1
|
Wang C, Liu JY, Su LD, Wang XT, Bian YP, Wang ZX, Ye LY, Lu XJ, Zhou L, Chen W, Yang W, Liu J, Wang L, Shen Y. GABAergic Progenitor Cell Graft Rescues Cognitive Deficits in Fragile X Syndrome Mice. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2411972. [PMID: 39823534 DOI: 10.1002/advs.202411972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 12/17/2024] [Indexed: 01/19/2025]
Abstract
Fragile X syndrome (FXS) is an inherited neurodevelopmental disorder characterized by a range of clinical manifestations with no effective treatment strategy to date. Here, transplantation of GABAergic precursor cells from the medial ganglionic eminence (MGE) is demonstrated to significantly improve cognitive performance in Fmr1 knockout (KO) mice. Within the hippocampus of Fmr1-KO mice, MGE-derived cells from wild-type donor mice survive, migrate, differentiate into functionally mature interneurons, and form inhibitory synaptic connections with host pyramidal neurons. MGE cell transplantation restores Ras-PKB signaling in pyramidal neurons, enhances AMPA receptor trafficking, rescues synaptic plasticity, and corrects abnormal hippocampal neural oscillations. These findings highlight the potential of GABAergic precursor cell transplantation as a promising therapeutic strategy for FXS.
Collapse
Affiliation(s)
- Chen Wang
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China
- Department of Physiology and Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Jia-Yu Liu
- Department of Physiology and Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Zhejiang Development & Planning Institute, Hangzhou, 310030, China
| | - Li-Da Su
- Neuroscience Care Unit, Key Laboratory of Multiple Organ Failure of Ministry of Education, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
- Key Laboratory of the Diagnosis and Treatment of Severe Trauma and Burn of Zhejiang Province, Hangzhou, 310009, China
| | - Xin-Tai Wang
- Institute of Life Sciences, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Yu-Peng Bian
- Center for Brain Health, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
| | | | - Lu-Yu Ye
- Department of Biophysics, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Xin-Jiang Lu
- Department of Physiology, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Lin Zhou
- Department of Physiology and Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Wei Chen
- Department of Physiology and Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Wei Yang
- Department of Biophysics, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Jun Liu
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China
| | - Luxi Wang
- Department of Physiology and Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Center for Brain Health, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
| | - Ying Shen
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China
- Department of Physiology and Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Center for Brain Health, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
- Key Laboratory for Precision Diagnosis, Treatment, and Clinical Translation of Rare Diseases of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 310058, China
| |
Collapse
|
2
|
Cogram P, Fernández-Beltrán LC, Casarejos MJ, Sánchez-Yepes S, Rodríguez-Martín E, García-Rubia A, Sánchez-Barrena MJ, Gil C, Martínez A, Mansilla A. The inhibition of NCS-1 binding to Ric8a rescues fragile X syndrome mice model phenotypes. Front Neurosci 2022; 16:1007531. [PMID: 36466176 PMCID: PMC9709425 DOI: 10.3389/fnins.2022.1007531] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 09/26/2022] [Indexed: 01/01/2024] Open
Abstract
Fragile X syndrome (FXS) is caused by the loss of function of Fragile X mental retardation protein (FMRP). FXS is one of the leading monogenic causes of intellectual disability (ID) and autism. Although it is caused by the failure of a single gene, FMRP that functions as an RNA binding protein affects a large number of genes secondarily. All these genes represent hundreds of potential targets and different mechanisms that account for multiple pathological features, thereby hampering the search for effective treatments. In this scenario, it seems desirable to reorient therapies toward more general approaches. Neuronal calcium sensor 1 (NCS-1), through its interaction with the guanine-exchange factor Ric8a, regulates the number of synapses and the probability of the release of a neurotransmitter, the two neuronal features that are altered in FXS and other neurodevelopmental disorders. Inhibitors of the NCS-1/Ric8a complex have been shown to be effective in restoring abnormally high synapse numbers as well as improving associative learning in FMRP mutant flies. Here, we demonstrate that phenothiazine FD44, an NCS-1/Ric8a inhibitor, has strong inhibition ability in situ and sufficient bioavailability in the mouse brain. More importantly, administration of FD44 to two different FXS mouse models restores well-known FXS phenotypes, such as hyperactivity, associative learning, aggressive behavior, stereotype, or impaired social approach. It has been suggested that dopamine (DA) may play a relevant role in the behavior and in neurodevelopmental disorders in general. We have measured DA and its metabolites in different brain regions, finding a higher metabolic rate in the limbic area, which is also restored with FD44 treatment. Therefore, in addition to confirming that the NCS-1/Ric8a complex is an excellent therapeutic target, we demonstrate the rescue effect of its inhibitor on the behavior of cognitive and autistic FXS mice and show DA metabolism as a FXS biochemical disease marker.
