1
|
Han Z, Lin Y, Guo X, Xu J, Gao X, Yang R, Zhao Y, Gui M, Zhang L, Guo Y, Chen Z. "Osteo-Organogenesis Niche" Hyaluronic Acid Engineered Materials Directing Re-Osteo-Organogenesis via Manipulating Macrophage CD44-MAPK/ERK-ETV1/5-MRC1 Axis. Adv Healthc Mater 2024:e2403122. [PMID: 39440638 DOI: 10.1002/adhm.202403122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/06/2024] [Indexed: 10/25/2024]
Abstract
The strategy of re-organogenesis provides an optimal framework for restoring complex organ structures and functions in adult damage. While the focus has often been on restoring organogenesis stem cells, there is limited investigations of reverting the environmental niche to support this approach. The guiding principle of "Nature selects the fittest to survive" drives the intricate dynamic changes in cellular events within the niche environment, especially through immune surveillance. The extracellular matrix (ECM) serves as the "self-associated molecular patterns" of the niche, containing extensive data on cell-niche reaction data and acting as the active tuner of immune surveillance. In this study, hyaluronic acid (HA) is identified as a unique component of the ECM in cranial osteo-organogenesis. Mechanistically, HA activates the Cluster of Differentiation 44 (CD44)-Mitogen-Activated Protein Kinase (MAPK)/Extracellular Signal-Regulated Kinase (ERK)-Ets Variant 1/5 (ETV1/5)- Mannose Receptor C-Type 1 (MRC1) axis in macrophages, establishing a distinct immune surveillance during osteo-organogenesis. Furthermore, HA is utilized as a novel engineered material for an "Osteo-organogenesis niche", restoring immune surveillance and synergistically regulating stem cells to achieve re-osteo-organogenesis in cranial defects of rats. Taken together, the study unveils a previously unknown strategy for leveraging re-organogenesis by utilizing "organogenesis niche" ECM engineered materials to manipulate immune surveillance, thereby comprehensively regulating stem cells and other tissue cells effectively for re-organogenesis.
Collapse
Affiliation(s)
- Zongpu Han
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, China
- Guangdong Research Center for Dental and Cranial Rehabilitation and Material Engineering, Guangzhou, 510055, China
| | - Yixiong Lin
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, China
- Guangdong Research Center for Dental and Cranial Rehabilitation and Material Engineering, Guangzhou, 510055, China
| | - Xinyu Guo
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, China
- Guangdong Research Center for Dental and Cranial Rehabilitation and Material Engineering, Guangzhou, 510055, China
| | - Jieyun Xu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, China
- Guangdong Research Center for Dental and Cranial Rehabilitation and Material Engineering, Guangzhou, 510055, China
| | - Xiaomeng Gao
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, China
- Guangdong Research Center for Dental and Cranial Rehabilitation and Material Engineering, Guangzhou, 510055, China
| | - Ruihan Yang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, China
- Guangdong Research Center for Dental and Cranial Rehabilitation and Material Engineering, Guangzhou, 510055, China
| | - Yuan Zhao
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, China
- Guangdong Research Center for Dental and Cranial Rehabilitation and Material Engineering, Guangzhou, 510055, China
| | - Mixiao Gui
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, China
- Guangdong Research Center for Dental and Cranial Rehabilitation and Material Engineering, Guangzhou, 510055, China
| | - Linjun Zhang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, China
- Guangdong Research Center for Dental and Cranial Rehabilitation and Material Engineering, Guangzhou, 510055, China
| | - Yuanlong Guo
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, China
- Guangdong Research Center for Dental and Cranial Rehabilitation and Material Engineering, Guangzhou, 510055, China
| | - Zetao Chen
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, China
- Guangdong Research Center for Dental and Cranial Rehabilitation and Material Engineering, Guangzhou, 510055, China
| |
Collapse
|
2
|
Wéber I, Dakos A, Mészár Z, Matesz C, Birinyi A. Developmental patterns of extracellular matrix molecules in the embryonic and postnatal mouse hindbrain. Front Neuroanat 2024; 18:1369103. [PMID: 38496826 PMCID: PMC10940344 DOI: 10.3389/fnana.2024.1369103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 02/16/2024] [Indexed: 03/19/2024] Open
Abstract
Normal brain development requires continuous communication between developing neurons and their environment filled by a complex network referred to as extracellular matrix (ECM). The ECM is divided into distinct families of molecules including hyaluronic acid, proteoglycans, glycoproteins such as tenascins, and link proteins. In this study, we characterize the temporal and spatial distribution of the extracellular matrix molecules in the embryonic and postnatal mouse hindbrain by using antibodies and lectin histochemistry. In the embryo, hyaluronan and neurocan were found in high amounts until the time of birth whereas versican and tenascin-R were detected in lower intensities during the whole embryonic period. After birth, both hyaluronic acid and neurocan still produced intense staining in almost all areas of the hindbrain, while tenascin-R labeling showed a continuous increase during postnatal development. The reaction with WFA and aggrecan was revealed first 4th postnatal day (P4) with low staining intensities, while HAPLN was detected two weeks after birth (P14). The perineuronal net appeared first around the facial and vestibular neurons at P4 with hyaluronic acid cytochemistry. One week after birth aggrecan, neurocan, tenascin-R, and WFA were also accumulated around the neurons located in several hindbrain nuclei, but HAPLN1 was detected on the second postnatal week. Our results provide further evidence that many extracellular macromolecules that will be incorporated into the perineuronal net are already expressed at embryonic and early postnatal stages of development to control differentiation, migration, and synaptogenesis of neurons. In late postnatal period, the experience-driven neuronal activity induces formation of perineuronal net to stabilize synaptic connections.
Collapse
Affiliation(s)
- Ildikó Wéber
- Laboratory of Brainstem Neuronal Networks and Neuronal Regeneration, Department of Anatomy, Histology, and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Adél Dakos
- Department of Pediatric and Preventive Dentistry, Faculty of Dentistry, University of Debrecen, Debrecen, Hungary
| | - Zoltán Mészár
- Laboratory of Brainstem Neuronal Networks and Neuronal Regeneration, Department of Anatomy, Histology, and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Clara Matesz
- Laboratory of Brainstem Neuronal Networks and Neuronal Regeneration, Department of Anatomy, Histology, and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Division of Oral Anatomy, Faculty of Dentistry, University of Debrecen, Debrecen, Hungary
| | - András Birinyi
- Laboratory of Brainstem Neuronal Networks and Neuronal Regeneration, Department of Anatomy, Histology, and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
3
|
Luu O, Barua D, Winklbauer R. Cell contacts and pericellular matrix in the Xenopus gastrula chordamesoderm. PLoS One 2024; 19:e0297420. [PMID: 38346069 PMCID: PMC10861091 DOI: 10.1371/journal.pone.0297420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 01/04/2024] [Indexed: 02/15/2024] Open
Abstract
Convergent extension of the chordamesoderm is the best-examined gastrulation movement in Xenopus. Here we study general features of cell-cell contacts in this tissue by combining depletion of adhesion factors C-cadherin, Syndecan-4, fibronectin, and hyaluronic acid, the analysis of respective contact width spectra and contact angles, and La3+ staining of the pericellular matrix. We provide evidence that like in other gastrula tissues, cell-cell adhesion in the chordamesoderm is largely mediated by different types of pericellular matrix. Specific glycocalyx structures previously identified in Xenopus gastrula tissues are absent in chordamesoderm but other contact types like 10-20 nm wide La3+ stained structures are present instead. Knockdown of any of the adhesion factors reduces the abundance of cell contacts but not the average relative adhesiveness of the remaining ones: a decrease of adhesiveness at low contact widths is compensated by an increase of contact widths and an increase of adhesiveness proportional to width. From the adhesiveness-width relationship, we derive a model of chordamesoderm cell adhesion that involves the interdigitation of distinct pericellular matrix units. Quantitative description of pericellular matrix deployment suggests that reduced contact abundance upon adhesion factor depletion is correlated with excessive accumulation of matrix material in non-adhesive gaps and the loss of some contact types.
