1
|
Xue J, Brawner AT, Thompson JR, Yelhekar TD, Newmaster KT, Qiu Q, Cooper YA, Yu CR, Ahmed-Braima YH, Kim Y, Lin Y. Spatiotemporal Mapping and Molecular Basis of Whole-brain Circuit Maturation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.03.572456. [PMID: 38260331 PMCID: PMC10802351 DOI: 10.1101/2024.01.03.572456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Brain development is highly dynamic and asynchronous, marked by the sequential maturation of functional circuits across the brain. The timing and mechanisms driving circuit maturation remain elusive due to an inability to identify and map maturing neuronal populations. Here we create DevATLAS (Developmental Activation Timing-based Longitudinal Acquisition System) to overcome this obstacle. We develop whole-brain mapping methods to construct the first longitudinal, spatiotemporal map of circuit maturation in early postnatal mouse brains. Moreover, we uncover dramatic impairments within the deep cortical layers in a neurodevelopmental disorders (NDDs) model, demonstrating the utility of this resource to pinpoint when and where circuit maturation is disrupted. Using DevATLAS, we reveal that early experiences accelerate the development of hippocampus-dependent learning by increasing the synaptically mature granule cell population in the dentate gyrus. Finally, DevATLAS enables the discovery of molecular mechanisms driving activity-dependent circuit maturation.
Collapse
Affiliation(s)
- Jian Xue
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Andrew T. Brawner
- Department of Psychiatry and Behavioral Sciences, SUNY Upstate Medical University, Syracuse, NY 13210, USA
- Neuroscience Graduate Program, SUNY Upstate Medical University, Syracuse, NY 13210, USA
- Equal contribution
| | - Jacqueline R. Thompson
- Department of Psychiatry and Behavioral Sciences, SUNY Upstate Medical University, Syracuse, NY 13210, USA
- Neuroscience Graduate Program, SUNY Upstate Medical University, Syracuse, NY 13210, USA
- Equal contribution
| | - Tushar D. Yelhekar
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Kyra T. Newmaster
- Department of Neural and Behavioral Sciences, The Pennsylvania State University, Hershey, PA 17033, USA
| | - Qiang Qiu
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, MO 66160, USA
| | - Yonatan A. Cooper
- Current address: Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - C. Ron Yu
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, MO 66160, USA
| | | | - Yongsoo Kim
- Department of Neural and Behavioral Sciences, The Pennsylvania State University, Hershey, PA 17033, USA
| | - Yingxi Lin
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
- Lead contact
| |
Collapse
|
2
|
Paşcalău R, Badea TC. Signaling - transcription interactions in mouse retinal ganglion cells early axon pathfinding -a literature review. FRONTIERS IN OPHTHALMOLOGY 2023; 3:1180142. [PMID: 38983012 PMCID: PMC11182120 DOI: 10.3389/fopht.2023.1180142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 04/21/2023] [Indexed: 07/11/2024]
Abstract
Sending an axon out of the eye and into the target brain nuclei is the defining feature of retinal ganglion cells (RGCs). The literature on RGC axon pathfinding is vast, but it focuses mostly on decision making events such as midline crossing at the optic chiasm or retinotopic mapping at the target nuclei. In comparison, the exit of RGC axons out of the eye is much less explored. The first checkpoint on the RGC axons' path is the optic cup - optic stalk junction (OC-OS). OC-OS development and the exit of the RGC pioneer axons out of the eye are coordinated spatially and temporally. By the time the optic nerve head domain is specified, the optic fissure margins are in contact and the fusion process is ongoing, the first RGCs are born in its proximity and send pioneer axons in the optic stalk. RGC differentiation continues in centrifugal waves. Later born RGC axons fasciculate with the more mature axons. Growth cones at the end of the axons respond to guidance cues to adopt a centripetal direction, maintain nerve fiber layer restriction and to leave the optic cup. Although there is extensive information on OC-OS development, we still have important unanswered questions regarding its contribution to the exit of the RGC axons out of the eye. We are still to distinguish the morphogens of the OC-OS from the axon guidance molecules which are expressed in the same place at the same time. The early RGC transcription programs responsible for axon emergence and pathfinding are also unknown. This review summarizes the molecular mechanisms for early RGC axon guidance by contextualizing mouse knock-out studies on OC-OS development with the recent transcriptomic studies on developing RGCs in an attempt to contribute to the understanding of human optic nerve developmental anomalies. The published data summarized here suggests that the developing optic nerve head provides a physical channel (the closing optic fissure) as well as molecular guidance cues for the pioneer RGC axons to exit the eye.
