1
|
Wu K, Gollo LL. Dendrites contribute to the gradient of intrinsic timescales encompassing cortical and subcortical brain networks. Front Cell Neurosci 2024; 18:1404605. [PMID: 39309702 PMCID: PMC11412829 DOI: 10.3389/fncel.2024.1404605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 08/19/2024] [Indexed: 09/25/2024] Open
Abstract
Introduction Cytoarchitectonic studies have uncovered a correlation between higher levels of cortical hierarchy and reduced dendritic size. This hierarchical organization extends to the brain's timescales, revealing longer intrinsic timescales at higher hierarchical levels. However, estimating the contribution of single-neuron dendritic morphology to the hierarchy of timescales, which is typically characterized at a macroscopic level, remains challenging. Method Here we mapped the intrinsic timescales of six functional networks using functional magnetic resonance imaging (fMRI) data, and characterized the influence of neuronal dendritic size on intrinsic timescales of brain regions, utilizing a multicompartmental neuronal modeling approach based on digitally reconstructed neurons. Results The fMRI results revealed a hierarchy of intrinsic timescales encompassing both cortical and subcortical brain regions. The neuronal modeling indicated that neurons with larger dendritic structures exhibit shorter intrinsic timescales. Together these findings highlight the contribution of dendrites at the neuronal level to the hierarchy of intrinsic timescales at the whole-brain level. Discussion This study sheds light on the intricate relationship between neuronal structure, cytoarchitectonic maps, and the hierarchy of timescales in the brain.
Collapse
Affiliation(s)
| | - Leonardo L. Gollo
- Brain Networks and Modelling Laboratory, School of Psychological Sciences, and Monash Biomedical Imaging, The Turner Institute for Brain and Mental Health, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
2
|
Pazur E, Kalatanova A, Tasker NR, Vainionpää K, Leinonen H, Wipf P. Synthesis and Biological Analysis of Iso-dimethyltryptamines in a Model of Light-Induced Retinal Degeneration. ACS Med Chem Lett 2024; 15:1049-1056. [PMID: 39015263 PMCID: PMC11247652 DOI: 10.1021/acsmedchemlett.4c00130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/09/2024] [Accepted: 06/10/2024] [Indexed: 07/18/2024] Open
Abstract
Iso-dimethyltryptamine (isoDMT) analogues with heterocyclic substitutions at the indole C(3) were prepared in a hydrogen autotransfer alkylation and tested in combination with natural and unnatural clavine alkaloids in a model of light-induced retinal degeneration for protection against retinal degeneration. On the basis of measurements with optical coherence tomography and electroretinography, three compounds showed better efficacy than the positive control bromocriptine at equivalent systemically administered doses. These studies provide further insights into the role of serotonin receptors and their potential therapeutic applications in ocular diseases.
Collapse
Affiliation(s)
- Ethan
J. Pazur
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Anna Kalatanova
- Yliopistonrinne
3, Canthia, School of Pharmacy, University
of Eastern Finland, 70211 Kuopio, Finland
| | - Nikhil R. Tasker
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Katri Vainionpää
- Yliopistonrinne
3, Canthia, School of Pharmacy, University
of Eastern Finland, 70211 Kuopio, Finland
| | - Henri Leinonen
- Yliopistonrinne
3, Canthia, School of Pharmacy, University
of Eastern Finland, 70211 Kuopio, Finland
| | - Peter Wipf
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
- Yliopistonrinne
3, Canthia, School of Pharmacy, University
of Eastern Finland, 70211 Kuopio, Finland
| |
Collapse
|
3
|
Wang M, Yao SQ, Huang Y, Liang JJ, Xu Y, Chen S, Wang Y, Ng TK, Chu WK, Cui Q, Cen LP. Casein kinase-2 inhibition promotes retinal ganglion cell survival after acute intraocular pressure elevation. Neural Regen Res 2024; 19:1112-1118. [PMID: 37862216 PMCID: PMC10749609 DOI: 10.4103/1673-5374.385310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 05/18/2023] [Accepted: 07/03/2023] [Indexed: 10/22/2023] Open
Abstract
Intraocular pressure elevation can induce retinal ganglion cell death and is a clinically reversible risk factor for glaucoma, the leading cause of irreversible blindness. We previously demonstrated that casein kinase-2 inhibition can promote retinal ganglion cell survival and axonal regeneration in rats after optic nerve injury. To investigate the underlying mechanism, in the current study we increased the intraocular pressure of adult rats to 75 mmHg for 2 hours and then administered a casein kinase-2 inhibitor (4,5,6,7-tetrabromo-2-azabenzimidazole or 2-dimethylamino-4,5,6,7-tetrabromo-1H-benzimidazole) by intravitreal injection. We found that intravitreal injection of 4,5,6,7-tetrabromo-2-azabenzimidazole or 2-dimethylamino-4,5,6,7-tetrabromo-1H-benzimidazole promoted retinal ganglion cell survival and reduced the number of infiltrating macrophages. Transcriptomic analysis showed that the mitogen activated protein kinase signaling pathway was involved in the response to intraocular pressure elevation but was not modulated by the casein kinase-2 inhibitors. Furthermore, casein kinase-2 inhibition downregulated the expression of genes (Cck, Htrsa, Nef1, Htrlb, Prph, Chat, Slc18a3, Slc5a7, Scn1b, Crybb2, Tsga10ip, and Vstm21) involved in intraocular pressure elevation. Our data indicate that inhibition of casein kinase-2 can enhance retinal ganglion cell survival in rats after acute intraocular pressure elevation via macrophage inactivation.
