) umbrella. Magnetoencephalography (MEG) contributes direct insight into neural processing and functional connectivity measures with temporal precision to understand cortical processing disorders that manifest during development. The impairment of perception may become more consequential among school-aged children with an FASD in the process of intellectual functioning and behavioral maturation. Fifty participants with the age range of 8-13 years participated in our study following parental informed consent and child assent. For each participant, visual responses were recorded using magnetoencephalography (MEG) while performing a prosaccade task with central stimuli (fovea centralis) and peripheral stimuli (left and right of central) presented on a screen, requiring participants to shift their gaze to the stimuli. After source analysis using minimum norm estimation (MNE), we investigated visual responses from each participant by measuring the latency and amplitude of visual evoked fields. Delayed peak latency of the visual response was identified in the primary visual area (calcarine fissure) and visual association areas (v2, v3) in young children with an FASD for both stimulus types (central and peripheral). But the difference in visual response latency was only statistically significant (p ≤ 0.01) for the peripheral (right) stimulus. We also observed reduced amplitude (p ≤ 0.006) of visual evoked response in children with an FASD for the central stimulus type in both primary and visual association areas. Multiple visual areas show impairment in children with an FASD, with visual delay and conduction disturbance more prominent in response to peripheral stimuli. Children with an FASD also exhibit significantly reduced amplitude of neural activation to central stimuli. These sensory deficits may lead to slow cognitive processing speed through continued intra-cortical network disturbance in children with an FASD.
Collapse
Affiliation(s)
- Zinia Pervin
- The Mind Research Network, a Division of Lovelace Biomedical Research Institute, Albuquerque, NM 87106, USA.,Department of Biomedical Engineering, University of New Mexico, Albuquerque, NM 87131, USA
| | - John Pinner
- The Mind Research Network, a Division of Lovelace Biomedical Research Institute, Albuquerque, NM 87106, USA
| | - Lucinda Flynn
- The Mind Research Network, a Division of Lovelace Biomedical Research Institute, Albuquerque, NM 87106, USA
| | - Cassandra M. Cerros
- Health Sciences Center, School of Medicine, University of New Mexico, Albuquerque, NM 87131, USA
| | - Mareth E. Williams
- Health Sciences Center, School of Medicine, University of New Mexico, Albuquerque, NM 87131, USA
| | - Dina E. Hill
- Health Sciences Center, School of Medicine, University of New Mexico, Albuquerque, NM 87131, USA
| | - Julia M. Stephen
- The Mind Research Network, a Division of Lovelace Biomedical Research Institute, Albuquerque, NM 87106, USA.,Corresponding author Julia M. Stephen, Ph.D., MEG Core Director, Prof. of Translational Neuroscience, The Mind Research Network, Pete & Nancy Domenici hall, 1101 Yale Blvd. NE, Albuquerque, New Mexico 87106, Tel: (505)-504-1053.
| |
Collapse
|
6
|
Abstract
The pathology of fetal alcohol syndrome and the less severe fetal alcohol spectrum disorders includes brain dysmyelination. Recent studies have shed light on the molecular mechanisms underlying these white matter abnormalities. Rodent models of fetal alcohol syndrome and human studies have shown suppressed oligodendrocyte differentiation and apoptosis of oligodendrocyte precursor cells. Ethanol exposure led to reduced expression of myelin basic protein and delayed myelin basic protein expression in rat and mouse models of fetal alcohol syndrome and in human histopathological specimens. Several studies have reported increased expression of many chemokines in dysmyelinating disorders in central nervous system, including multiple sclerosis and fetal alcohol syndrome. Acute ethanol exposure reduced levels of the neuroprotective insulin-like growth factor-1 in fetal and maternal sheep and in human fetal brain tissues, while ethanol increased the expression of tumor necrosis factor α in mouse and human neurons. White matter lesions have been induced in the developing sheep brain by alcohol exposure in early gestation. Rat fetal alcohol syndrome models have shown reduced axon diameters, with thinner myelin sheaths, as well as reduced numbers of oligodendrocytes, which were also morphologically aberrant oligodendrocytes. Expressions of markers for mature myelination, including myelin basic protein, also were reduced. The accumulating knowledge concerning the mechanisms of ethanol-induced dysmyelination could lead to the development of strategies to prevent dysmyelination in children exposed to ethanol during fetal development. Future studies using fetal oligodendrocyte- and oligodendrocyte precursor cell-derived exosomes isolated from the mother’s blood may identify biomarkers for fetal alcohol syndrome and even implicate epigenetic changes in early development that affect oligodendrocyte precursor cell and oligodendrocyte function in adulthood. By combining various imaging modalities with molecular studies, it may be possible to determine which fetuses are at risk and to intervene therapeutically early in the pregnancy.
Collapse
Affiliation(s)
- Nune Darbinian
- Center for Neural Repair and Rehabilitation (Shriners Hospitals Pediatric Research Center), Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Michael E Selzer
- Center for Neural Repair and Rehabilitation (Shriners Hospitals Pediatric Research Center), Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| |
Collapse
|
7
|
García-Baos A, Puig-Reyne X, García-Algar Ó, Valverde O. Cannabidiol attenuates cognitive deficits and neuroinflammation induced by early alcohol exposure in a mice model. Biomed Pharmacother 2021; 141:111813. [PMID: 34126352 DOI: 10.1016/j.biopha.2021.111813] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/17/2021] [Accepted: 06/07/2021] [Indexed: 12/16/2022] Open
Abstract
Foetal alcohol spectrum disorder (FASD) is the umbrella term used to describe the physical and mental disabilities induced by alcohol exposure during development. Early alcohol exposure induces cognitive impairments resulting from damage to the central nervous system (CNS). The neuroinflammatory response accompanied by neurodegenerative mechanisms contribute to those detrimental alterations. Cannabidiol (CBD) has recently emerged as an anti-inflammatory drug that might be useful to treat several neuropsychiatric disorders. In our study, we assessed the effects of CBD on long-lasting cognitive deficits induced by early alcohol exposure. Furthermore, we analysed long-term pro-inflammatory and apoptotic markers within the prefrontal cortex and hippocampus. To model alcohol binge drinking during gestational and lactation periods, we used pregnant C57BL/6 female mice with time-limited access to 20% v/v alcohol solution. Following the prenatal and lactation alcohol exposure (PLAE), we treated the male and female offspring with CBD from post-natal day (PD) 25 until PD34, and we evaluated their cognitive performance at PD60. Our results showed that CBD treatment during peri-adolescence period ameliorates cognitive deficits observed in our FASD-like mouse model, without sex differences. Moreover, CBD restores the PLAE-induced increased levels of TNFα and IL-6 in the hippocampus. Thus, our study provides new insights for CBD as a therapeutic agent to counteract cognitive impairments and neuroinflammation caused by early alcohol exposure.