Collapse
Affiliation(s)
- Raluca Paşcalău
- Research and Development Institute, Transilvania University of Braşov, Braşov, Romania
- Ophthalmology Clinic, Cluj County Emergency Hospital, Cluj-Napoca, Romania
| | - Tudor Constantin Badea
- Research and Development Institute, Transilvania University of Braşov, Braşov, Romania
- National Center for Brain Research, Institutul de Cercetări pentru Inteligență Artificială, Romanian Academy, Bucharest, Romania
| |
Collapse
|
3
|
Gong Y, He X, Li Q, He J, Bian B, Li Y, Ge L, Zeng Y, Xu H, Yin ZQ. SCF/SCFR signaling plays an important role in the early morphogenesis and neurogenesis of human embryonic neural retina. Development 2019; 146:dev.174409. [PMID: 31548215 DOI: 10.1242/dev.174409] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 09/16/2019] [Indexed: 12/20/2022]
Abstract
The stem cell factor receptor (SCFR) has been demonstrated to be expressed in the neural retina of mice, rat and human for decades. Previous reports indicated that the SCFR correlates with glia differentiation of late retinal progenitor cells (RPCs), retinal vasculogenesis and homeostasis of the blood-retinal barrier. However, the role of SCF/SCFR signaling in the growth and development of the neural retina (NR), especially in the early embryonic stage, remains poorly understood. Here, we show that SCF/SCFR signaling orchestrates invagination of the human embryonic stem cell (hESC)-derived NR via regulation of cell cycle progression, cytoskeleton dynamic and apical constriction of RPCs in the ciliary marginal zone (CMZ). Furthermore, activation of SCF/SCFR signaling promotes neurogenesis in the central-most NR via acceleration of the migration of immature ganglion cells and repressing apoptosis. Our study reveals an unreported role for SCF/SCFR signaling in controlling ciliary marginal cellular behaviors during early morphogenesis and neurogenesis of the human embryonic NR, providing a new potential therapeutic target for human congenital eye diseases such as anophthalmia, microphthalmia and congenital high myopia.
Collapse
Affiliation(s)
- Yu Gong
- Southwest Hospital/ Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, PR China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, PR China
| | - Xiangyu He
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, PR China
| | - Qiyou Li
- Southwest Hospital/ Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, PR China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, PR China
| | - Juncai He
- Southwest Hospital/ Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, PR China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, PR China
| | - Baishijiao Bian
- Southwest Hospital/ Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, PR China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, PR China
| | - Yijian Li
- Southwest Hospital/ Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, PR China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, PR China
| | - Linlin Ge
- Southwest Hospital/ Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, PR China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, PR China
| | - Yuxiao Zeng
- Southwest Hospital/ Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, PR China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, PR China
| | - Haiwei Xu
- Southwest Hospital/ Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, PR China .,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, PR China
| | - Zheng Qin Yin
- Southwest Hospital/ Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, PR China .,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, PR China
| |
Collapse
|
4
|
Artificial Intelligence and the detection of pediatric concussion using epigenomic analysis. Brain Res 2019; 1726:146510. [PMID: 31628932 DOI: 10.1016/j.brainres.2019.146510] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 10/14/2019] [Accepted: 10/15/2019] [Indexed: 12/12/2022]
Abstract
Concussion, also referred to as mild traumatic brain injury (mTBI) is the most common type of traumatic brain injury. Currently concussion is an area ofintensescientific interest to better understand the biological mechanisms and for biomarker development. We evaluated whole genome-wide blood DNA cytosine ('CpG') methylation in 17 pediatric concussion isolated cases and 18 unaffected controls using Illumina Infinium MethylationEPIC assay. Pathway analysis was performed using Ingenuity Pathway Analysis to help elucidate the epigenetic and molecular mechanisms of the disorder. Area under the receiver operating characteristics (AUC) curves and FDR p-values were calculated for mTBI detection based on CpG methylation levels. Multiple Artificial Intelligence (AI) platforms including Deep Learning (DL), the newest form of AI, were used to predict concussion based on i) CpG methylation markers alone, and ii) combined epigenetic, clinical and demographic predictors. We found 449 CpG sites (473 genes), those were statistically significantly methylated in mTBI compared to controls. There were four CpGs with excellent individual accuracy (AUC ≥ 0.90-1.00) while 119 displayed good accuracy (AUC ≥ 0.80-0.89) for the prediction of mTBI. The CpG methylation changes ≥10% were observed in many CpG loci after concussion suggesting biological significance. Pathway analysis identified several biologically important neurological pathways that were perturbed including those associated with: impaired brain function, cognition, memory, neurotransmission, intellectual disability and behavioral change and associated disorders. The combination of epigenomic and clinical predictors were highly accurate for the detection of concusion using AI techniques. Using DL/AI, a combination of epigenomic and clinical markers had sensitivity and specificity ≧95% for prediction of mTBI. In this novel study, we identified significant methylation changes in multiple genes in response to mTBI. Gene pathways that were epigenetically dysregulated included several known to be involved in neurological function, thus giving biological plausibility to our findings.