Collapse
Affiliation(s)
- Meng Wang
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, Guangdong Province, China
- Shantou University Medical College, Shantou, Guangdong Province, China
| | - Shi-Qi Yao
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, Guangdong Province, China
- Shantou University Medical College, Shantou, Guangdong Province, China
| | - Yao Huang
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Jia-Jian Liang
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, Guangdong Province, China
| | - Yanxuan Xu
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, Guangdong Province, China
| | - Shaowan Chen
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, Guangdong Province, China
| | - Yuhang Wang
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, Guangdong Province, China
| | - Tsz Kin Ng
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, Guangdong Province, China
- Shantou University Medical College, Shantou, Guangdong Province, China
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Wai Kit Chu
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Qi Cui
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, Guangdong Province, China
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Ling-Ping Cen
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, Guangdong Province, China
- Shantou University Medical College, Shantou, Guangdong Province, China
| |
Collapse
|
4
|
Romano GL, Gozzo L, Maurel OM, Di Martino S, Riolo V, Micale V, Drago F, Bucolo C. Fluoxetine Protects Retinal Ischemic Damage in Mice. Pharmaceutics 2023; 15:pharmaceutics15051370. [PMID: 37242611 DOI: 10.3390/pharmaceutics15051370] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
BACKGROUND To evaluate the neuroprotective effect of the topical ocular administration of fluoxetine (FLX) in a mouse model of acute retinal damage. METHODS Ocular ischemia/reperfusion (I/R) injury in C57BL/6J mice was used to elicit retinal damage. Mice were divided into three groups: control group, I/R group, and I/R group treated with topical FLX. A pattern electroretinogram (PERG) was used as a sensitive measure of retinal ganglion cell (RGC) function. Finally, we analyzed the retinal mRNA expression of inflammatory markers (IL-6, TNF-α, Iba-1, IL-1β, and S100β) through Digital Droplet PCR. RESULTS PERG amplitude values were significantly (p < 0.05) higher in the I/R-FLX group compared to the I/R group, whereas PERG latency values were significantly (p < 0.05) reduced in I/R-FLX-treated mice compared to the I/R group. Retinal inflammatory markers increased significantly (p < 0.05) after I/R injury. FLX treatment was able to significantly (p < 0.05) attenuate the expression of inflammatory markers after I/R damage. CONCLUSIONS Topical treatment with FLX was effective in counteracting the damage of RGCs and preserving retinal function. Moreover, FLX treatment attenuates the production of pro-inflammatory molecules elicited by retinal I/R damage. Further studies need to be performed to support the use of FLX as neuroprotective agent in retinal degenerative diseases.
