1
|
Miyadai M, Takada H, Shiraishi A, Kimura T, Watakabe I, Kobayashi H, Nagao Y, Naruse K, Higashijima SI, Shimizu T, Kelsh RN, Hibi M, Hashimoto H. A gene regulatory network combining Pax3/7, Sox10 and Mitf generates diverse pigment cell types in medaka and zebrafish. Development 2023; 150:dev202114. [PMID: 37823232 PMCID: PMC10617610 DOI: 10.1242/dev.202114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/11/2023] [Indexed: 10/13/2023]
Abstract
Neural crest cells generate numerous derivatives, including pigment cells, and are a model for studying how fate specification from multipotent progenitors is controlled. In mammals, the core gene regulatory network for melanocytes (their only pigment cell type) contains three transcription factors, Sox10, Pax3 and Mitf, with the latter considered a master regulator of melanocyte development. In teleosts, which have three to four pigment cell types (melanophores, iridophores and xanthophores, plus leucophores e.g. in medaka), gene regulatory networks governing fate specification are poorly understood, although Mitf function is considered conserved. Here, we show that the regulatory relationships between Sox10, Pax3 and Mitf are conserved in zebrafish, but the role for Mitf is more complex than previously emphasized, affecting xanthophore development too. Similarly, medaka Mitf is necessary for melanophore, xanthophore and leucophore formation. Furthermore, expression patterns and mutant phenotypes of pax3 and pax7 suggest that Pax3 and Pax7 act sequentially, activating mitf expression. Pax7 modulates Mitf function, driving co-expressing cells to differentiate as xanthophores and leucophores rather than melanophores. We propose that pigment cell fate specification should be considered to result from the combinatorial activity of Mitf with other transcription factors.
Collapse
Affiliation(s)
- Motohiro Miyadai
- Laboratory of Biological Science, Division of Natural Science, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| | - Hiroyuki Takada
- Laboratory of Biological Science, Division of Natural Science, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| | - Akiko Shiraishi
- Laboratory of Biological Science, Division of Natural Science, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| | - Tetsuaki Kimura
- Laboratory of Bioresources, National Institute for Basic Biology, Okazaki 444-8585, Japan
| | - Ikuko Watakabe
- National Institutes of Natural Sciences, Exploratory Research Center on Life and Living Systems, National Institute for Basic Biology, Okazaki 444-8787, Japan
| | - Hikaru Kobayashi
- Laboratory of Biological Science, Division of Natural Science, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| | - Yusuke Nagao
- Laboratory of Biological Science, Division of Natural Science, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| | - Kiyoshi Naruse
- Laboratory of Bioresources, National Institute for Basic Biology, Okazaki 444-8585, Japan
| | - Shin-ichi Higashijima
- National Institutes of Natural Sciences, Exploratory Research Center on Life and Living Systems, National Institute for Basic Biology, Okazaki 444-8787, Japan
| | - Takashi Shimizu
- Laboratory of Biological Science, Division of Natural Science, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| | - Robert N. Kelsh
- Department of Life Sciences, University of Bath, Bath BA2 7AY, UK
| | - Masahiko Hibi
- Laboratory of Biological Science, Division of Natural Science, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| | - Hisashi Hashimoto
- Laboratory of Biological Science, Division of Natural Science, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| |
Collapse
|
2
|
Root ZD, Jandzik D, Gould C, Allen C, Brewer M, Medeiros DM. Cartilage diversification and modularity drove the evolution of the ancestral vertebrate head skeleton. EvoDevo 2023; 14:8. [PMID: 37147719 PMCID: PMC10161429 DOI: 10.1186/s13227-023-00211-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 04/04/2023] [Indexed: 05/07/2023] Open
Abstract
The vertebrate head skeleton has evolved a myriad of forms since their divergence from invertebrate chordates. The connection between novel gene expression and cell types is therefore of importance in this process. The transformation of the jawed vertebrate (gnathostome) head skeleton from oral cirri to jointed jaw elements required a diversity of cartilages as well as changes in the patterning of these tissues. Although lampreys are a sister clade to gnathostomes, they display skeletal diversity with distinct gene expression and histologies, a useful model for addressing joint evolution. Specifically, the lamprey tissue known as mucocartilage has noted similarities with the jointed elements of the mandibular arch in jawed vertebrates. We thus asked whether the cells in lamprey mucocartilage and gnathostome joint tissue could be considered homologous. To do this, we characterized new genes that are involved in gnathostome joint formation and characterized the histochemical properties of lamprey skeletal types. We find that most of these genes are minimally found in mucocartilage and are likely later innovations, but we do identify new activity for gdf5/6/7b in both hyaline and mucocartilage, supporting its role as a chondrogenic regulator. Contrary to previous works, our histological assays do not find any perichondrial fibroblasts surrounding mucocartilage, suggesting that mucocartilage is non-skeletogenic tissue that is partially chondrified. Interestingly, we also identify new histochemical features of the lamprey otic capsule that diverge from normal hyaline. Paired with our new insights into lamprey mucocartilage, we propose a broader framework for skeletal evolution in which an ancestral soxD/E and gdf5/6/7 network directs mesenchyme along a spectrum of cartilage-like features.
Collapse
Affiliation(s)
- Zachary D. Root
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309 USA
| | - David Jandzik
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309 USA
- Department of Zoology, Comenius University in Bratislava, Bratislava, 84215 Slovakia
| | - Claire Gould
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309 USA
| | - Cara Allen
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309 USA
| | - Margaux Brewer
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309 USA
| | - Daniel M. Medeiros
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309 USA
| |
Collapse
|
3
|
Root ZD, Allen C, Gould C, Brewer M, Jandzik D, Medeiros DM. A Comprehensive Analysis of Fibrillar Collagens in Lamprey Suggests a Conserved Role in Vertebrate Musculoskeletal Evolution. Front Cell Dev Biol 2022; 10:809979. [PMID: 35242758 PMCID: PMC8887668 DOI: 10.3389/fcell.2022.809979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 01/18/2022] [Indexed: 12/03/2022] Open
Abstract
Vertebrates have distinct tissues which are not present in invertebrate chordates nor other metazoans. The rise of these tissues also coincided with at least one round of whole-genome duplication as well as a suite of lineage-specific segmental duplications. Understanding whether novel genes lead to the origin and diversification of novel cell types, therefore, is of great importance in vertebrate evolution. Here we were particularly interested in the evolution of the vertebrate musculoskeletal system, the muscles and connective tissues that support a diversity of body plans. A major component of the musculoskeletal extracellular matrix (ECM) is fibrillar collagens, a gene family which has been greatly expanded upon in vertebrates. We thus asked whether the repertoire of fibrillar collagens in vertebrates reflects differences in the musculoskeletal system. To test this, we explored the diversity of fibrillar collagens in lamprey, a jawless vertebrate which diverged from jawed vertebrates (gnathostomes) more than five hundred million years ago and has undergone its own gene duplications. Some of the principal components of vertebrate hyaline cartilage are the fibrillar collagens type II and XI, but their presence in cartilage development across all vertebrate taxa has been disputed. We particularly emphasized the characterization of genes in the lamprey hyaline cartilage, testing if its collagen repertoire was similar to that in gnathostomes. Overall, we discovered thirteen fibrillar collagens from all known gene subfamilies in lamprey and were able to identify several lineage-specific duplications. We found that, while the collagen loci have undergone rearrangement, the Clade A genes have remained linked with the hox clusters, a phenomenon also seen in gnathostomes. While the lamprey muscular tissue was largely similar to that seen in gnathostomes, we saw considerable differences in the larval lamprey skeletal tissue, with distinct collagen combinations pertaining to different cartilage types. Our gene expression analyses were unable to identify type II collagen in the sea lamprey hyaline cartilage nor any other fibrillar collagen during chondrogenesis at the stages observed, meaning that sea lamprey likely no longer require these genes during early cartilage development. Our findings suggest that fibrillar collagens were multifunctional across the musculoskeletal system in the last common ancestor of vertebrates and have been largely conserved, but these genes alone cannot explain the origin of novel cell types.