Collapse
Affiliation(s)
- Patricia Cogram
- Department of Genetics, Institute of Ecology and Biodiversity (IEB), Faculty of Sciences, Universidad de Chile, Santiago, Chile
- FRAXA-DVI, FRAXA Research Foundation, Santiago, Chile
| | - Luis C. Fernández-Beltrán
- Department of Neurobiology, Instituto Ramón y Cajal de Investigación Sanitaria, Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - María José Casarejos
- Department of Neurobiology, Instituto Ramón y Cajal de Investigación Sanitaria, Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Sonia Sánchez-Yepes
- Department of Neurobiology, Instituto Ramón y Cajal de Investigación Sanitaria, Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Eulalia Rodríguez-Martín
- Department of Immunology, Instituto Ramón y Cajal de Investigación Sanitaria, Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Alfonso García-Rubia
- Centro de Investigaciones Biológicas Margarita Salas-CSIC, Madrid, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | | | - Carmen Gil
- Centro de Investigaciones Biológicas Margarita Salas-CSIC, Madrid, Spain
| | - Ana Martínez
- Centro de Investigaciones Biológicas Margarita Salas-CSIC, Madrid, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Alicia Mansilla
- Department of Neurobiology, Instituto Ramón y Cajal de Investigación Sanitaria, Hospital Universitario Ramón y Cajal, Madrid, Spain
- Department of Biology Systems, Universidad de Alcala, Madrid, Spain
| |
Collapse
|
3
|
Chidambaram SB, Rathipriya AG, Bolla SR, Bhat A, Ray B, Mahalakshmi AM, Manivasagam T, Thenmozhi AJ, Essa MM, Guillemin GJ, Chandra R, Sakharkar MK. Dendritic spines: Revisiting the physiological role. Prog Neuropsychopharmacol Biol Psychiatry 2019; 92:161-193. [PMID: 30654089 DOI: 10.1016/j.pnpbp.2019.01.005] [Citation(s) in RCA: 171] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 01/04/2019] [Accepted: 01/12/2019] [Indexed: 12/11/2022]
Abstract
Dendritic spines are small, thin, specialized protrusions from neuronal dendrites, primarily localized in the excitatory synapses. Sophisticated imaging techniques revealed that dendritic spines are complex structures consisting of a dense network of cytoskeletal, transmembrane and scaffolding molecules, and numerous surface receptors. Molecular signaling pathways, mainly Rho and Ras family small GTPases pathways that converge on actin cytoskeleton, regulate the spine morphology and dynamics bi-directionally during synaptic activity. During synaptic plasticity the number and shapes of dendritic spines undergo radical reorganizations. Long-term potentiation (LTP) induction promote spine head enlargement and the formation and stabilization of new spines. Long-term depression (LTD) results in their shrinkage and retraction. Reports indicate increased spine density in the pyramidal neurons of autism and Fragile X syndrome patients and reduced density in the temporal gyrus loci of schizophrenic patients. Post-mortem reports of Alzheimer's brains showed reduced spine number in the hippocampus and cortex. This review highlights the spine morphogenesis process, the activity-dependent structural plasticity and mechanisms by which synaptic activity sculpts the dendritic spines, the structural and functional changes in spines during learning and memory using LTP and LTD processes. It also discusses on spine status in neurodegenerative diseases and the impact of nootropics and neuroprotective agents on the functional restoration of dendritic spines.