Collapse
|
5
|
Gaudichon J, Jakobczyk H, Debaize L, Cousin E, Galibert MD, Troadec MB, Gandemer V. Mechanisms of extramedullary relapse in acute lymphoblastic leukemia: Reconciling biological concepts and clinical issues. Blood Rev 2019; 36:40-56. [PMID: 31010660 DOI: 10.1016/j.blre.2019.04.003] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 04/03/2019] [Accepted: 04/15/2019] [Indexed: 12/17/2022]
Abstract
Long-term survival rates in childhood acute lymphoblastic leukemia (ALL) are currently above 85% due to huge improvements in treatment. However, 15-20% of children still experience relapses. Relapses can either occur in the bone marrow or at extramedullary sites, such as gonads or the central nervous system (CNS), formerly referred to as ALL-blast sanctuaries. The reason why ALL cells migrate to and stay in these sites is still unclear. In this review, we have attempted to assemble the evidence concerning the microenvironmental factors that could explain why ALL cells reside in such sites. We present criteria that make extramedullary leukemia niches and solid tumor metastatic niches comparable. Indeed, considering extramedullary leukemias as metastases could be a useful approach for proposing more effective treatments. In this context, we conclude with several examples of potential niche-based therapies which could be successfully added to current treatments of ALL.
Collapse
Affiliation(s)
- Jérémie Gaudichon
- CNRS, IGDR (Institut de Génétique et Développement de Rennes), Univ Rennes, UMR 6290, Rennes F-35000, France; Pediatric Hematology and Oncology Department, University Hospital, Caen, France.
| | - Hélène Jakobczyk
- CNRS, IGDR (Institut de Génétique et Développement de Rennes), Univ Rennes, UMR 6290, Rennes F-35000, France
| | - Lydie Debaize
- CNRS, IGDR (Institut de Génétique et Développement de Rennes), Univ Rennes, UMR 6290, Rennes F-35000, France
| | - Elie Cousin
- CNRS, IGDR (Institut de Génétique et Développement de Rennes), Univ Rennes, UMR 6290, Rennes F-35000, France; Pediatric Hematology Department, University Hospital, Rennes, France
| | - Marie-Dominique Galibert
- CNRS, IGDR (Institut de Génétique et Développement de Rennes), Univ Rennes, UMR 6290, Rennes F-35000, France.
| | - Marie-Bérengère Troadec
- CNRS, IGDR (Institut de Génétique et Développement de Rennes), Univ Rennes, UMR 6290, Rennes F-35000, France
| | - Virginie Gandemer
- CNRS, IGDR (Institut de Génétique et Développement de Rennes), Univ Rennes, UMR 6290, Rennes F-35000, France; Pediatric Hematology Department, University Hospital, Rennes, France.
| |
Collapse
|
6
|
Abstract
KIT is a receptor tyrosine kinase that after binding to its ligand stem cell factor activates signaling cascades linked to biological processes such as proliferation, differentiation, migration and cell survival. Based on studies performed on SCF and/or KIT mutant animals that presented anemia, sterility, and/or pigmentation disorders, KIT signaling was mainly considered to be involved in the regulation of hematopoiesis, gametogenesis, and melanogenesis. More recently, novel animal models and ameliorated cellular and molecular techniques have led to the discovery of a widen repertoire of tissue compartments and functions that are being modulated by KIT. This is the case for the lung, heart, nervous system, gastrointestinal tract, pancreas, kidney, liver, and bone. For this reason, the tyrosine kinase inhibitors that were originally developed for the treatment of hemato-oncological diseases are being currently investigated for the treatment of non-oncological disorders such as asthma, rheumatoid arthritis, and alzheimer's disease, among others. The beneficial effects of some of these tyrosine kinase inhibitors have been proven to depend on KIT inhibition. This review will focus on KIT expression and regulation in healthy and pathologic conditions other than cancer. Moreover, advances in the development of anti-KIT therapies, including tyrosine kinase inhibitors, and their application will be discussed.