Collapse
Affiliation(s)
- Olivia Luu
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Debanjan Barua
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Rudolf Winklbauer
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
4
|
Li Y, Xiong Z, Zhang M, Hysi PG, Qian Y, Adhikari K, Weng J, Wu S, Du S, Gonzalez-Jose R, Schuler-Faccini L, Bortolini MC, Acuna-Alonzo V, Canizales-Quinteros S, Gallo C, Poletti G, Bedoya G, Rothhammer F, Wang J, Tan J, Yuan Z, Jin L, Uitterlinden AG, Ghanbari M, Ikram MA, Nijsten T, Zhu X, Lei Z, Jia P, Ruiz-Linares A, Spector TD, Wang S, Kayser M, Liu F. Combined genome-wide association study of 136 quantitative ear morphology traits in multiple populations reveal 8 novel loci. PLoS Genet 2023; 19:e1010786. [PMID: 37459304 PMCID: PMC10351707 DOI: 10.1371/journal.pgen.1010786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 05/16/2023] [Indexed: 07/20/2023] Open
Abstract
Human ear morphology, a complex anatomical structure represented by a multidimensional set of correlated and heritable phenotypes, has a poorly understood genetic architecture. In this study, we quantitatively assessed 136 ear morphology traits using deep learning analysis of digital face images in 14,921 individuals from five different cohorts in Europe, Asia, and Latin America. Through GWAS meta-analysis and C-GWASs, a recently introduced method to effectively combine GWASs of many traits, we identified 16 genetic loci involved in various ear phenotypes, eight of which have not been previously associated with human ear features. Our findings suggest that ear morphology shares genetic determinants with other surface ectoderm-derived traits such as facial variation, mono eyebrow, and male pattern baldness. Our results enhance the genetic understanding of human ear morphology and shed light on the shared genetic contributors of different surface ectoderm-derived phenotypes. Additionally, gene editing experiments in mice have demonstrated that knocking out the newly ear-associated gene (Intu) and a previously ear-associated gene (Tbx15) causes deviating mouse ear morphology.
Collapse
Affiliation(s)
- Yi Li
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, China
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, China
| | - Ziyi Xiong
- Department of Genetic Identification, Erasmus MC, University Medical Center, the Netherlands
- Department of Epidemiology, Erasmus MC, University Medical Center, the Netherlands
| | - Manfei Zhang
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, China
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Fudan University, China
| | - Pirro G. Hysi
- Department of Twin Research and Genetic Epidemiology, King’s College London, United Kingdom
| | - Yu Qian
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, China
- Beijing No.8 High School, Beijing, China
| | - Kaustubh Adhikari
- Department of Genetics, Evolution and Environment, and UCL Genetics Institute, University College London, United Kingdom
- School of Mathematics and Statistics, Faculty of Science, Technology, Engineering and Mathematics, The Open University, United Kingdom
| | - Jun Weng
- Center for Biometrics and Security Research & National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, China
| | - Sijie Wu
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, China
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Fudan University, China
- Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, China
| | - Siyuan Du
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, China
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
- University of Chinese Academy of Sciences, China
| | - Rolando Gonzalez-Jose
- Instituto Patagonico de Ciencias Sociales y Humanas, Centro Nacional Patagonico, CONICET, Argentina
| | | | | | - Victor Acuna-Alonzo
- Molecular Genetics Laboratory, National School of Anthropology and History, Mexico
| | - Samuel Canizales-Quinteros
- Unidad de Genomica de Poblaciones Aplicada a la Salud, Facultad de Quimica, UNAM-Instituto Nacional de Medicina Genomica, Mexico
| | - Carla Gallo
- Laboratorios de Investigacion y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Peru
| | - Giovanni Poletti
- Laboratorios de Investigacion y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Peru
| | - Gabriel Bedoya
- GENMOL (Genetica Molecular), Universidad de Antioquia, Medellin, Colombia
| | | | - Jiucun Wang
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Fudan University, China
- Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, China
| | - Jingze Tan
- Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, China
| | - Ziyu Yuan
- Fudan-Taizhou Institute of Health Sciences, China
| | - Li Jin
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, China
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Fudan University, China
- Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, China
- Fudan-Taizhou Institute of Health Sciences, China
| | - André G. Uitterlinden
- Department of Epidemiology, Erasmus MC, University Medical Center, the Netherlands
- Department of Internal Medicine, Erasmus MC, University Medical Center, the Netherlands
| | - Mohsen Ghanbari
- Department of Epidemiology, Erasmus MC, University Medical Center, the Netherlands
| | - M. Arfan Ikram
- Department of Epidemiology, Erasmus MC, University Medical Center, the Netherlands
| | - Tamar Nijsten
- Department of Dermatology, Erasmus MC, University Medical Center, the Netherlands
| | - Xiangyu Zhu
- Center for Biometrics and Security Research & National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, China
| | - Zhen Lei
- Center for Biometrics and Security Research & National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, China
| | - Peilin Jia
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, China
| | - Andres Ruiz-Linares
- Department of Genetics, Evolution and Environment, and UCL Genetics Institute, University College London, United Kingdom
- Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, China
- Aix-Marseille Universite, CNRS, EFS, ADES, France
| | - Timothy D. Spector
- Department of Twin Research and Genetic Epidemiology, King’s College London, United Kingdom
| | - Sijia Wang
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, China
| | - Manfred Kayser
- Department of Genetic Identification, Erasmus MC, University Medical Center, the Netherlands
| | - Fan Liu
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, China
- Department of Genetic Identification, Erasmus MC, University Medical Center, the Netherlands
| |
Collapse
|
5
|
Message in a Scaffold: Natural Biomaterials for Three-Dimensional (3D) Bioprinting of Human Brain Organoids. Biomolecules 2022; 13:biom13010025. [PMID: 36671410 PMCID: PMC9855696 DOI: 10.3390/biom13010025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/07/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022] Open
Abstract
Brain organoids are invaluable tools for pathophysiological studies or drug screening, but there are still challenges to overcome in making them more reproducible and relevant. Recent advances in three-dimensional (3D) bioprinting of human neural organoids is an emerging approach that may overcome the limitations of self-organized organoids. It requires the development of optimal hydrogels, and a wealth of research has improved our knowledge about biomaterials both in terms of their intrinsic properties and their relevance on 3D culture of brain cells and tissue. Although biomaterials are rarely biologically neutral, few articles have reviewed their roles on neural cells. We here review the current knowledge on unmodified biomaterials amenable to support 3D bioprinting of neural organoids with a particular interest in their impact on cell homeostasis. Alginate is a particularly suitable bioink base for cell encapsulation. Gelatine is a valuable helper agent for 3D bioprinting due to its viscosity. Collagen, fibrin, hyaluronic acid and laminin provide biological support to adhesion, motility, differentiation or synaptogenesis and optimize the 3D culture of neural cells. Optimization of specialized hydrogels to direct differentiation of stem cells together with an increased resolution in phenotype analysis will further extend the spectrum of possible bioprinted brain disease models.