Collapse
Affiliation(s)
- Saravana Babu Chidambaram
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research (JSSAHER), Mysuru, Karnataka 570015, India.
| | - A G Rathipriya
- Food and Brain Research Foundation, Chennai, Tamil Nadu, India
| | - Srinivasa Rao Bolla
- Department of Anatomy, College of Medicine, Imam Abdulrahman Bin Faisal University, Damam, Saudi Arabia
| | - Abid Bhat
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research (JSSAHER), Mysuru, Karnataka 570015, India
| | - Bipul Ray
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research (JSSAHER), Mysuru, Karnataka 570015, India
| | - Arehally Marappa Mahalakshmi
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research (JSSAHER), Mysuru, Karnataka 570015, India
| | - Thamilarasan Manivasagam
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar, Tamilnadu, India
| | - Arokiasamy Justin Thenmozhi
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar, Tamilnadu, India
| | - Musthafa Mohamed Essa
- Department of Food Science and Nutrition, CAMS, Sultan Qaboos University, Muscat, Oman
| | - Gilles J Guillemin
- Neuropharmacology Group, Faculty of Medicine and Health Sciences, Deb Bailey MND Research Laboratory, Macquarie University, Sydney, NSW 2109, Australia
| | - Ramesh Chandra
- Department of Chemistry, Ambedkar Centre for BioMedical Research, Delhi University, Delhi 110007, India
| | - Meena Kishore Sakharkar
- College of Pharmacy and Nutrition, University of Saskatchewan, 107, Wiggins Road, Saskatoon, SK S7N 5C9, Canada.
| |
Collapse
|
4
|
Zhang J, Wang G, He WW, Losh M, Berry-Kravis E, Funk WE. Expression and Characterization of Human Fragile X Mental Retardation Protein Isoforms and Interacting Proteins in Human Cells. PROTEOMICS INSIGHTS 2019; 10:1178641818825268. [PMID: 30853789 PMCID: PMC6399764 DOI: 10.1177/1178641818825268] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 12/21/2018] [Indexed: 11/16/2022]
Abstract
Fragile X mental retardation protein is an mRNA-binding protein associated with phenotypic manifestations of fragile X syndrome, an X-linked disorder caused by mutation in the FMR1 gene that is the most common inherited cause of intellectual disability. Despite the well-studied genetic mechanism of the disease, the proteoforms of fragile X mental retardation protein have not been thoroughly characterized. Here, we report the expression and mass spectrometric characterization of human fragile X mental retardation protein. FMR1 cDNA clone was transfected into human HEK293 cells to express the full-length human fragile X mental retardation protein. Purified fragile X mental retardation protein was subjected to trypsin digestion and characterized by mass spectrometry. Results show 80.5% protein sequence coverage of fragile X mental retardation protein (Q06787, FMR1_HUMAN) including both the N- and C-terminal peptides, indicating successful expression of the full-length protein. Identified post-translational modifications include N-terminal acetylation, phosphorylation (Ser600), and methylation (Arg290, 471, and 474). In addition to the full-length fragile X mental retardation protein isoform (isoform 6), two endogenous fragile X mental retardation protein alternative splicing isoforms (isoforms 4 and 7), as well as fragile X mental retardation protein interacting proteins, were also identified in the co-purified samples, suggesting the interaction network of the human fragile X mental retardation protein. Quantification was performed at the peptide level, and this information provides important reference for the future development of a targeted assay for quantifying fragile X mental retardation protein in clinical samples. Collectively, this study provides the first comprehensive report of human fragile X mental retardation protein proteoforms and may help advance the mechanistic understanding of fragile X syndrome and related phenotypes associated with the FMR1 mutation.