Collapse
|
7
|
Nam SM, Ahn SC, Go TH, Seo JS, Nahm SS, Chang BJ, Lee JH. Ascorbic Acid Ameliorates Gestational Lead Exposure-Induced Developmental Alteration in GAD67 and c-Kit Expression in the Rat Cerebellar Cortex. Biol Trace Elem Res 2018; 182:278-286. [PMID: 28685241 DOI: 10.1007/s12011-017-1086-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Accepted: 06/22/2017] [Indexed: 01/24/2023]
Abstract
In the present study, we investigated the effects of ascorbic acid on lead-exposed developing cerebellum. Female rats were divided into the following three groups: control (distilled water), lead (0.2% lead acetate), and lead plus ascorbic acid (100 mg/kg/day, 10% solution). To evaluate the effect of lead exposure and ascorbic acid treatment accurately on the cerebellar development for the gestational period, we halted further treatment with lead and ascorbic acid in the dams after delivery of the pups. Although the ascorbic acid slightly decreased the lead level in pups, lead level was still high in the group treated with lead plus ascorbic acid group compared with the control group. The blood lead levels indicated that the ascorbic acid could facilitate both the excretion and transfer of lead from a dam to its pups via milk. At postnatal day 21, lead exposure significantly reduced the number of Purkinje cells in the cerebellar cortex of pups. Additionally, lead treatment induced degenerative changes such as reduction of glutamic acid decarboxylase (GAD67) and c-kit expressions are observed in the developing cerebellar cortex. In the cerebellum of the pups from the lead plus ascorbic acid group, reduction of the number of Purkinje cells, GAD67 expression, and c-kit immunopositivity were remarkably restored compared with the lead group. Our present results suggested that ascorbic acid treatment to lead-exposed dam exerted protective effects on the developing cerebellum against lead-induced neurotoxicity.
Collapse
Affiliation(s)
- Sung Min Nam
- Department of Anatomy, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Sung Chuel Ahn
- Department of Anatomy, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Tae-Hun Go
- Department of Anatomy, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Jin Seok Seo
- Department of Anatomy, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Sang-Soep Nahm
- Department of Anatomy, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Byung-Joon Chang
- Department of Anatomy, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Jong-Hwan Lee
- Department of Anatomy, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea.
| |
Collapse
|
8
|
Perturbed Wnt signaling leads to neuronal migration delay, altered interhemispheric connections and impaired social behavior. Nat Commun 2017; 8:1158. [PMID: 29079819 PMCID: PMC5660087 DOI: 10.1038/s41467-017-01046-w] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 08/15/2017] [Indexed: 12/19/2022] Open
Abstract
Perturbed neuronal migration and circuit development have been implicated in the pathogenesis of neurodevelopmental diseases; however, the direct steps linking these developmental errors to behavior alterations remain unknown. Here we demonstrate that Wnt/C-Kit signaling is a key regulator of glia-guided radial migration in rat somatosensory cortex. Transient downregulation of Wnt signaling in migrating, callosal projection neurons results in delayed positioning in layer 2/3. Delayed neurons display reduced neuronal activity with impaired afferent connectivity causing permanent deficit in callosal projections. Animals with these defects exhibit altered somatosensory function with reduced social interactions and repetitive movements. Restoring normal migration by overexpressing the Wnt-downstream effector C-Kit or selective chemogenetic activation of callosal projection neurons during a critical postnatal period prevents abnormal interhemispheric connections as well as behavioral alterations. Our findings identify a link between defective canonical Wnt signaling, delayed neuronal migration, deficient interhemispheric connectivity and abnormal social behavior analogous to autistic characteristics in humans. Functional consequence of transient delay in neuronal migration is unclear. This study shows that Wnt/C-Kit signaling regulates radial migration in rat somatosensory cortex, and that transient delay of L2/3 neuronal migration leads to interhemispheric connectivity alteration and abnormal social behavior.