Collapse
|
6
|
Inubushi T, Nakanishi Y, Abe M, Takahata Y, Nishimura R, Kurosaka H, Irie F, Yamashiro T, Yamaguchi Y. The cell surface hyaluronidase TMEM2 plays an essential role in mouse neural crest cell development and survival. PLoS Genet 2022; 18:e1009765. [PMID: 35839257 PMCID: PMC9328550 DOI: 10.1371/journal.pgen.1009765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 07/27/2022] [Accepted: 06/29/2022] [Indexed: 11/30/2022] Open
Abstract
Hyaluronan (HA) is a major extracellular matrix component whose tissue levels are dynamically regulated during embryonic development. Although the synthesis of HA has been shown to exert a substantial influence on embryonic morphogenesis, the functional importance of the catabolic aspect of HA turnover is poorly understood. Here, we demonstrate that the transmembrane hyaluronidase TMEM2 plays an essential role in neural crest development and the morphogenesis of neural crest derivatives, as evidenced by the presence of severe craniofacial abnormalities in Wnt1-Cre–mediated Tmem2 knockout (Tmem2CKO) mice. Neural crest cells (NCCs) are a migratory population of cells that gives rise to diverse cell lineages, including the craniofacial complex, the peripheral nervous system, and part of the heart. Analysis of Tmem2 expression during NCC formation and migration reveals that Tmem2 is expressed at the site of NCC delamination and in emigrating Sox9-positive NCCs. In Tmem2CKO embryos, the number of NCCs emigrating from the neural tube is greatly reduced. Furthermore, linage tracing reveals that the number of NCCs traversing the ventral migration pathway and the number of post-migratory neural crest derivatives are both significantly reduced in a Tmem2CKO background. In vitro studies using Tmem2-depleted mouse O9-1 neural crest cells demonstrate that Tmem2 expression is essential for the ability of these cells to form focal adhesions on and to migrate into HA-containing substrates. Additionally, we show that Tmem2-deficient NCCs exhibit increased apoptotic cell death in NCC-derived tissues, an observation that is corroborated by in vitro experiments using O9-1 cells. Collectively, our data demonstrate that TMEM2-mediated HA degradation plays an essential role in normal neural crest development. This study reveals the hitherto unrecognized functional importance of HA degradation in embryonic development and highlights the pivotal role of Tmem2 in the developmental process. As a major component of the extracellular matrix, hyaluronan is particularly abundant in the extracellular matrix of embryonic tissues, where its expression is dynamically regulated during tissue morphogenetic processes. Tissue levels of hyaluronan are regulated not only by its synthesis but also by its degradation. Curiously, however, mice lacking known hyaluronidase molecules, including HYAL1 and HYAL2, exhibit minimal embryonic phenotypes. As a result, our understanding of the role of the catabolic aspect of hyaluronan metabolism in embryonic development is quite limited. Here, we show that TMEM2, a recently identified hyaluronidase that degrades hyaluronan on the cell surface, plays a critical role in the development of neural crest cells and their derivatives. Our analyses of Tmem2 conditional knockout mice, Tmem2 knock-in reporter mice, and in vitro cell cultures demonstrate that TMEM2 is essential for generating a tissue environment needed for efficient migration of neural crest cells from the neural tube. Our paper reveals for the first time that the degradation of hyaluronan plays a specific regulatory role in embryonic morphogenesis, and that dysregulation of hyaluronan degradation leads to severe developmental defects.
Collapse
Affiliation(s)
- Toshihiro Inubushi
- Department of Orthodontics and Dentofacial Orthopedics, Osaka University Graduate School of Dentistry, Osaka, Japan
- * E-mail:
| | - Yuichiro Nakanishi
- Department of Orthodontics and Dentofacial Orthopedics, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Makoto Abe
- Department of Oral Anatomy and Developmental Biology, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Yoshifumi Takahata
- Department of Molecular and Cellular Biochemistry, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Riko Nishimura
- Department of Molecular and Cellular Biochemistry, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Hiroshi Kurosaka
- Department of Orthodontics and Dentofacial Orthopedics, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Fumitoshi Irie
- Human Genetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, United States of America
| | - Takashi Yamashiro
- Department of Orthodontics and Dentofacial Orthopedics, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Yu Yamaguchi
- Human Genetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, United States of America
| |
Collapse
|
7
|
Wilson ES, Litwa K. Synaptic Hyaluronan Synthesis and CD44-Mediated Signaling Coordinate Neural Circuit Development. Cells 2021; 10:2574. [PMID: 34685554 PMCID: PMC8533746 DOI: 10.3390/cells10102574] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/17/2021] [Accepted: 09/21/2021] [Indexed: 12/20/2022] Open
Abstract
The hyaluronan-based extracellular matrix is expressed throughout nervous system development and is well-known for the formation of perineuronal nets around inhibitory interneurons. Since perineuronal nets form postnatally, the role of hyaluronan in the initial formation of neural circuits remains unclear. Neural circuits emerge from the coordinated electrochemical signaling of excitatory and inhibitory synapses. Hyaluronan localizes to the synaptic cleft of developing excitatory synapses in both human cortical spheroids and the neonatal mouse brain and is diminished in the adult mouse brain. Given this developmental-specific synaptic localization, we sought to determine the mechanisms that regulate hyaluronan synthesis and signaling during synapse formation. We demonstrate that hyaluronan synthase-2, HAS2, is sufficient to increase hyaluronan levels in developing neural circuits of human cortical spheroids. This increased hyaluronan production reduces excitatory synaptogenesis, promotes inhibitory synaptogenesis, and suppresses action potential formation. The hyaluronan receptor, CD44, promotes hyaluronan retention and suppresses excitatory synaptogenesis through regulation of RhoGTPase signaling. Our results reveal mechanisms of hyaluronan synthesis, retention, and signaling in developing neural circuits, shedding light on how disease-associated hyaluronan alterations can contribute to synaptic defects.
