1
|
King AC, Zenker AK. Sex blind: bridging the gap between drug exposure and sex-related gene expression in Danio rerio using next-generation sequencing (NGS) data and a literature review to find the missing links in pharmaceutical and environmental toxicology studies. FRONTIERS IN TOXICOLOGY 2023; 5:1187302. [PMID: 37398910 PMCID: PMC10312089 DOI: 10.3389/ftox.2023.1187302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 06/01/2023] [Indexed: 07/04/2023] Open
Abstract
The sex of both humans and Danio rerio has previously been shown to affect the way individuals respond to drug exposure. Genes which allow identification of sex in juvenile zebrafish show potential to reveal these confounding variables between sex in toxicological and preclinical trials but the link between these is so far missing. These sex-specific, early expressed genes where expression is not altered by drug exposure must be carefully selected for this purpose. We aimed to discover genes which can be used in pharmaceutical trials and environmental toxicology studies to uncover sex-related variations in gene expression with drug application using the model organism Danio rerio. Previously published early sex determining genes from King et al. were evaluated as well as additional genes selected from our zebrafish Next-generation sequencing (NGS) data which are known from previously published works not to be susceptible to changes in expression with drug exposure. NGS revealed a further ten female-specific genes (vtg1, cyp17a1, cyp19a1a, igf3, ftz-f1, gdf9, foxl2a, Nr0b1, ipo4, lhcgr) and five male related candidate genes (FKBP5, apobb1, hbaa1, dmrt1, spata6) which are also expressed in juvenile zebrafish, 28 days post fertilisation (dpf). Following this, a literature review was performed to classify which of these early-expressed sex specific genes are already known to be affected by drug exposure in order to determine candidate genes to be used in pharmaceutical trials or environmental toxicology testing studies. Discovery of these early sex-determining genes in Danio rerio will allow identification of sex-related responses to drug testing to improve sex-specific healthcare and the medical treatment of human patients.
Collapse
Affiliation(s)
| | - Armin K. Zenker
- University of Applied Sciences and Arts North-Western Switzerland (FHNW), Muttenz, Switzerland
| |
Collapse
|
2
|
Wang J, Bai Y, Xie A, Huang H, Hu M, Peng J. Difference in an intermolecular disulfide-bond between two highly homologous serum proteins Leg1a and Leg1b implicates their functional differentiation. Biochem Biophys Res Commun 2021; 579:81-88. [PMID: 34592574 DOI: 10.1016/j.bbrc.2021.09.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/15/2021] [Accepted: 09/20/2021] [Indexed: 11/13/2022]
Abstract
Zebrafish Liver-enriched gene 1a (Leg1a) and Leg1b are liver-produced serum proteins encoded by two adjacently linked homologous genes leg1a and leg1b, respectively. We previously showed that maternal-zygotic (MZ) leg1a null mutant developed a small liver at 3.5 days post-fertilization (dpf) during winter-time or under UV-treatment and displayed an abnormal stature at its adulthood. It is puzzling why Leg1b, which shares 89.3% identity with Leg1a and co-expressed with Leg1a, cannot fully compensate for the loss-of-function of Leg1a in the leg1azju1 MZ mutant. Here we report that Leg1a and Leg1b share eight cysteine residues but differ in amino acid residue 358, which is a serine in Leg1a but cysteine (C358) in Leg1b. We find that Leg1b forms an intermolecular disulfide bond through C358. Mutating C358 to Methionine (M358) does not affect Leg1b secretion whereas mutating other conserved cysteine residues do. We propose that the intermolecular disulfide bond in Leg1b might establish a rigid structure that makes it functionally different from Leg1a under certain oxidative conditions.
Collapse
Affiliation(s)
- Jinyang Wang
- MOE Key Laboratory for Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yun Bai
- MOE Key Laboratory for Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Aixuan Xie
- MOE Key Laboratory for Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Heping Huang
- MOE Key Laboratory for Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Minjie Hu
- MOE Key Laboratory for Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Jinrong Peng
- MOE Key Laboratory for Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
3
|
King AC, Gut M, Zenker AK. Shedding new light on early sex determination in zebrafish. Arch Toxicol 2020; 94:4143-4158. [PMID: 32975586 PMCID: PMC7655572 DOI: 10.1007/s00204-020-02915-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 09/17/2020] [Indexed: 01/10/2023]
Abstract
In contrast to established zebrafish gene annotations, the question of sex determination has still not been conclusively clarified for developing zebrafish, Danio rerio, larvae, 28 dpf or earlier. Recent studies indicate polygenic sex determination (PSD), with the genes being distributed throughout the genome. Early genetic markers of sex in zebrafish help unravel co-founding sex-related differences to apply to human health and environmental toxicity studies. A qPCR-based method was developed for six genes: cytochrome P450, family 17, subfamily A, polypeptide 1 (cyp17a1); cytochrome P450, family 19, subfamily A, polypeptide 1a (cyp19a1a); cytochrome P450, family 19, subfamily A, polypeptides 1b (cyp19a1b); vitellogenin 1 (vtg1); nuclear receptor subfamily 0, group B, member 1 (nr0b1), sry (sex-determining region Y)-box 9b (sox9b) and actin, beta 1 (actb1), the reference gene. Sry-box 9a (Sox9a), insulin-like growth factor 3 (igf3) and double sex and mab-3 related transcription factor 1 (dmrt1), which are also known to be associated with sex determination, were used in gene expression tests. Additionally, Next-Generation-Sequencing (NGS) sequenced the genome of two adult female and male and two juveniles. PCR analysis of adult zebrafish revealed sex-specific expression of cyp17a1, cyp19a1a, vtg1, igf3 and dmrt1, the first four strongly expressed in female zebrafish and the last one highly expressed in male conspecifics. From NGS, nine female and four male-fated genes were selected as novel for assessing zebrafish sex, 28 dpf. Differences in transcriptomes allowed allocation of sex-specific genes also expressed in juvenile zebrafish.
Collapse
Affiliation(s)
- Alex C King
- FHNW, University of Applied Sciences and Arts North-Western Switzerland, School of Life Sciences, Institute for Ecopreneurship, Hofackerstrasse 30, 4132, Muttenz, Switzerland
| | - Michelle Gut
- FHNW, University of Applied Sciences and Arts North-Western Switzerland, School of Life Sciences, Institute for Ecopreneurship, Hofackerstrasse 30, 4132, Muttenz, Switzerland
| | - Armin K Zenker
- FHNW, University of Applied Sciences and Arts North-Western Switzerland, School of Life Sciences, Institute for Ecopreneurship, Hofackerstrasse 30, 4132, Muttenz, Switzerland.
| |
Collapse
|
4
|
Huang W, Chen F, Ma Q, Xin J, Li J, Chen J, Zhou B, Chen M, Li J, Peng J. Ribosome biogenesis gene DEF/UTP25 is essential for liver homeostasis and regeneration. SCIENCE CHINA-LIFE SCIENCES 2020; 63:1651-1664. [PMID: 32303961 DOI: 10.1007/s11427-019-1635-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 01/17/2020] [Indexed: 12/19/2022]
Abstract
Hepatocytes are responsible for diverse metabolic activities in a liver. Proper ribosome biogenesis is essential to sustain the function of hepatocytes. There are approximately 200 factors involved in ribosome biogenesis; however, few studies have focused on the role of these factors in maintaining liver homeostasis. The digestive organ expansion factor (def) gene encodes a nucleolar protein Def that participates in ribosome biogenesis. In addition, Def forms a complex with cysteine protease Calpain3 (Capn3) and recruits Capn3 to the nucleolus to cleave protein targets. However, the function of Def has not been characterized in the mammalian digestive organs. In this report, we show that conditional knockout of the mouse def gene in hepatocytes causes cell morphology abnormality and constant infiltration of inflammatory cells in the liver. As age increases, the def conditional knockout liver displays multiple tissue damage foci and biliary hyperplasia. Moreover, partial hepatectomy leads to sudden acute death to the def conditional knockout mice and this phenotype is rescued by intragastric injection of the anti-inflammation drug dexamethasone one day before hepatectomy. Our results demonstrate that Def is essential for maintaining the liver homeostasis and liver regeneration capacity in mammals.
Collapse
Affiliation(s)
- Weidong Huang
- MOE Key Laboratory of Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Feng Chen
- MOE Key Laboratory of Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Quanxin Ma
- Academy of Chinese Medicine/Institute of Comparative Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Jiaojiao Xin
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Jiaqi Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Jun Chen
- College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Bin Zhou
- The State Key Laboratory of Cell Biology, CAS Center for Excellence on Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Minli Chen
- Academy of Chinese Medicine/Institute of Comparative Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Jun Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China.
| | - Jinrong Peng
- MOE Key Laboratory of Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
5
|
Wang X, Xu G, Yang N, Yan Y, Wu G, Sun C. Differential proteomic analysis revealed crucial egg white proteins for hatchability of chickens. Poult Sci 2019; 98:7076-7089. [PMID: 31424521 PMCID: PMC8913984 DOI: 10.3382/ps/pez459] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 07/26/2019] [Indexed: 11/20/2022] Open
Abstract
For healthy development, an avian embryo needs the nutritional and functional molecules maternally deposited in avian eggs. Egg white not only provides nutritional components but also exhibits functional properties, such as defenses against microbial invasion. However, the roles of the more detailed messages in embryo development remain unclear. In this study, a tandem mass tag labeling quantitation approach was used to innovatively identify the differential proteins in the egg whites of fresh eggs produced by hens with divergent high/low hatchability and in the egg whites of embryonated eggs with healthy and dead embryos. A total of 378 proteins were quantified in egg white, which is the most complete proteome identified for egg white to date, and up to 102 differential proteins were identified. GO enrichment, pathway, and hierarchical clustering analysis revealed some of the differential proteins that are the main participants in several biological processes, including blood coagulation, intermediate filament, antibacterial activity, and neurodevelopment. A list of 11 putative protein biomarkers, such as keratin (KRT19, KRT12, KRT15, and KRT6A), which is involved in cell architecture, and fibrinogen (fibrinogen alpha chain, fibrinogen beta chain, and fibrinogen gamma chain), which is related to blood coagulation, were ultimately screened. The current study screened egg white proteins that can predict low hatchability and embryonic death and deciphered the role of these proteins in embryonic development, which is meaningful for the comprehensive understanding of embryonic growth.