Collapse
|
9
|
Chen X, Wang S, Xu H, Pereira JD, Hatzistergos KE, Saur D, Seidler B, Hare JM, Perrella MA, Yin ZQ, Liu X. Evidence for a retinal progenitor cell in the postnatal and adult mouse. Stem Cell Res 2017; 23:20-32. [PMID: 28672156 DOI: 10.1016/j.scr.2017.06.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 06/16/2017] [Accepted: 06/19/2017] [Indexed: 12/22/2022] Open
Abstract
Progress in cell therapy for retinal disorders has been challenging. Recognized retinal progenitors are a heterogeneous population of cells that lack surface markers for the isolation of live cells for clinical implementation. In the present application, our objective was to use the stem cell factor receptor c-Kit (CD117), a surface marker, to isolate and evaluate a distinct progenitor cell population from retinas of postnatal and adult mice. Here we report that, by combining traditional methods with fate mapping, we have identified a c-Kit-positive (c-Kit+) retinal progenitor cell (RPC) that is self-renewing and clonogenic in vitro, and capable of generating many cell types in vitro and in vivo. Based on cell lineage tracing, significant subpopulations of photoreceptors in the outer nuclear layer and bipolar, horizontal, amacrine and Müller cells in the inner nuclear layer are the progeny of c-Kit+ cells in vivo. The RPC progeny contributes to retinal neurons and glial cells, which are responsible for the conversion of light into visual signals. The ability to isolate and expand in vitro live c-Kit+ RPCs makes them a future therapeutic option for retinal diseases.
Collapse
Affiliation(s)
- Xi Chen
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Chongqing, China; Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Shaojun Wang
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Chongqing, China; Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Haiwei Xu
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Chongqing, China
| | - Joao D Pereira
- Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Anesthesia, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Dieter Saur
- Medicine II, Technische Universitaet Muenchen, Munich, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Barbara Seidler
- Medicine II, Technische Universitaet Muenchen, Munich, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Joshua M Hare
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Mark A Perrella
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Pediatric Newborn Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Zheng Qin Yin
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Chongqing, China
| | - Xiaoli Liu
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Pediatric Newborn Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
10
|
Bibollet-Bahena O, Okafuji T, Hokamp K, Tear G, Mitchell KJ. A dual-strategy expression screen for candidate connectivity labels in the developing thalamus. PLoS One 2017; 12:e0177977. [PMID: 28558017 PMCID: PMC5448750 DOI: 10.1371/journal.pone.0177977] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 05/05/2017] [Indexed: 12/13/2022] Open
Abstract
The thalamus or “inner chamber” of the brain is divided into ~30 discrete nuclei, with highly specific patterns of afferent and efferent connectivity. To identify genes that may direct these patterns of connectivity, we used two strategies. First, we used a bioinformatics pipeline to survey the predicted proteomes of nematode, fruitfly, mouse and human for extracellular proteins containing any of a list of motifs found in known guidance or connectivity molecules. Second, we performed clustering analyses on the Allen Developing Mouse Brain Atlas data to identify genes encoding surface proteins expressed with temporal profiles similar to known guidance or connectivity molecules. In both cases, we then screened the resultant genes for selective expression patterns in the developing thalamus. These approaches identified 82 candidate connectivity labels in the developing thalamus. These molecules include many members of the Ephrin, Eph-receptor, cadherin, protocadherin, semaphorin, plexin, Odz/teneurin, Neto, cerebellin, calsyntenin and Netrin-G families, as well as diverse members of the immunoglobulin (Ig) and leucine-rich receptor (LRR) superfamilies, receptor tyrosine kinases and phosphatases, a variety of growth factors and receptors, and a large number of miscellaneous membrane-associated or secreted proteins not previously implicated in axonal guidance or neuronal connectivity. The diversity of their expression patterns indicates that thalamic nuclei are highly differentiated from each other, with each one displaying a unique repertoire of these molecules, consistent with a combinatorial logic to the specification of thalamic connectivity.