Collapse
Affiliation(s)
| | - Karen Litwa
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA;
| |
Collapse
|
8
|
Naef V, De Sarlo M, Testa G, Corsinovi D, Azzarelli R, Borello U, Ori M. The Stemness Gene Mex3A Is a Key Regulator of Neuroblast Proliferation During Neurogenesis. Front Cell Dev Biol 2020; 8:549533. [PMID: 33072742 PMCID: PMC7536324 DOI: 10.3389/fcell.2020.549533] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 08/31/2020] [Indexed: 01/31/2023] Open
Abstract
Mex3A is an RNA binding protein that can also act as an E3 ubiquitin ligase to control gene expression at the post-transcriptional level. In intestinal adult stem cells, MEX3A is required for cell self-renewal and when overexpressed, MEX3A can contribute to support the proliferation of different cancer cell types. In a completely different context, we found mex3A among the genes expressed in neurogenic niches of the embryonic and adult fish brain and, notably, its expression was downregulated during brain aging. The role of mex3A during embryonic and adult neurogenesis in tetrapods is still unknown. Here, we showed that mex3A is expressed in the proliferative region of the developing brain in both Xenopus and mouse embryos. Using gain and loss of gene function approaches, we showed that, in Xenopus embryos, mex3A is required for neuroblast proliferation and its depletion reduced the neuroblast pool, leading to microcephaly. The tissue-specific overexpression of mex3A in the developing neural plate enhanced the expression of sox2 and msi-1 keeping neuroblasts into a proliferative state. It is now clear that the stemness property of mex3A, already demonstrated in adult intestinal stem cells and cancer cells, is a key feature of mex3a also in developing brain, opening new lines of investigation to better understand its role during brain aging and brain cancer development.
Collapse
Affiliation(s)
- Valentina Naef
- Unità di Biologia Cellulare e dello Sviluppo, Dipartimento di Biologia, Università di Pisa, Pisa, Italy.,Molecular Medicine, IRCCS Fondazione Stella Maris, Pisa, Italy
| | - Miriam De Sarlo
- Unità di Biologia Cellulare e dello Sviluppo, Dipartimento di Biologia, Università di Pisa, Pisa, Italy
| | - Giovanna Testa
- Unità di Biologia Cellulare e dello Sviluppo, Dipartimento di Biologia, Università di Pisa, Pisa, Italy.,Scuola Normale Superiore di Pisa, Pisa, Italy
| | - Debora Corsinovi
- Unità di Biologia Cellulare e dello Sviluppo, Dipartimento di Biologia, Università di Pisa, Pisa, Italy
| | - Roberta Azzarelli
- Unità di Biologia Cellulare e dello Sviluppo, Dipartimento di Biologia, Università di Pisa, Pisa, Italy
| | - Ugo Borello
- Unità di Biologia Cellulare e dello Sviluppo, Dipartimento di Biologia, Università di Pisa, Pisa, Italy
| | - Michela Ori
- Unità di Biologia Cellulare e dello Sviluppo, Dipartimento di Biologia, Università di Pisa, Pisa, Italy
| |
Collapse
|
9
|
Wilson E, Knudson W, Newell-Litwa K. Hyaluronan regulates synapse formation and function in developing neural networks. Sci Rep 2020; 10:16459. [PMID: 33020512 PMCID: PMC7536407 DOI: 10.1038/s41598-020-73177-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 09/07/2020] [Indexed: 02/08/2023] Open
Abstract
Neurodevelopmental disorders present with synaptic alterations that disrupt the balance between excitatory and inhibitory signaling. For example, hyperexcitability of cortical neurons is associated with both epilepsy and autism spectrum disorders. However, the mechanisms that initially establish the balance between excitatory and inhibitory signaling in brain development are not well understood. Here, we sought to determine how the extracellular matrix directs synapse formation and regulates synaptic function in a model of human cortical brain development. The extracellular matrix, making up twenty percent of brain volume, is largely comprised of hyaluronan. Hyaluronan acts as both a scaffold of the extracellular matrix and a space-filling molecule. Hyaluronan is present from the onset of brain development, beginning with neural crest cell migration. Through acute perturbation of hyaluronan levels during synaptogenesis, we sought to determine how hyaluronan impacts the ratio of excitatory to inhibitory synapse formation and the resulting neural activity. We used 3-D cortical spheroids derived from human induced pluripotent stem cells to replicate this neurodevelopmental window. Our results demonstrate that hyaluronan preferentially surrounds nascent excitatory synapses. Removal of hyaluronan increases the expression of excitatory synapse markers and results in a corresponding increase in the formation of excitatory synapses, while also decreasing inhibitory synapse formation. This increased excitatory synapse formation elevates network activity, as demonstrated by microelectrode array analysis. In contrast, the addition of purified hyaluronan suppresses excitatory synapse formation. These results establish that the hyaluronan extracellular matrix surrounds developing excitatory synapses, where it critically regulates synapse formation and the resulting balance between excitatory to inhibitory signaling.
Collapse
Affiliation(s)
- Emily Wilson
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - Warren Knudson
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - Karen Newell-Litwa
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, Greenville, NC, USA.
| |
Collapse
|
10
|
Diverse Roles for Hyaluronan and Hyaluronan Receptors in the Developing and Adult Nervous System. Int J Mol Sci 2020; 21:ijms21175988. [PMID: 32825309 PMCID: PMC7504301 DOI: 10.3390/ijms21175988] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/17/2020] [Accepted: 08/18/2020] [Indexed: 02/07/2023] Open
Abstract
Hyaluronic acid (HA) plays a vital role in the extracellular matrix of neural tissues. Originally thought to hydrate tissues and provide mechanical support, it is now clear that HA is also a complex signaling molecule that can regulate cell processes in the developing and adult nervous systems. Signaling properties are determined by molecular weight, bound proteins, and signal transduction through specific receptors. HA signaling regulates processes such as proliferation, differentiation, migration, and process extension in a variety of cell types including neural stem cells, neurons, astrocytes, microglia, and oligodendrocyte progenitors. The synthesis and catabolism of HA and the expression of HA receptors are altered in disease and influence neuroinflammation and disease pathogenesis. This review discusses the roles of HA, its synthesis and breakdown, as well as receptor expression in neurodevelopment, nervous system function and disease.
Collapse
|
11
|
Dysregulation of Hyaluronan Homeostasis During White Matter Injury. Neurochem Res 2019; 45:672-683. [PMID: 31542857 DOI: 10.1007/s11064-019-02879-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 09/16/2019] [Accepted: 09/16/2019] [Indexed: 12/13/2022]
Abstract
Although the extra cellular matrix (ECM) comprises a major proportion of the CNS parenchyma, new roles for the ECM in regeneration and repair responses to CNS injury have only recently been appreciated. The ECM undergoes extensive remodeling following injury to the developing or mature CNS in disorders that -include perinatal hypoxic-ischemic cerebral injury, multiple sclerosis and age-related vascular dementia. Here we focus on recently described mechanisms involving hyaluronan (HA), which negatively impact myelin repair after cerebral white matter injury. Injury induced depolymerization of hyaluronan (HA)-a component of the neural ECM-can inhibit myelin repair through the actions of specific sizes of HA fragments. These bioactive fragments selectively block the maturation of late oligodendrocyte progenitors via an immune tolerance-like pathway that suppresses pro-myelination signaling. We highlight emerging new pathophysiological roles of the neural ECM, particularly of those played by HA fragments (HAf) after injury and discuss strategies to promoter repair and regeneration of chronic myelination failure.