Collapse
Affiliation(s)
- Jiang Zhang
- Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | | | - Wei-Wu He
- OriGene Technology, Inc., Rockville, MD, USA
| | - Molly Losh
- Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL, USA
| | - Elizabeth Berry-Kravis
- Departments of Biochemistry, Neurological Sciences and Pediatrics, Rush University, Chicago, IL, USA
| | - William E Funk
- Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| |
Collapse
|
5
|
Filippini A, Bonini D, Lacoux C, Pacini L, Zingariello M, Sancillo L, Bosisio D, Salvi V, Mingardi J, La Via L, Zalfa F, Bagni C, Barbon A. Absence of the Fragile X Mental Retardation Protein results in defects of RNA editing of neuronal mRNAs in mouse. RNA Biol 2017. [PMID: 28640668 PMCID: PMC5785225 DOI: 10.1080/15476286.2017.1338232] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
The fragile X syndrome (FXS), the most common form of inherited intellectual disability, is due to the absence of FMRP, a protein regulating RNA metabolism. Recently, an unexpected function of FMRP in modulating the activity of Adenosine Deaminase Acting on RNA (ADAR) enzymes has been reported both in Drosophila and Zebrafish. ADARs are RNA-binding proteins that increase transcriptional complexity through a post-transcriptional mechanism called RNA editing. To evaluate the ADAR2-FMRP interaction in mammals we analyzed several RNA editing re-coding sites in the fmr1 knockout (KO) mice. Ex vivo and in vitro analysis revealed that absence of FMRP leads to an increase in the editing levels of brain specific mRNAs, indicating that FMRP might act as an inhibitor of editing activity. Proximity Ligation Assay (PLA) in mouse primary cortical neurons and in non-neuronal cells revealed that ADAR2 and FMRP co-localize in the nucleus. The ADAR2-FMRP co-localization was further observed by double-immunogold Electron Microscopy (EM) in the hippocampus. Moreover, ADAR2-FMRP interaction appeared to be RNA independent. Because changes in the editing pattern are associated with neuropsychiatric and neurodevelopmental disorders, we propose that the increased editing observed in the fmr1-KO mice might contribute to the FXS molecular phenotypes.
Collapse
Affiliation(s)
- Alice Filippini
- a Biology and Genetic Division; Department of Molecular and Translational Medicine; University of Brescia ; Brescia , Italy
| | - Daniela Bonini
- a Biology and Genetic Division; Department of Molecular and Translational Medicine; University of Brescia ; Brescia , Italy
| | - Caroline Lacoux
- b Department of Biomedicine and Prevention , University of Rome Tor Vergata , Rome , Italy
| | - Laura Pacini
- b Department of Biomedicine and Prevention , University of Rome Tor Vergata , Rome , Italy
| | - Maria Zingariello
- c Department of Medicine , Campus Bio-Medico University , via Álvaro del Portillo 21, Rome , Italy
| | - Laura Sancillo
- d Department of Medicine and Aging Sciences, Section of Human Morphology , University G. D'Annunzio of Chieti-Pescara , Chieti , Italy
| | - Daniela Bosisio
- e Immunology Unit; Department of Molecular and Translational Medicine; University of Brescia ; Brescia , Italy
| | - Valentina Salvi
- e Immunology Unit; Department of Molecular and Translational Medicine; University of Brescia ; Brescia , Italy
| | - Jessica Mingardi
- a Biology and Genetic Division; Department of Molecular and Translational Medicine; University of Brescia ; Brescia , Italy
| | - Luca La Via
- a Biology and Genetic Division; Department of Molecular and Translational Medicine; University of Brescia ; Brescia , Italy
| | - Francesca Zalfa
- c Department of Medicine , Campus Bio-Medico University , via Álvaro del Portillo 21, Rome , Italy
| | - Claudia Bagni
- b Department of Biomedicine and Prevention , University of Rome Tor Vergata , Rome , Italy.,f VIB Center for the Biology of Disease and Center for Human Genetics , Leuven , Belgium.,g Department of Fundamental Neuroscience , University of Lausanne , Lausanne , Switzerland
| | - Alessandro Barbon
- a Biology and Genetic Division; Department of Molecular and Translational Medicine; University of Brescia ; Brescia , Italy
| |
Collapse
|
6
|