Collapse
Affiliation(s)
- Alba García-Baos
- Neurobiology of Behaviour Research Group (GReNeC-NeuroBio), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Xavier Puig-Reyne
- Neurobiology of Behaviour Research Group (GReNeC-NeuroBio), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Óscar García-Algar
- Neonatology Unit, ICGON, IDIBAPS, Hospital Clínic-Maternitat, BCNatal, Barcelona, Spain
| | - Olga Valverde
- Neurobiology of Behaviour Research Group (GReNeC-NeuroBio), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain; Neuroscience Research Programme, IMIM-Hospital del Mar Research Institute, Barcelona, Spain.
| |
Collapse
|
8
|
Virdee MS, Saini N, Kay CD, Neilson AP, Kwan STC, Helfrich KK, Mooney SM, Smith SM. An enriched biosignature of gut microbiota-dependent metabolites characterizes maternal plasma in a mouse model of fetal alcohol spectrum disorder. Sci Rep 2021; 11:248. [PMID: 33420159 PMCID: PMC7794323 DOI: 10.1038/s41598-020-80093-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 12/14/2020] [Indexed: 02/07/2023] Open
Abstract
Prenatal alcohol exposure (PAE) causes permanent cognitive disability. The enteric microbiome generates microbial-dependent products (MDPs) that may contribute to disorders including autism, depression, and anxiety; it is unknown whether similar alterations occur in PAE. Using a mouse PAE model, we performed untargeted metabolome analyses upon the maternal–fetal dyad at gestational day 17.5. Hierarchical clustering by principal component analysis and Pearson’s correlation of maternal plasma (813 metabolites) both identified MDPs as significant predictors for PAE. The majority were phenolic acids enriched in PAE. Correlational network analyses revealed that alcohol altered plasma MDP-metabolite relationships, and alcohol-exposed maternal plasma was characterized by a subnetwork dominated by phenolic acids. Twenty-nine MDPs were detected in fetal liver and sixteen in fetal brain, where their impact is unknown. Several of these, including 4-ethylphenylsulfate, oxindole, indolepropionate, p-cresol sulfate, catechol sulfate, and salicylate, are implicated in other neurological disorders. We conclude that MDPs constitute a characteristic biosignature that distinguishes PAE. These MDPs are abundant in human plasma, where they influence physiology and disease. Their altered abundance here may reflect alcohol’s known effects on microbiota composition and gut permeability. We propose that the maternal microbiome and its MDPs are a previously unrecognized influence upon the pathologies that typify PAE.
Collapse
Affiliation(s)
- Manjot S Virdee
- Department of Nutrition, UNC Nutrition Research Institute, University of North Carolina at Chapel Hill, 500 Laureate Way, Kannapolis, NC, 28082, USA
| | - Nipun Saini
- Department of Nutrition, UNC Nutrition Research Institute, University of North Carolina at Chapel Hill, 500 Laureate Way, Kannapolis, NC, 28082, USA
| | - Colin D Kay
- Department of Food Bioprocessing and Nutrition Sciences, Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, 28081, USA
| | - Andrew P Neilson
- Department of Food Bioprocessing and Nutrition Sciences, Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, 28081, USA
| | - Sze Ting Cecilia Kwan
- Department of Nutrition, UNC Nutrition Research Institute, University of North Carolina at Chapel Hill, 500 Laureate Way, Kannapolis, NC, 28082, USA
| | - Kaylee K Helfrich
- Department of Nutrition, UNC Nutrition Research Institute, University of North Carolina at Chapel Hill, 500 Laureate Way, Kannapolis, NC, 28082, USA
| | - Sandra M Mooney
- Department of Nutrition, UNC Nutrition Research Institute, University of North Carolina at Chapel Hill, 500 Laureate Way, Kannapolis, NC, 28082, USA
| | - Susan M Smith
- Department of Nutrition, UNC Nutrition Research Institute, University of North Carolina at Chapel Hill, 500 Laureate Way, Kannapolis, NC, 28082, USA.
| |
Collapse
|
9
|
Noor S, Sanchez JJ, Sun MS, Pervin Z, Sanchez JE, Havard MA, Epler LT, Nysus MV, Norenberg JP, Wagner CR, Davies S, Wagner JL, Savage DD, Jantzie LL, Mellios N, Milligan ED. The LFA-1 antagonist BIRT377 reverses neuropathic pain in prenatal alcohol-exposed female rats via actions on peripheral and central neuroimmune function in discrete pain-relevant tissue regions. Brain Behav Immun 2020; 87:339-358. [PMID: 31918004 PMCID: PMC7316595 DOI: 10.1016/j.bbi.2020.01.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 12/20/2019] [Accepted: 01/05/2020] [Indexed: 12/13/2022] Open
Abstract
Previous reports show that moderate prenatal alcohol exposure (PAE) poses a risk factor for developing neuropathic pain following adult-onset peripheral nerve injury in male rats. Recently, evidence suggests that immune-related mechanisms underlying neuropathic pain in females are different compared to males despite the fact that both sexes develop neuropathy of similar magnitude and duration following chronic constriction injury (CCI) of the sciatic nerve. Data suggest that the actions of peripheral T cells play a greater role in mediating neuropathy in females. The goal of the current study is to identify specificity of immune cell and cytokine changes between PAE and non-PAE neuropathic females by utilizing a well-characterized rodent model of sciatic nerve damage, in an effort to unmask unique signatures of immune-related factors underlying the risk of neuropathy from PAE. Cytokines typically associated with myeloid cell actions such as interleukin (IL)-1β, tumor necrosis factor (TNF), IL-6, IL-4 and IL-10 as well as the neutrophil chemoattractant CXCL1, are examined. In addition, transcription factors and cytokines associated with various differentiated T cell subtypes are examined (anti-inflammatory FOXP3, proinflammatory IL-17A, IL-21, ROR-γt, interferon (IFN)-γ and T-bet). Lymphocyte function associated antigen 1 (LFA-1) is an adhesion molecule expressed on peripheral immune cells including T cells, and regulates T cell activation and extravasation into inflamed tissue regions. A potential therapeutic approach was explored with the goal of controlling proinflammatory responses in neuroanatomical regions critical for CCI-induced allodynia by blocking LFA-1 actions using BIRT377. The data show profound development of hindpaw allodynia in adult non-PAE control females following standard CCI, but not following minor CCI, while minor CCI generated allodynia in PAE females. The data also show substantial increases in T cell-associated proinflammatory cytokine mRNA and proteins, along with evidence of augmented myeloid/glial activation (mRNA) and induction of myeloid/glial-related proinflammatory cytokines, CCL2, IL-1β and TNF in discrete regions along the pain pathway (damaged sciatic nerve, dorsal root ganglia; DRG, and spinal cord). Interestingly, the characteristic anti-inflammatory IL-10 protein response to nerve damage is blunted in neuropathic PAE females. Moreover, T cell profiles are predominantly proinflammatory in neuropathic Sac and PAE females, augmented levels of Th17-specific proinflammatory cytokines IL-17A and IL-21, as well as the Th1-specific factor, T-bet, are observed. Similarly, the expression of RORγt, a critical transcription factor for Th17 cells, is detected in the spinal cord of neuropathic females. Blocking peripheral LFA-1 actions with intravenous (i.v.) BIRT377 reverses allodynia in Sac and PAE rats, dampens myeloid (IL-1β, TNF, CXCL1)- and T cell-associated proinflammatory factors (IL-17A and RORγt) and spinal glial activation. Moreover, i.v. BIRT377 treatment reverses the blunted IL-10 response to CCI observed only in neuropathic PAE rats and elevates FOXP3 in pain-reversed Sac rats. Unexpectedly, intrathecal BIRT377 treatment is unable to alter allodynia in either Sac or PAE neuropathic females. Together, these data provide evidence that: 1) fully differentiated proinflammatory Th17 cells recruited at the sciatic nerve, DRGs and lumbar spinal cord may interact with the local environment to shape the immune responses underlying neuropathy in female rats, and, 2) PAE primes peripheral and spinal immune responses in adult females. PAE is a risk factor in females for developing peripheral neuropathy after minor nerve injury.