Collapse
|
12
|
Ma J, Lwigale P. Transformation of the Transcriptomic Profile of Mouse Periocular Mesenchyme During Formation of the Embryonic Cornea. Invest Ophthalmol Vis Sci 2019; 60:661-676. [PMID: 30786278 PMCID: PMC6383728 DOI: 10.1167/iovs.18-26018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Purpose Defects in neural crest development are a major contributing factor in corneal dysgenesis, but little is known about the genetic landscape during corneal development. The purpose of this study was to provide a detailed transcriptome profile and evaluate changes in gene expression during mouse corneal development. Methods RNA sequencing was used to uncover the transcriptomic profile of periocular mesenchyme (pNC) isolated at embryonic day (E) 10.5 and corneas isolated at E14.5 and E16.5. The spatiotemporal expression of several differentially expressed genes was validated by in situ hybridization. Results Analysis of the whole-transcriptome profile between pNC and embryonic corneas identified 3815 unique differentially expressed genes. Pathway analysis revealed an enrichment of differentially expressed genes involved in signal transduction (retinoic acid, transforming growth factor-β, and Wnt pathways) and transcriptional regulation. Conclusions Our analyses, for the first time, identify a large number of differentially expressed genes during progressive stages of mouse corneal development. Our data provide a comprehensive transcriptomic profile of the developing cornea. Combined, these data serve as a valuable resource for the identification of novel regulatory networks crucial for the advancement of studies in congenital defects, stem cell therapy, bioengineering, and adult corneal diseases.
Collapse
Affiliation(s)
- Justin Ma
- BioSciences Department, Rice University, Houston, Texas, United States
| | - Peter Lwigale
- BioSciences Department, Rice University, Houston, Texas, United States
| |
Collapse
|
13
|
Corsinovi D, Giannetti K, Cericola A, Naef V, Ori M. PDGF-B: The missing piece in the mosaic of PDGF family role in craniofacial development. Dev Dyn 2019; 248:603-612. [PMID: 31070827 DOI: 10.1002/dvdy.47] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 04/09/2019] [Accepted: 04/27/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The platelet-derived growth factor (PDGF) family consists of four ligands (PDGF-A, PDGF-B, PDGF-C, PDGF-D) and two tyrosine kinase receptors (PDGFR-α and PDGFR-β). In vertebrates, PDGF signaling influences cell proliferation, migration, and matrix deposition, and its up-regulation is implicated in cancer progression. Despite this evidence, the role of each family member during embryogenesis is still incomplete and partially controversial. In particular, study of the role of pdgf signaling during craniofacial development has been focused on pdgf-a, while the role of pdgf-b is almost unknown due to the lethal phenotypes of pdgf-b-null mice. RESULTS By using a pdgf-b splice-blocking morpholino approach, we highlighted impairment of neural crest cell (NCC) migration in Xenopus laevis morphants, leading to alteration of NCC derivatives formation, such as cranial nerves and cartilages. We also uncovered a possible link between pdgf-b and the expression of cadherin superfamily members cdh6 and cdh11, which mediate cell-cell adhesion promoting NCC migration. CONCLUSIONS Our results suggested that pdgf-b signaling is involved in cranial NCC migration and it is required for proper formation of craniofacial NCC derivatives. Taken together, these data unveiled a new role for pdgf-b during vertebrate development, contributing to complete the picture of pdgf signaling role in craniofacial development.
Collapse
Affiliation(s)
| | | | | | | | - Michela Ori
- Department of Biology, University of Pisa, Pisa, Italy.,Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), Pisa, Italy
| |
Collapse
|
14
|
Naef V, Monticelli S, Corsinovi D, Mazzetto MT, Cellerino A, Ori M. The age-regulated zinc finger factor ZNF367 is a new modulator of neuroblast proliferation during embryonic neurogenesis. Sci Rep 2018; 8:11836. [PMID: 30087422 PMCID: PMC6081467 DOI: 10.1038/s41598-018-30302-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 07/27/2018] [Indexed: 12/16/2022] Open
Abstract
Global population aging is one of the major social and economic challenges of contemporary society. During aging the progressive decline in physiological functions has serious consequences for all organs including brain. The age-related incidence of neurodegenerative diseases coincides with the sharp decline of the amount and functionality of adult neural stem cells. Recently, we identified a short list of brain age-regulated genes by means of next-generation sequencing. Among them znf367 codes for a transcription factor that represents a central node in gene co-regulation networks during aging, but whose function in the central nervous system (CNS), is completely unknown. As proof of concept, we analysed the role of znf367 during Xenopus laevis neurogenesis. By means of a gene loss of function approach limited to the CNS, we suggested that znf367 might act as a key controller of the neuroblast cell cycle, particularly in the progression of mitosis and spindle checkpoint. A candidate gene approach based on a weighted-gene co-expression network analysis, revealed fancd2 and ska3 as possible targets of znf367. The age-related decline of znf367 correlated well with its role during embryonic neurogenesis, opening new lines of investigation also in adult neurogenesis to improved maintenance and even repair of neuronal function.
Collapse
Affiliation(s)
- Valentina Naef
- Unità di Biologia Cellulare e dello Sviluppo, Dipartimento di Biologia, Università di Pisa, Pisa, I-56127, Italy
| | - Sara Monticelli
- Unità di Biologia Cellulare e dello Sviluppo, Dipartimento di Biologia, Università di Pisa, Pisa, I-56127, Italy
| | - Debora Corsinovi
- Unità di Biologia Cellulare e dello Sviluppo, Dipartimento di Biologia, Università di Pisa, Pisa, I-56127, Italy
| | - Maria Teresa Mazzetto
- Scuola Normale Superiore, Laboratory of Biology (Bio@SNS), Pisa, I-56124, Italy
- Leibniz-Institut für Alternsforschung, Fritz-Lipmann Institut Jena, Jena, D-07745, Germany
| | - Alessandro Cellerino
- Scuola Normale Superiore, Laboratory of Biology (Bio@SNS), Pisa, I-56124, Italy
- Leibniz-Institut für Alternsforschung, Fritz-Lipmann Institut Jena, Jena, D-07745, Germany
| | - Michela Ori
- Unità di Biologia Cellulare e dello Sviluppo, Dipartimento di Biologia, Università di Pisa, Pisa, I-56127, Italy.
