1
|
Kunz D, Wang A, Chan CU, Pritchard RH, Wang W, Gallo F, Bradshaw CR, Terenzani E, Müller KH, Huang YYS, Xiong F. Downregulation of extraembryonic tension controls body axis formation in avian embryos. Nat Commun 2023; 14:3266. [PMID: 37277340 PMCID: PMC10241863 DOI: 10.1038/s41467-023-38988-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 05/23/2023] [Indexed: 06/07/2023] Open
Abstract
Embryonic tissues undergoing shape change draw mechanical input from extraembryonic substrates. In avian eggs, the early blastoderm disk is under the tension of the vitelline membrane (VM). Here we report that the chicken VM characteristically downregulates tension and stiffness to facilitate stage-specific embryo morphogenesis. Experimental relaxation of the VM early in development impairs blastoderm expansion, while maintaining VM tension in later stages resists the convergence of the posterior body causing stalled elongation, failure of neural tube closure, and axis rupture. Biochemical and structural analysis shows that VM weakening is associated with the reduction of outer-layer glycoprotein fibers, which is caused by an increasing albumen pH due to CO2 release from the egg. Our results identify a previously unrecognized potential cause of body axis defects through mis-regulation of extraembryonic tissue tension.
Collapse
Affiliation(s)
- Daniele Kunz
- Wellcome Trust / CRUK Gurdon Institute, University of Cambridge, Cambridge, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Anfu Wang
- Wellcome Trust / CRUK Gurdon Institute, University of Cambridge, Cambridge, UK
| | - Chon U Chan
- Institute of Molecular and Cell Biology, A*STAR, Singapore, Singapore
| | - Robyn H Pritchard
- Department of Physics, University of Cambridge, Cambridge, UK
- Department of Engineering, University of Cambridge, Cambridge, UK
| | - Wenyu Wang
- Department of Engineering, University of Cambridge, Cambridge, UK
| | - Filomena Gallo
- Cambridge Advanced Imaging Centre, University of Cambridge, Cambridge, UK
| | - Charles R Bradshaw
- Wellcome Trust / CRUK Gurdon Institute, University of Cambridge, Cambridge, UK
| | - Elisa Terenzani
- Wellcome Trust / CRUK Gurdon Institute, University of Cambridge, Cambridge, UK
| | - Karin H Müller
- Cambridge Advanced Imaging Centre, University of Cambridge, Cambridge, UK
| | | | - Fengzhu Xiong
- Wellcome Trust / CRUK Gurdon Institute, University of Cambridge, Cambridge, UK.
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK.
| |
Collapse
|
2
|
Hack JM, Anwar NZ, Jackson JG, Furth ME, Varner VD. Quantifying endodermal strains during heart tube formation in the developing chicken embryo. J Biomech 2023; 149:111481. [PMID: 36787674 PMCID: PMC10163833 DOI: 10.1016/j.jbiomech.2023.111481] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 12/17/2022] [Accepted: 02/01/2023] [Indexed: 02/09/2023]
Abstract
In the early avian embryo, the developing heart forms when bilateral fields of cardiac progenitor cells, which reside in the lateral plate mesoderm, move toward the embryonic midline, and fuse above the anterior intestinal portal (AIP) to form a straight, muscle-wrapped tube. During this process, the precardiac mesoderm remains in close contact with the underlying endoderm. Previous work has shown that the endoderm around the AIP actively contracts to pull the cardiac progenitors toward the midline. The morphogenetic deformations associated with this endodermal convergence, however, remain unclear, as do the signaling pathways that might regulate this process. Here, we fluorescently labeled populations of endodermal cells in early chicken embryos and tracked their motion during heart tube formation to compute time-varying strains along the anterior endoderm. We then determined how the computed endodermal strain distributions are affected by the pharmacological inhibition of either myosin II or fibroblast growth factor (FGF) signaling. Our data indicate that a mediolateral gradient in endodermal shortening is present around the AIP, as well as substantial convergence and extension movements both anterior and lateral to the AIP. These active endodermal deformations are disrupted if either actomyosin contractility or FGF signaling are inhibited pharmacologically. Taken together, these results demonstrate how active deformations along the anterior endoderm contribute to heart tube formation within the developing embryo.
Collapse
Affiliation(s)
- Joshua M Hack
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX, United States
| | - Nareen Z Anwar
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX, United States
| | - John G Jackson
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX, United States
| | - Meagan E Furth
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX, United States
| | - Victor D Varner
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX, United States; Department of Surgery, UT Southwestern Medical Center, Dallas, TX, United States.
| |
Collapse
|
3
|
Ebrahimi N, Bradley C, Hunter P. An integrative multiscale view of early cardiac looping. WIREs Mech Dis 2022; 14:e1535. [PMID: 35023324 DOI: 10.1002/wsbm.1535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 06/20/2021] [Accepted: 06/21/2021] [Indexed: 11/12/2022]
Abstract
The heart is the first organ to form and function during the development of an embryo. Heart development consists of a series of events believed to be highly conserved in vertebrates. Development of heart begins with the formation of the cardiac fields followed by a linear heart tube formation. The straight heart tube then undergoes a ventral bending prior to further bending and helical torsion to form a looped heart. The looping phase is then followed by ballooning, septation, and valve formation giving rise to a four-chambered heart in avians and mammals. The looping phase plays a central role in heart development. Successful looping is essential for proper alignment of the future cardiac chambers and tracts. As aberrant looping results in various congenital heart diseases, the mechanisms of cardiac looping have been studied for several decades by various disciplines. Many groups have studied anatomy, biology, genetics, and mechanical processes during heart looping, and have proposed multiple mechanisms. Computational modeling approaches have been utilized to examine the proposed mechanisms of the looping process. Still, the exact underlying mechanism(s) controlling the looping phase remain poorly understood. Although further experimental measurements are obviously still required, the need for more integrative computational modeling approaches is also apparent in order to make sense of the vast amount of experimental data and the complexity of multiscale developmental systems. Indeed, there needs to be an iterative interaction between experimentation and modeling in order to properly find the gap in the existing data and to validate proposed hypotheses. This article is categorized under: Cardiovascular Diseases > Genetics/Genomics/Epigenetics Cardiovascular Diseases > Computational Models Cardiovascular Diseases > Molecular and Cellular Physiology.
Collapse
Affiliation(s)
- Nazanin Ebrahimi
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Christopher Bradley
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Peter Hunter
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| |
Collapse
|
4
|
Shewale B, Dubois N. Of form and function: Early cardiac morphogenesis across classical and emerging model systems. Semin Cell Dev Biol 2021; 118:107-118. [PMID: 33994301 PMCID: PMC8434962 DOI: 10.1016/j.semcdb.2021.04.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 12/31/2022]
Abstract
The heart is the earliest organ to develop during embryogenesis and is remarkable in its ability to function efficiently as it is being sculpted. Cardiac heart defects account for a high burden of childhood developmental disorders with many remaining poorly understood mechanistically. Decades of work across a multitude of model organisms has informed our understanding of early cardiac differentiation and morphogenesis and has simultaneously opened new and unanswered questions. Here we have synthesized current knowledge in the field and reviewed recent developments in the realm of imaging, bioengineering and genetic technology and ex vivo cardiac modeling that may be deployed to generate more holistic models of early cardiac morphogenesis, and by extension, new platforms to study congenital heart defects.
Collapse
Affiliation(s)
- Bhavana Shewale
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Nicole Dubois
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
5
|
Oltean A, Taber LA. A Chemomechanical Model for Regulation of Contractility in the Embryonic Brain Tube. JOURNAL OF ELASTICITY 2021; 145:77-98. [PMID: 35400797 PMCID: PMC8993162 DOI: 10.1007/s10659-020-09811-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 12/30/2020] [Indexed: 06/14/2023]
Abstract
Morphogenesis is regulated by genetic, biochemical, and biomechanical factors, but the feedback controlling the interactions between these factors remains poorly understood. A previous study has found that compressing the brain tube of the early chick embryo induces changes in contractility and nuclear shape in the neuroepithelial wall. Assuming this response involves mechanical feedback, we use experiments and computational modeling to investigate a hypothetical mechanism behind the observed behavior. First, we measured nuclear circularity in embryonic chick brains subjected to transverse compression. Immediately after loading, the circularity varied regionally and appeared to reflect the local state of stress in the wall. After three hours of culture with sustained compression, however, the nuclei became rounder. Exposure to a gap junction blocker inhibited this response, suggesting that it requires intercellular diffusion of a biochemical signal. We speculate that the signal regulates the contraction that occurs near the lumen, altering stress distributions and nuclear geometry throughout the wall. Simulating compression using a chemomechanical finite-element model based on this idea shows that our hypothesis is consistent with most of the experimental data. This work provides a foundation for future investigations of chemomechanical feedback in epithelia during embryonic development.
Collapse
|
6
|
Wang JX, White MD. Mechanical forces in avian embryo development. Semin Cell Dev Biol 2021; 120:133-146. [PMID: 34147339 DOI: 10.1016/j.semcdb.2021.06.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/27/2021] [Accepted: 06/02/2021] [Indexed: 10/21/2022]
Abstract
Research using avian embryos has led to major conceptual advances in developmental biology, virology, immunology, genetics and cell biology. The avian embryo has several significant advantages, including ready availability and ease of accessibility, rapid development with marked similarities to mammals and a high amenability to manipulation. As mechanical forces are increasingly recognised as key drivers of morphogenesis, this powerful model system is shedding new light on the mechanobiology of embryonic development. Here, we highlight progress in understanding how mechanical forces direct key morphogenetic processes in the early avian embryo. Recent advances in quantitative live imaging and modelling are elaborating upon traditional work using physical models and embryo manipulations to reveal cell dynamics and tissue forces in ever greater detail. The recent application of transgenic technologies further increases the strength of the avian model and is providing important insights about previously intractable developmental processes.