Collapse
Affiliation(s)
- Giovanni Luca Romano
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, 95100 Catania, Italy
- Center for Research in Ocular Pharmacology-CERFO, University of Catania, 95100 Catania, Italy
| | - Lucia Gozzo
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, 95100 Catania, Italy
| | - Oriana Maria Maurel
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, 95100 Catania, Italy
| | - Serena Di Martino
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, 95100 Catania, Italy
| | - Valentina Riolo
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, 95100 Catania, Italy
| | - Vincenzo Micale
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, 95100 Catania, Italy
| | - Filippo Drago
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, 95100 Catania, Italy
- Center for Research in Ocular Pharmacology-CERFO, University of Catania, 95100 Catania, Italy
| | - Claudio Bucolo
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, 95100 Catania, Italy
- Center for Research in Ocular Pharmacology-CERFO, University of Catania, 95100 Catania, Italy
| |
Collapse
|
5
|
Behavioral and Pharmacokinetics Studies of N-Methyl-2-Aminoindane (NM2AI) in Mice: An Aminoindane Briefly Used in the Illicit Drug Market. Int J Mol Sci 2023; 24:ijms24031882. [PMID: 36768197 PMCID: PMC9916073 DOI: 10.3390/ijms24031882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/10/2023] [Accepted: 01/13/2023] [Indexed: 01/20/2023] Open
Abstract
Drug forums are considered as the main platform sources that have contributed to the increase in NPS popularity, especially for those not yet known to law enforcement and therefore not yet illegal. An example is the new synthetic stimulant NM2AI, which has a very short history of human use and abuse. Little is known regarding this compound, but some information from internet forums and the scientific literature indicates NM2AI as a structural derivate of MDAI, which is known for its entactogenic activity. Indeed, the purpose of this study is to evaluate, for the first time, the in vivo acute effect induced by the intraperitoneal injection of NM2AI (1-10-30-100 mg/kg) in mice. We demonstrate the sensory (by visual placing and object tests) and physiological (core temperature measurement) function variations, nociceptor (by tail pinch test) and strength (grip test) alterations, and sensorimotor (time on rod and mobility) decrease. Moreover, we verify the mild hallucinogenic effect of NM2AI (by startle/prepulse inhibition test). Lastly, we perform a pharmacokinetic study on mice blood samples, highlighting that the main active metabolite of NM2AI is 2-aminoindane (2AI). Taken together, our data confirm the suspected entactogenic activity of NM2AI; however, these in vivo effects appear atypical and less intense with respect to those induced by the classic stimulants, in surprising analogy with what is reported by networked users.
Collapse
|
6
|
Serotonergic modulation of visual neurons in Drosophila melanogaster. PLoS Genet 2020; 16:e1009003. [PMID: 32866139 PMCID: PMC7485980 DOI: 10.1371/journal.pgen.1009003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 09/11/2020] [Accepted: 07/22/2020] [Indexed: 02/06/2023] Open
Abstract
Sensory systems rely on neuromodulators, such as serotonin, to provide flexibility for information processing as stimuli vary, such as light intensity throughout the day. Serotonergic neurons broadly innervate the optic ganglia of Drosophila melanogaster, a widely used model for studying vision. It remains unclear whether serotonin modulates the physiology of interneurons in the optic ganglia. To address this question, we first mapped the expression patterns of serotonin receptors in the visual system, focusing on a subset of cells with processes in the first optic ganglion, the lamina. Serotonin receptor expression was found in several types of columnar cells in the lamina including 5-HT2B in lamina monopolar cell L2, required for spatiotemporal luminance contrast, and both 5-HT1A and 5-HT1B in T1 cells, whose function is unknown. Subcellular mapping with GFP-tagged 5-HT2B and 5-HT1A constructs indicated that these receptors localize to layer M2 of the medulla, proximal to serotonergic boutons, suggesting that the medulla neuropil is the primary site of serotonergic regulation for these neurons. Exogenous serotonin increased basal intracellular calcium in L2 terminals in layer M2 and modestly decreased the duration of visually induced calcium transients in L2 neurons following repeated dark flashes, but otherwise did not alter the calcium transients. Flies without functional 5-HT2B failed to show an increase in basal calcium in response to serotonin. 5-HT2B mutants also failed to show a change in amplitude in their response to repeated light flashes but other calcium transient parameters were relatively unaffected. While we did not detect serotonin receptor expression in L1 neurons, they, like L2, underwent serotonin-induced changes in basal calcium, presumably via interactions with other cells. These data demonstrate that serotonin modulates the physiology of interneurons involved in early visual processing in Drosophila. Serotonergic neurons innervate the Drosophila melanogaster eye, but it was not known whether serotonin signaling could induce acute physiological responses in visual interneurons. We found serotonin receptors expressed in all neuropils of the optic lobe and identified specific neurons involved in visual information processing that express serotonin receptors. Activation of these receptors increased intracellular calcium in first order interneurons L1 and L2 and may enhance visually induced calcium transients in L2 neurons. These data support a role for the serotonergic neuromodulation of interneurons in the Drosophila visual system.