| |
Collapse
|
15
|
Taneyhill LA, Schiffmacher AT. Should I stay or should I go? Cadherin function and regulation in the neural crest. Genesis 2017; 55. [PMID: 28253541 DOI: 10.1002/dvg.23028] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 02/21/2017] [Accepted: 02/27/2017] [Indexed: 12/20/2022]
Abstract
Our increasing comprehension of neural crest cell development has reciprocally advanced our understanding of cadherin expression, regulation, and function. As a transient population of multipotent stem cells that significantly contribute to the vertebrate body plan, neural crest cells undergo a variety of transformative processes and exhibit many cellular behaviors, including epithelial-to-mesenchymal transition (EMT), motility, collective cell migration, and differentiation. Multiple studies have elucidated regulatory and mechanistic details of specific cadherins during neural crest cell development in a highly contextual manner. Collectively, these results reveal that gradual changes within neural crest cells are accompanied by often times subtle, yet important, alterations in cadherin expression and function. The primary focus of this review is to coalesce recent data on cadherins in neural crest cells, from their specification to their emergence as motile cells soon after EMT, and to highlight the complexities of cadherin expression beyond our current perceptions, including the hypothesis that the neural crest EMT is a transition involving a predominantly singular cadherin switch. Further advancements in genetic approaches and molecular techniques will provide greater opportunities to integrate data from various model systems in order to distinguish unique or overlapping functions of cadherins expressed at any point throughout the ontogeny of the neural crest.
Collapse
Affiliation(s)
- Lisa A Taneyhill
- Department of Animal and Avian Sciences, University of Maryland, College Park, Maryland, 20742
| | - Andrew T Schiffmacher
- Department of Animal and Avian Sciences, University of Maryland, College Park, Maryland, 20742
| |
Collapse
|
16
|
Tussellino M, Ronca R, Carotenuto R, Pallotta MM, Furia M, Capriglione T. Chlorpyrifos exposure affects fgf8, sox9, and bmp4 expression required for cranial neural crest morphogenesis and chondrogenesis in Xenopus laevis embryos. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2016; 57:630-640. [PMID: 27669663 DOI: 10.1002/em.22057] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Accepted: 09/04/2016] [Indexed: 06/06/2023]
Abstract
Chlorpyrifos (CPF) is an organophosphate insecticide used primarily to control foliage and soil-borne insect pests on a variety of food and feed crops. In mammals, maternal exposure to CPF has been reported to induce dose-related abnormalities such as slower brain growth and cerebral cortex thinning. In lower vertebrates, for example, fish and amphibians, teratogenic activity of this compound is correlated with several anatomical alterations. Little is known about the effects of CPF on mRNA expression of genes involved in early development of the anatomical structures appearing abnormal in embryos. This study investigated the effects of exposure to different CPF concentrations (10, 15 and 20 mg/L) on Xenopus laevis embryos from stage 4/8 to stage 46. Some of the morphological changes we detected in CPF-exposed embryos included cranial neural crest cell (NCC)-derived structures. For this reason, we analyzed the expression of select genes involved in hindbrain patterning (egr2), cranial neural crest chondrogenesis, and craniofacial development (fgf8, bmp4, sox9, hoxa2 and hoxb2). We found that CPF exposure induced a reduction in transcription of all the genes involved in NCC-dependent chondrogenesis, with largest reductions in fgf8 and sox9; whereas, in hindbrain, we did not find any alterations in egr2 expression. Changes in the expression of fgf8, bmp4, and sox9, which are master regulators of several developmental pathways, have important implications. If these changes are confirmed to belong to a general pattern of alterations in vertebrates prenatally exposed to OP, they might be useful to assess damage during vertebrate embryo development. Environ. Mol. Mutagen. 57:589-604, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Margherita Tussellino
- Department of Biology, Università di Napoli "Federico II", Via Cinthia, 21, Napoli, 80126, Italy
| | - Raffaele Ronca
- Department of Biology, Università di Napoli "Federico II", Via Cinthia, 21, Napoli, 80126, Italy
| | - Rosa Carotenuto
- Department of Biology, Università di Napoli "Federico II", Via Cinthia, 21, Napoli, 80126, Italy
| | - Maria M Pallotta
- Department of Biology, Università di Napoli "Federico II", Via Cinthia, 21, Napoli, 80126, Italy
| | - Maria Furia
- Department of Biology, Università di Napoli "Federico II", Via Cinthia, 21, Napoli, 80126, Italy
| | - Teresa Capriglione
- Department of Biology, Università di Napoli "Federico II", Via Cinthia, 21, Napoli, 80126, Italy.
| |
Collapse
|
17
|
McCarthy N, Sidik A, Bertrand JY, Eberhart JK. An Fgf-Shh signaling hierarchy regulates early specification of the zebrafish skull. Dev Biol 2016; 415:261-277. [PMID: 27060628 PMCID: PMC4967541 DOI: 10.1016/j.ydbio.2016.04.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 03/30/2016] [Accepted: 04/05/2016] [Indexed: 02/03/2023]
Abstract
The neurocranium generates most of the craniofacial skeleton and consists of prechordal and postchordal regions. Although development of the prechordal is well studied, little is known of the postchordal region. Here we characterize a signaling hierarchy necessary for postchordal neurocranial development involving Fibroblast growth factor (Fgf) signaling for early specification of mesodermally-derived progenitor cells. The expression of hyaluron synthetase 2 (has2) in the cephalic mesoderm requires Fgf signaling and Has2 function, in turn, is required for postchordal neurocranial development. While Hedgehog (Hh)-deficient embryos also lack a postchordal neurocranium, this appears primarily due to a later defect in chondrocyte differentiation. Inhibitor studies demonstrate that postchordal neurocranial development requires early Fgf and later Hh signaling. Collectively, our results provide a mechanistic understanding of early postchordal neurocranial development and demonstrate a hierarchy of signaling between Fgf and Hh in the development of this structure.
Collapse
Affiliation(s)
- Neil McCarthy
- Department of Molecular Biosciences; Institute of Cell and Molecular Biology, Waggoner Center for Alcohol and Alcohol Addiction Research, University of Texas, Austin, TX, United States
| | - Alfire Sidik
- Department of Molecular Biosciences; Institute of Cell and Molecular Biology, Waggoner Center for Alcohol and Alcohol Addiction Research, University of Texas, Austin, TX, United States
| | - Julien Y Bertrand
- Department of Pathology and Immunology, University of Geneva Medical School, Geneva, Switzerland
| | - Johann K Eberhart
- Department of Molecular Biosciences; Institute of Cell and Molecular Biology, Waggoner Center for Alcohol and Alcohol Addiction Research, University of Texas, Austin, TX, United States; Department of Molecular Biosciences; Institute of Neurobiology, University of Texas, Austin, TX, United States.