Collapse
Affiliation(s)
- Jian Xiong Wang
- The University of Queensland, Institute for Molecular Bioscience, Brisbane, QLD 4072, Australia
| | - Melanie D White
- The University of Queensland, Institute for Molecular Bioscience, Brisbane, QLD 4072, Australia.
| |
Collapse
|
7
|
Garcia KE, Stewart WG, Espinosa MG, Gleghorn JP, Taber LA. Molecular and mechanical signals determine morphogenesis of the cerebral hemispheres in the chicken embryo. Development 2019; 146:146/20/dev174318. [PMID: 31604710 DOI: 10.1242/dev.174318] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 07/30/2019] [Indexed: 01/16/2023]
Abstract
During embryonic development, the telecephalon undergoes extensive growth and cleaves into right and left cerebral hemispheres. Although molecular signals have been implicated in this process and linked to congenital abnormalities, few studies have examined the role of mechanical forces. In this study, we quantified morphology, cell proliferation and tissue growth in the forebrain of chicken embryos during Hamburger-Hamilton stages 17-21. By altering embryonic cerebrospinal fluid pressure during development, we found that neuroepithelial growth depends on not only chemical morphogen gradients but also mechanical feedback. Using these data, as well as published information on morphogen activity, we developed a chemomechanical growth law to mathematically describe growth of the neuroepithelium. Finally, we constructed a three-dimensional computational model based on these laws, with all parameters based on experimental data. The resulting model predicts forebrain shapes consistent with observations in normal embryos, as well as observations under chemical or mechanical perturbation. These results suggest that molecular and mechanical signals play important roles in early forebrain morphogenesis and may contribute to the development of congenital malformations.
Collapse
Affiliation(s)
- Kara E Garcia
- Department of Biomedical Engineering, Washington University, 1 Brookings Drive, St. Louis, MO 63130, USA
| | - Wade G Stewart
- Department of Biomedical Engineering, University of Delaware, 150 Academy Street, Newark, DE 19716, USA
| | - M Gabriela Espinosa
- Department of Biomedical Engineering, Washington University, 1 Brookings Drive, St. Louis, MO 63130, USA
| | - Jason P Gleghorn
- Department of Biomedical Engineering, University of Delaware, 150 Academy Street, Newark, DE 19716, USA
| | - Larry A Taber
- Department of Biomedical Engineering, Washington University, 1 Brookings Drive, St. Louis, MO 63130, USA
| |
Collapse
|
8
|
Ramasubramanian A, Capaldi X, Bradner S, Gangi L. On the Biomechanics of Cardiac S-looping: insights from modeling and perturbation studies. J Biomech Eng 2019; 141:2728068. [PMID: 30840031 DOI: 10.1115/1.4043077] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Indexed: 12/14/2022]
Abstract
Cardiac looping is an important embryonic developmental stage where the primitive heart tube (HT) twists into a configuration that more closely resembles the mature heart. Improper looping leads to congenital defects. We study cardiac s-looping wherein the primitive ventricle which lay superior to the atrium now assumes its definitive position inferior to it. This process results in a heart loop that is no longer planar with the inflow and outflow tracts now lying in adjacent planes. We investigate the biomechanics of s-looping and use modeling to understand the nonlinear and time variant morphogenetic shape changes. We developed physical and finite element models and validated the models using perturbation studies. The results from experiments and models show how force actuators such as bending of the embryonic dorsal wall (cervical flexure), rotation around the body axis (embryo torsion), and HT growth interact to produce the heart loop. Using model-based and experimental data, we present an improved hypothesis for early cardiac s-looping.
Collapse
Affiliation(s)
| | - Xavier Capaldi
- Department of Physics, Union College, Schenectady, NY 12308
| | - Sarah Bradner
- Bioengineering Program, Union College, Schenectady, NY 12308
| | - Lianna Gangi
- Bioengineering Program, Union College, Schenectady, NY 12308
| |
Collapse
|
9
|
Li Y, Grover H, Dai E, Yang K, Chen Z. Probing the Roles of Physical Forces in Early Chick Embryonic Morphogenesis. J Vis Exp 2018. [PMID: 29939170 DOI: 10.3791/57150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Embryonic development is traditionally studied from the perspective of biomolecular genetics, but the fundamental importance of mechanics in morphogenesis is becoming increasingly recognized. In particular, the embryonic chick heart and brain tube, which undergo drastic morphological changes as they develop, are among the prime candidates to study the role of physical forces in morphogenesis. Progressive ventral bending and rightward torsion of the tubular embryonic chick brain happen at the earliest stage of organ-level left-right asymmetry in chick embryonic development. The vitelline membrane (VM) constrains the dorsal side of the embryo and has been implicated in providing the force necessary to induce torsion of the developing brain. Here we present a combination of new ex-ovo experiments and physical modeling to identify the mechanics of brain torsion. At Hamburger-Hamilton stage 11, embryos are harvested and cultured ex ovo (in media). The VM is subsequently removed using a pulled capillary tube. By controlling the level of the fluid and subjecting the embryo to a fluid-air interface, the fluid surface tension of the media can be used to replace the mechanical role of the VM. Microsurgery experiments were also performed to alter the position of the heart to find the resultant change in the chirality of brain torsion. Results from this protocol illustrate the fundamental roles of mechanics in driving morphogenesis.
Collapse
Affiliation(s)
- Yan Li
- Thayer School of Engineering, Dartmouth College
| | | | - Eric Dai
- Department of Bioengineering, University of Pennsylvania
| | - Kevin Yang
- Thayer School of Engineering, Dartmouth College
| | - Zi Chen
- Thayer School of Engineering, Dartmouth College;
| |
Collapse
|
10
|
How mechanical forces shape the developing eye. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2018; 137:25-36. [PMID: 29432780 DOI: 10.1016/j.pbiomolbio.2018.01.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 01/08/2018] [Accepted: 01/15/2018] [Indexed: 12/29/2022]
Abstract
In the vertebrate embryo, the eyes develop from optic vesicles that grow laterally outward from the brain tube and contact the overlying surface ectoderm. Within the region of contact, each optic vesicle and the surface ectoderm thicken to form placodes, which then invaginate to create the optic cup and lens pit, respectively. Eventually, the optic cup becomes the retina, while the lens pit closes to form the lens vesicle. Here, we review current hypotheses for the physical mechanisms that create these structures and present novel three-dimensional computer (finite-element) models to illustrate the plausibility and limitations of these hypotheses. Taken together, experimental and numerical results suggest that the driving forces for early eye morphogenesis are generated mainly by differential growth, actomyosin contraction, and regional apoptosis, with morphology mediated by physical constraints provided by adjacent tissues and extracellular matrix. While these studies offer new insight into the mechanics of eye development, future work is needed to better understand how these mechanisms are regulated to precisely control the shape of the eye.
Collapse
|
11
|
Oltean A, Taber LA. Apoptosis generates mechanical forces that close the lens vesicle in the chick embryo. Phys Biol 2018; 15:025001. [PMID: 28914615 DOI: 10.1088/1478-3975/aa8d0e] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
During the initial stages of eye development, optic vesicles grow laterally outward from both sides of the forebrain and come into contact with the surrounding surface ectoderm (SE). Within the region of contact, these layers then thicken locally to create placodes and invaginate to form the optic cup (primitive retina) and lens vesicle (LV), respectively. This paper examines the biophysical mechanisms involved in LV formation, which consists of three phases: (1) lens placode formation; (2) invagination to create the lens pit (LP); and (3) closure to form a complete ellipsoidally shaped LV. Previous studies have suggested that extracellular matrix deposited between the SE and optic vesicle causes the lens placode to form by locally constraining expansion of the SE as it grows, while actomyosin contraction causes this structure to invaginate. Here, using computational modeling and experiments on chick embryos, we confirm that these mechanisms for Phases 1 and 2 are physically plausible. Our results also suggest, however, that they are not sufficient to close the LP during Phase 3. We postulate that apoptosis provides an additional mechanism by removing cells near the LP opening, thereby decreasing its circumference and generating tension that closes the LP. This hypothesis is supported by staining that shows a ring of cell death located around the LP opening during closure. Inhibiting apoptosis in cultured embryos using caspase inhibitors significantly reduced LP closure, and results from a finite-element model indicate that closure driven by cell death is plausible. Taken together, our results suggest an important mechanical role for apoptosis in lens development.
Collapse
Affiliation(s)
- Alina Oltean
- Department of Biomedical Engineering, Washington University, St Louis, MO 63130, United States of America
| | | |
Collapse
|
12
|
Pearl EJ, Li J, Green JBA. Cellular systems for epithelial invagination. Philos Trans R Soc Lond B Biol Sci 2017; 372:rstb.2015.0526. [PMID: 28348256 PMCID: PMC5379028 DOI: 10.1098/rstb.2015.0526] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/18/2016] [Indexed: 12/24/2022] Open
Abstract
Epithelial invagination is a fundamental module of morphogenesis that iteratively occurs to generate the architecture of many parts of a developing organism. By changing the physical properties such as the shape and/or position of a population of cells, invagination drives processes ranging from reconfiguring the entire body axis during gastrulation, to forming the primordia of the eyes, ears and multiple ducts and glands, during organogenesis. The epithelial bending required for invagination is achieved through a variety of mechanisms involving systems of cells. Here we provide an overview of the different mechanisms, some of which can work in combination, and outline the circumstances in which they apply. This article is part of the themed issue ‘Systems morphodynamics: understanding the development of tissue hardware’.
Collapse
Affiliation(s)
- Esther J Pearl
- Department of Craniofacial Development and Stem Cell Biology, King's College London, London SE1 9RT, UK
| | - Jingjing Li
- Department of Craniofacial Development and Stem Cell Biology, King's College London, London SE1 9RT, UK
| | - Jeremy B A Green
- Department of Craniofacial Development and Stem Cell Biology, King's College London, London SE1 9RT, UK
| |
Collapse
|
13
|
Le Garrec JF, Domínguez JN, Desgrange A, Ivanovitch KD, Raphaël E, Bangham JA, Torres M, Coen E, Mohun TJ, Meilhac SM. A predictive model of asymmetric morphogenesis from 3D reconstructions of mouse heart looping dynamics. eLife 2017; 6:28951. [PMID: 29179813 PMCID: PMC5705212 DOI: 10.7554/elife.28951] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 10/15/2017] [Indexed: 01/14/2023] Open
Abstract
How left-right patterning drives asymmetric morphogenesis is unclear. Here, we have quantified shape changes during mouse heart looping, from 3D reconstructions by HREM. In combination with cell labelling and computer simulations, we propose a novel model of heart looping. Buckling, when the cardiac tube grows between fixed poles, is modulated by the progressive breakdown of the dorsal mesocardium. We have identified sequential left-right asymmetries at the poles, which bias the buckling in opposite directions, thus leading to a helical shape. Our predictive model is useful to explore the parameter space generating shape variations. The role of the dorsal mesocardium was validated in Shh-/- mutants, which recapitulate heart shape changes expected from a persistent dorsal mesocardium. Our computer and quantitative tools provide novel insight into the mechanism of heart looping and the contribution of different factors, beyond the simple description of looping direction. This is relevant to congenital heart defects.