Collapse
|
7
|
Lansky ES. Novel harmala-ocudelic tuning (HOT) for ocular disorders. Med Hypotheses 2020; 143:109834. [PMID: 32498006 DOI: 10.1016/j.mehy.2020.109834] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 05/11/2020] [Indexed: 10/24/2022]
Abstract
The eye contains serotonin, and possesses serotonergic receptors and modulators. Selective serotonin reuptake inhibitors (SSRIs) may impair ocular function, while other serotonin receptor-binding drugs might improve it. A putative vision-improving drug must be safe at therapeutic doses, most preferably with long-lasting benefits from a single or very few administration(s). One drug potentially satisfying these criteria is the common, botanically-occurring indole alkaloid and "major hallucinogen," harmine. Harmine is prominent in the leaves of the Generally Recognized as Safe (GRAS) Passiflora, and in Peganum and Banisteriopsis, the two preeminent "sacred" medicinal plants of India/pre-Islamic Persia/modern Iran and the Amazon respectively. Though the possibility of drug-drug or herb-drug interactions exists, especially with SSRIs, at correct patient-individualized dosages, these plants, used alone, are minimally hallucinogenic, well tolerated, potentially exerting profound therapeutic effects on vision from a single or few administration(s) lasting months or years. The hypothesized mechanism for this extraordinary action is tuning of the serotonergic receptors in the eye in their binding affinity for serotonin, a putative neurochemical "ocudelic" homologue to the psychedelic phenomenon, likely potentiated, according to clinical experience with classical hallucinogens, by therapeutic music, positive psychological "set," and conducive environmental "setting." Blinded research with harmala alkaloid-containing plants in ocular patients using psychedelic therapy accoutrements, viz. eyeshades, high fidelity classical music, headphones, two guides, pre-dosing preparation, and post-dosing integration, could non-invasively assess visual acuity in presbyopia. Significant results would stimulate further exploration of this novel approach to ocular disorders. Deeper benefit, particularly when the retina is compromised, might follow co-ingestion of the harmala alkaloid-containing plants with plants containing dimethyltryptamine.
Collapse
Affiliation(s)
- E S Lansky
- Institute of Evolution, University of Haifa, Haifa, Israel.
| |
Collapse
|
8
|
Sizemore TR, Hurley LM, Dacks AM. Serotonergic modulation across sensory modalities. J Neurophysiol 2020; 123:2406-2425. [PMID: 32401124 PMCID: PMC7311732 DOI: 10.1152/jn.00034.2020] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 05/04/2020] [Accepted: 05/12/2020] [Indexed: 12/24/2022] Open
Abstract
The serotonergic system has been widely studied across animal taxa and different functional networks. This modulatory system is therefore well positioned to compare the consequences of neuromodulation for sensory processing across species and modalities at multiple levels of sensory organization. Serotonergic neurons that innervate sensory networks often bidirectionally exchange information with these networks but also receive input representative of motor events or motivational state. This convergence of information supports serotonin's capacity for contextualizing sensory information according to the animal's physiological state and external events. At the level of sensory circuitry, serotonin can have variable effects due to differential projections across specific sensory subregions, as well as differential serotonin receptor type expression within those subregions. Functionally, this infrastructure may gate or filter sensory inputs to emphasize specific stimulus features or select among different streams of information. The near-ubiquitous presence of serotonin and other neuromodulators within sensory regions, coupled with their strong effects on stimulus representation, suggests that these signaling pathways should be considered integral components of sensory systems.
Collapse
Affiliation(s)
- Tyler R Sizemore
- Department of Biology, West Virginia University, Morgantown, West Virginia
| | - Laura M Hurley
- Department of Biology, Indiana University, Bloomington, Indiana
| | - Andrew M Dacks
- Department of Biology, West Virginia University, Morgantown, West Virginia
- Department of Neuroscience, West Virginia University, Morgantown, West Virginia
| |
Collapse
|
9
|
Zhang X, Tenerelli K, Wu S, Xia X, Yokota S, Sun C, Galvao J, Venugopalan P, Li C, Madaan A, Goldberg JL, Chang KC. Cell transplantation of retinal ganglion cells derived from hESCs. Restor Neurol Neurosci 2020; 38:131-140. [PMID: 31815704 DOI: 10.3233/rnn-190941] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Glaucoma, the number one cause of irreversible blindness, is characterized by the loss of retinal ganglion cells (RGCs), which do not regenerate in humans or mammals after cell death. Cell transplantation provides an opportunity to restore vision in glaucoma, or other optic neuropathies. Since transplanting primary RGCs from deceased donor tissues may not be feasible, stem cell-derived RGCs could provide a plausible alternative source of donor cells for transplant. OBJECTIVE We define a robust chemically defined protocol to differentiate human embryonic stem cells (hESCs) into RGC-like neurons. METHODS Human embryonic stem cell lines (H7-A81 and H9) and induced pluripotent stem cell (iPSC) were used for RGC differentiation. RGC immaturity was measured by calcium imaging against muscimol. Cell markers were detected by immunofluorescence staining and qRT-PCR. RGC-like cells were intravitreally injected to rat eye, and co-stained with RBPMS and human nuclei markers. All experiments were conducted at least three times independently. Data were analyzed by ANOVA with Tukey's test with P value of <0.05 considered statistically significant. RESULTS We detected retinal progenitor markers Rx and Pax6 after 15 days of differentiation, and the expression of markers for RGC-specific differentiation (Brn3a and Brn3b), maturation (synaptophysin) and neurite growth (β-III-Tubulin) after an additional 15 days. We further examined the physiologic differentiation of these hESC-derived RGC-like progeny to those differentiated in vitro from primary rodent retinal progenitor cells (RPCs) with calcium imaging, and found that both populations demonstrate the immature RGC-like response to muscimol, a GABAA receptor agonist. By one week after transplant to the adult rat eye by intravitreal injection, the human RGC-like cells successfully migrated into the ganglion cell layer. CONCLUSIONS Our protocol provides a novel, short, and cost-effective approach for RGC differentiation from hESCs, and may broaden the scope for cell replacement therapy in RGC-related optic neuropathies such as glaucoma.