| |
Collapse
|
18
|
Cx43-Dependent Skeletal Phenotypes Are Mediated by Interactions between the Hapln1a-ECM and Sema3d during Fin Regeneration. PLoS One 2016; 11:e0148202. [PMID: 26828861 PMCID: PMC4734779 DOI: 10.1371/journal.pone.0148202] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 01/14/2016] [Indexed: 12/17/2022] Open
Abstract
Skeletal development is a tightly regulated process and requires proper communication between the cells for efficient exchange of information. Analysis of fin length mutants has revealed that the gap junction protein Connexin43 (Cx43) coordinates cell proliferation (growth) and joint formation (patterning) during zebrafish caudal fin regeneration. Previous studies have shown that the extra cellular matrix (ECM) protein Hyaluronan and Proteoglycan Link Protein1a (Hapln1a) is molecularly and functionally downstream of Cx43, and that hapln1a knockdown leads to reduction of the glycosaminoglycan hyaluronan. Here we find that the proteoglycan aggrecan is similarly reduced following Hapln1a knockdown. Notably, we demonstrate that both hyaluronan and aggrecan are required for growth and patterning. Moreover, we provide evidence that the Hapln1a-ECM stabilizes the secreted growth factor Semaphorin3d (Sema3d), which has been independently shown to mediate Cx43 dependent phenotypes during regeneration. Double knockdown of hapln1a and sema3d reveal synergistic interactions. Further, hapln1a knockdown phenotypes were rescued by Sema3d overexpression. Therefore, Hapln1a maintains the composition of specific components of the ECM, which appears to be required for the stabilization of at least one growth factor, Sema3d. We propose that the Hapln1a dependent ECM provides the required conditions for Sema3d stabilization and function. Interactions between the ECM and signaling molecules are complex and our study demonstrates the requirement for components of the Hapln1a-ECM for Sema3d signal transduction.
Collapse
|
19
|
Balaji S, King A, Marsh E, LeSaint M, Bhattacharya SS, Han N, Dhamija Y, Ranjan R, Le LD, Bollyky PL, Crombleholme TM, Keswani SG. The role of interleukin-10 and hyaluronan in murine fetal fibroblast function in vitro: implications for recapitulating fetal regenerative wound healing. PLoS One 2015; 10:e0124302. [PMID: 25951109 PMCID: PMC4423847 DOI: 10.1371/journal.pone.0124302] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 03/12/2015] [Indexed: 12/14/2022] Open
Abstract
Background Mid-gestation fetal cutaneous wounds heal scarlessly and this has been attributed in part to abundant hyaluronan (HA) in the extracellular matrix (ECM) and a unique fibroblast phenotype. We recently reported a novel role for interleukin 10 (IL-10) as a regulator of HA synthesis in the fetal ECM, as well as the ability of the fetal fibroblast to produce an HA-rich pericellular matrix (PCM). We hypothesized that IL-10-mediated HA synthesis was essential to the fetal fibroblast functional phenotype and, moreover, that this phenotype could be recapitulated in adult fibroblasts via supplementation with IL-10 via an HA dependent process. Methodology/Principal Findings To evaluate the differences in functional profile, we compared metabolism (MTS assay), apoptosis (caspase-3 staining), migration (scratch wound assay) and invasion (transwell assay) between C57Bl/6J murine fetal (E14.5) and adult (8 weeks) fibroblasts. We found that fetal fibroblasts have lower rates of metabolism and apoptosis, and an increased ability to migrate and invade compared to adult fibroblasts, and that these effects were dependent on IL-10 and HA synthase activity. Further, addition of IL-10 to adult fibroblasts resulted in increased fibroblast migration and invasion and recapitulated the fetal phenotype in an HA-dependent manner. Conclusions/Significance Our data demonstrates the functional differences between fetal and adult fibroblasts, and that IL-10 mediated HA synthesis is essential for the fetal fibroblasts' enhanced invasion and migration properties. Moreover, IL-10 via an HA-dependent mechanism can recapitulate this aspect of the fetal phenotype in adult fibroblasts, suggesting a novel mechanism of IL-10 in regenerative wound healing.
Collapse
Affiliation(s)
- Swathi Balaji
- Laboratory for Regenerative Wound Healing, Division of Pediatric, General, Thoracic and Fetal Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Alice King
- Laboratory for Regenerative Wound Healing, Division of Pediatric, General, Thoracic and Fetal Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Emily Marsh
- Laboratory for Regenerative Wound Healing, Division of Pediatric, General, Thoracic and Fetal Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Maria LeSaint
- Laboratory for Regenerative Wound Healing, Division of Pediatric, General, Thoracic and Fetal Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Sukanta S. Bhattacharya
- Laboratory for Regenerative Wound Healing, Division of Pediatric, General, Thoracic and Fetal Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Nathaniel Han
- Laboratory for Regenerative Wound Healing, Division of Pediatric, General, Thoracic and Fetal Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Yashu Dhamija
- Laboratory for Regenerative Wound Healing, Division of Pediatric, General, Thoracic and Fetal Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Rajeev Ranjan
- Laboratory for Regenerative Wound Healing, Division of Pediatric, General, Thoracic and Fetal Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Louis D. Le
- Laboratory for Regenerative Wound Healing, Division of Pediatric, General, Thoracic and Fetal Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Paul L. Bollyky
- Division of Infectious Diseases, Department of Medicine, Stanford University School of Medicine, Palo Alto, California, United States of America
| | - Timothy M. Crombleholme
- Laboratory for Regenerative Wound Healing, Division of Pediatric, General, Thoracic and Fetal Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
- Center for Children's Surgery, Children’s Hospital Colorado and The University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Sundeep G. Keswani
- Laboratory for Regenerative Wound Healing, Division of Pediatric, General, Thoracic and Fetal Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
- Division of Pediatric General and Thoracic Surgery, Baylor College of Medicine and Texas Children's Hospital, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
20
|
Inai K, Burnside JL, Hoffman S, Toole BP, Sugi Y. BMP-2 induces versican and hyaluronan that contribute to post-EMT AV cushion cell migration. PLoS One 2013; 8:e77593. [PMID: 24147033 PMCID: PMC3795687 DOI: 10.1371/journal.pone.0077593] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 09/09/2013] [Indexed: 11/24/2022] Open
Abstract
Distal outgrowth and maturation of mesenchymalized endocardial cushions are critical morphogenetic events during post-EMT atrioventricular (AV) valvuloseptal morphogenesis. We explored the role of BMP-2 in the regulation of valvulogenic extracellular matrix (ECM) components, versican and hyaluronan (HA), and cell migration during post-EMT AV cushion distal outgrowth/expansion. We observed intense staining of versican and HA in AV cushion mesenchyme from the early cushion expansion stage, Hamburger and Hamilton (HH) stage-17 to the cushion maturation stage, HH stage-29 in the chick. Based on this expression pattern we examined the role of BMP-2 in regulating versican and HA using 3D AV cushion mesenchymal cell (CMC) aggregate cultures on hydrated collagen gels. BMP-2 induced versican expression and HA deposition as well as mRNA expression of versican and Has2 by CMCs in a dose dependent manner. Noggin, an antagonist of BMP, abolished BMP-2-induced versican and HA as well as mRNA expression of versican and Has2. We further examined whether BMP-2-promoted cell migration was associated with expression of versican and HA. BMP-2- promoted cell migration was significantly impaired by treatments with versican siRNA and HA oligomer. In conclusion, we provide evidence that BMP-2 induces expression of versican and HA by AV CMCs and that these ECM components contribute to BMP-2-induced CMC migration, indicating critical roles for BMP-2 in distal outgrowth/expansion of mesenchymalized AV cushions.