Collapse
Affiliation(s)
- Jean-François Le Garrec
- Imagine - Institut Pasteur, Laboratory of Heart Morphogenesis, Paris, France.,INSERM UMR1163, Université Paris Descartes, Paris, France
| | - Jorge N Domínguez
- Department of Experimental Biology, University of Jaén, CU Las Lagunillas, Jaén, Spain
| | - Audrey Desgrange
- Imagine - Institut Pasteur, Laboratory of Heart Morphogenesis, Paris, France.,INSERM UMR1163, Université Paris Descartes, Paris, France
| | - Kenzo D Ivanovitch
- Cardiovascular Development Program, Centro Nacional de Investigaciones Cardiovasculares, CNIC, Madrid, Spain
| | - Etienne Raphaël
- Imagine - Institut Pasteur, Laboratory of Heart Morphogenesis, Paris, France.,INSERM UMR1163, Université Paris Descartes, Paris, France
| | | | - Miguel Torres
- Cardiovascular Development Program, Centro Nacional de Investigaciones Cardiovasculares, CNIC, Madrid, Spain
| | - Enrico Coen
- John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | | | - Sigolène M Meilhac
- Imagine - Institut Pasteur, Laboratory of Heart Morphogenesis, Paris, France.,INSERM UMR1163, Université Paris Descartes, Paris, France
| |
Collapse
|
14
|
Hosseini HS, Garcia KE, Taber LA. A new hypothesis for foregut and heart tube formation based on differential growth and actomyosin contraction. Development 2017; 144:2381-2391. [PMID: 28526751 DOI: 10.1242/dev.145193] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 05/10/2017] [Indexed: 01/14/2023]
Abstract
For decades, it was commonly thought that the bilateral heart fields in the early embryo fold directly towards the midline, where they meet and fuse to create the primitive heart tube. Recent studies have challenged this view, however, suggesting that the heart fields fold diagonally. As early foregut and heart tube morphogenesis are intimately related, this finding also raises questions concerning the traditional view of foregut formation. Here, we combine experiments on chick embryos with computational modeling to explore a new hypothesis for the physical mechanisms of heart tube and foregut formation. According to our hypothesis, differential anisotropic growth between mesoderm and endoderm drives diagonal folding. Then, active contraction along the anterior intestinal portal generates tension to elongate the foregut and heart tube. We test this hypothesis using biochemical perturbations of cell proliferation and contractility, as well as computational modeling based on nonlinear elasticity theory including growth and contraction. The present results generally support the view that differential growth and actomyosin contraction drive formation of the foregut and heart tube in the early chick embryo.
Collapse
Affiliation(s)
- Hadi S Hosseini
- Department of Biomedical Engineering, Washington University, St Louis, MO 63130, USA.,Department of Physics, Washington University, St Louis, MO 63130, USA
| | - Kara E Garcia
- Department of Biomedical Engineering, Washington University, St Louis, MO 63130, USA
| | - Larry A Taber
- Department of Biomedical Engineering, Washington University, St Louis, MO 63130, USA
| |
Collapse
|
15
|
Garcia KE, Okamoto RJ, Bayly PV, Taber LA. Contraction and stress-dependent growth shape the forebrain of the early chicken embryo. J Mech Behav Biomed Mater 2017; 65:383-397. [PMID: 27639481 PMCID: PMC5260613 DOI: 10.1016/j.jmbbm.2016.08.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 07/21/2016] [Accepted: 08/03/2016] [Indexed: 12/14/2022]
Abstract
During early vertebrate development, local constrictions, or sulci, form to divide the forebrain into the diencephalon, telencephalon, and optic vesicles. These partitions are maintained and exaggerated as the brain tube inflates, grows, and bends. Combining quantitative experiments on chick embryos with computational modeling, we investigated the biophysical mechanisms that drive these changes in brain shape. Chemical perturbations of contractility indicated that actomyosin contraction plays a major role in the creation of initial constrictions (Hamburger-Hamilton stages HH11-12), and fluorescent staining revealed that F-actin is circumferentially aligned at all constrictions. A finite element model based on these findings shows that the observed shape changes are consistent with circumferential contraction in these regions. To explain why sulci continue to deepen as the forebrain expands (HH12-20), we speculate that growth depends on wall stress. This idea was examined by including stress-dependent growth in a model with cerebrospinal fluid pressure and bending (cephalic flexure). The results given by the model agree with observed morphological changes that occur in the brain tube under normal and reduced eCSF pressure, quantitative measurements of relative sulcal depth versus time, and previously published patterns of cell proliferation. Taken together, our results support a biphasic mechanism for forebrain morphogenesis consisting of differential contractility (early) and stress-dependent growth (late).
Collapse
Affiliation(s)
- Kara E Garcia
- Department of Biomedical Engineering, Washington University, 1 Brookings Drive, Saint Louis, MO 63130, USA.
| | - Ruth J Okamoto
- Department of Mechanical Engineering and Material Science, Washington University, 1 Brookings Drive, Saint Louis, MO 63130, USA
| | - Philip V Bayly
- Department of Biomedical Engineering, Washington University, 1 Brookings Drive, Saint Louis, MO 63130, USA; Department of Mechanical Engineering and Material Science, Washington University, 1 Brookings Drive, Saint Louis, MO 63130, USA
| | - Larry A Taber
- Department of Biomedical Engineering, Washington University, 1 Brookings Drive, Saint Louis, MO 63130, USA; Department of Mechanical Engineering and Material Science, Washington University, 1 Brookings Drive, Saint Louis, MO 63130, USA
| |
Collapse
|
16
|
Chen Z, Guo Q, Dai E, Forsch N, Taber LA. How the embryonic chick brain twists. J R Soc Interface 2016; 13:20160395. [PMID: 28334695 PMCID: PMC5134006 DOI: 10.1098/rsif.2016.0395] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 10/20/2016] [Indexed: 12/14/2022] Open
Abstract
During early development, the tubular embryonic chick brain undergoes a combination of progressive ventral bending and rightward torsion, one of the earliest organ-level left-right asymmetry events in development. Existing evidence suggests that bending is caused by differential growth, but the mechanism for the predominantly rightward torsion of the embryonic brain tube remains poorly understood. Here, we show through a combination of in vitro experiments, a physical model of the embryonic morphology and mechanics analysis that the vitelline membrane (VM) exerts an external load on the brain that drives torsion. Our theoretical analysis showed that the force is of the order of 10 micronewtons. We also designed an experiment to use fluid surface tension to replace the mechanical role of the VM, and the estimated magnitude of the force owing to surface tension was shown to be consistent with the above theoretical analysis. We further discovered that the asymmetry of the looping heart determines the chirality of the twisted brain via physical mechanisms, demonstrating the mechanical transfer of left-right asymmetry between organs. Our experiments also implied that brain flexure is a necessary condition for torsion. Our work clarifies the mechanical origin of torsion and the development of left-right asymmetry in the early embryonic brain.
Collapse
Affiliation(s)
- Zi Chen
- Department of Biomedical Engineering, Washington University, St Louis, MO 63130, USA
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA
| | - Qiaohang Guo
- School of Materials Science and Engineering, Fujian University of Technology, Fuzhou 350108, People's Republic of China
- Fujian Provincial Key Laboratory of Advanced Materials Processing and Application, Fuzhou 350108, People's Republic of China
| | - Eric Dai
- Department of Biomedical Engineering, Washington University, St Louis, MO 63130, USA
| | - Nickolas Forsch
- Department of Biomedical Engineering, Washington University, St Louis, MO 63130, USA
- Department of Bioengineering, University of California at San Diego, La Jolla, CA 92093, USA
| | - Larry A Taber
- Department of Biomedical Engineering, Washington University, St Louis, MO 63130, USA
| |
Collapse
|
17
|
Fleury V, Murukutla AV, Chevalier NR, Gallois B, Capellazzi-Resta M, Picquet P, Peaucelle A. Physics of amniote formation. Phys Rev E 2016; 94:022426. [PMID: 27627351 DOI: 10.1103/physreve.94.022426] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Indexed: 11/07/2022]
Abstract
We present a detailed study of the formation of the amniotic sac in the avian embryo, and a comparison with the crocodile amniotic sac. We show that the amniotic sac forms at a circular line of stiffness contrast, separating rings of cell domains. Cells align at this boundary, and this in turn orients and concentrates the tension forces. The tissue fold which forms the amniotic sac is locked exactly along this line due to the colocalization of the stiffness contrast and of the tensile force. In addition, the tensile force plays a regenerative role when the amniotic sac is cut. The fold forming the ventral side of the embryo displays the same characteristics. This work shows that amniote embryogenesis consists of a cascade of buckling events taking place at the boundaries between regions of differing mechanical properties. Hence, amniote embryogenesis relies on a simple and robust biomechanical scheme used repeatedly, and selected ancestrally.