Collapse
Affiliation(s)
- Xiqiong Wang
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Guiyun Xu
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Ning Yang
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yiyuan Yan
- Beijing Engineering Research Center of Layer, Beijing 101206, China
| | - Guiqin Wu
- Beijing Engineering Research Center of Layer, Beijing 101206, China
| | - Congjiao Sun
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
6
|
Laing L, Viana J, Dempster E, Uren Webster T, van Aerle R, Mill J, Santos E. Sex-specific transcription and DNA methylation profiles of reproductive and epigenetic associated genes in the gonads and livers of breeding zebrafish. Comp Biochem Physiol A Mol Integr Physiol 2018; 222:16-25. [DOI: 10.1016/j.cbpa.2018.04.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 04/09/2018] [Accepted: 04/10/2018] [Indexed: 12/19/2022]
|
7
|
Guan Y, Huang D, Chen F, Gao C, Tao T, Shi H, Zhao S, Liao Z, Lo LJ, Wang Y, Chen J, Peng J. Phosphorylation of Def Regulates Nucleolar p53 Turnover and Cell Cycle Progression through Def Recruitment of Calpain3. PLoS Biol 2016; 14:e1002555. [PMID: 27657329 PMCID: PMC5033581 DOI: 10.1371/journal.pbio.1002555] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 08/19/2016] [Indexed: 01/15/2023] Open
Abstract
Digestive organ expansion factor (Def) is a nucleolar protein that plays dual functions: it serves as a component of the ribosomal small subunit processome for the biogenesis of ribosomes and also mediates p53 degradation through the cysteine proteinase calpain-3 (CAPN3). However, nothing is known about the exact relationship between Def and CAPN3 or the regulation of the Def function. In this report, we show that CAPN3 degrades p53 and its mutant proteins p53A138V, p53M237I, p53R248W, and p53R273P but not the p53R175H mutant protein. Importantly, we show that Def directly interacts with CAPN3 in the nucleoli and determines the nucleolar localisation of CAPN3, which is a prerequisite for the degradation of p53 in the nucleolus. Furthermore, we find that Def is modified by phosphorylation at five serine residues: S50, S58, S62, S87, and S92. We further show that simultaneous phosphorylations at S87 and S92 facilitate the nucleolar localisation of Capn3 that is not only essential for the degradation of p53 but is also important for regulating cell cycle progression. Hence, we propose that the Def-CAPN3 pathway serves as a nucleolar checkpoint for cell proliferation by selective inactivation of cell cycle-related substrates during organogenesis.
Collapse
Affiliation(s)
- Yihong Guan
- MOE Key Laboratory for Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Delai Huang
- MOE Key Laboratory for Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Feng Chen
- MOE Key Laboratory for Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Ce Gao
- MOE Key Laboratory for Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Ting Tao
- MOE Key Laboratory for Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Hui Shi
- MOE Key Laboratory for Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Shuyi Zhao
- MOE Key Laboratory for Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Zuyuan Liao
- MOE Key Laboratory for Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Li Jan Lo
- MOE Key Laboratory for Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Yingchun Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, China
| | - Jun Chen
- College of Life Sciences, Zhejiang University, Hangzhou, China
- * E-mail: (JC); (JRP)
| | - Jinrong Peng
- MOE Key Laboratory for Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, China
- * E-mail: (JC); (JRP)
| |
Collapse
|
8
|
Luzio A, Matos M, Santos D, Fontaínhas-Fernandes AA, Monteiro SM, Coimbra AM. Disruption of apoptosis pathways involved in zebrafish gonad differentiation by 17α-ethinylestradiol and fadrozole exposures. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 177:269-284. [PMID: 27337697 DOI: 10.1016/j.aquatox.2016.05.029] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 05/24/2016] [Accepted: 05/31/2016] [Indexed: 06/06/2023]
Abstract
Zebrafish (Danio rerio) sex determination seems to involve genetic factors (GSD) but also environmental factors (ESD), such as endocrine disrupting chemicals (EDCs) that are known to mimic endogenous hormones and disrupt gonad differentiation. Apoptosis has also been proposed to play a crucial role in zebrafish gonad differentiation. Nevertheless, the interactions between EDCs and apoptosis have received little attention. Thus, this study aimed to assess if and which apoptotic pathways are involved in zebrafish gonad differentiation and how EDCs may interfere with this process. With these purposes, zebrafish were exposed to 17α-ethinylestradiol (EE2, 4ng/L) and fadrozole (Fad, 50μg/L) from 2h to 35days post-fertilization (dpf). Afterwards, a gene expression analysis by qRT-PCR and a stereological analysis, based on systematic sampling and protein immunohistochemistry, were performed. The death receptors (FAS; TRADD), anti-apoptotic (BCL-2; MDM2), pro-apoptotic (CASP-2 and -6) and cell proliferation (BIRC5/survivin; JUN) genes and proteins were evaluated. In general, apoptosis was inhibited in females through the involvement of anti-apoptotic pathways, while in males apoptosis seemed to be crucial to the failure of the "juvenile ovary" development and the induction of testes transformation. The JUN protein was shown to be necessary in juvenile ovaries, while the BIRC5 protein seemed to be involved in zebrafish spermatogenesis. Both EDCs, EE2 and Fad, increased the apoptosis stimulus in zebrafish gonad. It was noticed that the few females that were resistant to Fad-induced sex reversal had increased anti-apoptotic factor levels, while males exposed to EE2 showed increased pro-apoptotic genes/proteins and were more advanced in gonad differentiation. Overall, our findings show that apoptosis pathways are involved in zebrafish gonad differentiation and that EDCs can disrupt this process.
Collapse
Affiliation(s)
- Ana Luzio
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, CITAB, Departamento de Biologia e Ambiente (DeBA), University of Trás-os-Montes and Alto Douro, UTAD, Quinta de Prados, Vila Real, 5000-801, Portugal; Life Sciences and Environment School, University of Trás-os-Montes and Alto Douro, UTAD, Quinta de Prados, Vila Real, 5000-801, Portugal.
| | - Manuela Matos
- University of Lisbon, Faculty of Sciences, BioISI- Biosystems & Integrative Sciences Institute, Campo Grande, 1749-016 Lisbon, Portugal; Department of Genetics and Biotechnology, Life Sciences and Environment School (ECVA), University of Trás-os-Montes and Alto Douro, UTAD, Quinta de Prados, Vila Real, 5000-801, Portugal
| | - Dércia Santos
- Life Sciences and Environment School, University of Trás-os-Montes and Alto Douro, UTAD, Quinta de Prados, Vila Real, 5000-801, Portugal
| | - António A Fontaínhas-Fernandes
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, CITAB, Departamento de Biologia e Ambiente (DeBA), University of Trás-os-Montes and Alto Douro, UTAD, Quinta de Prados, Vila Real, 5000-801, Portugal; Life Sciences and Environment School, University of Trás-os-Montes and Alto Douro, UTAD, Quinta de Prados, Vila Real, 5000-801, Portugal
| | - Sandra M Monteiro
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, CITAB, Departamento de Biologia e Ambiente (DeBA), University of Trás-os-Montes and Alto Douro, UTAD, Quinta de Prados, Vila Real, 5000-801, Portugal; Life Sciences and Environment School, University of Trás-os-Montes and Alto Douro, UTAD, Quinta de Prados, Vila Real, 5000-801, Portugal
| | - Ana M Coimbra
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, CITAB, Departamento de Biologia e Ambiente (DeBA), University of Trás-os-Montes and Alto Douro, UTAD, Quinta de Prados, Vila Real, 5000-801, Portugal; Life Sciences and Environment School, University of Trás-os-Montes and Alto Douro, UTAD, Quinta de Prados, Vila Real, 5000-801, Portugal.
| |
Collapse
|
9
|
Pathirana A, Diao M, Huang S, Zuo L, Liang Y. Alpha 2 macroglobulin is a maternally-derived immune factor in amphioxus embryos: New evidence for defense roles of maternal immune components in invertebrate chordate. FISH & SHELLFISH IMMUNOLOGY 2016; 50:21-26. [PMID: 26796816 DOI: 10.1016/j.fsi.2015.10.040] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2015] [Revised: 10/26/2015] [Accepted: 10/27/2015] [Indexed: 06/05/2023]
Abstract
In fish, a series of maternal derived immune components have been identified in their eggs or embryos at very early stages, which are proposed to provide protections to themselves against pathogenic attacks from hostile environment. The phenomenon of maternal immunity has been also recorded in several invertebrate species, however, so far, very limited information about the maternal immune molecules are available. In this study, it was demonstrated maternal alpha2 macroglobulin (A2m) protein, an important innate immune factor, exists in the fertilized eggs of amphioxus Branchiostoma japonicum, an invertebrate chordate. Maternal mRNA of A2m was also detected in amphioxus embryos at very early developing stages. In addition, it was recorded that the egg lysate prepared from the newly fertilized eggs can inhibit the growth of both Gram-negative bacterium Escherichia coli and Gram-positive bacterium Staphylococcus aureus in a concentration dependent manner. The bacteriostatic activity can be reduced notably after precipitated A2m with anti-A2m antibody. Thus maternal A2m is partly attributed to the bacteriostatic activity. It was further demonstrated that recombinant A2m can bind to E. coli cells directly. All these points come to a result that A2m is a maternal immune factor existing in eggs of invertebrate chordate, which may be involved in defense their embryos against harmful microbes' attacks.