Collapse
Affiliation(s)
- Zachary D Root
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, United States
| | - Cara Allen
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, United States
| | - Claire Gould
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, United States
| | - Margaux Brewer
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, United States
| | - David Jandzik
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, United States.,Department of Zoology, Comenius University in Bratislava, Bratislava, Slovakia
| | - Daniel M Medeiros
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, United States
| |
Collapse
|
4
|
Tamaki T, Kagawa N, Fukushima N. The Japanese lamprey (Lethenteron camtschaticum) expresses functional lysophosphatidic acid receptors. Biochem Biophys Res Commun 2021; 568:1-7. [PMID: 34166971 DOI: 10.1016/j.bbrc.2021.06.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 06/08/2021] [Indexed: 11/25/2022]
Abstract
Lysophosphatidic acid (LPA) signaling plays diverse roles in the development of various vertebrates such as mammals and fish. The lamprey is a fish that retains ancestral features of vertebrates, but information regarding lamprey LPA receptor genes is limited. Here, using information from the lamprey genome database, we cloned two LPA receptor genes, Lpar1 and Lpar5, from the Japanese lamprey (Lethenteron camtschaticum). Lamprey Lpar1 had a high amino acid identity to mouse and medaka fish Lpar1, whereas Lpar5 amino acid sequences were more diverse between species. Our functional analyses using a heterologous expression system demonstrated that Lpar1 and Lpar5 responded to LPA treatment with G12/13-associated cellular responses, which are indicative of cytoskeletal actions. The existence of functional LPA receptors in the Japanese lamprey suggests that LPA receptor-dependent signals contribute to lamprey growth and development.
Collapse
Affiliation(s)
- Takeru Tamaki
- Division of Molecular Neurobiology, Department of Life Science, Kindai University, Higashiosaka, Japan
| | - Nao Kagawa
- Division of Animal Genetics, Department of Life Science, Kindai University, Higashiosaka, Japan
| | - Nobuyuki Fukushima
- Division of Molecular Neurobiology, Department of Life Science, Kindai University, Higashiosaka, Japan.
| |
Collapse
|
5
|
Kusakabe R, Higuchi S, Tanaka M, Kadota M, Nishimura O, Kuratani S. Novel developmental bases for the evolution of hypobranchial muscles in vertebrates. BMC Biol 2020; 18:120. [PMID: 32907560 PMCID: PMC7488077 DOI: 10.1186/s12915-020-00851-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 08/18/2020] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Vertebrates are characterized by possession of hypobranchial muscles (HBMs). Cyclostomes, or modern jawless vertebrates, possess a rudimentary and superficial HBM lateral to the pharynx, whereas the HBM in jawed vertebrates is internalized and anteroposteriorly specified. Precursor cells of the HBM, marked by expression of Lbx1, originate from somites and undergo extensive migration before becoming innervated by the hypoglossal nerve. How the complex form of HBM arose in evolution is relevant to the establishment of the vertebrate body plan, but despite having long been assumed to be similar to that of limb muscles, modification of developmental mechanisms of HBM remains enigmatic. RESULTS Here we characterize the expression of Lbx genes in lamprey and hagfish (cyclostomes) and catshark (gnathostome; jawed vertebrates). We show that the expression patterns of the single cyclostome Lbx homologue, Lbx-A, do not resemble the somitic expression of mammalian Lbx1. Disruption of Lbx-A revealed that LjLbx-A is required for the formation of both HBM and body wall muscles, likely due to the insufficient extension of precursor cells rather than to hindered muscle differentiation. Both homologues of Lbx in the catshark were expressed in the somitic muscle primordia, unlike in amniotes. During catshark embryogenesis, Lbx2 is expressed in the caudal HBM as well as in the abdominal rectus muscle, similar to lamprey Lbx-A, whereas Lbx1 marks the rostral HBM and pectoral fin muscle. CONCLUSIONS We conclude that the vertebrate HBM primarily emerged as a specialized somatic muscle to cover the pharynx, and the anterior internalized HBM of the gnathostomes is likely a novelty added rostral to the cyclostome-like HBM, for which duplication and functionalization of Lbx genes would have been a prerequisite.
Collapse
Affiliation(s)
- Rie Kusakabe
- Laboratory for Evolutionary Morphology, RIKEN Center for Biosystems Dynamics Research (BDR), 2-2-3 Minatojima-minami, Chuo-ku, Kobe, Hyogo, 650-0047, Japan.
| | - Shinnosuke Higuchi
- Laboratory for Evolutionary Morphology, RIKEN Center for Biosystems Dynamics Research (BDR), 2-2-3 Minatojima-minami, Chuo-ku, Kobe, Hyogo, 650-0047, Japan
- Department of Biology, Graduate School of Science, Kobe University, Kobe, 657-8501, Japan
- Department of Molecular Biology and Biochemistry, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, 734-8553, Japan
| | - Masako Tanaka
- Laboratory for Evolutionary Morphology, RIKEN Center for Biosystems Dynamics Research (BDR), 2-2-3 Minatojima-minami, Chuo-ku, Kobe, Hyogo, 650-0047, Japan
| | - Mitsutaka Kadota
- Laboratory for Phyloinformatics, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, 650-0047, Japan
| | - Osamu Nishimura
- Laboratory for Phyloinformatics, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, 650-0047, Japan
| | - Shigeru Kuratani
- Laboratory for Evolutionary Morphology, RIKEN Center for Biosystems Dynamics Research (BDR), 2-2-3 Minatojima-minami, Chuo-ku, Kobe, Hyogo, 650-0047, Japan
- Evolutionary Morphology Laboratory, RIKEN Cluster for Pioneering Research (CPR), Kobe, 650-0047, Japan
| |
Collapse
|
6
|
|
7
|
Prummel KD, Hess C, Nieuwenhuize S, Parker HJ, Rogers KW, Kozmikova I, Racioppi C, Brombacher EC, Czarkwiani A, Knapp D, Burger S, Chiavacci E, Shah G, Burger A, Huisken J, Yun MH, Christiaen L, Kozmik Z, Müller P, Bronner M, Krumlauf R, Mosimann C. A conserved regulatory program initiates lateral plate mesoderm emergence across chordates. Nat Commun 2019; 10:3857. [PMID: 31451684 PMCID: PMC6710290 DOI: 10.1038/s41467-019-11561-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 07/22/2019] [Indexed: 01/06/2023] Open
Abstract
Cardiovascular lineages develop together with kidney, smooth muscle, and limb connective tissue progenitors from the lateral plate mesoderm (LPM). How the LPM initially emerges and how its downstream fates are molecularly interconnected remain unknown. Here, we isolate a pan-LPM enhancer in the zebrafish-specific draculin (drl) gene that provides specific LPM reporter activity from early gastrulation. In toto live imaging and lineage tracing of drl-based reporters captures the dynamic LPM emergence as lineage-restricted mesendoderm field. The drl pan-LPM enhancer responds to the transcription factors EomesoderminA, FoxH1, and MixL1 that combined with Smad activity drive LPM emergence. We uncover specific activity of zebrafish-derived drl reporters in LPM-corresponding territories of several chordates including chicken, axolotl, lamprey, Ciona, and amphioxus, revealing a universal upstream LPM program. Altogether, our work provides a mechanistic framework for LPM emergence as defined progenitor field, possibly representing an ancient mesodermal cell state that predates the primordial vertebrate embryo. Numerous tissues are derived from the lateral plate mesoderm (LPM) but how this is specified is unclear. Here, the authors identify a pan-LPM reporter activity found in the zebrafish draculin (drl) gene that also shows transgenic activity in LPM-corresponding territories of several chordates, including chicken, axolotl, lamprey, Ciona, and amphioxus.