Collapse
Affiliation(s)
- Shahani Noor
- Department of Neurosciences, School of Medicine, University of New Mexico, Albuquerque, NM 87131-0001, USA.
| | - Joshua J. Sanchez
- Department of Neurosciences, School of Medicine, University of California, San Diego, CA, USA
| | - Melody S. Sun
- Department of Neurosciences, School of Medicine, University of New Mexico, Albuquerque, NM, 87131,USA
| | - Zinia Pervin
- Department of Neurosciences, School of Medicine, University of New Mexico, Albuquerque, NM 87131-0001, USA.
| | - Jacob E. Sanchez
- Department of Neurosciences, School of Medicine, University of New Mexico, Albuquerque, NM, 87131,USA
| | - Mara A. Havard
- Department of Anesthesiology and Critical Care, University of New Mexico, Albuquerque, NM, 8713,USA
| | - Lauren T. Epler
- Department of Biochemistry and Molecular Biology, School of Medicine, University of New Mexico, Albuquerque, NM 87131-001, USA
| | - Monique V. Nysus
- Department of Radiopharmaceutical Sciences, College of Pharmacy, New Mexico Center for Isotopes in Medicine, University of New Mexico, Albuquerque, NM, 87131,USA
| | - Jeffrey P. Norenberg
- Department of Radiopharmaceutical Sciences, College of Pharmacy, New Mexico Center for Isotopes in Medicine, University of New Mexico, Albuquerque, NM, 87131,USA
| | - Carston R. Wagner
- Department of Medicinal Chemistry, University of Minnesota, College of Pharmacy, MN 55455, USA
| | - Suzy Davies
- Department of Neurosciences, School of Medicine, University of New Mexico, Albuquerque, NM 87131-0001, USA.
| | - Jennifer L Wagner
- Department of Neurosciences, School of Medicine, University of New Mexico, Albuquerque, NM 87131-0001, USA.
| | - Daniel D. Savage
- Department of Neurosciences, School of Medicine, University of New Mexico, Albuquerque, NM, 87131,USA
| | - Lauren L. Jantzie
- Department of Pediatrics and Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205-2196, USA
| | - Nikolaos Mellios
- Department of Neurosciences, School of Medicine, University of New Mexico, Albuquerque, NM 87131-0001, USA.
| | - Erin. D. Milligan
- Department of Neurosciences, School of Medicine, University of New Mexico, Albuquerque, NM, 87131,USA
| |
Collapse
|
10
|
Saito M, Smiley JF, Hui M, Masiello K, Betz J, Ilina M, Saito M, Wilson DA. Neonatal Ethanol Disturbs the Normal Maturation of Parvalbumin Interneurons Surrounded by Subsets of Perineuronal Nets in the Cerebral Cortex: Partial Reversal by Lithium. Cereb Cortex 2020; 29:1383-1397. [PMID: 29462278 DOI: 10.1093/cercor/bhy034] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 01/02/2018] [Accepted: 01/25/2018] [Indexed: 02/07/2023] Open
Abstract
Reduction in parvalbumin-positive (PV+) interneurons is observed in adult mice exposed to ethanol at postnatal day 7 (P7), a late gestation fetal alcohol spectrum disorder model. To evaluate whether PV+ cells are lost, or PV expression is reduced, we quantified PV+ and associated perineuronal net (PNN)+ cell densities in barrel cortex. While PNN+ cell density was not reduced by P7 ethanol, PV cell density decreased by 25% at P90 with no decrease at P14. PNN+ cells in controls were virtually all PV+, whereas more than 20% lacked PV in ethanol-treated adult animals. P7 ethanol caused immediate apoptosis in 10% of GFP+ cells in G42 mice, which express GFP in a subset of PV+ cells, and GFP+ cell density decreased by 60% at P90 without reduction at P14. The ethanol effect on PV+ cell density was attenuated by lithium treatment at P7 or at P14-28. Thus, reduced PV+ cell density may be caused by disrupted cell maturation, in addition to acute apoptosis. This effect may be regionally specific: in the dentate gyrus, P7 ethanol reduced PV+ cell density by 70% at P14 and both PV+ and PNN+ cell densities by 50% at P90, and delayed lithium did not alleviate ethanol's effect.