Collapse
Affiliation(s)
- Anjalika Pathirana
- College of Marine Life Science and Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, PR China
| | - Mingyue Diao
- College of Marine Life Science and Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, PR China
| | - Shibo Huang
- College of Marine Life Science and Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, PR China
| | - Lingling Zuo
- College of Marine Life Science and Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, PR China
| | - Yujun Liang
- College of Marine Life Science and Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, PR China.
| |
Collapse
|
10
|
Feng G, Long Y, Peng J, Li Q, Cui Z. Transcriptomic characterization of the dorsal lobes after hepatectomy of the ventral lobe in zebrafish. BMC Genomics 2015; 16:979. [PMID: 26584608 PMCID: PMC4653908 DOI: 10.1186/s12864-015-2145-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 10/26/2015] [Indexed: 02/08/2023] Open
Abstract
Background The liver possesses an ability of compensatory growth after removing three of five lobes in mammals or one of three lobes in zebrafish. The reenter of hepatocytes into the cell cycle is one of the hallmarks for the initiation of liver compensatory growth, but cellular and molecular mechanisms underlying the activation of hepatocytes remain largely unknown. Results To better understand the process, transcriptional profiles of the remaining liver dorsal lobes in female zebrafish were generated with RNA-seq. About 44 million raw reads were obtained from three sequencing libraries and 71 % of raw reads were mapped to the reference genome of zebrafish. A total number of 5652 genes were differentially expressed in at least one of two time points during the compensatory growth of liver dorsal lobes and classified into different functional categories. A number of genes encoding angiogenesis-related growth factors/ligands and apoptosis-associated cytokines were strongly expressed at 6-h time point after the removal of the ventral lobe. Gene ontology enrichment analysis of genes up-regulated during early stages of liver compensatory growth revealed that small GTPase-mediated signal transduction, RNA processing and intracellular protein transport were the most highly overrepresented biological processes and SNARE interactions in vesicular transport, proteasome and basal transcription factors were the most highly enriched pathways. Moreover, 477 genes differently expressed during liver compensatory growth of both female zebrafish and mice were involved in the response to stimulus, DNA replication, metabolic processes of fatty acid, lipid and steroid, multicellular organismal homeostasis and extracellular matrix constituent secretion. Conclusions Multiple biological processes and signaling pathways are immediately activated in remaining dorsal lobes of female zebrafish right after removal of the ventral lobe and these findings provide crucial clues for further identification of cis-elements and trans-factors that are extensively involved in the initiation of liver compensatory growth. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-2145-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Guohui Feng
- The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, Hubei, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Yong Long
- The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, Hubei, China.
| | - Jinrong Peng
- Zhejiang University, Hangzhou, 310058, Zhejiang, China.
| | - Qing Li
- The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, Hubei, China.
| | - Zongbin Cui
- The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, Hubei, China.
| |
Collapse
|
11
|
Luzio A, Coimbra AM, Benito C, Fontaínhas-Fernandes AA, Matos M. Screening and identification of potential sex-associated sequences in Danio rerio. Mol Reprod Dev 2015; 82:756-64. [PMID: 26013562 DOI: 10.1002/mrd.22508] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 05/18/2015] [Indexed: 02/02/2023]
Abstract
Current knowledge on zebrafish (Danio rerio) suggests that sex determination has a polygenic genetic basis in this species, although environmental factors may also be involved. This study aimed to identify sex-associated genomic regions using two different marker systems: inter-simple sequence repeats (ISSRs) and random-amplified polymorphic DNA (RAPDs). Two bulks were constructed: one with DNA from zebrafish females and the other from males; then, a total of 100 ISSR and 280 RAPD primers were tested. Three DNA fragments presenting sexual dimorphism (female-linked: OPA17436 and OPQ191027 ; male-linked: OPQ19951 ) were determined from sequential analysis of the bulks followed by assessment in individuals. These fragments were cloned and convert into the following sequenced characterized amplified regions (SCAR): DrSM_F1, DrSM_F2, and DrSM_M, which share identities with sequences located in chromosomes 2, 3, and 11 (Zv9), respectively. Using these potential markers in zebrafish samples it was possible to correctly identify 80% of the males (DrSM_M) and 100% of the females (DrSM_F1 + DrSM_F2) in the analyzed population.
Collapse
Affiliation(s)
- Ana Luzio
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, CITAB, University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| | - Ana M Coimbra
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, CITAB, University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| | - César Benito
- Departamento de Genética, Facultad de Biologia, Universidad Complutense, Madrid, Spain
| | - António A Fontaínhas-Fernandes
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, CITAB, University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| | - Manuela Matos
- Departamento de Genética e Biotecnologia (DGB), Escola de Ciências da Vida e do Ambiente (ECVA), Universidade de Trás-os-Montes e Alto Douro (UTAD), Vila Real, Portugal
| |
Collapse
|
12
|
Manor ML, Cleveland BM, Kenney PB, Yao J, Leeds T. Differences in growth, fillet quality, and fatty acid metabolism-related gene expression between juvenile male and female rainbow trout. FISH PHYSIOLOGY AND BIOCHEMISTRY 2015; 41:533-47. [PMID: 25673423 DOI: 10.1007/s10695-015-0027-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 02/02/2015] [Indexed: 05/09/2023]
Abstract
Sexual maturation occurs at the expense of stored energy and nutrients, including lipids; however, little is known regarding sex effects on nutrient regulatory mechanisms in rainbow trout prior to maturity. Thirty-two, 14-month-old, male and female rainbow trout were sampled for growth, carcass yield, fillet composition, and gene expression of liver, white muscle, and visceral adipose tissue. Growth parameters, including gonadosomatic index, were not affected by sex. Females had higher percent separable muscle yield, but there were no sex effects on fillet proximate composition. Fillet shear force indicated females produce firmer fillets than males. Male livers had greater expression of three cofactors within the mTOR signaling pathway that act to inhibit TORC1 assembly; mo25, rictor, and pras40. Male liver also exhibited increased expression of β-oxidation genes cpt1b and ehhadh. These findings are indicative of increased mitochondrial β-oxidation in male liver. Females exhibited increased expression of the mTOR cofactor raptor in white muscle and had higher expression levels of several genes within the fatty acid synthesis pathway, including gpat, srebp1, scd1, and cd36. Female muscle also had increased expression of β-oxidation genes cpt1d and cpt2. Increased expression of both fatty acid synthesis and β-oxidation genes suggests female muscle may have greater fatty acid turnover. Differences between sexes were primarily associated with variation of gene expression within the mTOR signaling pathway. Overall, data suggest there is differential regulation of gene expression in male and female rainbow trout tissues prior to the onset of sexual maturity that may lead to nutrient repartitioning during maturation.
Collapse
Affiliation(s)
- Meghan L Manor
- Division of Animal and Nutritional Sciences, Davis College of Agriculture, Forestry, and Consumer Sciences, West Virginia University, 1042 Agricultural Sciences Building, PO Box 6108, Morgantown, WV, 26505-6108, USA,
| | | | | | | | | |
Collapse
|
13
|
Ingleby FC, Flis I, Morrow EH. Sex-biased gene expression and sexual conflict throughout development. Cold Spring Harb Perspect Biol 2014; 7:a017632. [PMID: 25376837 DOI: 10.1101/cshperspect.a017632] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Sex-biased gene expression is likely to account for most sexually dimorphic traits because males and females share much of their genome. When fitness optima differ between sexes for a shared trait, sexual dimorphism can allow each sex to express their optimum trait phenotype, and in this way, the evolution of sex-biased gene expression is one mechanism that could help to resolve intralocus sexual conflict. Genome-wide patterns of sex-biased gene expression have been identified in a number of studies, which we review here. However, very little is known about how sex-biased gene expression relates to sex-specific fitness and about how sex-biased gene expression and conflict vary throughout development or across different genotypes, populations, and environments. We discuss the importance of these neglected areas of research and use data from a small-scale experiment on sex-specific expression of genes throughout development to highlight potentially interesting avenues for future research.
Collapse
Affiliation(s)
- Fiona C Ingleby
- Evolution, Behaviour and Environment Group, School of Life Sciences, University of Sussex, John Maynard Smith Building, Falmer, Brighton BN1 9QG, United Kingdom
| | - Ilona Flis
- Evolution, Behaviour and Environment Group, School of Life Sciences, University of Sussex, John Maynard Smith Building, Falmer, Brighton BN1 9QG, United Kingdom
| | - Edward H Morrow
- Evolution, Behaviour and Environment Group, School of Life Sciences, University of Sussex, John Maynard Smith Building, Falmer, Brighton BN1 9QG, United Kingdom
| |
Collapse
|
14
|
Sarropoulou E, Moghadam HK, Papandroulakis N, De la Gándara F, Ortega Garcia A, Makridis P. The Atlantic Bonito (Sarda sarda, Bloch 1793) transcriptome and detection of differential expression during larvae development. PLoS One 2014; 9:e87744. [PMID: 24503907 PMCID: PMC3913633 DOI: 10.1371/journal.pone.0087744] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Accepted: 12/28/2013] [Indexed: 01/06/2023] Open
Abstract
The Atlantic bonito (Sarda sarda, Bloch 1793) belongs to the important marine fish species with a wide geographical distribution covering the Atlantic Ocean, the Mediterranean and its bordering seas. Aquaculture practices for this species are still in their infancies and scientific studies are seldom undertaken, mainly because of difficulties in sampling. Thus for small tuna species like the Atlantic bonito only little is known about its biology and regarding the molecular background even less information is available. In the production of marine fish it is known that the most critical period is the larval stages, as high growth rates as well as significant developmental changes take place. In this study we have investigated the transcriptome of the Atlantic bonito of five larvae stages applying Illumina sequencing technology. For non-model species like aquaculture species, transcriptome analysis of RNA samples from individuals using Illumina sequencing technology is technically efficient and cost effective. In the present study a total number of 169,326,711 paired-end reads with a read length of 100 base pairs were generated resulting in a reference transcriptome of 68,220 contigs with an average length of 2054 base pairs. For differential expression analyses single end reads were obtained from different developmental stages and mapped to the constructed reference transcriptome. Differential expression analyses revealed in total 18,657 differentially expressed transcripts and were assigned to five distinguished groups. Each of the five clusters shows stage specific gene expression. We present for the first time in the Atlantic bonito an extensive RNA-Seq based characterization of its transcriptome as well as significant information on differential expression among five developmental larvae stages. The generated transcripts, including SNP and microsatellite information for candidate molecular markers and gene expression information will be a valuable resource for future genetic and molecular studies.