Collapse
Affiliation(s)
- Vincent Fleury
- Laboratoire Matière et Systèmes Complexes, UMR 7057, Université Paris Diderot/CNRS, 10 rue Alice Domont et Léonie Duquet, Paris 75013, France
| | - Ameya Vaishnavi Murukutla
- Laboratoire Matière et Systèmes Complexes, UMR 7057, Université Paris Diderot/CNRS, 10 rue Alice Domont et Léonie Duquet, Paris 75013, France
| | - Nicolas R Chevalier
- Laboratoire Matière et Systèmes Complexes, UMR 7057, Université Paris Diderot/CNRS, 10 rue Alice Domont et Léonie Duquet, Paris 75013, France
| | - Benjamin Gallois
- Laboratoire Matière et Systèmes Complexes, UMR 7057, Université Paris Diderot/CNRS, 10 rue Alice Domont et Léonie Duquet, Paris 75013, France
| | - Marina Capellazzi-Resta
- Laboratoire Matière et Systèmes Complexes, UMR 7057, Université Paris Diderot/CNRS, 10 rue Alice Domont et Léonie Duquet, Paris 75013, France
| | - Pierre Picquet
- Alligator Bay, 62 route du Mont Saint-Michel, Beauvoir 50170, Manche, France
| | - Alexis Peaucelle
- Laboratoire Matière et Systèmes Complexes, UMR 7057, Université Paris Diderot/CNRS, 10 rue Alice Domont et Léonie Duquet, Paris 75013, France
| |
Collapse
|
18
|
Oltean A, Huang J, Beebe DC, Taber LA. Tissue growth constrained by extracellular matrix drives invagination during optic cup morphogenesis. Biomech Model Mechanobiol 2016; 15:1405-1421. [PMID: 26984743 DOI: 10.1007/s10237-016-0771-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 02/05/2016] [Indexed: 12/19/2022]
Abstract
In the early embryo, the eyes form initially as relatively spherical optic vesicles (OVs) that protrude from both sides of the brain tube. Each OV grows until it contacts and adheres to the overlying surface ectoderm (SE) via an extracellular matrix (ECM) that is secreted by the SE and OV. The OV and SE then thicken and bend inward (invaginate) to create the optic cup (OC) and lens vesicle, respectively. While constriction of cell apices likely plays a role in SE invagination, the mechanisms that drive OV invagination are poorly understood. Here, we used experiments and computational modeling to explore the hypothesis that the ECM locally constrains the growing OV, forcing it to invaginate. In chick embryos, we examined the need for the ECM by (1) removing SE at different developmental stages and (2) exposing the embryo to collagenase. At relatively early stages of invagination (Hamburger-Hamilton stage HH14[Formula: see text]), removing the SE caused the curvature of the OV to reverse as it 'popped out' and became convex, but the OV remained concave at later stages (HH15) and invaginated further during subsequent culture. Disrupting the ECM had a similar effect, with the OV popping out at early to mid-stages of invagination (HH14[Formula: see text] to HH14[Formula: see text]). These results suggest that the ECM is required for the early stages but not the late stages of OV invagination. Microindentation tests indicate that the matrix is considerably stiffer than the cellular OV, and a finite-element model consisting of a growing spherical OV attached to a relatively stiff layer of ECM reproduced the observed behavior, as well as measured temporal changes in OV curvature, wall thickness, and invagination depth reasonably well. Results from our study also suggest that the OV grows relatively uniformly, while the ECM is stiffer toward the center of the optic vesicle. These results are consistent with our matrix-constraint hypothesis, providing new insight into the mechanics of OC (early retina) morphogenesis.
Collapse
Affiliation(s)
- Alina Oltean
- Department of Biomedical Engineering, Washington University, One Brookings Drive, Campus Box 1097, Saint Louis, MO, 63130-4899, USA.
| | - Jie Huang
- Department of Ophthalmology and Visual Sciences, Washington University, Saint Louis, MO, 63130, USA
| | - David C Beebe
- Department of Ophthalmology and Visual Sciences, Washington University, Saint Louis, MO, 63130, USA
| | - Larry A Taber
- Department of Biomedical Engineering, Washington University, One Brookings Drive, Campus Box 1097, Saint Louis, MO, 63130-4899, USA
| |
Collapse
|
19
|
Shi Y, Varner VD, Taber LA. Why is cytoskeletal contraction required for cardiac fusion before but not after looping begins? Phys Biol 2015; 12:016012. [PMID: 25635663 DOI: 10.1088/1478-3975/12/1/016012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cytoskeletal contraction is crucial to numerous morphogenetic processes, but its role in early heart development is poorly understood. Studies in chick embryos have shown that inhibiting myosin-II-based contraction prior to Hamburger-Hamilton (HH) stage 10 (33 h incubation) impedes fusion of the mesodermal heart fields that create the primitive heart tube (HT), as well as the ensuing process of cardiac looping. If contraction is inhibited at or after looping begins at HH10, however, fusion and looping proceed relatively normally. To explore the mechanisms behind this seemingly fundamental change in behavior, we measured spatiotemporal distributions of tissue stiffness, stress, and strain around the anterior intestinal portal (AIP), the opening to the foregut where contraction and cardiac fusion occur. The results indicate that stiffness and tangential tension decreased bilaterally along the AIP with distance from the embryonic midline. The gradients in stiffness and tension, as well as strain rate, increased to peaks at HH9 (30 h) and decreased afterward. Exposure to the myosin II inhibitor blebbistatin reduced these effects, suggesting that they are mainly generated by active cytoskeletal contraction, and finite-element modeling indicates that the measured mechanical gradients are consistent with a relatively uniform contraction of the endodermal layer in conjunction with constraints imposed by the attached mesoderm. Taken together, our results suggest that, before HH10, endodermal contraction pulls the bilateral heart fields toward the midline where they fuse to create the HT. By HH10, however, the fusion process is far enough along to enable apposing cardiac progenitor cells to keep 'zipping' together during looping without the need for continued high contractile forces. These findings should shed new light on a perplexing question in early heart development.
Collapse
Affiliation(s)
- Yunfei Shi
- Department of Biomedical Engineering, Washington University, Saint Louis, MO 63130, USA
| | | | | |
Collapse
|
20
|
Shi Y, Yao J, Xu G, Taber LA. Bending of the looping heart: differential growth revisited. J Biomech Eng 2015; 136:1829834. [PMID: 24509638 DOI: 10.1115/1.4026645] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 02/06/2014] [Indexed: 01/27/2023]
Abstract
In the early embryo, the primitive heart tube (HT) undergoes the morphogenetic process of c-looping as it bends and twists into a c-shaped tube. Despite intensive study for nearly a century, the physical forces that drive looping remain poorly understood. This is especially true for the bending component, which is the focus of this paper. For decades, experimental measurements of mitotic rates had seemingly eliminated differential growth as the cause of HT bending, as it has commonly been thought that the heart grows almost exclusively via hyperplasia before birth and hypertrophy after birth. Recently published data, however, suggests that hypertrophic growth may play a role in looping. To test this idea, we developed finite-element models that include regionally measured changes in myocardial volume over the HT. First, models based on idealized cylindrical geometry were used to simulate the bending process in isolated hearts, which bend without the complicating effects of external loads. With the number of free parameters in the model reduced to the extent possible, stress and strain distributions were compared to those measured in embryonic chick hearts that were isolated and cultured for 24 h. The results show that differential growth alone yields results that agree reasonably well with the trends in our data, but adding active changes in myocardial cell shape provides closer quantitative agreement with stress measurements. Next, the estimated parameters were extrapolated to a model based on realistic 3D geometry reconstructed from images of an actual chick heart. This model yields similar results and captures quite well the basic morphology of the looped heart. Overall, our study suggests that differential hypertrophic growth in the myocardium (MY) is the primary cause of the bending component of c-looping, with other mechanisms possibly playing lesser roles.
Collapse
|
21
|
Filas BA, Xu G, Taber LA. Probing regional mechanical properties of embryonic tissue using microindentation and optical coherence tomography. Methods Mol Biol 2015; 1189:3-16. [PMID: 25245683 DOI: 10.1007/978-1-4939-1164-6_1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Physical forces regulate morphogenetic movements and the mechanical properties of embryonic tissues during development. Such quantities are closely interrelated, as increases in material stiffness can limit force-induced deformations and vice versa. Here we present a minimally invasive method to quantify spatiotemporal changes in mechanical properties during morphogenesis. Regional stiffness is measured using microindentation, while displacement and strain distributions near the indenter are computed from the motion of tissue labels tracked from 3-D optical coherence tomography (OCT) images. Applied forces, displacements, and strain distributions are then used in conjunction with finite-element models to estimate regional material properties. This method is applicable to a wide variety of experimental systems and can be used to better understand the dynamic interrelation between tissue deformations and material properties that occur during time-lapse studies of embryogenesis. Such information is important to improve our understanding of the etiology of congenital disease where dynamic changes in mechanical properties are likely involved, such as situs inversus in the heart, hydrocephalus in the brain, and microphthalmia in the eye.
Collapse
Affiliation(s)
- Benjamen A Filas
- Department of Ophthalmology & Visual Sciences, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | | | | |
Collapse
|
22
|
Hosseini HS, Beebe DC, Taber LA. Mechanical effects of the surface ectoderm on optic vesicle morphogenesis in the chick embryo. J Biomech 2014; 47:3837-46. [PMID: 25458577 DOI: 10.1016/j.jbiomech.2014.10.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 10/09/2014] [Accepted: 10/13/2014] [Indexed: 01/14/2023]
Abstract
Precise shaping of the eye is crucial for proper vision. Here, we use experiments on chick embryos along with computational models to examine the mechanical factors involved in the formation of the optic vesicles (OVs), which grow outward from the forebrain of the early embryo. First, mechanical dissections were used to remove the surface ectoderm (SE), a membrane that contacts the outer surfaces of the OVs. Principal components analysis of OV shapes suggests that the SE exerts asymmetric loads that cause the OVs to flatten and shear caudally during the earliest stages of eye development and later to bend in the caudal and dorsal directions. These deformations cause the initially spherical OVs to become pear-shaped. Exposure to the myosin II inhibitor blebbistatin reduced these effects, suggesting that cytoskeletal contraction controls OV shape by regulating tension in the SE. To test the physical plausibility of these interpretations, we developed 2-D finite-element models for frontal and transverse cross-sections of the forebrain, including frictionless contact between the SE and OVs. With geometric data used to specify differential growth in the OVs, these models were used to simulate each experiment (control, SE removed, no contraction). For each case, the predicted shape of the OV agrees reasonably well with experiments. The results of this study indicate that differential growth in the OV and external pressure exerted by the SE are sufficient to cause the global changes in OV shape observed during the earliest stages of eye development.