Collapse
Affiliation(s)
- Karin D Prummel
- Institute of Molecular Life Sciences, University of Zurich, Zürich, 8057, Switzerland
| | - Christopher Hess
- Institute of Molecular Life Sciences, University of Zurich, Zürich, 8057, Switzerland
| | - Susan Nieuwenhuize
- Institute of Molecular Life Sciences, University of Zurich, Zürich, 8057, Switzerland
| | - Hugo J Parker
- Department of Anatomy and Cell Biology, Kansas University Medical Center, Kansas City, KS, 66160, USA.,Stowers Institute for Medical Research, Kansas City, MO, 64110, USA
| | - Katherine W Rogers
- Friedrich Miescher Laboratory of the Max Planck Society, Tübingen, 72076, Germany
| | - Iryna Kozmikova
- Institute of Molecular Genetics of the ASCR, Prague, 142 20, Czech Republic
| | - Claudia Racioppi
- Center for Developmental Genetics, Department of Biology, New York University, New York, NY, 10003, USA
| | - Eline C Brombacher
- Institute of Molecular Life Sciences, University of Zurich, Zürich, 8057, Switzerland
| | - Anna Czarkwiani
- TUD-CRTD Center for Regenerative Therapies Dresden, Dresden, 01307, Germany
| | - Dunja Knapp
- TUD-CRTD Center for Regenerative Therapies Dresden, Dresden, 01307, Germany
| | - Sibylle Burger
- Institute of Molecular Life Sciences, University of Zurich, Zürich, 8057, Switzerland
| | - Elena Chiavacci
- Institute of Molecular Life Sciences, University of Zurich, Zürich, 8057, Switzerland
| | - Gopi Shah
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, 01307, Germany
| | - Alexa Burger
- Institute of Molecular Life Sciences, University of Zurich, Zürich, 8057, Switzerland
| | - Jan Huisken
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, 01307, Germany.,Morgridge Institute for Research, Madison, WI, 53715, USA
| | - Maximina H Yun
- TUD-CRTD Center for Regenerative Therapies Dresden, Dresden, 01307, Germany.,Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, 01307, Germany
| | - Lionel Christiaen
- Center for Developmental Genetics, Department of Biology, New York University, New York, NY, 10003, USA
| | - Zbynek Kozmik
- Institute of Molecular Genetics of the ASCR, Prague, 142 20, Czech Republic
| | - Patrick Müller
- Friedrich Miescher Laboratory of the Max Planck Society, Tübingen, 72076, Germany
| | - Marianne Bronner
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Robb Krumlauf
- Department of Anatomy and Cell Biology, Kansas University Medical Center, Kansas City, KS, 66160, USA.,Stowers Institute for Medical Research, Kansas City, MO, 64110, USA
| | - Christian Mosimann
- Institute of Molecular Life Sciences, University of Zurich, Zürich, 8057, Switzerland.
| |
Collapse
|
8
|
The neural crest and evolution of the head/trunk interface in vertebrates. Dev Biol 2018; 444 Suppl 1:S60-S66. [PMID: 29408469 DOI: 10.1016/j.ydbio.2018.01.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 01/24/2018] [Accepted: 01/24/2018] [Indexed: 12/31/2022]
Abstract
The migration and distribution patterns of neural crest (NC) cells reflect the distinct embryonic environments of the head and trunk: cephalic NC cells migrate predominantly along the dorsolateral pathway to populate the craniofacial and pharyngeal regions, whereas trunk crest cells migrate along the ventrolateral pathways to form the dorsal root ganglia. These two patterns thus reflect the branchiomeric and somitomeric architecture, respectively, of the vertebrate body plan. The so-called vagal NC occupies a postotic, intermediate level between the head and trunk NC. This level of NC gives rise to both trunk- and cephalic-type (circumpharyngeal) NC cells. The anatomical pattern of the amphioxus, a basal chordate, suggests that somites and pharyngeal gills coexist along an extensive length of the body axis, indicating that the embryonic environment is similar to that of vertebrate vagal NC cells and may have been ancestral for vertebrates. The amniote-like condition in which the cephalic and trunk domains are distinctly separated would have been brought about, in part, by anteroposterior reduction of the pharyngeal domain.
Collapse
|
9
|
Miyashita T, Diogo R. Evolution of Serial Patterns in the Vertebrate Pharyngeal Apparatus and Paired Appendages via Assimilation of Dissimilar Units. Front Ecol Evol 2016. [DOI: 10.3389/fevo.2016.00071] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
10
|
Kuratani S, Oisi Y, Ota KG. Evolution of the Vertebrate Cranium: Viewed from Hagfish Developmental Studies. Zoolog Sci 2016; 33:229-38. [DOI: 10.2108/zs150187] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Shigeru Kuratani
- Laboratory for Evolutionary Morphology, RIKEN, Kobe 650-0047, Japan
| | - Yasuhiro Oisi
- Development and Function of Inhibitory Neural Circuits, Max Planck Florida Institute for Neuroscience, One Max Planck Way, Jupiter, FL 33458-2906, USA
| | - Kinya G. Ota
- Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, Yilan 26242, Taiwan
| |
Collapse
|
11
|
Albersheim-Carter J, Blubaum A, Ballagh IH, Missaghi K, Siuda ER, McMurray G, Bass AH, Dubuc R, Kelley DB, Schmidt MF, Wilson RJA, Gray PA. Testing the evolutionary conservation of vocal motoneurons in vertebrates. Respir Physiol Neurobiol 2015; 224:2-10. [PMID: 26160673 DOI: 10.1016/j.resp.2015.06.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 06/23/2015] [Accepted: 06/29/2015] [Indexed: 11/15/2022]
Abstract
Medullary motoneurons drive vocalization in many vertebrate lineages including fish, amphibians, birds, and mammals. The developmental history of vocal motoneuron populations in each of these lineages remains largely unknown. The highly conserved transcription factor Paired-like Homeobox 2b (Phox2b) is presumed to be expressed in all vertebrate hindbrain branchial motoneurons, including laryngeal motoneurons essential for vocalization in humans. We used immunohistochemistry and in situ hybridization to examine Phox2b protein and mRNA expression in caudal hindbrain and rostral spinal cord motoneuron populations in seven species across five chordate classes. Phox2b was present in motoneurons dedicated to sound production in mice and frogs (bullfrog, African clawed frog), but not those in bird (zebra finch) or bony fish (midshipman, channel catfish). Overall, the pattern of caudal medullary motoneuron Phox2b expression was conserved across vertebrates and similar to expression in sea lamprey. These observations suggest that motoneurons dedicated to sound production in vertebrates are not derived from a single developmentally or evolutionarily conserved progenitor pool.