Collapse
Affiliation(s)
- Xiong Zhang
- Shiley Eye Institute, University of California San Diego, La Jolla, CA, USA
| | - Kevin Tenerelli
- Shiley Eye Institute, University of California San Diego, La Jolla, CA, USA
| | - Suqian Wu
- Spencer Center for Vision Research, Byers Eye Institute, School of Medicine, Stanford University, Palo Alto, CA, USA
- Department of Ophthalmology & Visual Science, Eye, Ear, Nose and Throat Hospital, Fudan University, Shanghai, P.R. China
| | - Xin Xia
- Spencer Center for Vision Research, Byers Eye Institute, School of Medicine, Stanford University, Palo Alto, CA, USA
| | - Satoshi Yokota
- Spencer Center for Vision Research, Byers Eye Institute, School of Medicine, Stanford University, Palo Alto, CA, USA
| | - Catalina Sun
- Spencer Center for Vision Research, Byers Eye Institute, School of Medicine, Stanford University, Palo Alto, CA, USA
- Shiley Eye Institute, University of California San Diego, La Jolla, CA, USA
| | - Joana Galvao
- Spencer Center for Vision Research, Byers Eye Institute, School of Medicine, Stanford University, Palo Alto, CA, USA
- Shiley Eye Institute, University of California San Diego, La Jolla, CA, USA
| | | | - Chenyi Li
- Shiley Eye Institute, University of California San Diego, La Jolla, CA, USA
| | - Ankush Madaan
- Spencer Center for Vision Research, Byers Eye Institute, School of Medicine, Stanford University, Palo Alto, CA, USA
| | - Jeffrey L Goldberg
- Spencer Center for Vision Research, Byers Eye Institute, School of Medicine, Stanford University, Palo Alto, CA, USA
- Shiley Eye Institute, University of California San Diego, La Jolla, CA, USA
| | - Kun-Che Chang
- Spencer Center for Vision Research, Byers Eye Institute, School of Medicine, Stanford University, Palo Alto, CA, USA
| |
Collapse
|
10
|
Passos ADCF, Herculano AM, Oliveira KRHM, de Lima SMA, Rocha FAF, Freitas HR, da Silva Sampaio L, Figueiredo DP, da Costa Calaza K, de Melo Reis RA, do Nascimento JLM. Regulation of the Serotonergic System by Kainate in the Avian Retina. Cell Mol Neurobiol 2019; 39:1039-1049. [PMID: 31197744 DOI: 10.1007/s10571-019-00701-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 06/07/2019] [Indexed: 12/20/2022]
Abstract
Serotonin (5-HT) has been recognized as a neurotransmitter in the vertebrate retina, restricted mainly to amacrine and bipolar cells. It is involved with synaptic processing and possibly as a mitogenic factor. We confirm that chick retina amacrine and bipolar cells are, respectively, heavily and faintly immunolabeled for 5-HT. Amacrine serotonergic cells also co-express tyrosine hydroxylase (TH), a marker of dopaminergic cells in the retina. Previous reports demonstrated that serotonin transport can be modulated by neurotransmitter receptor activation. As 5-HT is diffusely released as a neuromodulator and co-localized with other transmitters, we evaluated if 5-HT uptake or release is modulated by several mediators in the avian retina. The role of different glutamate receptors on serotonin transport and release in vitro and in vivo was also studied. We show that L-glutamate induces an inhibitory effect on [3H]5-HT uptake and this effect was specific to kainate receptor activation. Kainate-induced decrease in [3H]5-HT uptake was blocked by CNQX, an AMPA/kainate receptor antagonist, but not by MK-801, a NMDA receptor antagonist. [3H]5-HT uptake was not observed in the presence of AMPA, thus suggesting that the decrease in serotonin uptake is mediated by kainate. 5-HT (10-50 μM) had no intrinsic activity in raising intracellular Ca2+, but addition of 10 μM 5-HT decreased Ca2+ shifts induced by KCl in retinal neurons. Moreover, kainate decreased the number of bipolar and amacrine cells labeled to serotonin in chick retina. In conclusion, our data suggest a highly selective effect of kainate receptors in the regulation of serotonin functions in the retinal cells.