Collapse
Affiliation(s)
- Elena Sarropoulou
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, Heraklion, Greece
- * E-mail:
| | - Hooman K. Moghadam
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, Heraklion, Greece
| | - Nikos Papandroulakis
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, Heraklion, Greece
| | - Fernando De la Gándara
- Instituto Español de Oceanografia (IEO), Centro Oceanografico de Murcia, Carretera de La Azohia, Puerto de Mazarron, Spain
| | - Aurelio Ortega Garcia
- Instituto Español de Oceanografia (IEO), Centro Oceanografico de Murcia, Carretera de La Azohia, Puerto de Mazarron, Spain
| | - Pavlos Makridis
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, Heraklion, Greece
| |
Collapse
|
15
|
Groh KJ, Schönenberger R, Eggen RIL, Segner H, Suter MJF. Analysis of protein expression in zebrafish during gonad differentiation by targeted proteomics. Gen Comp Endocrinol 2013; 193:210-20. [PMID: 23968773 DOI: 10.1016/j.ygcen.2013.07.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2013] [Revised: 06/07/2013] [Accepted: 07/30/2013] [Indexed: 10/26/2022]
Abstract
The molecular mechanisms governing sex determination and differentiation in the zebrafish (Danio rerio) are not fully understood. To gain more insights into the function of specific genes in these complex processes, the expression of multiple candidates needs to be assessed, preferably on the protein level. Here, we developed a targeted proteomics method based on selected reaction monitoring (SRM) to study the candidate sex-related proteins in zebrafish which were selected based on a global proteomics analysis of adult gonads and representational difference analysis of male and female DNA, as well as on published information on zebrafish and other vertebrates. We employed the developed SRM protocols to acquire time-resolved protein expression profiles during the gonad differentiation period in vas::EGFP transgenic zebrafish. Evidence on protein expression was obtained for the first time for several candidate genes previously studied only on the mRNA level or suggested by bioinformatic predictions. Tuba1b (tubulin alpha 1b), initially included in the study as one of the potential housekeeping proteins, was found to be preferentially expressed in the adult testis with nearly absent expression in the ovary. The revealed changes in protein expression patterns associated with gonad differentiation suggest that several of the examined proteins, especially Ilf2 and Ilf3 (interleukin enhancer-binding factors 2 and 3), Raldh3 (retinaldehyde dehydrogenase type 3), Zgc:195027 (low density lipoprotein-related receptor protein 3) and Sept5a (septin 5a), may play a specific role in the sexual differentiation in zebrafish.
Collapse
Affiliation(s)
- Ksenia J Groh
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland.
| | | | | | | | | |
Collapse
|
16
|
Abstract
In this review, we provide a detailed overview of studies on the elusive sex determination (SD) and gonad differentiation mechanisms of zebrafish (Danio rerio). We show that the data obtained from most studies are compatible with polygenic sex determination (PSD), where the decision is made by the allelic combinations of several loci. These loci are typically dispersed throughout the genome, but in some teleost species a few of them might be located on a preferential pair of (sex) chromosomes. The PSD system has a much higher level of variation of SD genotypes both at the level of gametes and the sexual genotype of individuals, than that of the chromosomal sex determination systems. The early sexual development of zebrafish males is a complicated process, as they first develop a ‘juvenile ovary’, that later undergoes a transformation to give way to a testis. To date, three major developmental pathways were shown to be involved with gonad differentiation through the modulation of programmed cell death. In our opinion, there are more pathways participating in the regulation of zebrafish gonad differentiation/transformation. Introduction of additional powerful large-scale genomic approaches into the analysis of zebrafish reproduction will result in further deepening of our knowledge as well as identification of additional pathways and genes associated with these processes in the near future.
Collapse
Affiliation(s)
- Woei Chang Liew
- Reproductive Genomics Group, Temasek Life Sciences Laboratory, Singapore.
| | | |
Collapse
|
17
|
|
18
|
Fernández CG, Roufidou C, Antonopoulou E, Sarropoulou E. Expression of developmental-stage-specific genes in the gilthead sea bream Sparus aurata L. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2013; 15:313-320. [PMID: 23053055 DOI: 10.1007/s10126-012-9486-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Accepted: 09/11/2012] [Indexed: 06/01/2023]
Abstract
The mechanism of early fish development as well as the control of egg quality is of great importance for the ability of the oocyte to develop after fertilization. Embryonic development is initially regulated by maternally provided mRNAs and later by the zygotic genome. Maternal mRNAs have an important role in initiating processes crucial to patterning the developing fish embryo. Furthermore, it has been shown that maternal RNA plays an important role in egg quality. The identification and characterization of candidate maternal genes in non-model fish species with important aquaculture interest like the gilthead sea bream Sparus aurata L. is of importance for future studies related to egg quality. The broodstock of the gilthead sea bream produces large quantities of eggs with a high and non-controllable quality variation. In the present study, we have studied the gene expression of 16 genes (gapdh 1 and 2, cathepsin D, L, S and Z, erk1, jnk1, p38 alpha and p38 delta, ppar alpha, beta and gamma, tubulin beta, ferritin M, cyclinA2) of different functional categories in seven developmental stages. The 16 genes were chosen based on their putative involvement in egg quality and regulation of early development. In total, 11 showed a characteristic gene expression pattern pinpointing to the possible function as maternal genes and thus may function as molecular biomarker for egg quality.
Collapse
Affiliation(s)
- Carmen García Fernández
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, P.O. Box 2214, 71003, Heraklion, Crete, Greece
| | | | | | | |
Collapse
|
19
|
Tao W, Yuan J, Zhou L, Sun L, Sun Y, Yang S, Li M, Zeng S, Huang B, Wang D. Characterization of gonadal transcriptomes from Nile tilapia (Oreochromis niloticus) reveals differentially expressed genes. PLoS One 2013; 8:e63604. [PMID: 23658843 PMCID: PMC3643912 DOI: 10.1371/journal.pone.0063604] [Citation(s) in RCA: 148] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Accepted: 04/06/2013] [Indexed: 12/12/2022] Open
Abstract
Four pairs of XX and XY gonads from Nile tilapia were sequenced at four developmental stages, 5, 30, 90, and 180 days after hatching (dah) using Illumina Hiseq(TM) technology. This produced 28 Gb sequences, which were mapped to 21,334 genes. Of these, 259 genes were found to be specifically expressed in XY gonads, and 69 were found to be specific to XX gonads. Totally, 187 XX- and 1,358 XY-enhanced genes were identified, and 2,978 genes were found to be co-expressed in XX and XY gonads. Almost all steroidogenic enzymes, including cyp19a1a, were up-regulated in XX gonads at 5 dah; but in XY gonads these enzymes, including cyp11b2, were significantly up-regulated at 90 dah, indicating that, at a time critical to sex determination, the XX fish produced estrogen and the XY fish did not produce androgens. The most pronounced expression of steroidogenic enzyme genes was observed at 30 and 90 dah for XX and XY gonads, corresponding to the initiation of germ cell meiosis in the female and male gonads, respectively. Both estrogen and androgen receptors were found to be expressed in XX gonads, but only estrogen receptors were expressed in XY gonads at 5 dah. This could explain why exogenous steroid treatment induced XX and XY sex reversal. The XX-enhanced expression of cyp19a1a and cyp19a1b at all stages suggests an important role for estrogen in female sex determination and maintenance of phenotypic sex. This work is the largest collection of gonadal transcriptome data in tilapia and lays the foundation for future studies into the molecular mechanisms of sex determination and maintenance of phenotypic sex in non-model teleosts.