Collapse
Affiliation(s)
- Jacob Albersheim-Carter
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Aleksandar Blubaum
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Irene H Ballagh
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA; Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA
| | - Kianoush Missaghi
- Department of Exercise Science, Faculté des Sciences, Université du Québec à Montréal, Montréal, Québec H3C 3P8, Canada; Department of Neuroscience, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| | - Edward R Siuda
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - George McMurray
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Andrew H Bass
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA
| | - Réjean Dubuc
- Department of Exercise Science, Faculté des Sciences, Université du Québec à Montréal, Montréal, Québec H3C 3P8, Canada; Department of Neuroscience, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| | - Darcy B Kelley
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Marc F Schmidt
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Richard J A Wilson
- Hotchkiss Brain Institute and ACH Research Institute, Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta T2N4N1, Canada
| | - Paul A Gray
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
12
|
Miyashita T. Fishing for jaws in early vertebrate evolution: a new hypothesis of mandibular confinement. Biol Rev Camb Philos Soc 2015; 91:611-57. [DOI: 10.1111/brv.12187] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 03/18/2015] [Accepted: 03/19/2015] [Indexed: 12/21/2022]
Affiliation(s)
- Tetsuto Miyashita
- Department of Biological Sciences; University of Alberta; Edmonton Alberta T6G 2E9 Canada
| |
Collapse
|
13
|
Oisi Y, Fujimoto S, Ota KG, Kuratani S. On the peculiar morphology and development of the hypoglossal, glossopharyngeal and vagus nerves and hypobranchial muscles in the hagfish. ZOOLOGICAL LETTERS 2015; 1:6. [PMID: 26605051 PMCID: PMC4604111 DOI: 10.1186/s40851-014-0005-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 12/20/2014] [Indexed: 05/28/2023]
Abstract
INTRODUCTION The vertebrate body is characterized by its dual segmental organization: pharyngeal arches in the head and somites in the trunk. Muscular and nervous system morphologies are also organized following these metameric patterns, with distinct differences between head and trunk; branchiomeric nerves innervating pharyngeal arches are superficial to spinal nerves innervating somite derivatives. Hypobranchial muscles originate from rostral somites and occupy the "neck" at the head-trunk interface. Hypobranchial muscles, unlike ventral trunk muscles in the lateral body wall, develop from myocytes that migrate ventrally to occupy a space that is ventrolateral to the pharynx and unassociated with coelomic cavities. Occipitospinal nerves innervating these muscles also extend ventrally, thereby crossing the vagus nerve laterally. RESULTS In hagfishes, the basic morphological pattern of vertebrates is obliterated by the extreme caudal shift of the posterior part of the pharynx. The vagus nerve is found unusually medially, and occipitospinal nerves remain unfasciculated, appearing as metameric spinal nerves as in the posterior trunk region. Moreover, the hagfish exhibits an undifferentiated body plan, with the hypobranchial muscles not well dissociated from the abaxial muscles in the trunk. Comparative embryological observation showed that this hagfish-specific morphology is established by secondary modification of the common vertebrate embryonic pattern, and the hypobranchial muscle homologue can be found in the rostral part of the oblique muscle with pars decussata. CONCLUSION The morphological pattern of the hagfish represents an extreme case of heterotopy that led to the formation of the typical hypoglossal nerve, and can be regarded as an autapomorphic trait of the hagfish lineage.
Collapse
Affiliation(s)
- Yasuhiro Oisi
- />Laboratory for Evolutionary Morphology, RIKEN, 2-2-3 Minatojima-minami, Chuo-ku, Kobe, Hyogo 650-0047 Japan
| | - Satoko Fujimoto
- />Laboratory for Evolutionary Morphology, RIKEN, 2-2-3 Minatojima-minami, Chuo-ku, Kobe, Hyogo 650-0047 Japan
| | - Kinya G Ota
- />Laboratory of Aquatic Zoology, Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, No. 23-10, Dawen Road, Jiaoxi, Yilan 26242 Taiwan
| | - Shigeru Kuratani
- />Laboratory for Evolutionary Morphology, RIKEN, 2-2-3 Minatojima-minami, Chuo-ku, Kobe, Hyogo 650-0047 Japan
| |
Collapse
|
14
|
Nuño de la Rosa L, Müller GB, Metscher BD. The lateral mesodermal divide: an epigenetic model of the origin of paired fins. Evol Dev 2014; 16:38-48. [DOI: 10.1111/ede.12061] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Laura Nuño de la Rosa
- Department of Theoretical Biology; University of Vienna; Althanstrasse 14 A-1090 Wien Austria
- Konrad Lorenz Institute for Evolution and Cognition Research; Adolf-Lorenz-Gasse 2 3422 Altenberg Austria
| | - Gerd B. Müller
- Department of Theoretical Biology; University of Vienna; Althanstrasse 14 A-1090 Wien Austria
- Konrad Lorenz Institute for Evolution and Cognition Research; Adolf-Lorenz-Gasse 2 3422 Altenberg Austria
| | - Brian D. Metscher
- Department of Theoretical Biology; University of Vienna; Althanstrasse 14 A-1090 Wien Austria
| |
Collapse
|
15
|
Lampreys have a single gene cluster for the fast skeletal myosin heavy chain gene family. PLoS One 2013; 8:e85500. [PMID: 24376886 PMCID: PMC3869912 DOI: 10.1371/journal.pone.0085500] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Accepted: 12/05/2013] [Indexed: 01/13/2023] Open
Abstract
Muscle tissues contain the most classic sarcomeric myosin, called myosin II, which consists of 2 heavy chains (MYHs) and 4 light chains. In the case of humans (tetrapod), a total of 6 fast skeletal-type MYH genes (MYHs) are clustered on a single chromosome. In contrast, torafugu (teleost) contains at least 13 fast skeletal MYHs, which are distributed in 5 genomic regions; the MYHs are clustered in 3 of these regions. In the present study, the evolutionary relationship among fast skeletal MYHs is elucidated by comparing the MYHs of teleosts and tetrapods with those of cyclostome lampreys, one of two groups of extant jawless vertebrates (agnathans). We found that lampreys contain at least 3 fast skeletal MYHs, which are clustered in a head-to-tail manner in a single genomic region. Although there was apparent synteny in the corresponding MYH cluster regions between lampreys and tetrapods, phylogenetic analysis indicated that lamprey and tetrapod MYHs have independently duplicated and diversified. Subsequent transgenic approaches showed that the 5′-flanking sequences of Japanese lamprey fast skeletal MYHs function as a regulatory sequence to drive specific reporter gene expression in the fast skeletal muscle of zebrafish embryos. Although zebrafish MYH promoters showed apparent activity to direct reporter gene expression in myogenic cells derived from mice, promoters from Japanese lamprey MYHs had no activity. These results suggest that the muscle-specific regulatory mechanisms are partially conserved between teleosts and tetrapods but not between cyclostomes and tetrapods, despite the conserved synteny.