Collapse
Affiliation(s)
- Adelaide da Conceição Fonseca Passos
- Laboratório de Neuroquímica Molecular e Celular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Campus Universitário do Guamá, Rua Augusto Correa 01, Belém-PA, 66075-110, Brazil
| | - Anderson Manoel Herculano
- Laboratório de Neuroquímica Molecular e Celular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Campus Universitário do Guamá, Rua Augusto Correa 01, Belém-PA, 66075-110, Brazil
| | - Karen R H M Oliveira
- Laboratório de Neuroquímica Molecular e Celular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Campus Universitário do Guamá, Rua Augusto Correa 01, Belém-PA, 66075-110, Brazil
| | - Silene Maria A de Lima
- Lab de Neurobiologia, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém-PA, Brazil
| | - Fernando A F Rocha
- Lab de Neurobiologia, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém-PA, Brazil
| | - Hércules Rezende Freitas
- Laboratório de Neuroquímica, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio De Janeiro-RJ, Brazil
- Escola de Ciências da Saúde, Centro Universitário IBMR, Rio De Janeiro-RJ, Brazil
| | - Luzia da Silva Sampaio
- Laboratório de Neuroquímica, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio De Janeiro-RJ, Brazil
| | - Danniel Pereira Figueiredo
- Laboratório de Neuroquímica, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio De Janeiro-RJ, Brazil
| | - Karin da Costa Calaza
- Lab Neurobiologia da Retina, Programa de Pós-graduação em Neurociências, Universidade Federal Fluminense, Rio De Janeiro-RJ, Brazil
| | - Ricardo Augusto de Melo Reis
- Laboratório de Neuroquímica, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio De Janeiro-RJ, Brazil
| | - José Luiz Martins do Nascimento
- Laboratório de Neuroquímica Molecular e Celular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Campus Universitário do Guamá, Rua Augusto Correa 01, Belém-PA, 66075-110, Brazil.
| |
Collapse
|
11
|
Pita-Thomas W, Mahar M, Joshi A, Gan D, Cavalli V. HDAC5 promotes optic nerve regeneration by activating the mTOR pathway. Exp Neurol 2019; 317:271-283. [PMID: 30910408 DOI: 10.1016/j.expneurol.2019.03.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 03/14/2019] [Accepted: 03/21/2019] [Indexed: 11/30/2022]
Abstract
Neurons in the central nervous system (CNS) regenerate poorly compared to their counterparts in the peripheral nervous system. We previously showed that, in peripheral sensory neurons, nuclear HDAC5 inhibits the expression of regenerative associated genes. After nerve injury, HDAC5 is exported to the cytoplasm to promote axon regeneration. Here we investigated the role of HDAC5 in retinal ganglion cells (RGCs), a CNS neuron which fails to survive and regenerate axons after injury. In contrast to PNS neurons, we found that HDAC5 is mostly cytoplasmic in naïve RGCs and its localization is not affected by optic nerve injury, suggesting that HDAC5 does not directly suppress regenerative associated genes in these cells. Manipulation of the PKCμ pathway, the canonical pathway that regulates HDAC5 localization in PNS neurons by phosphorylating serine 259 and 498, and other pathways that regulate nuclear/cytoplasmic transport, did not affect HDAC5 cytoplasmic localization in RGC. Also, an HDAC5 mutant whose serine 259 and 488 were replaced by alanine (HDAC5AA) to prevent phosphorylation and nuclear export showed a predominantly cytoplasmic localization, suggesting that HDAC5 resides mostly in the cytoplasm in RGCs. Interestingly, expression of HDAC5AA, but not HDAC5 wild type, in RGCs in vivo promoted optic nerve regeneration and RGC survival. Mechanistically, we found that HDAC5AA stimulated the survival and regeneration of RGCs by activating the mTOR pathway. Consistently, the combination of HDAC5AA expression and the stimulation of the immune system by zymosan injection had an additive effect in promoting robust axon regeneration. These results reveal the potential of manipulating HDAC5 phosphorylation state to activate the mTOR pathway, offering a new therapeutic target to design drugs that promote axon regeneration in the optic nerve.