Collapse
Affiliation(s)
- Hadi S Hosseini
- Department of Biomedical Engineering, Washington University, Campus Box 1097, St. Louis, MO 63130, USA; Department of Physics, Washington University, St Louis, MO 63130, USA
| | - David C Beebe
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Larry A Taber
- Department of Biomedical Engineering, Washington University, Campus Box 1097, St. Louis, MO 63130, USA.
| |
Collapse
|
23
|
Lindsey SE, Butcher JT, Yalcin HC. Mechanical regulation of cardiac development. Front Physiol 2014; 5:318. [PMID: 25191277 DOI: 10.3389/fphys.2014.00318/bibtex] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 08/03/2014] [Indexed: 05/25/2023] Open
Abstract
Mechanical forces are essential contributors to and unavoidable components of cardiac formation, both inducing and orchestrating local and global molecular and cellular changes. Experimental animal studies have contributed substantially to understanding the mechanobiology of heart development. More recent integration of high-resolution imaging modalities with computational modeling has greatly improved our quantitative understanding of hemodynamic flow in heart development. Merging these latest experimental technologies with molecular and genetic signaling analysis will accelerate our understanding of the relationships integrating mechanical and biological signaling for proper cardiac formation. These advances will likely be essential for clinically translatable guidance for targeted interventions to rescue malforming hearts and/or reconfigure malformed circulations for optimal performance. This review summarizes our current understanding on the levels of mechanical signaling in the heart and their roles in orchestrating cardiac development.
Collapse
Affiliation(s)
| | - Jonathan T Butcher
- Department of Biomedical Engineering, Cornell University Ithaca, NY, USA
| | - Huseyin C Yalcin
- Department of Mechanical Engineering, Dogus University Istanbul, Turkey
| |
Collapse
|
24
|
Lindsey SE, Butcher JT, Yalcin HC. Mechanical regulation of cardiac development. Front Physiol 2014; 5:318. [PMID: 25191277 PMCID: PMC4140306 DOI: 10.3389/fphys.2014.00318] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 08/03/2014] [Indexed: 12/21/2022] Open
Abstract
Mechanical forces are essential contributors to and unavoidable components of cardiac formation, both inducing and orchestrating local and global molecular and cellular changes. Experimental animal studies have contributed substantially to understanding the mechanobiology of heart development. More recent integration of high-resolution imaging modalities with computational modeling has greatly improved our quantitative understanding of hemodynamic flow in heart development. Merging these latest experimental technologies with molecular and genetic signaling analysis will accelerate our understanding of the relationships integrating mechanical and biological signaling for proper cardiac formation. These advances will likely be essential for clinically translatable guidance for targeted interventions to rescue malforming hearts and/or reconfigure malformed circulations for optimal performance. This review summarizes our current understanding on the levels of mechanical signaling in the heart and their roles in orchestrating cardiac development.
Collapse
Affiliation(s)
| | - Jonathan T Butcher
- Department of Biomedical Engineering, Cornell University Ithaca, NY, USA
| | - Huseyin C Yalcin
- Department of Mechanical Engineering, Dogus University Istanbul, Turkey
| |
Collapse
|
25
|
Shi Y, Yao J, Young JM, Fee JA, Perucchio R, Taber LA. Bending and twisting the embryonic heart: a computational model for c-looping based on realistic geometry. Front Physiol 2014; 5:297. [PMID: 25161623 PMCID: PMC4129494 DOI: 10.3389/fphys.2014.00297] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Accepted: 07/22/2014] [Indexed: 12/13/2022] Open
Abstract
The morphogenetic process of cardiac looping transforms the straight heart tube into a curved tube that resembles the shape of the future four-chambered heart. Although great progress has been made in identifying the molecular and genetic factors involved in looping, the physical mechanisms that drive this process have remained poorly understood. Recent work, however, has shed new light on this complicated problem. After briefly reviewing the current state of knowledge, we propose a relatively comprehensive hypothesis for the mechanics of the first phase of looping, termed c-looping, as the straight heart tube deforms into a c-shaped tube. According to this hypothesis, differential hypertrophic growth in the myocardium supplies the main forces that cause the heart tube to bend ventrally, while regional growth and cytoskeletal contraction in the omphalomesenteric veins (primitive atria) and compressive loads exerted by the splanchnopleuric membrane drive rightward torsion. A computational model based on realistic embryonic heart geometry is used to test the physical plausibility of this hypothesis. The behavior of the model is in reasonable agreement with available experimental data from control and perturbed embryos, offering support for our hypothesis. The results also suggest, however, that several other mechanisms contribute secondarily to normal looping, and we speculate that these mechanisms play backup roles when looping is perturbed. Finally, some outstanding questions are discussed for future study.
Collapse
Affiliation(s)
- Yunfei Shi
- Department of Biomedical Engineering, Washington University St. Louis, MO, USA
| | - Jiang Yao
- Dassault Systemes Simulia Corp. Providence, RI, USA
| | | | - Judy A Fee
- Department of Biomedical Engineering, Washington University St. Louis, MO, USA
| | - Renato Perucchio
- Department of Mechanical Engineering, University of Rochester Rochester, NY, USA
| | - Larry A Taber
- Department of Biomedical Engineering, Washington University St. Louis, MO, USA
| |
Collapse
|
26
|
Midgett M, Rugonyi S. Congenital heart malformations induced by hemodynamic altering surgical interventions. Front Physiol 2014; 5:287. [PMID: 25136319 PMCID: PMC4117980 DOI: 10.3389/fphys.2014.00287] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 07/14/2014] [Indexed: 11/30/2022] Open
Abstract
Embryonic heart formation results from a dynamic interplay between genetic and environmental factors. Blood flow during early embryonic stages plays a critical role in heart development, as interactions between flow and cardiac tissues generate biomechanical forces that modulate cardiac growth and remodeling. Normal hemodynamic conditions are essential for proper cardiac development, while altered blood flow induced by surgical manipulations in animal models result in heart defects similar to those seen in humans with congenital heart disease. This review compares the altered hemodynamics, changes in tissue properties, and cardiac defects reported after common surgical interventions that alter hemodynamics in the early chick embryo, and shows that interventions produce a wide spectrum of cardiac defects. Vitelline vein ligation and left atrial ligation decrease blood pressure and flow; and outflow tract banding increases blood pressure and flow velocities. These three surgical interventions result in many of the same cardiac defects, which indicate that the altered hemodynamics interfere with common looping, septation and valve formation processes that occur after intervention and that shape the four-chambered heart. While many similar defects develop after the interventions, the varying degrees of hemodynamic load alteration among the three interventions also result in varying incidence and severity of cardiac defects, indicating that the hemodynamic modulation of cardiac developmental processes is strongly dependent on hemodynamic load.
Collapse
Affiliation(s)
- Madeline Midgett
- Department of Biomedical Engineering and Knight Cardiovascular Institute, Center for Developmental Health, Oregon Health and Science University Portland, OR, USA
| | - Sandra Rugonyi
- Department of Biomedical Engineering and Knight Cardiovascular Institute, Center for Developmental Health, Oregon Health and Science University Portland, OR, USA
| |
Collapse
|
27
|
Midgett M, Rugonyi S. Congenital heart malformations induced by hemodynamic altering surgical interventions. Front Physiol 2014; 5:287. [PMID: 25136319 DOI: 10.3389/fphys.2014.00287/bibtex] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 07/14/2014] [Indexed: 05/25/2023] Open
Abstract
Embryonic heart formation results from a dynamic interplay between genetic and environmental factors. Blood flow during early embryonic stages plays a critical role in heart development, as interactions between flow and cardiac tissues generate biomechanical forces that modulate cardiac growth and remodeling. Normal hemodynamic conditions are essential for proper cardiac development, while altered blood flow induced by surgical manipulations in animal models result in heart defects similar to those seen in humans with congenital heart disease. This review compares the altered hemodynamics, changes in tissue properties, and cardiac defects reported after common surgical interventions that alter hemodynamics in the early chick embryo, and shows that interventions produce a wide spectrum of cardiac defects. Vitelline vein ligation and left atrial ligation decrease blood pressure and flow; and outflow tract banding increases blood pressure and flow velocities. These three surgical interventions result in many of the same cardiac defects, which indicate that the altered hemodynamics interfere with common looping, septation and valve formation processes that occur after intervention and that shape the four-chambered heart. While many similar defects develop after the interventions, the varying degrees of hemodynamic load alteration among the three interventions also result in varying incidence and severity of cardiac defects, indicating that the hemodynamic modulation of cardiac developmental processes is strongly dependent on hemodynamic load.
Collapse
Affiliation(s)
- Madeline Midgett
- Department of Biomedical Engineering and Knight Cardiovascular Institute, Center for Developmental Health, Oregon Health and Science University Portland, OR, USA
| | - Sandra Rugonyi
- Department of Biomedical Engineering and Knight Cardiovascular Institute, Center for Developmental Health, Oregon Health and Science University Portland, OR, USA
| |
Collapse
|
28
|
Taber LA. Morphomechanics: transforming tubes into organs. Curr Opin Genet Dev 2014; 27:7-13. [PMID: 24791687 PMCID: PMC4125444 DOI: 10.1016/j.gde.2014.03.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Revised: 02/24/2014] [Accepted: 03/05/2014] [Indexed: 01/05/2023]
Abstract
After decades focusing on the molecular and genetic aspects of organogenesis, researchers are showing renewed interest in the physical mechanisms that create organs. This review deals with the mechanical processes involved in constructing the heart and brain, concentrating primarily on cardiac looping, shaping of the primitive brain tube, and folding of the cerebral cortex. Recent studies suggest that differential growth drives large-scale shape changes in all three problems, causing the heart and brain tubes to bend and the cerebral cortex to buckle. Relatively local changes in form involve other mechanisms such as differential contraction. Understanding the mechanics of organogenesis is central to determining the link between genetics and the biophysical creation of form and structure.