Collapse
|
16
|
Yasui K, Kaji T, Morov AR, Yonemura S. Development of oral and branchial muscles in lancelet larvae of Branchiostoma japonicum. J Morphol 2013; 275:465-77. [PMID: 24301696 DOI: 10.1002/jmor.20228] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 10/24/2013] [Accepted: 10/27/2013] [Indexed: 11/12/2022]
Abstract
The perforated pharynx has generally been regarded as a shared characteristic of chordates. However, there still remains phylogenetic ambiguity between the cilia-driven system in invertebrate chordates and the muscle-driven system in vertebrates. Giant larvae of the genus Asymmetron were reported to develop an orobranchial musculature similar to that of vertebrates more than 100 years ago. This discovery might represent an evolutionary link for the chordate branchial system, but few investigations of the lancelet orobranchial musculature have been completed since. We studied staged larvae of a Japanese population of Branchiostoma japonicum to characterize the developmental property of the orobranchial musculature. The larval mouth and the unpaired primary gills develop well-organized muscles. These muscles function only as obturators of the openings without antagonistic system. As the larval mouth enlarged posteriorly to the level of the ninth myomere, the oral musculature was fortified accordingly without segmental patterning. In contrast, the iterated branchial muscles coincided with the dorsal myomeric pattern before metamorphosis, but the pharynx was remodeled dynamically irrespective of the myomeric pattern during metamorphosis. The orobranchial musculature disappeared completely during metamorphosis, and adult muscles in the oral hood and velum, as well as on the pterygial coeloms developed independently. The lancelet orobranchial musculature is apparently a larval adaptation to prevent harmful intake. However, vestigial muscles appeared transiently with the secondary gill formation suggest a bilateral ancestral state of muscular gills, and a segmental pattern of developing branchial muscles without neural crest and placodal contributions is suggestive of a precursor of vertebrate branchiomeric pattern.
Collapse
Affiliation(s)
- Kinya Yasui
- Department of Biological Sciences, Graduate School of Science, Hiroshima University, Higashi-Hiroshima, 739-8526, Japan
| | | | | | | |
Collapse
|
17
|
Froehlich JM, Fowler ZG, Galt NJ, Smith DL, Biga PR. Sarcopenia and piscines: the case for indeterminate-growing fish as unique genetic model organisms in aging and longevity research. Front Genet 2013; 4:159. [PMID: 23967015 PMCID: PMC3743216 DOI: 10.3389/fgene.2013.00159] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Accepted: 07/30/2013] [Indexed: 01/07/2023] Open
Abstract
Sarcopenia and dynapenia pose significant problems for the aged, especially as life expectancy rises in developed countries. Current therapies are marginally efficacious at best, and barriers to breakthroughs in treatment may result from currently employed model organisms. Here, we argue that the use of indeterminate-growing teleost fish in skeletal muscle aging research may lead to therapeutic advancements not possible with current mammalian models. Evidence from a comparative approach utilizing the subfamily Danioninae suggests that the indeterminate growth paradigm of many teleosts arises from adult muscle stem cells with greater proliferative capacity, even in spite of smaller progenitor populations. We hypothesize that paired-box transcription factors, Pax3/7, are involved with this enhanced self-renewal and that prolonged expression of these factors may allow some fish species to escape, or at least forestall, sarcopenia/dynapenia. Future research efforts should focus on the experimental validation of these genes as key factors in indeterminate growth, both in the context of muscle stem cell proliferation and in prevention of skeletal muscle senescence.
Collapse
Affiliation(s)
- Jacob M Froehlich
- Department of Biology, University of Alabama at Birmingham Birmingham, AL, USA
| | | | | | | | | |
Collapse
|
18
|
Tani S, Kuraku S, Sakamoto H, Inoue K, Kusakabe R. Developmental expression and evolution of muscle-specific microRNAs conserved in vertebrates. Evol Dev 2013; 15:293-304. [DOI: 10.1111/ede.12039] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Saori Tani
- Department of Biology; Graduate School of Science; Kobe University; 1-1 Rokkodaicho; Nada-Ku, Kobe; 657-8501; Japan
| | - Shigehiro Kuraku
- Genome Resource and Analysis Unit; RIKEN Center for Developmental Biology; 2-2-3 Minatojima-Minami; Chuo-Ku, Kobe; 650-0047; Japan
| | - Hiroshi Sakamoto
- Department of Biology; Graduate School of Science; Kobe University; 1-1 Rokkodaicho; Nada-Ku, Kobe; 657-8501; Japan
| | - Kunio Inoue
- Department of Biology; Graduate School of Science; Kobe University; 1-1 Rokkodaicho; Nada-Ku, Kobe; 657-8501; Japan
| | - Rie Kusakabe
- Department of Biology; Graduate School of Science; Kobe University; 1-1 Rokkodaicho; Nada-Ku, Kobe; 657-8501; Japan
| |
Collapse
|
19
|
Origin of the Turtle Body Plan: The Folding Theory to Illustrate Turtle-Specific Developmental Repatterning. VERTEBRATE PALEOBIOLOGY AND PALEOANTHROPOLOGY 2013. [DOI: 10.1007/978-94-007-4309-0_4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
|
20
|
Della Gaspera B, Armand AS, Lecolle S, Charbonnier F, Chanoine C. Mef2d acts upstream of muscle identity genes and couples lateral myogenesis to dermomyotome formation in Xenopus laevis. PLoS One 2012; 7:e52359. [PMID: 23300648 PMCID: PMC3534117 DOI: 10.1371/journal.pone.0052359] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Accepted: 11/15/2012] [Indexed: 11/18/2022] Open
Abstract
Xenopus myotome is formed by a first medial and lateral myogenesis directly arising from the presomitic mesoderm followed by a second myogenic wave emanating from the dermomyotome. Here, by a series of gain and loss of function experiments, we showed that Mef2d, a member of the Mef2 family of MADS-box transcription factors, appeared as an upstream regulator of lateral myogenesis, and as an inducer of dermomyotome formation at the beginning of neurulation. In the lateral presomitic cells, we showed that Mef2d transactivates Myod expression which is necessary for lateral myogenesis. In the most lateral cells of the presomitic mesoderm, we showed that Mef2d and Paraxis (Tcf15), a member of the Twist family of transcription factors, were co-localized and activate directly the expression of Meox2, which acts upstream of Pax3 expression during dermomyotome formation. Cell tracing experiments confirm that the most lateral Meox2 expressing cells of the presomitic mesoderm correspond to the dermomyotome progenitors since they give rise to the most dorsal cells of the somitic mesoderm. Thus, Xenopus Mef2d couples lateral myogenesis to dermomyotome formation before somite segmentation. These results together with our previous works reveal striking similarities between dermomyotome and tendon formation in Xenopus: both develop in association with myogenic cells and both involve a gene transactivation pathway where one member of the Mef2 family, Mef2d or Mef2c, cooperates with a bHLH protein of the Twist family, Paraxis or Scx (Scleraxis) respectively. We propose that these shared characteristics in Xenopus laevis reflect the existence of a vertebrate ancestral mechanism which has coupled the development of the myogenic cells to the formation of associated tissues during somite compartmentalization.