Collapse
Affiliation(s)
| | - Tatsuya Okafuji
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | - Karsten Hokamp
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | - Guy Tear
- Department of Developmental Neurobiology, New Hunt’s House, Guy’s Campus, King’s College, London, United Kingdom
| | - Kevin J. Mitchell
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
- Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
- * E-mail:
| |
Collapse
|
11
|
Chen X, Chen Z, Li Z, Zhao C, Zeng Y, Zou T, Fu C, Liu X, Xu H, Yin ZQ. Grafted c-kit +/SSEA1 - eye-wall progenitor cells delay retinal degeneration in mice by regulating neural plasticity and forming new graft-to-host synapses. Stem Cell Res Ther 2016; 7:191. [PMID: 28038685 PMCID: PMC5203726 DOI: 10.1186/s13287-016-0451-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 11/25/2016] [Accepted: 12/06/2016] [Indexed: 12/12/2022] Open
Abstract
Background Despite diverse pathogenesis, the common pathological change observed in age-related macular degeneration and in most hereditary retinal degeneration (RD) diseases is photoreceptor loss. Photoreceptor replacement by cell transplantation may be a feasible treatment for RD. The major obstacles to clinical translation of stem cell-based cell therapy in RD remain the difficulty of obtaining sufficient quantities of appropriate and safe donor cells and the poor integration of grafted stem cell-derived photoreceptors into the remaining retinal circuitry. Methods Eye-wall c-kit+/stage-specific embryonic antigen 1 (SSEA1)− cells were isolated via fluorescence-activated cell sorting, and their self-renewal and differentiation potential were detected by immunochemistry and flow cytometry in vitro. After labeling with quantum nanocrystal dots and transplantation into the subretinal space of rd1 RD mice, differentiation and synapse formation by daughter cells of the eye-wall c-kit+/SSEA1− cells were evaluated by immunochemistry and western blotting. Morphological changes of the inner retina of rd1 mice after cell transplantation were demonstrated by immunochemistry. Retinal function of rd1 mice that received cell grafts was tested via flash electroretinograms and the light/dark transition test. Results Eye-wall c-kit+/SSEA1− cells were self-renewing and clonogenic, and they retained their proliferative potential through more than 20 passages. Additionally, eye-wall c-kit+/SSEA1− cells were capable of differentiating into multiple retinal cell types including photoreceptors, bipolar cells, horizontal cells, amacrine cells, Müller cells, and retinal pigment epithelium cells and of transdifferentiating into smooth muscle cells and endothelial cells in vitro. The levels of synaptophysin and postsynaptic density-95 in the retinas of eye-wall c-kit+/SSEA1− cell-transplanted rd1 mice were significantly increased at 4 weeks post transplantation. The c-kit+/SSEA1− cells were capable of differentiating into functional photoreceptors that formed new synaptic connections with recipient retinas in rd1 mice. Transplantation also partially corrected the abnormalities of inner retina of rd1 mice. At 4 and 8 weeks post transplantation, the rd1 mice that received c-kit+/SSEA1− cells showed significant increases in a-wave and b-wave amplitude and the percentage of time spent in the dark area. Conclusions Grafted c-kit+/SSEA1− cells restored the retinal function of rd1 mice via regulating neural plasticity and forming new graft-to-host synapses. Electronic supplementary material The online version of this article (doi:10.1186/s13287-016-0451-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xi Chen
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Chongqing, 400038, China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, China.,School of Medicine, Nankai University, Tianjin, 300071, China.,Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Zehua Chen
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Chongqing, 400038, China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, China
| | - Zhengya Li
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Chongqing, 400038, China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, China
| | - Chen Zhao
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Chongqing, 400038, China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, China
| | - Yuxiao Zeng
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Chongqing, 400038, China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, China
| | - Ting Zou
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Chongqing, 400038, China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, China
| | - Caiyun Fu
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Chongqing, 400038, China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, China
| | - Xiaoli Liu
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA.,Department of Pediatric Newborn Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Haiwei Xu
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Chongqing, 400038, China. .,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, China.
| | - Zheng Qin Yin
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Chongqing, 400038, China. .,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, China.