Collapse
Affiliation(s)
- Wolfgang Pita-Thomas
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, United States of America
| | - Marcus Mahar
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, United States of America
| | - Avni Joshi
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, United States of America
| | - Di Gan
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, United States of America; Department of Neuroscience, Brandeis University, Waltham, MA 02453, United States of America
| | - Valeria Cavalli
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, United States of America; Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO 63110, United States of America; Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO 63110, United States of America.
| |
Collapse
|
12
|
Twenty-Seven Tamoxifen-Inducible iCre-Driver Mouse Strains for Eye and Brain, Including Seventeen Carrying a New Inducible-First Constitutive-Ready Allele. Genetics 2019; 211:1155-1177. [PMID: 30765420 PMCID: PMC6456315 DOI: 10.1534/genetics.119.301984] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 02/11/2019] [Indexed: 12/25/2022] Open
Abstract
To understand gene function, the cre/loxP conditional system is the most powerful available for temporal and spatial control of expression in mouse. However, the research community requires more cre recombinase expressing transgenic mouse strains (cre-drivers) that restrict expression to specific cell types. To address these problems, a high-throughput method for large-scale production that produces high-quality results is necessary. Further, endogenous promoters need to be chosen that drive cell type specific expression, or we need to further focus the expression by manipulating the promoter. Here we test the suitability of using knock-ins at the docking site 5′ of Hprt for rapid development of numerous cre-driver strains focused on expression in adulthood, using an improved cre tamoxifen inducible allele (icre/ERT2), and testing a novel inducible-first, constitutive-ready allele (icre/f3/ERT2/f3). In addition, we test two types of promoters either to capture an endogenous expression pattern (MaxiPromoters), or to restrict expression further using minimal promoter element(s) designed for expression in restricted cell types (MiniPromoters). We provide new cre-driver mouse strains with applicability for brain and eye research. In addition, we demonstrate the feasibility and applicability of using the locus 5′ of Hprt for the rapid generation of substantial numbers of cre-driver strains. We also provide a new inducible-first constitutive-ready allele to further speed cre-driver generation. Finally, all these strains are available to the research community through The Jackson Laboratory.
Collapse
|
13
|
Abstract
The expression of serotonin (5-HT) in the retina was first reported in the sixties. The detection of vesicular monoamine transporter and serotonin receptors in several retinal cells confirm that 5-HT is playing a neuromodulatory role in this structure. Whereas signaling pathways activated by 5-HT receptor binding has been poorly investigated so far, numerous data demonstrated that 5-HT is involved in retinal physiology, retinal physiopathology and photoreceptor survival.
Collapse
|
14
|
Shah SH, Goldberg JL. The Role of Axon Transport in Neuroprotection and Regeneration. Dev Neurobiol 2018; 78:998-1010. [PMID: 30027690 DOI: 10.1002/dneu.22630] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Retinal ganglion cells and other central nervous system neurons fail to regenerate after injury. Understanding the obstacles to survival and regeneration, and overcoming them, is key to preserving and restoring function. While comparisons in the cellular changes seen in these non-regenerative cells with those that do have intrinsic regenerative ability has yielded many candidate genes for regenerative therapies, complete visual recovery has not yet been achieved. Insights gained from neurodegenerative diseases, like glaucoma, underscore the importance of axonal transport of organelles, mRNA, and effector proteins in injury and disease. Targeting molecular motor networks, and their cargoes, may be necessary for realizing complete axonal regeneration and vision restoration.