Collapse
Affiliation(s)
- Bruno Della Gaspera
- Centre d'Etude de la Sensori-Motricité, UMR 8194 CNRS, Université Paris Descartes, Centre Universitaire des Saints-Pères, Paris, France.
| | | | | | | | | |
Collapse
|
21
|
Della Gaspera B, Armand AS, Sequeira I, Chesneau A, Mazabraud A, Lécolle S, Charbonnier F, Chanoine C. Myogenic waves and myogenic programs during Xenopus embryonic myogenesis. Dev Dyn 2012; 241:995-1007. [PMID: 22434732 DOI: 10.1002/dvdy.23780] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
UNLABELLED Although Xenopus is a key model organism in developmental biology, little is known about the myotome formation in this species. Here, we assessed the expression of myogenic regulatory factors of the Myod family (MRFs) during embryonic development and revealed distinct MRF programs. RESULTS The expression pattern of each MRF during embryonic development highlights three successive myogenic waves. We showed that a first median and lateral myogenesis initiates before dermomyotome formation: the median cell population expresses Myf5, Myod, and Mrf4, whereas the lateral one expresses Myod, moderate levels of Myogenin and Mrf4. The second wave of myoblasts arising from the dermomyotome is characterized by the full MRF program expression, with high levels of Myogenin. The third wave is revealed by Myf5 expression in the myotome and could contribute to the formation of plurinucleated fibers at larval stages. Furthermore, Myf5- or Myod-expressing anlagen are identified in craniofacial myogenesis. CONCLUSIONS The first median and lateral myogenesis and their associated MRF programs have probably disappeared in mammals. However, some aspects of Xenopus myogenesis have been conserved such as the development of somitic muscles by successive myogenic waves and the existence of Myf5-dependent and -independent lineages.
Collapse
Affiliation(s)
- Bruno Della Gaspera
- Centre d'Etude de la Sensori-Motricité, UMR 8194 CNRS, Université Paris Descartes, Centre Universitaire des Saints-Pères, 45 rue des Saints-Pères, Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Holland LZ, Onai T. Early development of cephalochordates (amphioxus). WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2011; 1:167-83. [PMID: 23801434 DOI: 10.1002/wdev.11] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The Phylum Chordata includes three groups--Vertebrata, Tunicata, and Cephalochordata. In cephalochordates, commonly called amphioxus or lancelets, which are basal in the Chordata, the eggs are small and relatively non-yolky. As in vertebrates, cleavage is indeterminate with cell fates determined gradually as development proceeds. The oocytes are attached to the ovarian follicle at the animal pole, where the oocyte nucleus is located. The cytoplasm at the opposite side of the egg, the vegetal pole, contains the future germ plasm or pole plasm, which includes determinants of the germline. After fertilization, additional asymmetries are established by movements of the egg and sperm nuclei, resulting in a concentration of mitochondria at one side of the animal hemisphere. This may be related to establishment of the dorsal/ventral axis. Patterning along the embryonic axes is mediated by secreted signaling proteins. Dorsal identity is specified by Nodal/Vg1 signaling, while during the gastrula stage, opposition between Nodal/Vg1 and BMP signaling establishes dorsal/anterior (i.e., head) and ventral/posterior (i.e., trunk/tail) identities, respectively. Wnt/β-catenin signaling specifies posterior identity while retinoic acid signaling specifies positions along the anterior/posterior axis. These signals are further modulated by a number of secreted antagonists. This fundamental patterning mechanism is conserved, with some modifications, in vertebrates.
Collapse
Affiliation(s)
- Linda Z Holland
- Marine Biology Research Division, Scripps Institution of Oceanography, La Jolla, CA, USA.
| | | |
Collapse
|
23
|
Nagashima H, Kuraku S, Uchida K, Kawashima-Ohya Y, Narita Y, Kuratani S. Body plan of turtles: an anatomical, developmental and evolutionary perspective. Anat Sci Int 2011; 87:1-13. [DOI: 10.1007/s12565-011-0121-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Accepted: 10/24/2011] [Indexed: 10/15/2022]
|
24
|
Kawashima-Ohya Y, Narita Y, Nagashima H, Usuda R, Kuratani S. Hepatocyte growth factor is crucial for development of the carapace in turtles. Evol Dev 2011; 13:260-8. [PMID: 21535464 PMCID: PMC3121961 DOI: 10.1111/j.1525-142x.2011.00474.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Turtles are characterized by their shell, composed of a dorsal carapace and a ventral plastron. The carapace first appears as the turtle-specific carapacial ridge (CR) on the lateral aspect of the embryonic flank. Accompanying the acquisition of the shell, unlike in other amniotes, hypaxial muscles in turtle embryos appear as thin threads of fibrous tissue. To understand carapacial evolution from the perspective of muscle development, we compared the development of the muscle plate, the anlage of hypaxial muscles, between the Chinese soft-shelled turtle, Pelodiscus sinensis, and chicken embryos. We found that the ventrolateral lip (VLL) of the thoracic dermomyotome of P. sinensis delaminates early and produces sparse muscle plate in the lateral body wall. Expression patterns of the regulatory genes for myotome differentiation, such as Myf5, myogenin, Pax3, and Pax7 have been conserved among amniotes, including turtles. However, in P. sinensis embryos, the gene hepatocyte growth factor (HGF), encoding a regulatory factor for delamination of the dermomyotomal VLL, was uniquely expressed in sclerotome and the lateral body wall at the interlimb level. Implantation of COS-7 cells expressing a HGF antagonist into the turtle embryo inhibited CR formation. We conclude that the de novo expression of HGF in the turtle mesoderm would have played an innovative role resulting in the acquisition of the turtle-specific body plan.
Collapse
Affiliation(s)
- Yoshie Kawashima-Ohya
- Laboratory for Evolutionary Morphology, RIKEN Center for Developmental Biology (CDB), 2-2-3 Minatojima-minami, Kobe 650-0047, Japan
| | | | | | | | | |
Collapse
|
25
|
Sambasivan R, Kuratani S, Tajbakhsh S. An eye on the head: the development and evolution of craniofacial muscles. Development 2011; 138:2401-15. [DOI: 10.1242/dev.040972] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Skeletal muscles exert diverse functions, enabling both crushing with great force and movement with exquisite precision. A remarkably distinct repertoire of genes and ontological features characterise this tissue, and recent evidence has shown that skeletal muscles of the head, the craniofacial muscles, are evolutionarily, morphologically and molecularly distinct from those of the trunk. Here, we review the molecular basis of craniofacial muscle development and discuss how this process is different to trunk and limb muscle development. Through evolutionary comparisons of primitive chordates (such as amphioxus) and jawless vertebrates (such as lampreys) with jawed vertebrates, we also provide some clues as to how this dichotomy arose.