Collapse
Affiliation(s)
- Mariko Saito
- Division of Neurochemistry, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA.,Department of Psychiatry, NYU School of Medicine, New York, NY, USA
| | - John F Smiley
- Division of Neurochemistry, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA.,Department of Psychiatry, NYU School of Medicine, New York, NY, USA
| | - Maria Hui
- Division of Neurochemistry, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| | - Kurt Masiello
- Division of Neurochemistry, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| | - Judith Betz
- Division of Neurochemistry, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| | - Maria Ilina
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| | - Mitsuo Saito
- Department of Psychiatry, NYU School of Medicine, New York, NY, USA.,Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| | - Donald A Wilson
- Division of Analytical Psychopharmacology, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA.,Department of Child and Adolescent Psychiatry, NYU School of Medicine, New York, NY, USA
| |
Collapse
|
11
|
Wang P, Liu BY, Wu MM, Wei XY, Sheng S, You SW, Shang LX, Kuang F. Moderate prenatal alcohol exposure suppresses the TLR4-mediated innate immune response in the hippocampus of young rats. Neurosci Lett 2019; 699:77-83. [DOI: 10.1016/j.neulet.2019.01.049] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 01/17/2019] [Accepted: 01/29/2019] [Indexed: 12/22/2022]
|
12
|
Zhang K, Wang H, Xu M, Frank JA, Luo J. Role of MCP-1 and CCR2 in ethanol-induced neuroinflammation and neurodegeneration in the developing brain. J Neuroinflammation 2018; 15:197. [PMID: 29976212 PMCID: PMC6034273 DOI: 10.1186/s12974-018-1241-2] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 06/26/2018] [Indexed: 01/06/2023] Open
Abstract
Background Neuroinflammation and microglial activation have been implicated in both alcohol use disorders (AUD) and fetal alcohol spectrum disorders (FASD). Chemokine monocyte chemoattractant protein 1 (MCP-1) and its receptor C-C chemokine receptor type 2 (CCR2) are critical mediators of neuroinflammation and microglial activation. FASD is the leading cause of mental retardation, and one of the most devastating outcomes of FASD is the loss of neurons in the central nervous system (CNS). The underlying molecular mechanisms, however, remain unclear. We hypothesize that MCP-1/CCR2 signaling mediates ethanol-induced neuroinflammation and microglial activation, which exacerbates neurodegeneration in the developing brain. Methods C57BL/6 mice and mice deficient of MCP-1 (MCP-1−/−) and CCR2 (CCR2−/−) were exposed to ethanol on postnatal day 4 (PD4). Neuroinflammation, and microglial activation, and neurodegeneration in the brain were evaluated by immunohistochemistry and immunoblotting. A neuronal and microglial co-culture system was used to evaluate the role of microglia and MCP-1/CCR2 signaling in ethanol-induced neurodegeneration. Specific inhibitors were employed to delineate the involved signaling pathways. Results Ethanol-induced microglial activation, neuroinflammation, and a drastic increase in the mRNA and protein levels of MCP-1. Treatment of Bindarit (MCP-1 synthesis inhibitor) and RS504393 (CCR2 antagonist) significantly reduced ethanol-induced microglia activation/neuroinflammation, and neuroapoptosis in the developing brain. MCP-1−/− and CCR2−/− mice were more resistant to ethanol-induced neuroapoptosis. Moreover, ethanol plus MCP-1 caused more neuronal death in a neuron/microglia co-culture system than neuronal culture alone, and Bindarit and RS504393 attenuated ethanol-induced neuronal death in the co-culture system. Ethanol activated TLR4 and GSK3β, two key mediators of microglial activation in the brain and cultured microglial cells (SIM-A9). Blocking MCP-1/CCR2 signaling attenuated ethanol-induced activation of TLR4 and GSK3β. Conclusion MCP-1/CCR2 signaling played an important role in ethanol-induced microglial activation/neuroinflammation and neurodegeneration in the developing brain. The effects may be mediated by the interaction among MCP-1/CCR2 signaling, TLR4, and GSK3β.
Collapse
Affiliation(s)
- Kai Zhang
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, 132 Health Sciences Research Building, 1095 Veterans Drive, Lexington, KY, 40536, USA
| | - Haiping Wang
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, 132 Health Sciences Research Building, 1095 Veterans Drive, Lexington, KY, 40536, USA
| | - Mei Xu
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, 132 Health Sciences Research Building, 1095 Veterans Drive, Lexington, KY, 40536, USA
| | - Jacqueline A Frank
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, 132 Health Sciences Research Building, 1095 Veterans Drive, Lexington, KY, 40536, USA
| | - Jia Luo
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, 132 Health Sciences Research Building, 1095 Veterans Drive, Lexington, KY, 40536, USA.
| |
Collapse
|
13
|
Noor S, Milligan ED. Lifelong Impacts of Moderate Prenatal Alcohol Exposure on Neuroimmune Function. Front Immunol 2018; 9:1107. [PMID: 29910801 PMCID: PMC5992426 DOI: 10.3389/fimmu.2018.01107] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 05/02/2018] [Indexed: 12/26/2022] Open
Abstract
In utero alcohol exposure is emerging as a major risk factor for lifelong aberrant neuroimmune function. Fetal alcohol spectrum disorder encompasses a range of behavioral and physiological sequelae that may occur throughout life and includes cognitive developmental disabilities as well as disease susceptibility related to aberrant immune and neuroimmune actions. Emerging data from clinical studies and findings from animal models support that very low to moderate levels of fetal alcohol exposure may reprogram the developing central nervous system leading to altered neuroimmune and neuroglial signaling during adulthood. In this review, we will focus on the consequences of low to moderate prenatal alcohol exposure (PAE) on neuroimmune interactions during early life and at different stages of adulthood. Data discussed here will include recent studies suggesting that while abnormal immune function is generally minimal under basal conditions, following pathogenic stimuli or trauma, significant alterations in the neuroimmune axis occur. Evidence from published reports will be discussed with a focus on observations that PAE may bias later-life peripheral immune responses toward a proinflammatory phenotype. The propensity for proinflammatory responses to challenges in adulthood may ultimately shape neuron–glial-immune processes suspected to underlie various neuropathological outcomes including chronic pain and cognitive impairment.
Collapse
Affiliation(s)
- Shahani Noor
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, United States
| | - Erin D Milligan
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, United States
| |
Collapse
|
14
|
Terasaki LS, Schwarz JM. Impact of Prenatal and Subsequent Adult Alcohol Exposure on Pro-Inflammatory Cytokine Expression in Brain Regions Necessary for Simple Recognition Memory. Brain Sci 2017; 7:brainsci7100125. [PMID: 28973966 PMCID: PMC5664052 DOI: 10.3390/brainsci7100125] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 09/12/2017] [Accepted: 09/29/2017] [Indexed: 11/16/2022] Open
Abstract
Microglia, the immune cells of the brain, are important and necessary for appropriate neural development; however, activation of microglia, concomitant with increased levels of secreted immune molecules during brain development, can leave the brain susceptible to certain long-term changes in immune function associated with neurological and developmental disorders. One mechanism by which microglia can be activated is via alcohol exposure. We sought to investigate if low levels of prenatal alcohol exposure can alter the neuroimmune response to a subsequent acute dose of alcohol in adulthood. We also used the novel object location and recognition memory tasks to determine whether there are cognitive deficits associated with low prenatal alcohol exposure and subsequent adulthood alcohol exposure. We found that adult rats exposed to an acute binge-like level of alcohol, regardless of gestational alcohol exposure, have a robust increase in the expression of Interleukin (IL)-6 within the brain, and a significant decrease in the expression of IL-1β and CD11b. Rats exposed to alcohol during gestation, adulthood, or at both time points exhibited impaired cognitive performance in the cognitive tasks. These results indicate that both low-level prenatal alcohol exposure and even acute alcohol exposure in adulthood can significantly impact neuroimmune and associated cognitive function.