Collapse
Affiliation(s)
- Wenjing Tao
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Science, Southwest University, Chongqing, P.R. China
| | - Jing Yuan
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Science, Southwest University, Chongqing, P.R. China
| | - Linyan Zhou
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Science, Southwest University, Chongqing, P.R. China
| | - Lina Sun
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Science, Southwest University, Chongqing, P.R. China
| | - Yunlv Sun
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Science, Southwest University, Chongqing, P.R. China
| | - Shijie Yang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Science, Southwest University, Chongqing, P.R. China
| | - Minghui Li
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Science, Southwest University, Chongqing, P.R. China
| | - Sheng Zeng
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Science, Southwest University, Chongqing, P.R. China
| | - Baofeng Huang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Science, Southwest University, Chongqing, P.R. China
| | - Deshou Wang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Science, Southwest University, Chongqing, P.R. China
| |
Collapse
|
20
|
Babaei F, Ramalingam R, Tavendale A, Liang Y, Yan LSK, Ajuh P, Cheng SH, Lam YW. Novel Blood Collection Method Allows Plasma Proteome Analysis from Single Zebrafish. J Proteome Res 2013; 12:1580-90. [DOI: 10.1021/pr3009226] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Fatemeh Babaei
- Department of Biology and Chemistry, City University of Hong Kong, Hong Kong
| | - Rajkumar Ramalingam
- Department of Biology and Chemistry, City University of Hong Kong, Hong Kong
| | - Amy Tavendale
- Dundee Cell Products, James Lindsay Place, Dundee Technopole, Dundee DD1 5JJ, Scotland,
U.K
| | - Yimin Liang
- Department of Biology and Chemistry, City University of Hong Kong, Hong Kong
| | - Leo So Kin Yan
- Department of Biology and Chemistry, City University of Hong Kong, Hong Kong
| | - Paul Ajuh
- Dundee Cell Products, James Lindsay Place, Dundee Technopole, Dundee DD1 5JJ, Scotland,
U.K
| | - Shuk Han Cheng
- Department of Biology and Chemistry, City University of Hong Kong, Hong Kong
| | - Yun Wah Lam
- Department of Biology and Chemistry, City University of Hong Kong, Hong Kong
| |
Collapse
|
21
|
Zheng W, Xu H, Lam SH, Luo H, Karuturi RKM, Gong Z. Transcriptomic analyses of sexual dimorphism of the zebrafish liver and the effect of sex hormones. PLoS One 2013; 8:e53562. [PMID: 23349717 PMCID: PMC3547925 DOI: 10.1371/journal.pone.0053562] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2012] [Accepted: 11/29/2012] [Indexed: 01/02/2023] Open
Abstract
The liver is one of the most sex-dimorphic organs in both oviparous and viviparous animals. In order to understand the molecular basis of the difference between male and female livers, high-throughput RNA-SAGE (serial analysis of gene expression) sequencing was performed for zebrafish livers of both sexes and their transcriptomes were compared. Both sexes had abundantly expressed genes involved in translation, coagulation and lipid metabolism, consistent with the general function of the liver. For sex-biased transcripts, from in addition to the high enrichment of vitellogenin transcripts in spawning female livers, which constituted nearly 80% of total mRNA, it is apparent that the female-biased genes were mostly involved in ribosome/translation, estrogen pathway, lipid transport, etc, while the male-biased genes were enriched for oxidation reduction, carbohydrate metabolism, coagulation, protein transport and localization, etc. Sexual dimorphism on xenobiotic metabolism and anti-oxidation was also noted and it is likely that retinol x receptor (RXR) and liver x receptor (LXR) play central roles in regulating the sexual differences of lipid and cholesterol metabolisms. Consistent with high ribosomal/translational activities in the female liver, female-biased genes were significantly regulated by two important transcription factors, Myc and Mycn. In contrast, Male livers showed activation of transcription factors Ppargc1b, Hnf4a, and Stat4, which regulate lipid and glucose metabolisms and various cellular activities. The transcriptomic responses to sex hormones, 17β-estradiol (E2) or 11-keto testosterone (KT11), were also investigated in both male and female livers and we found that female livers were relatively insensitive to sex hormone disturbance, while the male livers were readily affected. E2 feminized male liver by up-regulating female-biased transcripts and down-regulating male-biased transcripts. The information obtained in this study provides comprehensive insights into the sexual dimorphism of zebrafish liver transcriptome and will facilitate further development of the zebrafish as a human liver disease model.
Collapse
Affiliation(s)
- Weiling Zheng
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Hongyan Xu
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Siew Hong Lam
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Huaien Luo
- Computational and Systems Biology, Genome Institute of Singapore, Singapore, Singapore
| | | | - Zhiyuan Gong
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
- * E-mail:
| |
Collapse
|
22
|
Ribosome biogenesis factor Bms1-like is essential for liver development in zebrafish. J Genet Genomics 2012; 39:451-62. [PMID: 23021545 DOI: 10.1016/j.jgg.2012.07.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2012] [Revised: 07/11/2012] [Accepted: 07/12/2012] [Indexed: 11/20/2022]
Abstract
Ribosome biogenesis in the nucleolus requires numerous nucleolar proteins and small non-coding RNAs. Among them is ribosome biogenesis factor Bms1, which is highly conserved from yeast to human. In yeast, Bms1 initiates ribosome biogenesis through recruiting Rcl1 to pre-ribosomes. However, little is known about the biological function of Bms1 in vertebrates. Here we report that Bms1 plays an essential role in zebrafish liver development. We identified a zebrafish bms1l(sq163) mutant which carries a T to A mutation in the gene bms1-like (bms1l). This mutation results in L(152) to Q(152) substitution in a GTPase motif in Bms1l. Surprisingly, bms1l(sq163) mutation confers hypoplasia specifically in the liver, exocrine pancreas and intestine after 3 days post-fertilization (dpf). Consistent with the bms1l(sq163) mutant phenotypes, whole-mount in situ hybridization (WISH) on wild type embryos showed that bms1l transcripts are abundant in the entire digestive tract and its accessory organs. Immunostaining for phospho-Histone 3 (P-H3) and TUNEL assay revealed that impairment of hepatoblast proliferation rather than cell apoptosis is one of the consequences of bms1l(sq163) giving rise to an under-developed liver. Therefore, our findings demonstrate that Bms1l is necessary for zebrafish liver development.
Collapse
|
23
|
Kosmehl T, Otte JC, Yang L, Legradi J, Bluhm K, Zinsmeister C, Keiter SH, Reifferscheid G, Manz W, Braunbeck T, Strähle U, Hollert H. A combined DNA-microarray and mechanism-specific toxicity approach with zebrafish embryos to investigate the pollution of river sediments. Reprod Toxicol 2012; 33:245-53. [PMID: 22326570 DOI: 10.1016/j.reprotox.2012.01.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Revised: 12/19/2011] [Accepted: 01/18/2012] [Indexed: 12/25/2022]
Abstract
The zebrafish embryo has repeatedly proved to be a useful model for the analysis of effects by environmental toxicants. This proof-of-concept study was performed to investigate if an approach combining mechanism-specific bioassays with microarray techniques can obtain more in-depth insights into the ecotoxicity of complex pollutant mixtures as present, e.g., in sediment extracts. For this end, altered gene expression was compared to data from established bioassays as well as to results from chemical analysis. Mechanism-specific biotests indicated a defined hazard potential of the sediment extracts, and microarray analysis revealed several classes of significantly regulated genes which could be related to the hazard potential. Results indicate that potential classes of contaminants can be assigned to sediment extracts by both classical biomarker genes and corresponding expression profile analyses of known substances. However, it is difficult to distinguish between specific responses and more universal detoxification of the organism.
Collapse
Affiliation(s)
- Thomas Kosmehl
- Aquatic Ecology and Toxicology Group, COS-Center for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Groh KJ, Nesatyy VJ, Segner H, Eggen RIL, Suter MJF. Global proteomics analysis of testis and ovary in adult zebrafish (Danio rerio). FISH PHYSIOLOGY AND BIOCHEMISTRY 2011; 37:619-647. [PMID: 21229308 PMCID: PMC3146978 DOI: 10.1007/s10695-010-9464-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Accepted: 12/17/2010] [Indexed: 05/27/2023]
Abstract
The molecular mechanisms controlling sex determination and differentiation in zebrafish (Danio rerio) are largely unknown. A genome-wide analysis may provide comprehensive insights into the processes involved. The mRNA expression in zebrafish gonads has been fairly well studied, but much less data on the corresponding protein expression are available, although the proteins are considered to be more relevant markers of gene function. Because mRNA and protein abundances rarely correlate well, mRNA profiles need to be complemented with the information on protein expression. The work presented here analyzed the proteomes of adult zebrafish gonads by a multidimensional protein identification technology, generating the to-date most populated lists of proteins expressed in mature zebrafish gonads. The acquired proteomics data partially confirmed existing transcriptomics information for several genes, including several novel transcripts. However, disagreements between mRNA and protein abundances were often observed, further stressing the necessity to assess the expression on different levels before drawing conclusions on a certain gene's expression and function. Several gene groups expressed in a sexually dimorphic way in zebrafish gonads were identified. Their potential importance for gonad development and function is discussed. The data gained in the current study provide a basis for further work on elucidating processes occurring during zebrafish development with use of high-throughput proteomics.
Collapse
Affiliation(s)
- Ksenia J. Groh
- Eawag: Swiss Federal Institute of Aquatic Science and Technology, Environmental Toxicology, Überlandstrasse 133, Postbox 611, 8600 Dübendorf, Switzerland
| | - Victor J. Nesatyy
- Eawag: Swiss Federal Institute of Aquatic Science and Technology, Environmental Toxicology, Überlandstrasse 133, Postbox 611, 8600 Dübendorf, Switzerland
- Present Address: EPFL, Station 15, 1015 Lausanne, Switzerland
| | - Helmut Segner
- Centre for Fish and Wildlife Health, University of Bern, Länggassstrasse 122, Postbox 8466, 3001 Bern, Switzerland
| | - Rik I. L. Eggen
- Eawag: Swiss Federal Institute of Aquatic Science and Technology, Environmental Toxicology, Überlandstrasse 133, Postbox 611, 8600 Dübendorf, Switzerland
| | - Marc J.-F. Suter
- Eawag: Swiss Federal Institute of Aquatic Science and Technology, Environmental Toxicology, Überlandstrasse 133, Postbox 611, 8600 Dübendorf, Switzerland
| |
Collapse
|
25
|
Zheng W, Wang Z, Collins JE, Andrews RM, Stemple D, Gong Z. Comparative transcriptome analyses indicate molecular homology of zebrafish swimbladder and mammalian lung. PLoS One 2011; 6:e24019. [PMID: 21887364 PMCID: PMC3162596 DOI: 10.1371/journal.pone.0024019] [Citation(s) in RCA: 121] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Accepted: 08/03/2011] [Indexed: 01/21/2023] Open
Abstract
The fish swimbladder is a unique organ in vertebrate evolution and it functions for regulating buoyancy in most teleost species. It has long been postulated as a homolog of the tetrapod lung, but the molecular evidence is scarce. In order to understand the molecular function of swimbladder as well as its relationship with lungs in tetrapods, transcriptomic analyses of zebrafish swimbladder were carried out by RNA-seq. Gene ontology classification showed that genes in cytoskeleton and endoplasmic reticulum were enriched in the swimbladder. Further analyses depicted gene sets and pathways closely related to cytoskeleton constitution and regulation, cell adhesion, and extracellular matrix. Several prominent transcription factor genes in the swimbladder including hoxc4a, hoxc6a, hoxc8a and foxf1 were identified and their expressions in developing swimbladder during embryogenesis were confirmed. By comparison of enriched transcripts in the swimbladder with those in human and mouse lungs, we established the resemblance of transcriptome of the zebrafish swimbladder and mammalian lungs. Based on the transcriptomic data of zebrafish swimbladder, the predominant functions of swimbladder are in its epithelial and muscular tissues. Our comparative analyses also provide molecular evidence of the relatedness of the fish swimbladder and mammalian lung.