Collapse
Affiliation(s)
- Ramkumar Sambasivan
- Institut Pasteur, Stem Cells and Development, Paris, F-75015, France
- CNRS URA 2578, 25 rue du Dr Roux, Paris, F-75015, France
| | - Shigeru Kuratani
- Laboratory for Evolutionary Morphology, RIKEN Center for Developmental Biology, 2-2-3 Minatojima-minami, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Shahragim Tajbakhsh
- Institut Pasteur, Stem Cells and Development, Paris, F-75015, France
- CNRS URA 2578, 25 rue du Dr Roux, Paris, F-75015, France
| |
Collapse
|
26
|
Caputo V, Giovannotti M, Cerioni PN, Splendiani A, Tagliavini J, Olmo E. Chromosomal study of a lamprey (Lampetra zanandreai Vladykov, 1955) (Petromyzonida: Petromyzontiformes): conventional and FISH analysis. Chromosome Res 2011; 19:481-91. [DOI: 10.1007/s10577-011-9197-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Revised: 02/21/2011] [Accepted: 02/24/2011] [Indexed: 12/22/2022]
|
27
|
Expression and interaction of muscle-related genes in the lamprey imply the evolutionary scenario for vertebrate skeletal muscle, in association with the acquisition of the neck and fins. Dev Biol 2011; 350:217-27. [DOI: 10.1016/j.ydbio.2010.10.029] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Revised: 10/19/2010] [Accepted: 10/20/2010] [Indexed: 01/04/2023]
|
28
|
Jaw muscularization requires Dlx expression by cranial neural crest cells. Proc Natl Acad Sci U S A 2010; 107:11441-6. [PMID: 20534536 DOI: 10.1073/pnas.1001582107] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The origin of active predation in vertebrates is associated with the rise of three major, uniquely derived developmental characteristics of the head: (i) migratory cranial neural crest cells (CNCCs) giving rise to most skeletal skull elements; (ii) expression of Dlx genes by CNCCs in the Hox-free first pharyngeal arch (PA1); and (iii) muscularization of PA1 derivatives. Here we show that these three innovations are tightly linked. Expression of Dlx genes by CNCCs is not only necessary for head skeletogenesis, but also for the determination, differentiation, and patterning of cephalic myogenic mesoderm leading to masticatory muscle formation. In particular, inactivation of Dlx5 and Dlx6 in the mouse results in loss of jaw muscles. As Dlx5/6 are not expressed by the myogenic mesoderm, our findings imply an instructive role for Dlx5/6-positive CNCCs in muscle formation. The defect in muscularization does not result from the loss of mandibular identity observed in Dlx5/6(-/-) mice because masticatory muscles are still present in EdnRA(-/-) mutants, which display a similar jaw transformation. The genesis of jaws and their muscularization should therefore be seen as an integrated Dlx-dependent developmental process at the origin of the vertebrate head. The role of Dlx genes in defining gnathostome jaw identity could, therefore, be secondary to a more primitive function in the genesis of the oral skeletomuscular system.
Collapse
|
29
|
Abstract
The dermomyotome is a transient epithelial sheet that forms from the dorsal aspect of the somite. The dermomyotome gives rise to a variety of tissues, most importantly myotomal muscle and dermis. Despite the central importance of the dermomyotome in the development of amniotes, the question of its existence in lower vertebrates has been lastingly eluded. The combination of single-cell lineage tracing and gene expression analysis has recently led to the identification in fish of a somitic sub-domain that exhibits structural and functional features of the amniote dermomyotome.
Collapse
|
30
|
Johanson Z. Evolution of paired fins and the lateral somitic frontier. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2010; 314:347-52. [DOI: 10.1002/jez.b.21343] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
31
|
Development and analysis of a germline BAC resource for the sea lamprey, a vertebrate that undergoes substantial chromatin diminution. Chromosoma 2010; 119:381-9. [PMID: 20195622 DOI: 10.1007/s00412-010-0263-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2009] [Revised: 01/27/2010] [Accepted: 01/28/2010] [Indexed: 01/05/2023]
Abstract
Over the last several years, the sea lamprey (Petromyzon marinus) has grown substantially as a model for understanding the evolutionary fundaments and capacity of vertebrate developmental and genome biology. Recent work on the lamprey genome has resulted in a preliminary assembly of the lamprey genome and led to the realization that nearly all somatic cell lineages undergo extensive programmed rearrangements. Here we describe the development of a bacterial artificial chromosome (BAC) resource for lamprey germline DNA and use sequence information from this resource to probe the subchromosomal structure of the lamprey genome. The arrayed germline BAC library represents approximately 10x coverage of the lamprey genome. Analyses of BAC-end sequences reveal that the lamprey genome possesses a high content of repetitive sequences (relative to human), which show strong clustering at the subchromosomal level. This pattern is not unexpected given that the sea lamprey genome is dispersed across a large number of chromosomes (n approximately 99) and suggests a low-copy DNA targeting strategy for efficiently generating informative paired-BAC-end linkages from highly repetitive genomes. This library therefore represents a new and biologically informed resource for understanding the structure of the lamprey genome and the biology of programmed genome rearrangement.
Collapse
|
32
|
Zhang G. An evo-devo view on the origin of the backbone: evolutionary development of the vertebrae. Integr Comp Biol 2009; 49:178-86. [PMID: 21669856 DOI: 10.1093/icb/icp061] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Vertebral columns are a group of diverse axial structures that define the vertebrates and provide supportive, locomotive, protective, and other important functions. The embryonic origin of the first vertebral element in this subphylum, the lamprey arcualia, has remained a puzzle for more than a century although much developmental and genetic progress has been made. The comparative approach is a very powerful tool for studying vertebrate morphological variation and understanding how the novel structures were generated during evolution. Here, I first briefly describe the vertebral structures and their developmental processes in major taxa, and then analyze the most recently published data on the basal vertebrates. Finally, an ontogenetic and phylogenetic origin is proposed. The lamprey may have already evolved a sclerotome, which gave rise to arcualia ontogenetically; whole genome duplications likely promoted the establishment of sclerotomal core genetic program by gene co-options.
Collapse
Affiliation(s)
- Guangjun Zhang
- The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, E17-336, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| |
Collapse
|
33
|
Abstract
In general, the strict preservation of broad-scale structure is thought to be critical for maintaining the precisely tuned functionality of vertebrate genomes, although nearly all vertebrate species undergo a small number of programmed local rearrangements during development (e.g., remodeling of adaptive immune receptor loci). However, a limited number of metazoan species undergo much more extensive reorganizations as a normal feature of their development. Here, we show that the sea lamprey (Petromyzon marinus), a jawless vertebrate, undergoes a dramatic remodeling of its genome, resulting in the elimination of hundreds of millions of base pairs (and at least one transcribed locus) from many somatic cell lineages during embryonic development. These studies reveal the highly dynamic nature of the lamprey genome and provide the first example of broad-scale programmed rearrangement of a definitively vertebrate genome. Understanding the mechanisms by which this vertebrate species regulates such extensive remodeling of its genome will provide invaluable insight into factors that can promote stability and change in vertebrate genomes.