Collapse
Affiliation(s)
- Laurne S Terasaki
- Psychological and Brain Sciences, University of Delaware, 108 Wolf Hall, Newark, DE 19716, USA.
| | - Jaclyn M Schwarz
- Psychological and Brain Sciences, University of Delaware, 108 Wolf Hall, Newark, DE 19716, USA.
| |
Collapse
|
15
|
Akhtar F, Rouse CA, Catano G, Montalvo M, Ullevig SL, Asmis R, Kharbanda K, Maffi SK. Acute maternal oxidant exposure causes susceptibility of the fetal brain to inflammation and oxidative stress. J Neuroinflammation 2017; 14:195. [PMID: 28962577 PMCID: PMC5622443 DOI: 10.1186/s12974-017-0965-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 09/18/2017] [Indexed: 12/18/2022] Open
Abstract
Background Maternal exposure to environmental stressors poses a risk to fetal development. Oxidative stress (OS), microglia activation, and inflammation are three tightly linked mechanisms that emerge as a causal factor of neurodevelopmental anomalies associated with prenatal ethanol exposure. Antioxidants such as glutathione (GSH) and CuZnSOD are perturbed, and their manipulation provides evidence for neuroprotection. However, the cellular and molecular effects of GSH alteration in utero on fetal microglia activation and inflammation remain elusive. Methods Ethanol (EtOH) (2.5 g/kg) was administered to pregnant mice at gestational days 16–17. One hour prior to ethanol treatment, N-acetylcysteine (NAC) and L-buthionine sulfoximine (BSO) were administered to modulate glutathione (GSH) content in fetal and maternal brain. Twenty-four hours following ethanol exposure, GSH content and OS in brain tissues were analyzed. Cytokines and chemokines were selected based on their association with distinctive microglia phenotype M1-like (IL-1β, IFN γ, IL-6, CCL3, CCL4, CCL-7, CCL9,) or M2-like (TGF-β, IL-4, IL-10, CCL2, CCL22, CXCL10, Arg1, Chi1, CCR2 and CXCR2) and measured in the brain by qRT-PCR and ELISA. In addition, Western blot and confocal microscopy techniques in conjunction with EOC13.31 cells exposed to similar ethanol-induced oxidative stress and redox conditions were used to determine the underlying mechanism of microglia activation associated with the observed phenotypic changes. Results We show that a single episode of mild to moderate OS in the last trimester of gestation causes GSH depletion, increased protein and lipid peroxidation and inflammatory responses inclined towards a M1-like microglial phenotype (IL-1β, IFN-γ) in fetal brain tissue observed at 6–24 h post exposure. Maternal brain is resistant to many of these marked changes. Using EOC 13.31 cells, we show that GSH homeostasis in microglia is crucial to restore its anti-inflammatory state and modulate inflammation. Microglia under oxidative stress maintain a predominantly M1 activation state. Additionally, GSH depletion prevents the appearance of the M2-like phenotype, while enhancing morphological changes associated with a M1-like phenotype. This observation is also validated by an increased expression of inflammatory signatures (IL-1β, IFN-γ, IL-6, CCL9, CXCR2). In contrast, conserving intracellular GSH concentrations eliminates OS which precludes the nuclear translocation and more importantly the phosphorylation of the NFkB p105 subunit. These cells show significantly more pronounced elongations, ramifications, and the enhanced expression of M2-like microglial phenotype markers (IL-10, IL-4, TGF-β, CXCL10, CCL22, Chi, Arg, and CCR2). Conclusions Taken together, our data show that maintaining GSH homeostasis is not only important for quenching OS in the developing fetal brain, but equally critical to enhance M2 like microglia phenotype, thus suppressing inflammatory responses elicited by environmental stressors. Electronic supplementary material The online version of this article (10.1186/s12974-017-0965-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Feroz Akhtar
- School of Medicine, Department of Biomedical Sciences, Regional Academic Health Center, University of Texas Rio Grande Valley, 1204 W. Schunior, Edinburg, 78241, TX, USA
| | - Christopher A Rouse
- Department of Pediatrics, Uniformed Services University of Health Sciences & Walter Reed National Military Medical Center, Jones Bridge Rd, Bethesda, MD, USA
| | - Gabriel Catano
- Department of Medicine, The University of Texas Health Science Center, San Antonio, TX, USA
| | - Marcus Montalvo
- School of Medicine, Department of Biomedical Sciences, Regional Academic Health Center, University of Texas Rio Grande Valley, 1204 W. Schunior, Edinburg, 78241, TX, USA
| | - Sarah L Ullevig
- Department of Kinesiology, Health, and Nutrition, University of Texas at San Antonio, San Antonio, TX, USA
| | - Reto Asmis
- Department of Clinical Lab Sciences, The University of Texas Health Science Center, San Antonio, TX, USA
| | - Kusum Kharbanda
- Department of Internal Medicine, University of Nebraska Health Science Center, Omaha, NE, USA
| | - Shivani K Maffi
- School of Medicine, Department of Biomedical Sciences, Regional Academic Health Center, University of Texas Rio Grande Valley, 1204 W. Schunior, Edinburg, 78241, TX, USA.
| |
Collapse
|
16
|
Nash A, Davies L. Fetal Alcohol Spectrum Disorders: What Pediatric Providers Need to Know. J Pediatr Health Care 2017; 31:594-606. [PMID: 28838601 DOI: 10.1016/j.pedhc.2017.04.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 03/24/2017] [Accepted: 04/03/2017] [Indexed: 10/19/2022]
Abstract
Prenatal alcohol exposure is the cause of fetal alcohol spectrum disorders (FASDs), the prevalence of which is similar to that of other developmental disabilities like Down syndrome and autism. Children, adolescents, and adults who live with the disabilities associated with prenatal alcohol exposure face extraordinary challenges throughout their lives. Pediatric providers need to be able to identify patients with FASD because early recognition and intervention is known to improve life outcomes for affected individuals. The purposes of this continuing education activity are to report what is known about the prevalence of FASDs; to detail the spectrum of problems experienced by affected individuals; and to suggest specific strategies for preventing, identifying, and managing FASDs in clinical practice.