Zorio DAR, Jackson CM, Liu Y, Rubel EW, Wang Y. Cellular distribution of the fragile X mental retardation protein in the mouse brain. J Comp Neurol 2017; 525:818-849. [PMID: 27539535 PMCID: PMC5558202 DOI: 10.1002/cne.24100] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 08/10/2016] [Accepted: 08/11/2016] [Indexed: 11/07/2022]
Abstract
The fragile X mental retardation protein (FMRP) plays an important role in normal brain development. Absence of FMRP results in abnormal neuronal morphologies in a selected manner throughout the brain, leading to intellectual deficits and sensory dysfunction in the fragile X syndrome (FXS). Despite FMRP importance for proper brain function, its overall expression pattern in the mammalian brain at the resolution of individual neuronal cell groups is not known. In this study we used FMR1 knockout and isogenic wildtype mice to systematically map the distribution of FMRP expression in the entire mouse brain. Using immunocytochemistry and cellular quantification analyses, we identified a large number of prominent cell groups expressing high levels of FMRP at the subcortical levels, in particular sensory and motor neurons in the brainstem and thalamus. In contrast, many cell groups in the midbrain and hypothalamus exhibit low FMRP levels. More important, we describe differential patterns of FMRP distribution in both cortical and subcortical brain regions. Almost all major brain areas contain high and low levels of FMRP cell groups adjacent to each other or between layers of the same cortical areas. These differential patterns indicate that FMRP expression appears to be specific to individual neuronal cell groups instead of being associated with all neurons in distinct brain regions, as previously considered. Taken together, these findings support the notion of FMRP differential neuronal regulation and strongly implicate the contribution of fundamental sensory and motor processing at subcortical levels to FXS pathology. J. Comp. Neurol. 525:818-849, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Diego A. R. Zorio
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL 32306, USA
| | - Christine M. Jackson
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL 32306, USA
| | - Yong Liu
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL 32306, USA
| | - Edwin W Rubel
- Virginia Merrill Bloedel Hearing Research Center, Department of Otolaryngology-Head and Neck Surgery, University of Washington School of Medicine, Box 357923, Seattle, WA 98195, USA
| | - Yuan Wang
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL 32306, USA
| |
Collapse
|
7
|
Kaufman CS, Genovese A, Butler MG. Deletion of TOP3B Is Associated with Cognitive Impairment and Facial Dysmorphism. Cytogenet Genome Res 2016; 150:106-111. [PMID: 27880953 DOI: 10.1159/000452815] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/19/2016] [Indexed: 11/19/2022] Open
Abstract
Deletions of different regions of chromosome 22q11 have been extensively characterized in the literature, with a recent review outlining common deletions with a standardized system proposed for classification and nomenclature. The genotype-phenotype relationships have not been sufficiently elucidated for these deletions, and it remains unclear which specific genes play the dominant roles in producing associated clinical features. Several deletions involve entirely distinct regions of chromosome 22q11 but do not overlap, suggesting that a number of different genes contribute to the clinical features. Studies of patients with small deletions involving only 1 or 2 genes may provide more convincing evidence for the impact of individual genes on the observed phenotype. In this case report, we present a 12-year-old female with autism, cognitive impairment, dysmorphic features, and behavioral concerns and a 268-kb deletion of chromosome 22q11.22 including TOP3B, the only recognized disease-causing gene in the deletion. The mechanism of pathogenesis contributing significantly to our patient's clinical findings may relate to interaction between TOP3B and fragile X mental retardation protein (FMRP), an mRNA-binding protein that regulates translation and is altered in fragile X syndrome, a condition involving developmental delay, learning disability, and autism. All these features are recognized in our patient.