| |
Collapse
|
12
|
Chen YC, Liao JW, Hsu WL, Chang SC. Identification of the two KIT isoforms and their expression status in canine hemangiosarcomas. BMC Vet Res 2016; 12:142. [PMID: 27422008 PMCID: PMC4947345 DOI: 10.1186/s12917-016-0772-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 07/13/2016] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND KIT is a tyrosine kinase growth factor receptor. High expression of KIT has been found in several tumors including canine hemangiosarcoma (HSA). This study investigated the correlation of KIT expression and c-kit sequence mutations in canine HSAs and benign hemangiomas (HAs). RESULTS Immunohistochemistry (IHC) staining confirmed KIT expression in 94.4 % (34/36) of HSAs that was significantly higher than 0 % in HAs (0/16). Sequencing the entire c-kit coding region of HSAs and normal canine cerebellums (NCCs) revealed GNSK-deletion in exon 9. As for exon 9 genotyping by TA-cloning strategy, GNSK-deletion c-kit accounted for 48.6 % (68/140) colonies amplified from12 KIT-positive HSAs, a significantly higher frequency than 14.1 % (9/64) of colonies amplified from six NCCs. CONCLUSIONS Due to the distinct expression pattern revealed by IHC, KIT might be used to distinguish benign or malignant vascular endothelial tumors. Moreover, the high incidence of GNSK-deletion c-kit in canine HSAs implicates KIT isoforms as possibly participating in the tumorigenesis of canine HSAs.
Collapse
Affiliation(s)
- Yi-Chen Chen
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung Hsing University, 250 Kuo-Kuang Road, Taichung, 40227, Taiwan.,Graduate Institute of Veterinary Pathobiology, College of Veterinary Medicine, National Chung Hsing University, 250 Kuo-Kuang Road, Taichung, 40227, Taiwan
| | - Jiunn-Wang Liao
- Graduate Institute of Veterinary Pathobiology, College of Veterinary Medicine, National Chung Hsing University, 250 Kuo-Kuang Road, Taichung, 40227, Taiwan
| | - Wei-Li Hsu
- Graduate Institute of Microbiology and Public Health, College of Veterinary Medicine, National Chung Hsing University, 250 Kuo-Kuang Road, Taichung, 40227, Taiwan.
| | - Shih-Chieh Chang
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung Hsing University, 250 Kuo-Kuang Road, Taichung, 40227, Taiwan. .,Veterinary Medical Teaching Hospital, College of Veterinary Medicine, National Chung Hsing University, 250 Kuo-Kuang Road, Taichung, 40227, Taiwan.
| |
Collapse
|
13
|
C-kit is important for SOD1(G93A) mouse survival independent of mast cells. Neuroscience 2015; 301:415-20. [PMID: 26112382 DOI: 10.1016/j.neuroscience.2015.06.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Revised: 05/28/2015] [Accepted: 06/16/2015] [Indexed: 12/13/2022]
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a devastating neurodegenerative disease leading to progressive and lethal paralysis. The disease process is multi-factorial and is characterized by selective motor neuron degeneration. Previous work demonstrated that the local concentration of various growth factors can influence motor neuron survival and disease progression. A potential role for c-kit, a growth factor receptor present in the spinal cord, in ALS is unknown. To dissect the role of c-kit in ALS we interbred SOD1(G93A) mice with kit(w-sh/w-sh) mice, which have a 70% decrease in c-kit expression in the spinal cord. kit(w-sh/w-sh) SOD1(G93A) mice have a reduced survival compared to SOD1(G93A) mice, while the amount of motor neurons at end stage is similar. By means of grip strength and nerve conductance analysis we show that kit(w-sh/w-sh) mice have diminished strength and slightly impaired compound muscle action potential latency, although the number of neurons is similar across genotypes. Decreasing kit gene expression in SOD1(G93A) mice is detrimental and our results imply that this effect is independent of mast cells, as tested by ketotifen administration. To conclude, our data expand on the protective role of growth factors in ALS, as decreasing c-kit by approximately 70% is detrimental in SOD1(G93A) mice.
Collapse
|
14
|
Li X, Xiao J, Fröhlich H, Tu X, Li L, Xu Y, Cao H, Qu J, Rappold GA, Chen JG. Foxp1 regulates cortical radial migration and neuronal morphogenesis in developing cerebral cortex. PLoS One 2015; 10:e0127671. [PMID: 26010426 PMCID: PMC4444005 DOI: 10.1371/journal.pone.0127671] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 04/17/2015] [Indexed: 11/30/2022] Open
Abstract
FOXP1 is a member of FOXP subfamily transcription factors. Mutations in FOXP1 gene have been found in various development-related cognitive disorders. However, little is known about the etiology of these symptoms, and specifically the function of FOXP1 in neuronal development. Here, we report that suppression of Foxp1 expression in mouse cerebral cortex led to a neuronal migration defect, which was rescued by overexpression of Foxp1. Mice with Foxp1 knockdown exhibited ectopic neurons in deep layers of the cortex postnatally. The neuronal differentiation of Foxp1-downregulated cells was normal. However, morphological analysis showed that the neurons with Foxp1 deficiency had an inhibited axonal growth in vitro and a weakened transition from multipolar to bipolar in vivo. Moreover, we found that the expression of Foxp1 modulated the dendritic maturation of neurons at a late postnatal date. Our results demonstrate critical roles of Foxp1 in the radial migration and morphogenesis of cortical neurons during development. This study may shed light on the complex relationship between neuronal development and the related cognitive disorders.