Collapse
Affiliation(s)
- Kei Inai
- Department of Regenerative Medicine and Cell Biology and Cardiovascular Developmental Biology Center, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Jessica L. Burnside
- Department of Regenerative Medicine and Cell Biology and Cardiovascular Developmental Biology Center, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Stanley Hoffman
- Department of Regenerative Medicine and Cell Biology and Cardiovascular Developmental Biology Center, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Bryan P. Toole
- Department of Regenerative Medicine and Cell Biology and Cardiovascular Developmental Biology Center, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Yukiko Sugi
- Department of Regenerative Medicine and Cell Biology and Cardiovascular Developmental Biology Center, Medical University of South Carolina, Charleston, South Carolina, United States of America
- * E-mail:
| |
Collapse
|
21
|
Karousou E, Stachtea X, Moretto P, Viola M, Vigetti D, D'Angelo ML, Raio L, Ghezzi F, Pallotti F, De Luca G, Karamanos NK, Passi A. New insights into the pathobiology of Down syndrome - hyaluronan synthase-2 overexpression is regulated by collagen VIα2 chain. FEBS J 2013; 280:2418-30. [DOI: 10.1111/febs.12220] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Revised: 02/12/2013] [Accepted: 02/15/2013] [Indexed: 12/20/2022]
Affiliation(s)
- Evgenia Karousou
- Laboratory of Biochemistry; Department of Surgical and Morphological Sciences; School of Medicine; University of Insubria; Varese; Italy
| | - Xanthi Stachtea
- Laboratory of Biochemistry; Department of Chemistry; University of Patras; Greece
| | - Paola Moretto
- Laboratory of Biochemistry; Department of Surgical and Morphological Sciences; School of Medicine; University of Insubria; Varese; Italy
| | - Manuela Viola
- Laboratory of Biochemistry; Department of Surgical and Morphological Sciences; School of Medicine; University of Insubria; Varese; Italy
| | - Davide Vigetti
- Laboratory of Biochemistry; Department of Surgical and Morphological Sciences; School of Medicine; University of Insubria; Varese; Italy
| | - Maria Luisa D'Angelo
- Laboratory of Biochemistry; Department of Surgical and Morphological Sciences; School of Medicine; University of Insubria; Varese; Italy
| | - Luigi Raio
- Department of Obstetrics and Gynecology; University of Berne; Switzerland
| | - Fabio Ghezzi
- Laboratory of Biochemistry; Department of Surgical and Morphological Sciences; School of Medicine; University of Insubria; Varese; Italy
| | - Francesco Pallotti
- Laboratory of Biochemistry; Department of Surgical and Morphological Sciences; School of Medicine; University of Insubria; Varese; Italy
| | - Giancarlo De Luca
- Laboratory of Biochemistry; Department of Surgical and Morphological Sciences; School of Medicine; University of Insubria; Varese; Italy
| | - Nikos K. Karamanos
- Laboratory of Biochemistry; Department of Chemistry; University of Patras; Greece
| | - Alberto Passi
- Laboratory of Biochemistry; Department of Surgical and Morphological Sciences; School of Medicine; University of Insubria; Varese; Italy
| |
Collapse
|
22
|
Shi H, Zhang T, Qiang L, Man L, Shen Y, Ding F. Mesenspheres of neural crest-derived cells enriched from bone marrow stromal cell subpopulation. Neurosci Lett 2012; 532:70-5. [PMID: 23127856 DOI: 10.1016/j.neulet.2012.10.042] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Revised: 10/16/2012] [Accepted: 10/18/2012] [Indexed: 10/27/2022]
Abstract
Neural crest-derived cells (NCCs) can be used for cell replacement therapy of neurodegenerative diseases and nerve injury, and it is of significance to open readily accessible tissue sources for NCCs due to their insufficient supply. In this study, we aimed to examine the possibility of enriching NCCs from bone marrow stromal cell (BMSC) subpopulation. The epidermal growth factor/fibroblast growth factor-2 (EGF/FGF2)-responsive BMSC subpopulation (BMSC-C2) was isolated from rat bone marrow by repetitive two-step condition culture. The BMSC-C2 subpopulation showed a long-term proliferative capacity and high cell growth rate, and possessed a significant sphere-forming ability. The mesenspheres derived from BMSC-C2 subpopulation were self-renewable and could express NCC markers, such as CD29, CD44, nestin, CD133 and p75(NTR). In particular, the mesenspheres could be induced to differentiate into neuron- and glia-like cells in vitro. Collectively, our results might provide a basis for in-depth studies of recruiting postmigratory NCCs from bone marrow and various neural crest-derived tissues.
Collapse
Affiliation(s)
- Haiyan Shi
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou JS 215123, China
| | | | | | | | | | | |
Collapse
|
23
|
Ishii M, Arias AC, Liu L, Chen YB, Bronner ME, Maxson RE. A stable cranial neural crest cell line from mouse. Stem Cells Dev 2012; 21:3069-80. [PMID: 22889333 DOI: 10.1089/scd.2012.0155] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Cranial neural crest cells give rise to ectomesenchymal derivatives such as cranial bones, cartilage, smooth muscle, dentin, as well as melanocytes, corneal endothelial cells, and neurons and glial cells of the peripheral nervous system. Previous studies have suggested that although multipotent stem-like cells may exist during the course of cranial neural crest development, they are transient, undergoing lineage restriction early in embryonic development. We have developed culture conditions that allow cranial neural crest cells to be grown as multipotent stem-like cells. With these methods, we obtained 2 independent cell lines, O9-1 and i10-1, which were derived from mass cultures of Wnt1-Cre; R26R-GFP-expressing cells. These cell lines can be propagated and passaged indefinitely, and can differentiate into osteoblasts, chondrocytes, smooth muscle cells, and glial cells. Whole-genome expression profiling of O9-1 cells revealed that this line stably expresses stem cell markers (CD44, Sca-1, and Bmi1) and neural crest markers (AP-2α, Twist1, Sox9, Myc, Ets1, Dlx1, Dlx2, Crabp1, Epha2, and Itgb1). O9-1 cells are capable of contributing to cranial mesenchymal (osteoblast and smooth muscle) neural crest fates when injected into E13.5 mouse cranial tissue explants and chicken embryos. These results suggest that O9-1 cells represent multipotent mesenchymal cranial neural crest cells. The O9-1 cell line should serve as a useful tool for investigating the molecular properties of differentiating cranial neural crest cells.
Collapse
Affiliation(s)
- Mamoru Ishii
- Department of Biochemistry and Molecular Biology, USC/Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | | | | | | | | | | |
Collapse
|