Collapse
Affiliation(s)
- Carolyn S Kaufman
- Departments of Psychiatry & Behavioral Sciences and Pediatrics, University of Kansas Medical Center, Kansas City, KS, USA
| | | | | |
Collapse
|
8
|
VCP and ATL1 regulate endoplasmic reticulum and protein synthesis for dendritic spine formation. Nat Commun 2016; 7:11020. [PMID: 26984393 PMCID: PMC4800434 DOI: 10.1038/ncomms11020] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 02/12/2016] [Indexed: 12/29/2022] Open
Abstract
Imbalanced protein homeostasis, such as excessive protein synthesis and protein aggregation, is a pathogenic hallmark of a range of neurological disorders. Here, using expression of mutant proteins, a knockdown approach and disease mutation knockin mice, we show that VCP (valosin-containing protein), together with its cofactor P47 and the endoplasmic reticulum (ER) morphology regulator ATL1 (Atlastin-1), regulates tubular ER formation and influences the efficiency of protein synthesis to control dendritic spine formation in neurons. Strengthening the significance of protein synthesis in dendritic spinogenesis, the translation blocker cyclohexamide and the mTOR inhibitor rapamycin reduce dendritic spine density, while a leucine supplement that increases protein synthesis ameliorates the dendritic spine defects caused by Vcp and Atl1 deficiencies. Because VCP and ATL1 are the causative genes of several neurodegenerative and neurodevelopmental disorders, we suggest that impaired ER formation and inefficient protein synthesis are significant in the pathogenesis of multiple neurological disorders. Protein homeostasis is crucial for maintaining a variety of cellular functions. Here the authors show that valosin-containing protein and its cofactors regulate tubular ER formation and protein synthesis efficiency, thereby control dendritic spine formation in neurons.
Collapse
|
9
|
Maiti P, Manna J, Ilavazhagan G, Rossignol J, Dunbar GL. Molecular regulation of dendritic spine dynamics and their potential impact on synaptic plasticity and neurological diseases. Neurosci Biobehav Rev 2015; 59:208-37. [PMID: 26562682 DOI: 10.1016/j.neubiorev.2015.09.020] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 08/20/2015] [Accepted: 09/07/2015] [Indexed: 12/12/2022]
Abstract
The structure and dynamics of dendritic spines reflect the strength of synapses, which are severely affected in different brain diseases. Therefore, understanding the ultra-structure, molecular signaling mechanism(s) regulating dendritic spine dynamics is crucial. Although, since last century, dynamics of spine have been explored by several investigators in different neurological diseases, but despite countless efforts, a comprehensive understanding of the fundamental etiology and molecular signaling pathways involved in spine pathology is lacking. The purpose of this review is to provide a contextual framework of our current understanding of the molecular mechanisms of dendritic spine signaling, as well as their potential impact on different neurodegenerative and psychiatric diseases, as a format for highlighting some commonalities in function, as well as providing a format for new insights and perspectives into this critical area of research. Additionally, the potential strategies to restore spine structure-function in different diseases are also pointed out. Overall, these informations should help researchers to design new drugs to restore the structure-function of dendritic spine, a "hot site" of synaptic plasticity.
Collapse
Affiliation(s)
- Panchanan Maiti
- Field Neurosciences Institute, St. Mary's of Michigan, Saginaw, MI, USA; Department of Psychology and Neurosciences Program, Central Michigan University, Mt. Pleasant, MI, USA.
| | - Jayeeta Manna
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN, USA.
| | - G Ilavazhagan
- Hindustan University, Rajiv Gandhi Salai (OMR), Padur, Kelambakam, Chennai, TN, India.
| | - Julien Rossignol
- Department of Psychology and Neurosciences Program, Central Michigan University, Mt. Pleasant, MI, USA; College of Medicine, Central Michigan University, Mt. Pleasant, MI, USA.
| | - Gary L Dunbar
- Field Neurosciences Institute, St. Mary's of Michigan, Saginaw, MI, USA; Department of Psychology and Neurosciences Program, Central Michigan University, Mt. Pleasant, MI, USA.
| |
Collapse
|
10
|
Correia F, Café C, Almeida J, Mouga S, Oliveira G. Autism spectrum disorder: FRAXE mutation, a rare etiology. J Autism Dev Disord 2015; 45:888-92. [PMID: 25035088 DOI: 10.1007/s10803-014-2185-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Autism spectrum disorder (ASD) is characterized by impaired social interaction and communication, restricted interests and repetitive behaviors. Fragile X E is associated with X-linked non-specific mild intellectual disability (ID) and with behavioral problems. Most of the known genetic causes of ASD are also causes of ID, implying that these two identities share common genetic bases. We present a child with an ASD with a normal range of intelligence quotient, that later evolved to compulsive behavior. FRAXE locus analysis by polymerase chain reaction revealed a complete mutation of the FMR 2 gene. This report stresses the importance of clinicians being aware of the association between a full mutation of FMR2 and ASD associated with compulsive behavior despite normal intellectual level.