Collapse
Affiliation(s)
- Xue Li
- Key Laboratory of Visual Science, National Ministry of Health, and School of Optometry and Ophthalmology, Wenzhou Medical University, Wenzhou, 325027, P. R. China
| | - Jian Xiao
- Key Laboratory of Visual Science, National Ministry of Health, and School of Optometry and Ophthalmology, Wenzhou Medical University, Wenzhou, 325027, P. R. China
| | - Henning Fröhlich
- Department of Human Molecular Genetics, University of Heidelberg, Im Neuenheimer Feld 366, 69120, Heidelberg, Germany
| | - Xiaomeng Tu
- Key Laboratory of Visual Science, National Ministry of Health, and School of Optometry and Ophthalmology, Wenzhou Medical University, Wenzhou, 325027, P. R. China
| | - Lianlian Li
- Key Laboratory of Visual Science, National Ministry of Health, and School of Optometry and Ophthalmology, Wenzhou Medical University, Wenzhou, 325027, P. R. China
| | - Yue Xu
- Key Laboratory of Visual Science, National Ministry of Health, and School of Optometry and Ophthalmology, Wenzhou Medical University, Wenzhou, 325027, P. R. China
| | - Huateng Cao
- Key Laboratory of Visual Science, National Ministry of Health, and School of Optometry and Ophthalmology, Wenzhou Medical University, Wenzhou, 325027, P. R. China
| | - Jia Qu
- Key Laboratory of Visual Science, National Ministry of Health, and School of Optometry and Ophthalmology, Wenzhou Medical University, Wenzhou, 325027, P. R. China
| | - Gudrun A Rappold
- Department of Human Molecular Genetics, University of Heidelberg, Im Neuenheimer Feld 366, 69120, Heidelberg, Germany
| | - Jie-Guang Chen
- Key Laboratory of Visual Science, National Ministry of Health, and School of Optometry and Ophthalmology, Wenzhou Medical University, Wenzhou, 325027, P. R. China
| |
Collapse
|
15
|
Cooper JA. Molecules and mechanisms that regulate multipolar migration in the intermediate zone. Front Cell Neurosci 2014; 8:386. [PMID: 25452716 PMCID: PMC4231986 DOI: 10.3389/fncel.2014.00386] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 10/29/2014] [Indexed: 01/05/2023] Open
Abstract
Most neurons migrate with an elongated, “bipolar” morphology, extending a long leading process that explores the environment. However, when immature projection neurons enter the intermediate zone (IZ) of the neocortex they become “multipolar”. Multipolar cells extend and retract cytoplasmic processes in different directions and move erratically—sideways, up and down. Multipolar cells extend axons while they are in the lower half of the IZ. Remarkably, the cells then resume radial migration: they reorient their centrosome and Golgi apparatus towards the pia, transform back to bipolar morphology, and commence locomotion along radial glia (RG) fibers. This reorientation implies the existence of directional signals in the IZ that are ignored during the multipolar stage but sensed after axonogenesis. In vivo genetic manipulation has implicated a variety of candidate directional signals, cell surface receptors, and signaling pathways, that may be involved in polarizing multipolar cells and stabilizing a pia-directed leading process for radial migration. Other signals are implicated in starting multipolar migration and triggering axon outgrowth. Here we review the molecules and mechanisms that regulate multipolar migration, and also discuss how multipolar migration affects the orderly arrangement of neurons in layers and columns in the developing neocortex.
Collapse
Affiliation(s)
- Jonathan A Cooper
- Fred Hutchinson Cancer Research Center, Division of Basic Sciences Seattle, Washington, USA
| |
Collapse
|