Collapse
Affiliation(s)
- Larry A Taber
- Department of Biomedical Engineering, Washington University, St. Louis, MO 63130, USA.
| |
Collapse
|
29
|
Noël ES, Verhoeven M, Lagendijk AK, Tessadori F, Smith K, Choorapoikayil S, den Hertog J, Bakkers J. A Nodal-independent and tissue-intrinsic mechanism controls heart-looping chirality. Nat Commun 2014; 4:2754. [PMID: 24212328 DOI: 10.1038/ncomms3754] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 10/10/2013] [Indexed: 12/21/2022] Open
Abstract
Breaking left-right symmetry in bilateria is a major event during embryo development that is required for asymmetric organ position, directional organ looping and lateralized organ function in the adult. Asymmetric expression of Nodal-related genes is hypothesized to be the driving force behind regulation of organ laterality. Here we identify a Nodal-independent mechanism that drives asymmetric heart looping in zebrafish embryos. In a unique mutant defective for the Nodal-related southpaw gene, preferential dextral looping in the heart is maintained, whereas gut and brain asymmetries are randomized. As genetic and pharmacological inhibition of Nodal signalling does not abolish heart asymmetry, a yet undiscovered mechanism controls heart chirality. This mechanism is tissue intrinsic, as explanted hearts maintain ex vivo retain chiral looping behaviour and require actin polymerization and myosin II activity. We find that Nodal signalling regulates actin gene expression, supporting a model in which Nodal signalling amplifies this tissue-intrinsic mechanism of heart looping.
Collapse
Affiliation(s)
- Emily S Noël
- Hubrecht Institute-KNAW and University Medical Center Utrecht, 3584CT Utrecht, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Bayraktar M, Männer J. Cardiac looping may be driven by compressive loads resulting from unequal growth of the heart and pericardial cavity. Observations on a physical simulation model. Front Physiol 2014; 5:112. [PMID: 24772086 PMCID: PMC3983514 DOI: 10.3389/fphys.2014.00112] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 03/05/2014] [Indexed: 01/22/2023] Open
Abstract
The transformation of the straight embryonic heart tube into a helically wound loop is named cardiac looping. Such looping is regarded as an essential process in cardiac morphogenesis since it brings the building blocks of the developing heart into an approximation of their definitive topographical relationships. During the past two decades, a large number of genes have been identified which play important roles in cardiac looping. However, how genetic information is physically translated into the dynamic form changes of the looping heart is still poorly understood. The oldest hypothesis of cardiac looping mechanics attributes the form changes of the heart loop (ventral bending → simple helical coiling → complex helical coiling) to compressive loads resulting from growth differences between the heart and the pericardial cavity. In the present study, we have tested the physical plausibility of this hypothesis, which we call the growth-induced buckling hypothesis, for the first time. Using a physical simulation model, we show that growth-induced buckling of a straight elastic rod within the confined space of a hemispherical cavity can generate the same sequence of form changes as observed in the looping embryonic heart. Our simulation experiments have furthermore shown that, under bilaterally symmetric conditions, growth-induced buckling generates left- and right-handed helices (D-/L-loops) in a 1:1 ratio, while even subtle left- or rightward displacements of the caudal end of the elastic rod at the pre-buckling state are sufficient to direct the buckling process toward the generation of only D- or L-loops, respectively. Our data are discussed with respect to observations made in biological “models.” We conclude that compressive loads resulting from unequal growth of the heart and pericardial cavity play important roles in cardiac looping. Asymmetric positioning of the venous heart pole may direct these forces toward a biased generation of D- or L-loops.
Collapse
Affiliation(s)
- Meriç Bayraktar
- Group Cardio-Embryology, Institute for Anatomy and Embryology, UMG, Georg-August-University of Göttingen Göttingen, Germany
| | - Jörg Männer
- Group Cardio-Embryology, Institute for Anatomy and Embryology, UMG, Georg-August-University of Göttingen Göttingen, Germany
| |
Collapse
|
31
|
The interplay between cell signalling and mechanics in developmental processes. Nat Rev Genet 2013; 14:733-44. [PMID: 24045690 DOI: 10.1038/nrg3513] [Citation(s) in RCA: 147] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Force production and the propagation of stress and strain within embryos and organisms are crucial physical processes that direct morphogenesis. In addition, there is mounting evidence that biomechanical cues created by these processes guide cell behaviours and cell fates. In this Review we discuss key roles for biomechanics during development to directly shape tissues, to provide positional information for cell fate decisions and to enable robust programmes of development. Several recently identified molecular mechanisms suggest how cells and tissues might coordinate their responses to biomechanical cues. Finally, we outline long-term challenges in integrating biomechanics with genetic analysis of developing embryos.
Collapse
|
32
|
Ramasubramanian A. On the Role of Autonomous Control in Organ Development. JOURNAL OF DYNAMIC SYSTEMS, MEASUREMENT, AND CONTROL 2013; 135:0645031-645036. [PMID: 24895463 PMCID: PMC4023410 DOI: 10.1115/1.4024996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2012] [Revised: 07/05/2013] [Indexed: 06/03/2023]
Abstract
Developmental biology ("development" for short) deals with how the mature animal or plant results from a single fertilized cell. This paper is concerned with one aspect of development, morphogenesis-the formation of complex shapes from simpler ones. In particular, this paper focuses on organ development and illustrates the central role that mechanical feedback plays in effecting the final shape of various organs. The first aim of this paper is to illustrate how self-governing autonomous control systems can lead to the development of organs such as the heart. Although feedback plays a key role in these processes, the field is largely unexplored by controls engineers; hence, the second aim of this paper is to introduce mechanical feedback during development to controls engineers and suggest avenues for future research.
Collapse
Affiliation(s)
- Ashok Ramasubramanian
- Assistant Professor Department of Mechanical Engineering, Union College, Schenectady, NY 12309 e-mail:
| |
Collapse
|
33
|
Cimetta E, Godier-Furnémont A, Vunjak-Novakovic G. Bioengineering heart tissue for in vitro testing. Curr Opin Biotechnol 2013; 24:926-32. [PMID: 23932513 PMCID: PMC3783612 DOI: 10.1016/j.copbio.2013.07.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 07/07/2013] [Accepted: 07/08/2013] [Indexed: 02/07/2023]
Abstract
A classical paradigm of tissue engineering is to grow tissues for implantation by using human stem cells in conjunction with biomaterial scaffolds (templates for tissue formation) and bioreactors (culture systems providing environmental control). A reverse paradigm is now emerging through microphysiological platforms for preclinical testing of drugs and modeling of disease that contain large numbers of very small human tissues. We discuss the biomimetic approach as a common underlying principle and some of the specifics related to the design and utilization of platforms with heart micro-tissues for high-throughput screening in vitro.
Collapse
Affiliation(s)
- Elisa Cimetta
- Columbia University, Department of Biomedical Engineering, 622 West 168th Street, VC12-234, New York, NY 10032, USA
| | | | | |
Collapse
|
34
|
Wyczalkowski MA, Varner VD, Taber LA. Computational and experimental study of the mechanics of embryonic wound healing. J Mech Behav Biomed Mater 2013; 28:125-46. [PMID: 23973771 DOI: 10.1016/j.jmbbm.2013.07.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 07/14/2013] [Accepted: 07/16/2013] [Indexed: 01/07/2023]
Abstract
Wounds in the embryo show a remarkable ability to heal quickly without leaving a scar. Previous studies have found that an actomyosin ring (purse string) forms around the wound perimeter and contracts to close the wound over the course of several dozens of minutes. Here, we report experiments that reveal an even faster mechanism which remarkably closes wounds by more than 50% within the first 30s. Circular and elliptical wounds (~100μm in size) were made in the blastoderm of early chick embryos and allowed to heal, with wound area and shape characterized as functions of time. The closure rate displayed a biphasic behavior, with rapid constriction lasting about a minute, followed by a period of more gradual closure to complete healing. Fluorescent staining suggests that both healing phases are driven by actomyosin contraction, with relatively rapid contraction of fibers at cell borders within a relatively thick ring of tissue (several cells wide) around the wound followed by slower contraction of a thin supracellular actomyosin ring along the margin, consistent with a purse string mechanism. Finite-element modeling showed that this idea is biophysically plausible, with relatively isotropic contraction within the thick ring giving way to tangential contraction in the thin ring. In addition, consistent with experimental results, simulated elliptical wounds heal with little change in aspect ratio, and decreased membrane tension can cause these wounds to open briefly before going on to heal. These results provide new insight into the healing mechanism in embryonic epithelia.
Collapse
|
35
|
Ramasubramanian A, Chu-Lagraff QB, Buma T, Chico KT, Carnes ME, Burnett KR, Bradner SA, Gordon SS. On the role of intrinsic and extrinsic forces in early cardiac S-looping. Dev Dyn 2013; 242:801-16. [PMID: 23553909 DOI: 10.1002/dvdy.23968] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Revised: 03/07/2013] [Accepted: 03/07/2013] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Looping is a crucial phase during heart development when the initially straight heart tube is transformed into a shape that more closely resembles the mature heart. Although the genetic and biochemical pathways of cardiac looping have been well studied, the biophysical mechanisms that actually effect the looping process remain poorly understood. Using a combined experimental (chick embryo) and computational (finite element modeling) approach, we study the forces driving early s-looping when the primitive ventricle moves to its definitive position inferior to the common atrium. RESULTS New results from our study indicate that the primitive heart has no intrinsic ability to form an s-loop and that extrinsic forces are necessary to effect early s-looping. They support previous studies that established an important role for cervical flexure in causing early cardiac s-looping. Our results also show that forces applied by the splanchnopleure cannot be ignored during early s-looping and shed light on the role of cardiac jelly. Using available experimental data and computer modeling, we successfully developed and tested a hypothesis for the force mechanisms driving s-loop formation. CONCLUSIONS Forces external to the primitive heart tube are necessary in the later stages of cardiac looping. Experimental and model results support our proposed hypothesis for forces driving early s-looping.