Collapse
Affiliation(s)
- F Correia
- Serviço de Pediatria, Centro Hospitalar do Alto Ave, Rua dos Cutileiros, Creixomil, 4835-044, Guimarães, Portugal
| | | | | | | | | |
Collapse
|
11
|
Millan MJ, Goodwin GM, Meyer-Lindenberg A, Ove Ögren S. Learning from the past and looking to the future: Emerging perspectives for improving the treatment of psychiatric disorders. Eur Neuropsychopharmacol 2015; 25:599-656. [PMID: 25836356 DOI: 10.1016/j.euroneuro.2015.01.016] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 01/28/2015] [Indexed: 02/06/2023]
Abstract
Modern neuropsychopharmacology commenced in the 1950s with the serendipitous discovery of first-generation antipsychotics and antidepressants which were therapeutically effective yet had marked adverse effects. Today, a broader palette of safer and better-tolerated agents is available for helping people that suffer from schizophrenia, depression and other psychiatric disorders, while complementary approaches like psychotherapy also have important roles to play in their treatment, both alone and in association with medication. Nonetheless, despite considerable efforts, current management is still only partially effective, and highly-prevalent psychiatric disorders of the brain continue to represent a huge personal and socio-economic burden. The lack of success in discovering more effective pharmacotherapy has contributed, together with many other factors, to a relative disengagement by pharmaceutical firms from neuropsychiatry. Nonetheless, interest remains high, and partnerships are proliferating with academic centres which are increasingly integrating drug discovery and translational research into their traditional activities. This is, then, a time of transition and an opportune moment to thoroughly survey the field. Accordingly, the present paper, first, chronicles the discovery and development of psychotropic agents, focusing in particular on their mechanisms of action and therapeutic utility, and how problems faced were eventually overcome. Second, it discusses the lessons learned from past successes and failures, and how they are being applied to promote future progress. Third, it comprehensively surveys emerging strategies that are (1), improving our understanding of the diagnosis and classification of psychiatric disorders; (2), deepening knowledge of their underlying risk factors and pathophysiological substrates; (3), refining cellular and animal models for discovery and validation of novel therapeutic agents; (4), improving the design and outcome of clinical trials; (5), moving towards reliable biomarkers of patient subpopulations and medication efficacy and (6), promoting collaborative approaches to innovation by uniting key partners from the regulators, industry and academia to patients. Notwithstanding the challenges ahead, the many changes and ideas articulated herein provide new hope and something of a framework for progress towards the improved prevention and relief of psychiatric and other CNS disorders, an urgent mission for our Century.
Collapse
Affiliation(s)
- Mark J Millan
- Pole for Innovation in Neurosciences, IDR Servier, 125 chemin de ronde, 78290 Croissy sur Seine, France.
| | - Guy M Goodwin
- University Department of Psychiatry, Oxford University, Warneford Hospital, Oxford OX3 7JX, England, UK
| | - Andreas Meyer-Lindenberg
- Central Institute of Mental Health, University of Heidelberg/Medical Faculty Mannheim, J5, D-68159 Mannheim, Germany
| | - Sven Ove Ögren
- Department of Neuroscience, Karolinska Institutet, Retzius väg 8, S-17177 Stockholm, Sweden
| |
Collapse
|
12
|
Wang H. Fragile X mental retardation protein: from autism to neurodegenerative disease. Front Cell Neurosci 2015; 9:43. [PMID: 25729352 PMCID: PMC4325920 DOI: 10.3389/fncel.2015.00043] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2015] [Accepted: 01/28/2015] [Indexed: 11/13/2022] Open
Affiliation(s)
- Hansen Wang
- Faculty of Medicine, University of Toronto Toronto, ON, Canada
| |
Collapse
|
13
|
FXR1P limits long-term memory, long-lasting synaptic potentiation, and de novo GluA2 translation. Cell Rep 2014; 9:1402-1416. [PMID: 25456134 DOI: 10.1016/j.celrep.2014.10.028] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 08/28/2014] [Accepted: 10/11/2014] [Indexed: 12/31/2022] Open
Abstract
Translational control of mRNAs allows for rapid and selective changes in synaptic protein expression that are required for long-lasting plasticity and memory formation in the brain. Fragile X Related Protein 1 (FXR1P) is an RNA-binding protein that controls mRNA translation in nonneuronal cells and colocalizes with translational machinery in neurons. However, its neuronal mRNA targets and role in the brain are unknown. Here, we demonstrate that removal of FXR1P from the forebrain of postnatal mice selectively enhances long-term storage of spatial memories, hippocampal late-phase long-term potentiation (L-LTP), and de novo GluA2 synthesis. Furthermore, FXR1P binds specifically to the 5' UTR of GluA2 mRNA to repress translation and limit the amount of GluA2 that is incorporated at potentiated synapses. This study uncovers a mechanism for regulating long-lasting synaptic plasticity and spatial memory formation and reveals an unexpected divergent role of FXR1P among Fragile X proteins in brain plasticity.