Collapse
|
17
|
Balaraman S, Idrus NM, Miranda RC, Thomas JD. Postnatal choline supplementation selectively attenuates hippocampal microRNA alterations associated with developmental alcohol exposure. Alcohol 2017; 60:159-167. [PMID: 28433422 PMCID: PMC5559286 DOI: 10.1016/j.alcohol.2016.12.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Revised: 12/28/2016] [Accepted: 12/29/2016] [Indexed: 11/25/2022]
Abstract
Prenatal alcohol exposure can result in a range of physical, neuropathological, and behavioral alterations, collectively termed fetal alcohol spectrum disorders (FASD). We have shown that supplementation with the nutrient choline reduces the severity of developmental alcohol-associated deficits in hippocampal-dependent behaviors and normalizes some aspects of hippocampal cholinergic development and DNA methylation patterns. Alcohol's developmental effects may also be mediated, in part, by altering microRNAs (miRNAs) that serve as negative regulators of gene translation. To determine whether choline supplementation alters ethanol's long-lasting effects on miRNAs, Sprague-Dawley rats were exposed to 5.25 g/kg/day ethanol from postnatal days (PD) 4-9 via intubation; controls received sham intubations. Subjects were treated with choline chloride (100 mg/kg/day) or saline vehicle subcutaneously (s.c.) from PD 4-21. On PD 22, subjects were sacrificed, and RNA was isolated from the hippocampus. MiRNA expression was assessed with TaqMan Human MicroRNA Panel Low-Density Arrays. Ethanol significantly increased miRNA expression variance, an effect that was attenuated with choline supplementation. Cluster analysis of stably expressed miRNAs that exceeded an ANOVA p < 0.05 criterion indicated that for both male and female offspring, control and ethanol-exposed groups were most dissimilar from each other, with choline-supplemented groups in between. MiRNAs that expressed an average 2-fold change due to ethanol exposure were further analyzed to identify which ethanol-sensitive miRNAs were protected by choline supplementation. We found that at a false discovery rate (FDR)-adjusted criterion of p < 0.05, miR-200c was induced by ethanol exposure and that choline prevented this effect. Collectively, our data show that choline supplementation can normalize disturbances in miRNA expression following developmental alcohol exposure and can protect specific miRNAs from induction by ethanol. These findings have important implications for the mechanisms by which choline may serve as a potential treatment for FASD.
Collapse
Affiliation(s)
- Sridevi Balaraman
- Department of Neuroscience and Experimental Therapeutics, Women's Health in Neuroscience Program, College of Medicine, Texas A&M Health Science Center, College Station, TX 77843, USA
| | - Nirelia M Idrus
- Center for Behavioral Teratology, Department of Psychology, San Diego State University, San Diego, CA 92120, USA
| | - Rajesh C Miranda
- Department of Neuroscience and Experimental Therapeutics, Women's Health in Neuroscience Program, College of Medicine, Texas A&M Health Science Center, College Station, TX 77843, USA
| | - Jennifer D Thomas
- Center for Behavioral Teratology, Department of Psychology, San Diego State University, San Diego, CA 92120, USA.
| |
Collapse
|
18
|
Noor S, Sanchez JJ, Vanderwall AG, Sun MS, Maxwell JR, Davies S, Jantzie LL, Petersen TR, Savage DD, Milligan ED. Prenatal alcohol exposure potentiates chronic neuropathic pain, spinal glial and immune cell activation and alters sciatic nerve and DRG cytokine levels. Brain Behav Immun 2017; 61:80-95. [PMID: 28011263 PMCID: PMC5316367 DOI: 10.1016/j.bbi.2016.12.016] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 12/18/2016] [Accepted: 12/18/2016] [Indexed: 12/20/2022] Open
Abstract
A growing body of evidence indicates that prenatal alcohol exposure (PAE) may predispose individuals to secondary medical disabilities later in life. Animal models of PAE reveal neuroimmune sequelae such as elevated brain astrocyte and microglial activation with corresponding region-specific changes in immune signaling molecules such as cytokines and chemokines. The aim of this study was to evaluate the effects of moderate PAE on the development and maintenance of allodynia induced by chronic constriction injury (CCI) of the sciatic nerve in adult male rat offspring. Because CCI allodynia requires the actions of glial cytokines, we analyzed lumbar spinal cord glial and immune cell surface markers indicative of their activation levels, as well as sciatic nerve and dorsal root ganglia (DRG) cytokines in PAE offspring in adulthood. While PAE did not alter basal sensory thresholds before or after sham manipulations, PAE significantly potentiated adult onset and maintenance of allodynia. Microscopic analysis revealed exaggerated astrocyte and microglial activation, while flow cytometry data demonstrated increased proportions of immune cells with cell surface major histocompatibility complex II (MHCII) and β-integrin adhesion molecules, which are indicative of PAE-induced immune cell activation. Sciatic nerves from CCI rats revealed that PAE potentiated the proinflammatory cytokines interleukin (IL)-1β, IL-6 and tumor necrosis factor-alpha (TNFα) protein levels with a simultaneous robust suppression of the anti-inflammatory cytokine, IL-10. A profound reduction in IL-10 expression in the DRG of PAE neuropathic rats was also observed. Taken together, our results provide novel insights into the vulnerability that PAE produces for adult-onset central nervous system (CNS) pathological conditions from peripheral nerve injury.
Collapse
Affiliation(s)
- Shahani Noor
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131-0001, USA
| | - Joshua J Sanchez
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131-0001, USA
| | - Arden G Vanderwall
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131-0001, USA; Department of Anesthesiology and Critical Care Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131-0001, USA
| | - Melody S Sun
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131-0001, USA
| | - Jessie R Maxwell
- Department of Pediatrics, University of New Mexico Health Sciences Center, Albuquerque, NM 87131-0001, USA
| | - Suzy Davies
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131-0001, USA
| | - Lauren L Jantzie
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131-0001, USA; Department of Pediatrics, University of New Mexico Health Sciences Center, Albuquerque, NM 87131-0001, USA
| | - Timothy R Petersen
- Department of Anesthesiology and Critical Care Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131-0001, USA
| | - Daniel D Savage
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131-0001, USA; Department of Pediatrics, University of New Mexico Health Sciences Center, Albuquerque, NM 87131-0001, USA
| | - Erin D Milligan
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131-0001, USA.