Collapse
Affiliation(s)
- Ashok Ramasubramanian
- Department of Mechanical Engineering, Union College, Schenectady, New York 12309, USA.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Männer J. On the form problem of embryonic heart loops, its geometrical solutions, and a new biophysical concept of cardiac looping. Ann Anat 2013; 195:312-323. [PMID: 23602789 DOI: 10.1016/j.aanat.2013.02.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 01/31/2013] [Accepted: 02/01/2013] [Indexed: 10/27/2022]
Abstract
BACKGROUND Cardiac looping is an essential process in the morphogenesis of embryonic hearts. Unfortunately, relatively little is known about the form and biophysics of embryonic heart loops. Thompson regarded the form of an object as "a 'diagram of forces' … from it we can … deduce the forces that are acting or have acted upon it." Therefore, the present study was conducted to uncover the best geometrical solution of the form problem of embryonic heart loops. This approach may help to identify the biophysics of cardiac looping. RESULTS Analysis of the tendrils of climbing plants disclosed striking resemblance between the configurations of embryonic heart loops and a form motif named helical perversion. Helical perversion occurs in helically wound objects where they connect two helical segments of opposite handedness (two-handed helix). Helical perversion evolves in living and non-living filamentary objects such as the tendrils of climbing plants and helical telephone cords. CONCLUSIONS Helical perversion may be the best geometrical solution of the form problem of embryonic heart loops. The dynamics and mechanics of the emergence of helical perversions are relatively well known. The behavior of looping embryonic hearts may be interpreted in light of this knowledge.
Collapse
Affiliation(s)
- Jörg Männer
- Department of Anatomy and Embryology, Georg-August-University of Göttingen, Germany.
| |
Collapse
|
37
|
Filas BA, Oltean A, Majidi S, Bayly PV, Beebe DC, Taber LA. Regional differences in actomyosin contraction shape the primary vesicles in the embryonic chicken brain. Phys Biol 2012; 9:066007. [PMID: 23160445 PMCID: PMC3535267 DOI: 10.1088/1478-3975/9/6/066007] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
In the early embryo, the brain initially forms as a relatively straight, cylindrical epithelial tube composed of neural stem cells. The brain tube then divides into three primary vesicles (forebrain, midbrain, hindbrain), as well as a series of bulges (rhombomeres) in the hindbrain. The boundaries between these subdivisions have been well studied as regions of differential gene expression, but the morphogenetic mechanisms that generate these constrictions are not well understood. Here, we show that regional variations in actomyosin-based contractility play a major role in vesicle formation in the embryonic chicken brain. In particular, boundaries did not form in brains exposed to the nonmuscle myosin II inhibitor blebbistatin, whereas increasing contractile force using calyculin or ATP deepened boundaries considerably. Tissue staining showed that contraction likely occurs at the inner part of the wall, as F-actin and phosphorylated myosin are concentrated at the apical side. However, relatively little actin and myosin was found in rhombomere boundaries. To determine the specific physical mechanisms that drive vesicle formation, we developed a finite-element model for the brain tube. Regional apical contraction was simulated in the model, with contractile anisotropy and strength estimated from contractile protein distributions and measurements of cell shapes. The model shows that a combination of circumferential contraction in the boundary regions and relatively isotropic contraction between boundaries can generate realistic morphologies for the primary vesicles. In contrast, rhombomere formation likely involves longitudinal contraction between boundaries. Further simulations suggest that these different mechanisms are dictated by regional differences in initial morphology and the need to withstand cerebrospinal fluid pressure. This study provides a new understanding of early brain morphogenesis.
Collapse
Affiliation(s)
- Benjamen A Filas
- Department of Biomedical Engineering, Washington University, St Louis, MO 63130, USA.
| | | | | | | | | | | |
Collapse
|
38
|
Yao J, Varner VD, Brilli LL, Young JM, Taber LA, Perucchio R. Viscoelastic material properties of the myocardium and cardiac jelly in the looping chick heart. J Biomech Eng 2012; 134:024502. [PMID: 22482677 DOI: 10.1115/1.4005693] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Accurate material properties of developing embryonic tissues are a crucial factor in studies of the mechanics of morphogenesis. In the present work, we characterize the viscoelastic material properties of the looping heart tube in the chick embryo through nonlinear finite element modeling and microindentation experiments. Both hysteresis and ramp-hold experiments were performed on the intact heart and isolated cardiac jelly (extracellular matrix). An inverse computational method was used to determine the constitutive relations for the myocardium and cardiac jelly. With both layers assumed to be quasilinear viscoelastic, material coefficients for an Ogden type strain-energy density function combined with Prony series of two terms or less were determined by fitting numerical results from a simplified model of a heart segment to experimental data. The experimental and modeling techniques can be applied generally for determining viscoelastic material properties of embryonic tissues.
Collapse
Affiliation(s)
- Jiang Yao
- Department of Mechanical Engineering, University of Rochester, Rochester, NY 14627, USA.
| | | | | | | | | | | |
Collapse
|
39
|
Goenezen S, Rennie MY, Rugonyi S. Biomechanics of early cardiac development. Biomech Model Mechanobiol 2012; 11:1187-204. [PMID: 22760547 DOI: 10.1007/s10237-012-0414-7] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Accepted: 06/20/2012] [Indexed: 12/31/2022]
Abstract
Biomechanics affect early cardiac development, from looping to the development of chambers and valves. Hemodynamic forces are essential for proper cardiac development, and their disruption leads to congenital heart defects. A wealth of information already exists on early cardiac adaptations to hemodynamic loading, and new technologies, including high-resolution imaging modalities and computational modeling, are enabling a more thorough understanding of relationships between hemodynamics and cardiac development. Imaging and modeling approaches, used in combination with biological data on cell behavior and adaptation, are paving the road for new discoveries on links between biomechanics and biology and their effect on cardiac development and fetal programming.
Collapse
Affiliation(s)
- Sevan Goenezen
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR 97239, USA.
| | | | | |
Collapse
|
40
|
Varner VD, Taber LA. Not just inductive: a crucial mechanical role for the endoderm during heart tube assembly. Development 2012; 139:1680-90. [PMID: 22492358 DOI: 10.1242/dev.073486] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The heart is the first functioning organ to form during development. During gastrulation, the cardiac progenitors reside in the lateral plate mesoderm but maintain close contact with the underlying endoderm. In amniotes, these bilateral heart fields are initially organized as a pair of flat epithelia that move towards the embryonic midline and fuse above the anterior intestinal portal (AIP) to form the heart tube. This medial motion is typically attributed to active mesodermal migration over the underlying endoderm. In this model, the role of the endoderm is twofold: to serve as a mechanically passive substrate for the crawling mesoderm and to secrete various growth factors necessary for cardiac specification and differentiation. Here, using computational modeling and experiments on chick embryos, we present evidence supporting an active mechanical role for the endoderm during heart tube assembly. Label-tracking experiments suggest that active endodermal shortening around the AIP accounts for most of the heart field motion towards the midline. Results indicate that this shortening is driven by cytoskeletal contraction, as exposure to the myosin-II inhibitor blebbistatin arrested any shortening and also decreased both tissue stiffness (measured by microindentation) and mechanical tension (measured by cutting experiments). In addition, blebbistatin treatment often resulted in cardia bifida and abnormal foregut morphogenesis. Moreover, finite element simulations of our cutting experiments suggest that the endoderm (not the mesoderm) is the primary contractile tissue layer during this process. Taken together, these results indicate that contraction of the endoderm actively pulls the heart fields towards the embryonic midline, where they fuse to form the heart tube.
Collapse
Affiliation(s)
- Victor D Varner
- Department of Biomedical Engineering, Washington University, St Louis, MO 63130, USA
| | | |
Collapse
|
41
|
Filas BA, Oltean A, Beebe DC, Okamoto RJ, Bayly PV, Taber LA. A potential role for differential contractility in early brain development and evolution. Biomech Model Mechanobiol 2012; 11:1251-62. [PMID: 22466353 DOI: 10.1007/s10237-012-0389-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Accepted: 03/08/2012] [Indexed: 12/11/2022]
Abstract
Differences in brain structure between species have long fascinated evolutionary biologists. Understanding how these differences arise requires knowing how they are generated in the embryo. Growing evidence in the field of evolutionary developmental biology (evo-devo) suggests that morphological differences between species result largely from changes in the spatiotemporal regulation of gene expression during development. Corresponding changes in functional cellular behaviors (morphogenetic mechanisms) are only beginning to be explored, however. Here we show that spatiotemporal patterns of tissue contractility are sufficient to explain differences in morphology of the early embryonic brain between disparate species. We found that enhancing cytoskeletal contraction in the embryonic chick brain with calyculin A alters the distribution of contractile proteins on the apical side of the neuroepithelium and changes relatively round cross-sections of the tubular brain into shapes resembling triangles, diamonds, and narrow slits. These perturbed shapes, as well as overall brain morphology, are remarkably similar to those of corresponding sections normally found in species such as zebrafish and Xenopus laevis (frog). Tissue staining revealed relatively strong concentration of F-actin at vertices of hyper-contracted cross-sections, and a finite element model shows that local contraction in these regions can convert circular sections into the observed shapes. Another model suggests that these variations in contractility depend on the initial geometry of the brain tube, as localized contraction may be needed to open the initially closed lumen in normal zebrafish and Xenopus brains, whereas this contractile machinery is not necessary in chick brains, which are already open when first created. We conclude that interspecies differences in cytoskeletal contraction may play a larger role in generating differences in morphology, and at much earlier developmental stages, in the brain than previously appreciated. This study is a step toward uncovering the underlying morphomechanical mechanisms that regulate how neural phenotypic differences arise between species.
Collapse
Affiliation(s)
- Benjamen A Filas
- Department of Biomedical Engineering, Washington University, One Brookings Drive, Campus Box 1097, Saint Louis, MO 63130-4899, USA
| | | | | | | | | | | |
Collapse
|
42
|
Filas BA, Varner VD, Voronov DA, Taber LA. Tracking morphogenetic tissue deformations in the early chick embryo. J Vis Exp 2011:e3129. [PMID: 22025033 DOI: 10.3791/3129] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Embryonic epithelia undergo complex deformations (e.g. bending, twisting, folding, and stretching) to form the primitive organs of the early embryo. Tracking fiducial markers on the surfaces of these cellular sheets is a well-established method for estimating morphogenetic quantities such as growth, contraction, and shear. However, not all surface labeling techniques are readily adaptable to conventional imaging modalities and possess different advantages and limitations. Here, we describe two labeling methods and illustrate the utility of each technique. In the first method, hundreds of fluorescent labels are applied simultaneously to the embryo using magnetic iron particles. These labels are then used to quantity 2-D tissue deformations during morphogenesis. In the second method, polystyrene microspheres are used as contrast agents in non-invasive optical coherence tomography (OCT) imaging to track 3-D tissue deformations. These techniques have been successfully implemented in our lab to study the physical mechanisms of early head fold, heart, and brain development, and should be adaptable to a wide range morphogenetic processes.