Collapse
Affiliation(s)
- Weiling Zheng
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Zhengyuan Wang
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - John E. Collins
- Vertebrate Development and Genetics, Wellcome Trust Genome Campus, Wellcome Trust Sanger Institute, Hinxton, Cambridge, United Kingdom
| | - Robert M. Andrews
- Vertebrate Development and Genetics, Wellcome Trust Genome Campus, Wellcome Trust Sanger Institute, Hinxton, Cambridge, United Kingdom
| | - Derek Stemple
- Vertebrate Development and Genetics, Wellcome Trust Genome Campus, Wellcome Trust Sanger Institute, Hinxton, Cambridge, United Kingdom
| | - Zhiyuan Gong
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
- * E-mail:
| |
Collapse
|
26
|
Abstract
Fanconi anemia (FA) is a human disease of bone marrow failure, leukemia, squamous cell carcinoma, and developmental anomalies, including hypogonadism and infertility. Bone marrow transplants improve hematopoietic phenotypes but do not prevent other cancers. FA arises from mutation in any of the 15 FANC genes that cooperate to repair double stranded DNA breaks by homologous recombination. Zebrafish has a single ortholog of each human FANC gene and unexpectedly, mutations in at least two of them (fancl and fancd1(brca2)) lead to female-to-male sex reversal. Investigations show that, as in human, zebrafish fanc genes are required for genome stability and for suppressing apoptosis in tissue culture cells, in embryos treated with DNA damaging agents, and in meiotic germ cells. The sex reversal phenotype requires the action of Tp53 (p53), an activator of apoptosis. These results suggest that in normal sex determination, zebrafish oocytes passing through meiosis signal the gonadal soma to maintain expression of aromatase, an enzyme that converts androgen to estrogen, thereby feminizing the gonad and the individual. According to this model, normal male and female zebrafish differ in genetic factors that control the strength of the late meiotic oocyte-derived signal, probably by regulating the number of meiotic oocytes, which environmental factors can also alter. Transcripts from fancd1(brca2) localize at the animal pole of the zebrafish oocyte cytoplasm and are required for normal oocyte nuclear architecture, for normal embryonic development, and for preventing ovarian tumors. Embryonic DNA repair and sex reversal phenotypes provide assays for the screening of small molecule libraries for therapeutic substances for FA.
Collapse
|
27
|
Lubzens E, Young G, Bobe J, Cerdà J. Oogenesis in teleosts: how eggs are formed. Gen Comp Endocrinol 2010; 165:367-89. [PMID: 19505465 DOI: 10.1016/j.ygcen.2009.05.022] [Citation(s) in RCA: 552] [Impact Index Per Article: 39.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2009] [Revised: 05/07/2009] [Accepted: 05/29/2009] [Indexed: 11/25/2022]
Abstract
One of the major objectives of the aquaculture industry is the production of a large number of viable eggs with high survival. Major achievements have been made in recent years in improving protocols for higher efficiency of egg production and viability of progeny. Main gaps remain, however, in understanding the dynamic processes associated with oogenesis, the formation of an egg, from the time that germ cells turn into oogonia, until the release of ova during spawning in teleosts. Recent studies on primordial germ-cells, yolk protein precursors and their processing within the developing oocyte, the deposition of vitamins in eggs, structure and function of egg envelopes and oocyte maturation processes, further reveal the complexity of oogenesis. Moreover, numerous circulating endocrine and locally-acting paracrine and autocrine factors regulate the various stages of oocyte development and maturation. Though it is clear that the major regulators during vitellogenesis and oocyte maturation are the pituitary gonadotropins (LH and FSH) and sex steroids, the picture emerging from recent studies is of complex hormonal cross-talk at all stages between the developing oocyte and its surrounding follicle layers to ensure coordination of the various processes that are involved in the production of a fertilizable egg. In this review we aim at highlighting recent advances on teleost fish oocyte differentiation, maturation and ovulation, including those involved in the degeneration and reabsorption of ovarian follicles (atresia). The role of blood-borne and local ovarian factors in the regulation of the key steps of development reveal new aspects associated with egg formation.
Collapse
Affiliation(s)
- Esther Lubzens
- Department of Marine Biology, Israel Oceanographic and Limnological Research, 81080 Haifa, Israel.
| | | | | | | |
Collapse
|
28
|
Small CM, Carney GE, Mo Q, Vannucci M, Jones AG. A microarray analysis of sex- and gonad-biased gene expression in the zebrafish: evidence for masculinization of the transcriptome. BMC Genomics 2009; 10:579. [PMID: 19958554 PMCID: PMC2797025 DOI: 10.1186/1471-2164-10-579] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2009] [Accepted: 12/03/2009] [Indexed: 01/26/2023] Open
Abstract
Background In many taxa, males and females are very distinct phenotypically, and these differences often reflect divergent selective pressures acting on the sexes. Phenotypic sexual dimorphism almost certainly reflects differing patterns of gene expression between the sexes, and microarray studies have documented widespread sexually dimorphic gene expression. Although the evolutionary significance of sexual dimorphism in gene expression remains unresolved, these studies have led to the formulation of a hypothesis that male-driven evolution has resulted in the masculinization of animal transcriptomes. Here we use a microarray assessment of sex- and gonad-biased gene expression to test this hypothesis in zebrafish. Results By using zebrafish Affymetrix microarrays to compare gene expression patterns in male and female somatic and gonadal tissues, we identified a large number of genes (5899) demonstrating differences in transcript abundance between male and female Danio rerio. Under conservative statistical significance criteria, all sex-biases in gene expression were due to differences between testes and ovaries. Male-enriched genes were more abundant than female-enriched genes, and expression bias for male-enriched genes was greater in magnitude than that for female-enriched genes. We also identified a large number of genes demonstrating elevated transcript abundance in testes and ovaries relative to male body and female body, respectively. Conclusion Overall our results support the hypothesis that male-biased evolutionary pressures have resulted in male-biased patterns of gene expression. Interestingly, our results seem to be at odds with a handful of other microarray-based studies of sex-specific gene expression patterns in zebrafish. However, ours was the only study designed to address this specific hypothesis, and major methodological differences among studies could explain the discrepancies. Regardless, all of these studies agree that transcriptomic sex differences in D. rerio are widespread despite the apparent absence of heterogamety. These differences likely make important contributions to phenotypic sexual dimorphism in adult zebrafish; thus, from an evolutionary standpoint, the precise roles of sex-specific selection and sexual conflict in the evolution of sexually dimorphic gene expression are very important. The results of our study and others like it set the stage for further work aimed at directly addressing this exciting issue in comparative genomics.
Collapse
Affiliation(s)
- Clayton M Small
- Department of Biology, Texas A&M University, College Station, TX, USA.
| | | | | | | | | |
Collapse
|
29
|
Huang H, Ruan H, Aw MY, Hussain A, Guo L, Gao C, Qian F, Leung T, Song H, Kimelman D, Wen Z, Peng J. Mypt1-mediated spatial positioning of Bmp2-producing cells is essential for liver organogenesis. Development 2009; 135:3209-18. [PMID: 18776143 DOI: 10.1242/dev.024406] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Mesodermal tissues produce various inductive signals essential for morphogenesis of endodermal organs. However, little is known about how the spatial relationship between the mesodermal signal-producing cells and their target endodermal organs is established during morphogenesis. Here, we report that a mutation in the zebrafish myosin phosphatase targeting subunit 1 (mypt1) gene causes abnormal bundling of actin filaments and disorganization of lateral plate mesoderm (LPM) and endoderm cells. As a result, the coordination between mesoderm and endoderm cell movements is disrupted. Consequently, the two stripes of Bmp2a-expressing cells in the LPM fail to align in a V-shaped pocket sandwiching the liver primordium. Mispositioning Bmp2a-producing cells with respect to the liver primordium leads to a reduction in hepatoblast proliferation and final abortion of hepatoblasts by apoptosis, causing the liverless phenotype. Our results demonstrate that Mypt1 mediates coordination between mesoderm and endoderm cell movements in order to carefully position the liver primordium such that it receives a Bmp signal that is essential for liver formation in zebrafish.
Collapse
Affiliation(s)
- Honghui Huang
- Laboratory of Functional Genomics, Institute of Molecular and Cell Biology, Proteos, Singapore
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Lo L, Zhang Z, Hong N, Peng J, Hong Y. 3640 unique EST clusters from the medaka testis and their potential use for identifying conserved testicular gene expression in fish and mammals. PLoS One 2008; 3:e3915. [PMID: 19104663 PMCID: PMC2603314 DOI: 10.1371/journal.pone.0003915] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2008] [Accepted: 11/14/2008] [Indexed: 02/04/2023] Open
Abstract
Background The fish medaka is the first vertebrate capable of full spermatogenesis in vitro from self-renewing spermatogonial stem cells to motile test-tube sperm. Precise staging and molecular dissection of this process has been hampered by the lack of suitable molecular markers. Methodology and Principal Findings We have generated a normalized medaka testis cDNA library and obtained 7040 high quality sequences representing 3641 unique gene clusters. Among these, 1197 unique clusters are homologous to known genes, and 2444 appear to be novel genes. Ontology analysis shows that the 1197 gene products are implicated in diverse molecular and cellular processes. These genes include markers for all major types of testicular somatic and germ cells. Furthermore, markers were identified for major spermatogenic stages ranging from spermatogonial stem cell self-renewal to meiosis entry, progression and completion. Intriguingly, the medaka testis expresses at least 13 homologs of the 33 mouse X-chromosomal genes that are enriched in the testis. More importantly, we show that key components of several signaling pathways known to be important for testicular function in mammals are well represented in the medaka testicular EST collection. Conclusions/Significance Medaka exhibits a considerable similarity in testicular gene expression to mammals. The medaka testicular EST collection we obtained has wide range coverage and will not only consolidate our knowledge on the comparative analysis of known genes' functions in the testis but also provide a rich resource to dissect molecular events and mechanism of spermatogenesis in vivo and in vitro in medaka as an excellent vertebrate model.