Collapse
|
14
|
Horiuchi K, Kawamura T, Iwanari H, Ohashi R, Naito M, Kodama T, Hamakubo T. Identification of Wilms' tumor 1-associating protein complex and its role in alternative splicing and the cell cycle. J Biol Chem 2013; 288:33292-302. [PMID: 24100041 DOI: 10.1074/jbc.m113.500397] [Citation(s) in RCA: 266] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Wilms' tumor 1-associating protein (WTAP) is a putative splicing regulator that is thought to be required for cell cycle progression through the stabilization of cyclin A2 mRNA and mammalian early embryo development. To further understand how WTAP acts in the context of the cellular machinery, we identified its interacting proteins in human umbilical vein endothelial cells and HeLa cells using shotgun proteomics. Here we show that WTAP forms a novel protein complex including Hakai, Virilizer homolog, KIAA0853, RBM15, the arginine/serine-rich domain-containing proteins BCLAF1 and THRAP3, and certain general splicing regulators, most of which have reported roles in post-transcriptional regulation. The depletion of these respective components of the complex resulted in reduced cell proliferation along with G2/M accumulation. Double knockdown of the serine/arginine-rich (SR)-like proteins BCLAF1 and THRAP3 by siRNA resulted in a decrease in the nuclear speckle localization of WTAP, whereas the nuclear speckles were intact. Furthermore, we found that the WTAP complex regulates alternative splicing of the WTAP pre-mRNA by promoting the production of a truncated isoform, leading to a change in WTAP protein expression. Collectively, these findings show that the WTAP complex is a novel component of the RNA processing machinery, implying an important role in both posttranscriptional control and cell cycle regulation.
Collapse
Affiliation(s)
- Keiko Horiuchi
- From the Department of Quantitative Biology and Medicine and
| | | | | | | | | | | | | |
Collapse
|
15
|
Verpelli C, Galimberti I, Gomez-Mancilla B, Sala C. Molecular basis for prospective pharmacological treatment strategies in intellectual disability syndromes. Dev Neurobiol 2013; 74:197-206. [PMID: 23695997 DOI: 10.1002/dneu.22093] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2012] [Revised: 03/27/2013] [Accepted: 05/13/2013] [Indexed: 11/07/2022]
Abstract
A number of mutated genes that code for proteins concerned with brain synapse function and circuit formation have been identified in patients affected by intellectual disability (ID) syndromes over the past 15 years. These genes are involved in synapse formation and plasticity, the regulation of dendritic spine morphology, the regulation of the synaptic cytoskeleton, the synthesis and degradation of specific synapse proteins, and the control of correct balance between excitatory and inhibitory synapses. In most of the cases, even mild alterations in synapse morphology, function, and balance give rise to mild or severe IDs. These studies provided a rationale for the development of pharmacological agents that are able to counteract functional synaptic anomalies and potentially improve the symptoms of some of these conditions. This review summarizes recent findings on the functions of some of the genes responsible for ID syndromes and some of the new potential pharmacological treatments for these diseases.
Collapse
Affiliation(s)
- Chiara Verpelli
- CNR Institute of Neuroscience, Department of Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | | | | | | |
Collapse
|