Collapse
|
34
|
Hammond KL, Baxendale S, McCauley DW, Ingham PW, Whitfield TT. Expression ofpatched, prdm1andengrailedin the lamprey somite reveals conserved responses to Hedgehog signaling. Evol Dev 2009; 11:27-40. [DOI: 10.1111/j.1525-142x.2008.00300.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
35
|
Ohtani K, Yao T, Kobayashi M, Kusakabe R, Kuratani S, Wada H. Expression of Sox and fibrillar collagen genes in lamprey larval chondrogenesis with implications for the evolution of vertebrate cartilage. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2008; 310:596-607. [PMID: 18702077 DOI: 10.1002/jez.b.21231] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Lampreys possess unique types of cartilage in which elastin-like proteins are the dominant matrix component, whereas gnathostome cartilage is mainly composed of fibrillar collagen. Despite the differences in protein composition, the Sox-col2a1 genetic cascade was suggested to be conserved between lamprey pharyngeal cartilage and gnathostome cartilage. We examined whether the cascade is conserved in another type of lamprey cartilage, the trabecular cartilage. We found that SoxD and SoxE are expressed in both trabecular and pharyngeal cartilages. However, trabecular cartilage shows no clade A fibrillar collagen gene expression, including genes expressed in pharyngeal cartilage of this animal. On the basis of these observations, we propose that lampreys possess an ancestral type of cartilage that is similar to amphioxus gill cartilage, and in this respect, gnathostome cartilage can be regarded as derived for the loss of elastin-like protein as a cartilage component and recruitment of fibrillar collagen, which is included as a minor component in the ancestral cartilage, as the main component.
Collapse
Affiliation(s)
- Kaoru Ohtani
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | | | | | | | | | | |
Collapse
|
36
|
Beaster-Jones L, Kaltenbach SL, Koop D, Yuan S, Chastain R, Holland LZ. Expression of somite segmentation genes in amphioxus: a clock without a wavefront? Dev Genes Evol 2008; 218:599-611. [PMID: 18949486 DOI: 10.1007/s00427-008-0257-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2008] [Accepted: 09/26/2008] [Indexed: 12/22/2022]
Abstract
In the basal chordate amphioxus (Branchiostoma), somites extend the full length of the body. The anteriormost somites segment during the gastrula and neurula stages from dorsolateral grooves of the archenteron. The remaining ones pinch off, one at a time, from the tail bud. These posterior somites appear to be homologous to those of vertebrates, even though the latter pinch off from the anterior end of bands of presomitic mesoderm rather than directly from the tail bud. To gain insights into the evolution of mesodermal segmentation in chordates, we determined the expression of ten genes in nascent amphioxus somites. Five (Uncx4.1, NeuroD/atonal-related, IrxA, Pcdhdelta2-17/18, and Hey1) are expressed in stripes in the dorsolateral mesoderm at the gastrula stage and in the tail bud while three (Paraxis, Lcx, and Axin) are expressed in the posterior mesendoderm at the gastrula and neurula stages and in the tail bud at later stages. Expression of two genes (Pbx and OligA) suggests roles in the anterior somites that may be unrelated to initial segmentation. Together with previous data, our results indicate that, with the exception that Engrailed is only segmentally expressed in the anterior somites, the genetic mechanisms controlling formation of both the anterior and posterior somites are probably largely identical. Thus, the fundamental pathways for mesodermal segmentation involving Notch-Delta, Wnt/beta-catenin, and Fgf signaling were already in place in the common ancestor of amphioxus and vertebrates although budding of somites from bands of presomitic mesoderm exhibiting waves of expression of Notch, Wnt, and Fgf target genes was likely a vertebrate novelty. Given the conservation of segmentation gene expression between amphioxus and vertebrate somites, we propose that the clock mechanism may have been established in the basal chordate, while the wavefront evolved later in the vertebrate lineage.
Collapse
Affiliation(s)
- Laura Beaster-Jones
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093-0202, USA
| | | | | | | | | | | |
Collapse
|
37
|
Kuratani S. Evolutionary developmental studies of cyclostomes and the origin of the vertebrate neck. Dev Growth Differ 2008; 50 Suppl 1:S189-94. [DOI: 10.1111/j.1440-169x.2008.00985.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
38
|
Holland LZ, Holland ND, Gilland E. Amphioxus and the evolution of head segmentation. Integr Comp Biol 2008; 48:630-46. [DOI: 10.1093/icb/icn060] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
39
|
Zhou HM, Wang J, Rogers R, Conway SJ. Lineage-specific responses to reduced embryonic Pax3 expression levels. Dev Biol 2008; 315:369-82. [PMID: 18243171 PMCID: PMC2292838 DOI: 10.1016/j.ydbio.2007.12.020] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2007] [Revised: 12/17/2007] [Accepted: 12/18/2007] [Indexed: 12/16/2022]
Abstract
Pax3 is an essential paired- and homeodomain-containing transcription factor that is necessary for closure of the neural tube, and morphogenesis of the migratory neural crest and myoblast lineages. Homozygous loss-of-function mutation results in mid-gestational lethality with defects in myogenesis, neural tube closure and neural crest-derived lineages including melanocytes, Schwann cells and insufficient mesenchymal cells to septate the cardiac outflow tract. To address the function of Pax3 in later fetal stages and in specific adult tissues, we generated a floxed Pax3 allele (Pax3(flox)). An intermediate allele (Pax3(neo)) was produced via creation of the floxed allele, in which the TK-neo(R) cassette is present between exons 5 and 6. It was deduced to be a hypomorph, as Pax3 protein expression is reduced by 80% and homozygote hypomorphs die postnatally. To assess the consequences of reduced Pax3 levels on the various Pax3-expressing lineages and to determine the underlying cause of lethality, we examined Pax3 spatiotemporal expression and the resultant defects. Defective limb and tongue musculature were observed and lethality was due to an inability to suckle. However, the heart, diaphragm, trunk musculature, as well as the various neural crest-derived lineages and neural tube were all unaffected by reduced Pax3 levels. Significantly, elevated levels of the related Pax7 protein were present in unaffected neural tube and epaxial somatic component. The limb and tongue myogenic defects were found to be due to a significant increase in apoptosis within the somites that leads to a paucity of migratory hypaxial myoblasts. These effects were attributed to the hypomorphic effect of the Pax3(neo) allele, as removal of the TK-neo(R) cassette completely relieves the hypomorphic effect, as 100% of the Pax3(flox/flox) mice were normal. These data demonstrate a lineage-specific response to approximately 80% loss of Pax3 protein expression, with myogenesis of limb and tongue being most sensitive to reduced Pax3 levels. Thus, we have established that there are different minimum threshold requirements for Pax3 within different Pax3-expressing lineages.
Collapse
Affiliation(s)
- Hong-Ming Zhou
- Cardiovascular Development Group, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Jian Wang
- Cardiovascular Development Group, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Rhonda Rogers
- Cardiovascular Development Group, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Simon J. Conway
- Cardiovascular Development Group, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202
| |
Collapse
|
40
|
Matsuura M, Nishihara H, Onimaru K, Kokubo N, Kuraku S, Kusakabe R, Okada N, Kuratani S, Tanaka M. Identification of fourEngrailed genes in the Japanese lamprey,Lethenteron japonicum. Dev Dyn 2008; 237:1581-9. [DOI: 10.1002/dvdy.21552] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|