Collapse
Affiliation(s)
- Lijan Lo
- Department of Biology Sciences, National University of Singapore, National University of Singapore, Singapore, Singapore
| | - Zhenhai Zhang
- Institute of Molecular and Cell Biology, Proteos, Singapore
| | - Ni Hong
- Department of Biology Sciences, National University of Singapore, National University of Singapore, Singapore, Singapore
| | - Jinrong Peng
- Department of Biology Sciences, National University of Singapore, National University of Singapore, Singapore, Singapore
- Institute of Molecular and Cell Biology, Proteos, Singapore
- * E-mail: (JP); (YH)
| | - Yunhan Hong
- Department of Biology Sciences, National University of Singapore, National University of Singapore, Singapore, Singapore
- * E-mail: (JP); (YH)
| |
Collapse
|
31
|
Cerdà J, Bobe J, Babin PJ, Admon A, Lubzens E. Functional Genomics and Proteomic Approaches for the Study of Gamete Formation and Viability in Farmed Finfish. ACTA ACUST UNITED AC 2008. [DOI: 10.1080/10641260802324685] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
32
|
Piferrer F, Guiguen Y. Fish Gonadogenesis. Part II: Molecular Biology and Genomics of Sex Differentiation. ACTA ACUST UNITED AC 2008. [DOI: 10.1080/10641260802324644] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
33
|
Kling P, Norman A, Andersson PL, Norrgren L, Förlin L. Gender-specific proteomic responses in zebrafish liver following exposure to a selected mixture of brominated flame retardants. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2008; 71:319-327. [PMID: 18258299 DOI: 10.1016/j.ecoenv.2007.12.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2007] [Revised: 12/05/2007] [Accepted: 12/08/2007] [Indexed: 05/25/2023]
Abstract
Proteomic effect screening in zebrafish liver was performed to generate hypotheses following exposure (21 days) to a structurally diverse mixture of brominated flame retardants (BFRs). Fish were exposed to two doses (10 and 100 nmol/g feed). Two-dimensional gel-electrophoresis, image analysis and MALDI-TOF mass-spectrometry revealed 13 and 19 significant responses in males and females, respectively. Effects on proteins related to cellular maintenance and stress were observed in both genders. Regulated proteins were gender-specific, but functionally indicated common protective responses (peroxiredoxin 6 and Zgc:92891 in males and transketolase in females) suggesting oxidative stress. Betaine homocysteine methyltransferase (BHMT) was induced in both genders. In addition a female-specific downregulation of ironhomeostatic proteins (iron-regulatory protein 1 and transferrin) were observed. Our proteomic approach revealed novel responses that suggest important gender-specific sensitivity to BFRs that should be considered when interpreting adverse effects of BFRs.
Collapse
Affiliation(s)
- P Kling
- Department of Zoology/Zoophysiology, Göteborg University, Box 463, SE-405 30 Göteborg, Sweden.
| | | | | | | | | |
Collapse
|
34
|
Wang H, Kesinger JW, Zhou Q, Wren JD, Martin G, Turner S, Tang Y, Frank MB, Centola M. Identification and characterization of zebrafish ocular formation genes. Genome 2008; 51:222-35. [PMID: 18356958 DOI: 10.1139/g07-098] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To study genes that are specifically expressed in the eyes, we employed microarray and in situ hybridization analyses to identify and characterize differentially expressed ocular genes in eyeless masterblind (mbl-/-) zebrafish (Danio rerio). Among 70 differentially expressed genes in the mbl-/- mutant identified by microarray analysis, 8 down-regulated genes were characterized, including 4 eye-specific genes, opsin 1 short-wave-sensitive 1 (opn1sw1), crystallinbetaa1b (cryba1b), crystallinbetaa2b (cryba2b), and crystallingamma M2d3 (crygm2d3); 2 eye and brain genes, ATPase, H+ transporting, lysosomal, V0 subunit c (atp6v0c) and basic leucine zipper and W2 domains 1a (bzw1a); and 2 constitutive genes, heat shock protein 8 (hspa8) and ribosomal protein L7a (rpl7a). In situ hybridization experiments confirmed down-regulation of these 8 ocular formation genes in mbl-/- zebrafish and showed their ocular and dynamic temporal expression patterns during zebrafish early development. Further, an automated literature analysis of the 70 differentially expressed genes identified a sub-network of genes with known associations, either with each other or with ocular structures or development, and shows how this study contributes to the current body of knowledge.
Collapse
Affiliation(s)
- Han Wang
- Department of Zoology and Stephenson Research and Technology Center, University of Oklahoma, 101 David L. Boren Boulevard, Norman, OK 73019, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Robison BD, Drew RE, Murdoch GK, Powell M, Rodnick KJ, Settles M, Stone D, Churchill E, Hill RA, Papasani MR, Lewis SS, Hardy RW. Sexual dimorphism in hepatic gene expression and the response to dietary carbohydrate manipulation in the zebrafish (Danio rerio). COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2008; 3:141-54. [PMID: 20483215 DOI: 10.1016/j.cbd.2008.01.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2007] [Revised: 01/28/2008] [Accepted: 01/28/2008] [Indexed: 12/20/2022]
Abstract
In this study, we tested for the presence of sexual dimorphism in the hepatic transcriptome of the adult zebrafish and examined the effect of long term manipulation of dietary carbohydrate on gene expression in both sexes. Zebrafish were fed diets comprised of 0%, 15%, 25%, or 35% carbohydrate from the larval stage through sexual maturity, then sampled for hepatic tissue, growth, proximate body composition, and retention efficiencies. Using Affymetrix microarrays and qRT-PCR, we observed substantial sexual dimorphism in the hepatic transcriptome. Males up-regulated genes associated with oxidative metabolism, carbohydrate metabolism, energy production, and amelioration of oxidative stress, while females had higher expression levels of genes associated with translation. Restriction of dietary carbohydrate (0% diet) significantly affected hepatic gene expression, growth performance, retention efficiencies of protein and energy, and percentages of moisture, lipid, and ash. The response of some genes to dietary manipulation varied by sex; with increased dietary carbohydrate, males up-regulated genes associated with oxidative metabolism (e.g. hadhbeta) while females up-regulated genes associated with glucose phosphorylation (e.g. glucokinase). Our data support the use of the zebrafish model for the study of fish nutritional genomics, but highlight the importance of accounting for sexual dimorphism in these studies.
Collapse
Affiliation(s)
- Barrie D Robison
- Department of Biological Sciences and Center for Reproductive Biology, University of Idaho, Moscow, ID, 83844-3051, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Recent papers on zebrafish and other aquarium fish models. Zebrafish 2008; 1:369-75. [PMID: 18248216 DOI: 10.1089/zeb.2005.1.369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
37
|
Luckenbach JA, Iliev DB, Goetz FW, Swanson P. Identification of differentially expressed ovarian genes during primary and early secondary oocyte growth in coho salmon, Oncorhynchus kisutch. Reprod Biol Endocrinol 2008; 6:2. [PMID: 18205936 PMCID: PMC2262088 DOI: 10.1186/1477-7827-6-2] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2007] [Accepted: 01/18/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The aim of this study was to identify differentially expressed ovarian genes during primary and early secondary oocyte growth in coho salmon, a semelparous teleost that exhibits synchronous follicle development. METHODS Reciprocal suppression subtractive hybridization (SSH) libraries were generated from ovaries with perinucleolus (P) or cortical alveolus (CA) stage follicles and selected genes were assessed with quantitative PCR (qPCR). An assessment of changes in RNA composition during oocyte growth and its relationship to transcript levels was also conducted. RESULTS SSH revealed several differentially expressed genes during early oogenesis, some which will not likely be utilized until 1-3 years later in salmon. Zona pellucida glycoprotein (zp) genes, vitellogenin receptor (vldlr) isoforms, cathepsin B (ctsba), cyclin E (ccne), a DnaJ transcript (dnaja2), and a ferritin subunit (fth3) were significantly elevated at the P stage, while a C-type lectin, retinol dehydrogenase (rdh1), and a coatomer protein subunit (cope) were upregulated at the CA stage. Putative follicle cell transcripts such as anti-Müllerian hormone (amh), lipoprotein lipase (lpl), apolipoprotein E (apoe), gonadal soma-derived growth factor (gsdf) and follicle-stimulating hormone receptor (fshr) also increased significantly at the CA stage. The analysis of RNA composition during oocyte growth showed that the total RNA yield and proportion of messenger RNA relative to non-polyadenylated RNAs declined as oogenesis progressed. This influenced apparent transcript levels depending on the type of RNA template used and normalization method. CONCLUSION In coho salmon, which exhibit a dramatic change in oocyte size and RNA composition during oogenesis, use of messenger RNA as template and normalization of qPCR data to a housekeeping gene, ef1a, yielded results that best reflected transcript abundance within the ovarian follicle. Synthesis of zp transcripts and proteins involved in yolk incorporation and processing occurred during primary growth, while increased expression of a CA component and genes related to lipid incorporation occurred concomitant with the appearance of CA, but prior to lipid accumulation. Significant increases in transcripts for fshr, gsdf, and amh at the CA stage suggest a role of FSH and TGFbeta peptides in previtellogenic oocyte growth and puberty onset in female salmon.