| |
Collapse
|
19
|
Saito M, Chakraborty G, Hui M, Masiello K, Saito M. Ethanol-Induced Neurodegeneration and Glial Activation in the Developing Brain. Brain Sci 2016; 6:brainsci6030031. [PMID: 27537918 PMCID: PMC5039460 DOI: 10.3390/brainsci6030031] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 08/05/2016] [Accepted: 08/12/2016] [Indexed: 11/16/2022] Open
Abstract
Ethanol induces neurodegeneration in the developing brain, which may partially explain the long-lasting adverse effects of prenatal ethanol exposure in fetal alcohol spectrum disorders (FASD). While animal models of FASD show that ethanol-induced neurodegeneration is associated with glial activation, the relationship between glial activation and neurodegeneration has not been clarified. This review focuses on the roles of activated microglia and astrocytes in neurodegeneration triggered by ethanol in rodents during the early postnatal period (equivalent to the third trimester of human pregnancy). Previous literature indicates that acute binge-like ethanol exposure in postnatal day 7 (P7) mice induces apoptotic neurodegeneration, transient activation of microglia resulting in phagocytosis of degenerating neurons, and a prolonged increase in glial fibrillary acidic protein-positive astrocytes. In our present study, systemic administration of a moderate dose of lipopolysaccharides, which causes glial activation, attenuates ethanol-induced neurodegeneration. These studies suggest that activation of microglia and astrocytes by acute ethanol in the neonatal brain may provide neuroprotection. However, repeated or chronic ethanol can induce significant proinflammatory glial reaction and neurotoxicity. Further studies are necessary to elucidate whether acute or sustained glial activation caused by ethanol exposure in the developing brain can affect long-lasting cellular and behavioral abnormalities observed in the adult brain.
Collapse
Affiliation(s)
- Mariko Saito
- Division of Neurochemisty, Nathan S. Kline Institute for Psychiatric Research, 140 Old Orangeburg Rd., Orangeburg, NY 10962, USA.
- Department of Psychiatry, New York University Langone Medical Center, 550 First Avenue, New York, NY 10016, USA.
| | - Goutam Chakraborty
- Division of Neurochemisty, Nathan S. Kline Institute for Psychiatric Research, 140 Old Orangeburg Rd., Orangeburg, NY 10962, USA.
| | - Maria Hui
- Division of Neurochemisty, Nathan S. Kline Institute for Psychiatric Research, 140 Old Orangeburg Rd., Orangeburg, NY 10962, USA.
| | - Kurt Masiello
- Division of Neurochemisty, Nathan S. Kline Institute for Psychiatric Research, 140 Old Orangeburg Rd., Orangeburg, NY 10962, USA.
| | - Mitsuo Saito
- Department of Psychiatry, New York University Langone Medical Center, 550 First Avenue, New York, NY 10016, USA.
- Division of Analytical Psychopharmacology, Nathan S. Kline Institute for Psychiatric Research, 140 Old Orangeburg Rd., Orangeburg, NY 10962, USA.
| |
Collapse
|
20
|
Kane CJM, Drew PD. Inflammatory responses to alcohol in the CNS: nuclear receptors as potential therapeutics for alcohol-induced neuropathologies. J Leukoc Biol 2016; 100:951-959. [PMID: 27462100 DOI: 10.1189/jlb.3mr0416-171r] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 07/11/2016] [Indexed: 01/14/2023] Open
Abstract
Fetal alcohol spectrum disorder (FASD), which results from ethanol exposure during pregnancy, and alcohol use disorder (AUD), which includes both binge and chronic alcohol abuse, are strikingly common and costly at personal and societal levels. These disorders are associated with significant pathology, including that observed in the CNS. It is now appreciated in both humans and animal models that ethanol can induce inflammation in the CNS. Neuroinflammation is hypothesized to contribute to the neuropathologic and behavioral consequences in FASD and AUD. In this review, we: 1) summarize the evidence of alcohol-induced CNS inflammation, 2) outline cellular and molecular mechanisms that may underlie alcohol induction of CNS inflammation, and 3) discuss the potential of nuclear receptor agonists for prevention or treatment of neuropathologies associated with FASD and AUD.
Collapse
Affiliation(s)
- Cynthia J M Kane
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Paul D Drew
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| |
Collapse
|
21
|
Saito M, Wu G, Hui M, Masiello K, Dobrenis K, Ledeen RW, Saito M. Ganglioside accumulation in activated glia in the developing brain: comparison between WT and GalNAcT KO mice. J Lipid Res 2015; 56:1434-48. [PMID: 26063460 PMCID: PMC4513985 DOI: 10.1194/jlr.m056580] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 06/08/2015] [Indexed: 12/30/2022] Open
Abstract
Our previous studies have shown accumulation of GM2 ganglioside during ethanol-induced neurodegeneration in the developing brain, and GM2 elevation has also been reported in other brain injuries and neurodegenerative diseases. Using GM2/GD2 synthase KO mice lacking GM2/GD2 and downstream gangliosides, the current study explored the significance of GM2 elevation in WT mice. Immunohistochemical studies indicated that ethanol-induced acute neurodegeneration in postnatal day 7 (P7) WT mice was associated with GM2 accumulation in the late endosomes/lysosomes of both phagocytic microglia and increased glial fibrillary acidic protein (GFAP)-positive astrocytes. However, in KO mice, although ethanol induced robust neurodegeneration and accumulation of GD3 and GM3 in the late endosomes/lysosomes of phagocytic microglia, it did not increase the number of GFAP-positive astrocytes, and the accumulation of GD3/GM3 in astrocytes was minimal. Not only ethanol, but also DMSO, induced GM2 elevation in activated microglia and astrocytes along with neurodegeneration in P7 WT mice, while lipopolysaccharide, which did not induce significant neurodegeneration, caused GM2 accumulation mainly in lysosomes of activated astrocytes. Thus, GM2 elevation is associated with activation of microglia and astrocytes in the injured developing brain, and GM2, GD2, or other downstream gangliosides may regulate astroglial responses in ethanol-induced neurodegeneration.