Collapse
Affiliation(s)
- Sahil H Shah
- Byers Eye Institute, Stanford University, Palo Alto, California.,Neurosciences Graduate Program, University of California, San Diego, California.,Medical Scientist Training Program, University of California, San Diego, California
| | | |
Collapse
|
15
|
Rheaume BA, Jereen A, Bolisetty M, Sajid MS, Yang Y, Renna K, Sun L, Robson P, Trakhtenberg EF. Single cell transcriptome profiling of retinal ganglion cells identifies cellular subtypes. Nat Commun 2018; 9:2759. [PMID: 30018341 PMCID: PMC6050223 DOI: 10.1038/s41467-018-05134-3] [Citation(s) in RCA: 249] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 06/12/2018] [Indexed: 12/13/2022] Open
Abstract
Retinal ganglion cells (RGCs) convey the major output of information collected from the eye to the brain. Thirty subtypes of RGCs have been identified to date. Here, we analyze 6225 RGCs (average of 5000 genes per cell) from right and left eyes by single-cell RNA-seq and classify them into 40 subtypes using clustering algorithms. We identify additional subtypes and markers, as well as transcription factors predicted to cooperate in specifying RGC subtypes. Zic1, a marker of the right eye-enriched subtype, is validated by immunostaining in situ. Runx1 and Fst, the markers of other subtypes, are validated in purified RGCs by fluorescent in situ hybridization (FISH) and immunostaining. We show the extent of gene expression variability needed for subtype segregation, and we show a hierarchy in diversification from a cell-type population to subtypes. Finally, we present a website for comparing the gene expression of RGC subtypes.
Collapse
Affiliation(s)
- Bruce A Rheaume
- Department of Neuroscience, University of Connecticut School of Medicine, 263 Farmington Ave, Farmington, CT, 06030, USA
| | - Amyeo Jereen
- Department of Neuroscience, University of Connecticut School of Medicine, 263 Farmington Ave, Farmington, CT, 06030, USA
| | - Mohan Bolisetty
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, 06032, USA
| | - Muhammad S Sajid
- Department of Neuroscience, University of Connecticut School of Medicine, 263 Farmington Ave, Farmington, CT, 06030, USA
| | - Yue Yang
- Department of Neuroscience, University of Connecticut School of Medicine, 263 Farmington Ave, Farmington, CT, 06030, USA
| | - Kathleen Renna
- Department of Neuroscience, University of Connecticut School of Medicine, 263 Farmington Ave, Farmington, CT, 06030, USA
| | - Lili Sun
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, 06032, USA
| | - Paul Robson
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, 06032, USA
- Institute for Systems Genomics and Department of Genetics & Genome Sciences, University of Connecticut School of Medicine, Farmington, CT, 06032, USA
| | - Ephraim F Trakhtenberg
- Department of Neuroscience, University of Connecticut School of Medicine, 263 Farmington Ave, Farmington, CT, 06030, USA.
| |
Collapse
|
16
|
Huang XF, Song X. Effects of antipsychotic drugs on neurites relevant to schizophrenia treatment. Med Res Rev 2018; 39:386-403. [PMID: 29785841 DOI: 10.1002/med.21512] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Revised: 04/06/2018] [Accepted: 04/30/2018] [Indexed: 12/31/2022]
Abstract
Although antipsychotic drugs are mainly used for treating schizophrenia, they are widely used for treating various psychiatric diseases in adults, the elderly, adolescents and even children. Today, about 1.2% of the worldwide population suffers from psychosis and related disorders, which translates to about 7.5 million subjects potentially targeted by antipsychotic drugs. Neurites project from the cell body of neurons and connect neurons to each other to form neural networks. Deficits in neurite outgrowth and integrity are implicated in psychiatric diseases including schizophrenia. Neurite deficits contribute to altered brain development, neural networking and connectivity as well as symptoms including psychosis and altered cognitive function. This review revealed that (1) antipsychotic drugs could have profound effects on neurites, synaptic spines and synapse, by which they may influence and regulate neural networking and plasticity; (2) antipsychotic drugs target not only neurotransmitter receptors but also intracellular signaling molecules regulating the signaling pathways responsible for neurite outgrowth and maintenance; (3) high doses and chronic administration of antipsychotic drugs may cause some loss of neurites, synaptic spines, or synapsis in the cortical structures. In addition, confounding effects causing neurite deficits may include elevated inflammatory cytokines and antipsychotic drug-induced metabolic side effects in patients on chronic antipsychotic therapy. Unraveling how antipsychotic drugs affect neurites and neural connectivity is essential for improving therapeutic outcomes and preventing aversive effects for patients on antipsychotic drug treatment.
Collapse
Affiliation(s)
- Xu-Feng Huang
- Henan Medical Key Laboratory of Translational Research on Psychiatric Diseases, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, China.,The Illawarra Health and Medical Research Institute and School of Medicine, University of Wollongong, Wollongong, Australia
| | - Xueqin Song
- Henan Medical Key Laboratory of Translational Research on Psychiatric Diseases, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| |
Collapse
|