Collapse
|
43
|
Varner VD, Voronov DA, Taber LA. Mechanics of head fold formation: investigating tissue-level forces during early development. Development 2010; 137:3801-11. [PMID: 20929950 DOI: 10.1242/dev.054387] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
During its earliest stages, the avian embryo is approximately planar. Through a complex series of folds, this flat geometry is transformed into the intricate three-dimensional structure of the developing organism. Formation of the head fold (HF) is the first step in this cascading sequence of out-of-plane tissue folds. The HF establishes the anterior extent of the embryo and initiates heart, foregut and brain development. Here, we use a combination of computational modeling and experiments to determine the physical forces that drive HF formation. Using chick embryos cultured ex ovo, we measured: (1) changes in tissue morphology in living embryos using optical coherence tomography (OCT); (2) morphogenetic strains (deformations) through the tracking of tissue labels; and (3) regional tissue stresses using changes in the geometry of circular wounds punched through the blastoderm. To determine the physical mechanisms that generate the HF, we created a three-dimensional computational model of the early embryo, consisting of pseudoelastic plates representing the blastoderm and vitelline membrane. Based on previous experimental findings, we simulated the following morphogenetic mechanisms: (1) convergent extension in the neural plate (NP); (2) cell wedging along the anterior NP border; and (3) autonomous in-plane deformations outside the NP. Our numerical predictions agree relatively well with the observed morphology, as well as with our measured stress and strain distributions. The model also predicts the abnormal tissue geometries produced when development is mechanically perturbed. Taken together, the results suggest that the proposed morphogenetic mechanisms provide the main tissue-level forces that drive HF formation.
Collapse
Affiliation(s)
- Victor D Varner
- Department of Biomedical Engineering, Washington University, St Louis, MO 63130, USA
| | | | | |
Collapse
|
44
|
Xu G, Kemp PS, Hwu JA, Beagley AM, Bayly PV, Taber LA. Opening angles and material properties of the early embryonic chick brain. J Biomech Eng 2010; 132:011005. [PMID: 20524743 DOI: 10.1115/1.4000169] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Mechanical forces play an important role during brain development. In the early embryo, the anterior end of the neural tube enlarges and differentiates into the major brain subdivisions, including three expanding vesicles (forebrain, midbrain, and hindbrain) separated by two constrictions. Once the anterior neuropore and the spinal neurocoel occlude, the brain tube undergoes further regional growth and expansion in response to increasing cerebrospinal fluid pressure. Although this is known to be a response to mechanical loads, the mechanical properties of the developing brain remain largely unknown. In this work, we measured regional opening angles (due to residual stress) and stiffness of the embryonic chick brain during Hamburger-Hamilton stages 11-13 (approximately 42-51 h incubation). Opening angles resulting from a radial cut on transverse brain slices were about 40-110 deg (depending on region and stage) and served as an indicator of circumferential residual stress. In addition, using a custom-made microindentation device and finite-element models, we determined regional indentation stiffness and material properties. The results indicate that the modulus is relatively independent of position and stage of development with the average shear modulus being about 220 Pa for stages 11-13 chick brains. Information on the regional material properties of the early embryonic brain will help illuminate the process of early brain morphogenesis.
Collapse
Affiliation(s)
- Gang Xu
- Department of Biomedical Engineering, Washington University, Saint Louis, MO 63130, USA
| | | | | | | | | | | |
Collapse
|
45
|
Mechanical stress as a regulator of cytoskeletal contractility and nuclear shape in embryonic epithelia. Ann Biomed Eng 2010; 39:443-54. [PMID: 20878237 DOI: 10.1007/s10439-010-0171-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Accepted: 09/17/2010] [Indexed: 10/19/2022]
Abstract
The mechano-sensitive responses of the heart and brain were examined in the chick embryo during Hamburger and Hamilton stages 10-12. During these early stages of development, cells in these structures are organized into epithelia. Isolated hearts and brains were compressed by controlled amounts of surface tension (ST) at the surface of the sample, and microindentation was used to measure tissue stiffness following several hours of culture. The response of both organs was qualitatively similar, as they stiffened under reduced loading. With increased loading, however, the brain softened while heart stiffness was similar to controls. In the brain, changes in nuclear shape and morphology correlated with these responses, as nuclei became more elliptical with decreased loading and rounder with increased loading. Exposure to the myosin inhibitor blebbistatin indicated that these changes in stiffness and nuclear shape are likely caused by altered cytoskeletal contraction. Computational modeling suggests that this behavior tends to return peak tissue stress back toward the levels it has in the intact heart and brain. These results suggest that developing cardiac and neural epithelia respond similarly to changes in applied loads by altering contractility in ways that tend to restore the original mechanical stress state. Hence, this study supports the view that stress-based mechanical feedback plays a role in regulating epithelial development.
Collapse
|
46
|
Sebinger DDR, Unbekandt M, Ganeva VV, Ofenbauer A, Werner C, Davies JA. A novel, low-volume method for organ culture of embryonic kidneys that allows development of cortico-medullary anatomical organization. PLoS One 2010; 5:e10550. [PMID: 20479933 PMCID: PMC2866658 DOI: 10.1371/journal.pone.0010550] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2010] [Accepted: 04/16/2010] [Indexed: 02/05/2023] Open
Abstract
Here, we present a novel method for culturing kidneys in low volumes of medium that offers more organotypic development compared to conventional methods. Organ culture is a powerful technique for studying renal development. It recapitulates many aspects of early development very well, but the established techniques have some disadvantages: in particular, they require relatively large volumes (1–3 mls) of culture medium, which can make high-throughput screens expensive, they require porous (filter) substrates which are difficult to modify chemically, and the organs produced do not achieve good cortico-medullary zonation. Here, we present a technique of growing kidney rudiments in very low volumes of medium–around 85 microliters–using silicone chambers. In this system, kidneys grow directly on glass, grow larger than in conventional culture and develop a clear anatomical cortico-medullary zonation with extended loops of Henle.
Collapse
Affiliation(s)
- David D. R. Sebinger
- Max Bergmann Center of Biomaterials, Leibniz-Institut für Polymerforschung Dresden, Dresden, Germany
| | - Mathieu Unbekandt
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh, Scotland
| | - Veronika V. Ganeva
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh, Scotland
| | - Andreas Ofenbauer
- Max Bergmann Center of Biomaterials, Leibniz-Institut für Polymerforschung Dresden, Dresden, Germany
| | - Carsten Werner
- Max Bergmann Center of Biomaterials, Leibniz-Institut für Polymerforschung Dresden, Dresden, Germany
| | - Jamie A. Davies
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh, Scotland
- * E-mail:
| |
Collapse
|
47
|
Abstract
Many genes and molecules that drive tissue patterning during organogenesis and tissue regeneration have been discovered. Yet, we still lack a full understanding of how these chemical cues induce the formation of living tissues with their unique shapes and material properties. Here, we review work based on the convergence of physics, engineering and biology that suggests that mechanical forces generated by living cells are as crucial as genes and chemical signals for the control of embryological development, morphogenesis and tissue patterning.
Collapse
Affiliation(s)
- Tadanori Mammoto
- Vascular Biology Program, Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
48
|
Taber LA, Voronov DA, Ramasubramanian A. The role of mechanical forces in the torsional component of cardiac looping. Ann N Y Acad Sci 2010; 1188:103-10. [PMID: 20201892 DOI: 10.1111/j.1749-6632.2009.05089.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
During early development, the initially straight heart tube (HT) bends and twists (loops) into a curved tube to lay out the basic plan of the mature heart. The physical mechanisms that drive and regulate looping are not yet completely understood. This paper reviews our recent studies of the mechanics of cardiac torsion during the first phase of looping (c-looping). Experiments and computational modeling show that torsion is primarily caused by forces exerted on the HT by the primitive atria and the splanchnopleure, a membrane that presses against the ventral surface of the heart. Experimental and numerical results are described and integrated to propose a hypothesis for cardiac torsion, and key aspects of our hypothesis are tested using experiments that perturb normal looping. For each perturbation, the models predict the correct qualitative response. These studies provide new insight into the mechanisms that drive and regulate cardiac looping.
Collapse
Affiliation(s)
- Larry A Taber
- Department of Biomedical Engineering, Washington University, St. Louis, Missouri 63130, USA.
| | | | | |
Collapse
|
49
|
Davidson L, von Dassow M, Zhou J. Multi-scale mechanics from molecules to morphogenesis. Int J Biochem Cell Biol 2009; 41:2147-62. [PMID: 19394436 PMCID: PMC2753763 DOI: 10.1016/j.biocel.2009.04.015] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2009] [Revised: 03/31/2009] [Accepted: 04/15/2009] [Indexed: 01/02/2023]
Abstract
Dynamic mechanical processes shape the embryo and organs during development. Little is understood about the basic physics of these processes, what forces are generated, or how tissues resist or guide those forces during morphogenesis. This review offers an outline of some of the basic principles of biomechanics, provides working examples of biomechanical analyses of developing embryos, and reviews the role of structural proteins in establishing and maintaining the mechanical properties of embryonic tissues. Drawing on examples we highlight the importance of investigating mechanics at multiple scales from milliseconds to hours and from individual molecules to whole embryos. Lastly, we pose a series of questions that will need to be addressed if we are to understand the larger integration of molecular and physical mechanical processes during morphogenesis and organogenesis.
Collapse
Affiliation(s)
- Lance Davidson
- Department of Bioengineering, University of Pittsburgh, 3501 Fifth Avenue, 5059-BST3, Pittsburgh, PA, USA.
| | | | | |
Collapse
|
50
|
|