Collapse
Affiliation(s)
- Mariko Saito
- Divisions of Neurochemistry Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY 10962
- Department of Psychiatry, New York University Langone Medical Center, New York, NY 10016
| | - Gusheng Wu
- Department of Neurology and Neurosciences, Rutgers-New Jersey Medical School, Newark, NJ 07103
| | - Maria Hui
- Divisions of Neurochemistry Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY 10962
| | - Kurt Masiello
- Divisions of Neurochemistry Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY 10962
| | - Kostantin Dobrenis
- Dominick P. Purpura Department of Neuroscience, Rose F. Kennedy Center, Albert Einstein College of Medicine of Yeshiva University, Bronx, NY 10461
| | - Robert W. Ledeen
- Department of Neurology and Neurosciences, Rutgers-New Jersey Medical School, Newark, NJ 07103
| | - Mitsuo Saito
- Analytical Psychopharmacology, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY 10962
- Department of Psychiatry, New York University Langone Medical Center, New York, NY 10016
| |
Collapse
|
22
|
Bushnell PJ, Beasley TE, Evansky PA, Martin SA, McDaniel KL, Moser VC, Luebke RW, Norwood J, Copeland CB, Kleindienst TE, Lonneman WA, Rogers JM. Toxicological assessments of rats exposed prenatally to inhaled vapors of gasoline and gasoline–ethanol blends. Neurotoxicol Teratol 2015; 49:19-30. [DOI: 10.1016/j.ntt.2015.02.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 02/13/2015] [Accepted: 02/16/2015] [Indexed: 01/20/2023]
|
23
|
Ahlers KE, Karaçay B, Fuller L, Bonthius DJ, Dailey ME. Transient activation of microglia following acute alcohol exposure in developing mouse neocortex is primarily driven by BAX-dependent neurodegeneration. Glia 2015; 63:1694-713. [PMID: 25856413 DOI: 10.1002/glia.22835] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 03/02/2015] [Accepted: 03/24/2015] [Indexed: 12/19/2022]
Abstract
Fetal alcohol exposure is the most common known cause of preventable mental retardation, yet we know little about how microglia respond to, or are affected by, alcohol in the developing brain in vivo. Using an acute (single day) model of moderate (3 g/kg) to severe (5 g/kg) alcohol exposure in postnatal day (P) 7 or P8 mice, we found that alcohol-induced neuroapoptosis in the neocortex is closely correlated in space and time with the appearance of activated microglia near dead cells. The timing and molecular pattern of microglial activation varied with the level of cell death. Although microglia rapidly mobilized to contact and engulf late-stage apoptotic neurons, apoptotic bodies temporarily accumulated in neocortex, suggesting that in severe cases of alcohol toxicity the neurodegeneration rate exceeds the clearance capacity of endogenous microglia. Nevertheless, most dead cells were cleared and microglia began to deactivate within 1-2 days of the initial insult. Coincident with microglial activation and deactivation, there was a transient increase in expression of pro-inflammatory factors, TNFα and IL-1β, after severe (5 g/kg) but not moderate (3 g/kg) EtOH levels. Alcohol-induced microglial activation and pro-inflammatory factor expression were largely abolished in BAX null mice lacking neuroapoptosis, indicating that microglial activation is primarily triggered by apoptosis rather than the alcohol. Therefore, acute alcohol exposure in the developing neocortex causes transient microglial activation and mobilization, promoting clearance of dead cells and tissue recovery. Moreover, cortical microglia show a remarkable capacity to rapidly deactivate following even severe neurodegenerative insults in the developing brain.
Collapse
Affiliation(s)
- Katelin E Ahlers
- Department of Biology, College of Liberal Arts and Sciences, University of Iowa, Iowa City, Iowa
| | - Bahri Karaçay
- Division of Child Neurology, Department of Pediatrics, University of Iowa, Iowa City, Iowa
| | - Leah Fuller
- Department of Biology, College of Liberal Arts and Sciences, University of Iowa, Iowa City, Iowa
| | - Daniel J Bonthius
- Division of Child Neurology, Department of Pediatrics, University of Iowa, Iowa City, Iowa.,Department of Neurology, the Roy J. Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Michael E Dailey
- Department of Biology, College of Liberal Arts and Sciences, University of Iowa, Iowa City, Iowa
| |
Collapse
|
24
|
Abstract
Prenatal alcohol exposure (PAE) is one of the most prevalent and modifiable risk factors for somatic, behavioral, and neurological abnormalities. Affected individuals exhibit a wide range of such features referred to as fetal alcohol spectrum disorders (FASD). These are characterized by a more or less specific pattern of minor facial dysmorphic features, growth deficiency and central nervous system symptoms. Nevertheless, whereas the diagnosis of the full-blown fetal alcohol syndrome does not pose a major challenge, only a tentative diagnosis of FASD can be reached if only mild features are present and/or maternal alcohol consumption during pregnancy cannot be verified. The respective disorders have lifelong implications. The teratogenic mechanisms induced by PAE can lead to various additional somatic findings and structural abnormalities of cerebrum and cerebellum. At the functional level, cognition, motor coordination, attention, language development, executive functions, memory, social perception and emotion processing are impaired to a variable extent. The long-term development is characterized by disruption and failure in many domains; an age-adequate independency is frequently not achieved. In addition to primary prevention, individual therapeutic interventions and tertiary prevention are warranted; provision of extensive education to affected subjects and their caregivers is crucial. Protective environments are often required to prevent negative consequences such as delinquency, indebtedness or experience of physical/sexual abuse.
Collapse
|
25
|
Beasley TE, Evansky PA, Martin SA, McDaniel KL, Moser VC, Luebke RW, Norwood J, Rogers JM, B. Copeland C, Bushnell PJ. Toxicological outcomes in rats exposed to inhaled ethanol during gestation. Neurotoxicol Teratol 2014; 45:59-69. [DOI: 10.1016/j.ntt.2014.07.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 05/27/2014] [Accepted: 07/11/2014] [Indexed: 11/28/2022]
|
26
|
Kane CJM, Phelan KD, Douglas JC, Wagoner G, Johnson JW, Xu J, Drew PD. Effects of ethanol on immune response in the brain: region-specific changes in aged mice. J Neuroinflammation 2013; 10:66. [PMID: 23701841 PMCID: PMC3671152 DOI: 10.1186/1742-2094-10-66] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Accepted: 05/08/2013] [Indexed: 11/21/2022] Open
Abstract
Background Alcohol abuse has dramatic effects on the health of the elderly. Recent studies indicate that ethanol increases immune activity in younger animals and that some of these proinflammatory molecules alter alcohol consumption and addiction. However, the effects of alcohol on immune activation in aged animals have not been thoroughly investigated. Findings We compared the effects of ethanol on chemokine and cytokine expression in the hippocampus, cerebellum, and cerebral cortex of aged C57BL/6 mice. Mice were treated via gavage with 6 g/kg ethanol for 10 days and tissue was harvested 1 day post-treatment. Ethanol selectively increased mRNA levels of the chemokine (C-C motif) ligand 2/monocyte chemotactic protein-1 in the hippocampus and cerebellum, but not in the cortex of aged mice relative to control animals. In this paradigm, ethanol did not affect mRNA levels of the cytokines IL-6 or TNF-α in any of these brain regions in aged animals. Conclusions Collectively, these data indicate a region-specific susceptibility to ethanol regulation of neuroinflammatory and addiction-related molecules in aged mice. These studies could have important implications concerning alcohol-induced neuropathology and alcohol addiction in the elderly.
Collapse
Affiliation(s)
- Cynthia J M Kane
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | | | | | | | | | | | | |
Collapse
|