Collapse
Affiliation(s)
- John A Luckenbach
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, Washington 98195, USA
- Northwest Fisheries Science Center, National Oceanic and Atmospheric Administration-National Marine Fisheries Service, Seattle, Washington 98112, USA
| | - Dimitar B Iliev
- Great Lakes WATER Institute, University of Wisconsin, Milwaukee, Wisconsin 53204, USA
| | - Frederick W Goetz
- Great Lakes WATER Institute, University of Wisconsin, Milwaukee, Wisconsin 53204, USA
| | - Penny Swanson
- Northwest Fisheries Science Center, National Oceanic and Atmospheric Administration-National Marine Fisheries Service, Seattle, Washington 98112, USA
- Center of Reproductive Biology, Washington State University, Pullman, Washington 98164, USA
| |
Collapse
|
38
|
Santos EM, Workman VL, Paull GC, Filby AL, Van Look KJW, Kille P, Tyler CR. Molecular basis of sex and reproductive status in breeding zebrafish. Physiol Genomics 2007; 30:111-22. [PMID: 17374843 DOI: 10.1152/physiolgenomics.00284.2006] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The zebrafish ( Danio rerio) is used extensively as a model species for studies on vertebrate development and for assessing chemical effects on reproduction. Despite this, the molecular mechanisms controlling zebrafish reproduction are poorly understood. We analyzed the transcriptomic profiles of the gonads of individual zebrafish, using a 17k oligonucleotide microarray, to define the molecular basis of sex and reproductive status in sexually mature fish. The gonadal transcriptome differed substantially between sexes. Among the genes overexpressed in females, 11 biological processes were overrepresented including mitochondrion organization and biogenesis, and cell growth and/or maintenance. Among the genes overexpressed in males, six biological processes were overrepresented including protein biosynthesis and protein metabolism. Analysis of the expression of gene families known to be involved in reproduction identified a number of genes differentially expressed between ovaries and testes including a number of sox genes and genes belonging to the insulin-like growth factor and the activin-inhibin pathways. Real-time quantitative PCR confirmed the expression profiles for nine of the most differentially expressed genes and indicated that many transcripts are likely to be switched off in one of the sexes in the gonads of adult fish. Significant differences were seen between the gonad transcriptomes of individual reproductively active females reflecting their stage of maturation, whereas the testis transcriptomes were remarkably similar between individuals. In summary, we have identified molecular processes associated with (gonadal) sex specificity in breeding zebrafish and established a strong relationship between individual ovarian transcriptomes and reproductive status in females.
Collapse
Affiliation(s)
- E M Santos
- School of Biosciences, University of Exeter, Exeter, UK.
| | | | | | | | | | | | | |
Collapse
|
39
|
Cheng W, Guo L, Zhang Z, Soo HM, Wen C, Wu W, Peng J. HNF factors form a network to regulate liver-enriched genes in zebrafish. Dev Biol 2006; 294:482-96. [PMID: 16631158 DOI: 10.1016/j.ydbio.2006.03.018] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2005] [Revised: 02/23/2006] [Accepted: 03/15/2006] [Indexed: 12/20/2022]
Abstract
Defects in some of liver-enriched genes in mammals will cause liver- and/or blood-related diseases. However, due to the fact that embryogenesis happens intrauterinally in the mammals, the function of these liver-enriched genes during liver organogenesis is poorly studied. We report here the identification of 129 genuine liver-enriched genes in adult zebrafish and show that, through in situ hybridization, 69 of these genes are also enriched in the embryonic liver. External embryogenesis coupled with the well-established morpholino-mediated gene knock-down technique in zebrafish offers us a unique opportunity to study if this group of genes plays any role during liver organogenesis in the future. As an example, preliminary study using morpholino-mediated gene knock-down method revealed that a novel liver-enriched gene leg1 is crucial for the liver expansion growth. We also report the analysis of promoter regions of 51 liver-enriched genes by searching putative binding sites for Hnf1, Hnf3, Hnf4 and Hnf6, four key transcription factors enriched in the liver. We found that promoter regions of majority of liver-enriched genes contain putative binding sites for more than one HNF factors, suggesting that most of liver-enriched genes are likely co-regulated by different combination of HNF factors. This observation supports the hypothesis that these four liver-enriched transcription factors form a network in controlling the expression of liver-specific or -enriched genes in the liver.
Collapse
Affiliation(s)
- Wei Cheng
- Functional Genomics Lab, Institute of Molecular and Cell Biology, 61 Biopolis Drive, Protesos, 138673, Singapore
| | | | | | | | | | | | | |
Collapse
|
40
|
Knoll-Gellida A, André M, Gattegno T, Forgue J, Admon A, Babin PJ. Molecular phenotype of zebrafish ovarian follicle by serial analysis of gene expression and proteomic profiling, and comparison with the transcriptomes of other animals. BMC Genomics 2006; 7:46. [PMID: 16526958 PMCID: PMC1488847 DOI: 10.1186/1471-2164-7-46] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2005] [Accepted: 03/09/2006] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND The ability of an oocyte to develop into a viable embryo depends on the accumulation of specific maternal information and molecules, such as RNAs and proteins. A serial analysis of gene expression (SAGE) was carried out in parallel with proteomic analysis on fully-grown ovarian follicles from zebrafish (Danio rerio). The data obtained were compared with ovary/follicle/egg molecular phenotypes of other animals, published or available in public sequence databases. RESULTS Sequencing of 27,486 SAGE tags identified 11,399 different ones, including 3,329 tags with an occurrence superior to one. Fifty-eight genes were expressed at over 0.15% of the total population and represented 17.34% of the mRNA population identified. The three most expressed transcripts were a rhamnose-binding lectin, beta-actin 2, and a transcribed locus similar to the H2B histone family. Comparison with the large-scale expressed sequence tags sequencing approach revealed highly expressed transcripts that were not previously known to be expressed at high levels in fish ovaries, like the short-sized polarized metallothionein 2 transcript. A higher sensitivity for the detection of transcripts with a characterized maternal genetic contribution was also demonstrated compared to large-scale sequencing of cDNA libraries. Ferritin heavy polypeptide 1, heat shock protein 90-beta, lactate dehydrogenase B4, beta-actin isoforms, tubulin beta 2, ATP synthase subunit 9, together with 40 S ribosomal protein S27a, were common highly-expressed transcripts of vertebrate ovary/unfertilized egg. Comparison of transcriptome and proteome data revealed that transcript levels provide little predictive value with respect to the extent of protein abundance. All the proteins identified by proteomic analysis of fully-grown zebrafish follicles had at least one transcript counterpart, with two exceptions: eosinophil chemotactic cytokine and nothepsin. CONCLUSION This study provides a complete sequence data set of maternal mRNA stored in zebrafish germ cells at the end of oogenesis. This catalogue contains highly-expressed transcripts that are part of a vertebrate ovarian expressed gene signature. Comparison of transcriptome and proteome data identified downregulated transcripts or proteins potentially incorporated in the oocyte by endocytosis. The molecular phenotype described provides groundwork for future experimental approaches aimed at identifying functionally important stored maternal transcripts and proteins involved in oogenesis and early stages of embryo development.
Collapse
Affiliation(s)
- Anja Knoll-Gellida
- Génomique et Physiologie des Poissons, UMR NUAGE, Université Bordeaux 1, 33405 Talence cedex, France
| | - Michèle André
- Génomique et Physiologie des Poissons, UMR NUAGE, Université Bordeaux 1, 33405 Talence cedex, France
| | - Tamar Gattegno
- Department of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Jean Forgue
- Génomique et Physiologie des Poissons, UMR NUAGE, Université Bordeaux 1, 33405 Talence cedex, France
| | - Arie Admon
- Department of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Patrick J Babin
- Génomique et Physiologie des Poissons, UMR NUAGE, Université Bordeaux 1, 33405 Talence cedex, France
| |
Collapse
|
41
|
Chen J, Ruan H, Ng SM, Gao C, Soo HM, Wu W, Zhang Z, Wen Z, Lane DP, Peng J. Loss of function of def selectively up-regulates Delta113p53 expression to arrest expansion growth of digestive organs in zebrafish. Genes Dev 2006; 19:2900-11. [PMID: 16322560 PMCID: PMC1315396 DOI: 10.1101/gad.1366405] [Citation(s) in RCA: 145] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Transcription factor p53 forms a network with associated factors to regulate the cell cycle and apoptosis in response to environmental stresses. However, there is currently no direct genetic evidence to show if or how the p53 pathway functions during organogenesis. Here we present evidence to show that the zebrafish def (digestive-organ expansion factor) gene encodes a novel pan-endoderm-specific factor. A loss-of-function mutation in def confers hypoplastic digestive organs and selectively up-regulates the expression of Delta113p53, counterpart to a newly identified isoform of p53 produced by an alternative internal promoter in intron 4 of the p53 gene in human. The increased Delta113p53 expression is limited to within the mutant digestive organs, and this increase selectively induces the expression of p53-responsive genes to trigger the arrest of the cell cycle but not apoptosis, resulting in compromised organ growth in the mutant. Our data demonstrate that, while induction of expression of p53 and/or its isoforms is crucial to suppress abnormal cell growth, Delta113p53 is tightly regulated by an organ/tissue-specific factor Def, especially during organogenesis, to prevent adverse inhibition of organ/tissue growth.
Collapse
Affiliation(s)
- Jun Chen
- Laboratory of Functional Genomics, Laboratory of Molecular and Developmental Immunology, Laboratory of Control of p53 Pathway, Institute of Molecular and Cell Biology, Proteos, Singapore 138673
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Current Awareness on Comparative and Functional Genomics. Comp Funct Genomics 2005. [PMCID: PMC2447509 DOI: 10.1002/cfg.490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|