1
|
Hanne N, Hu D, Vidal-García M, Allen C, Shakir MB, Liu W, Hallgrímsson B, Marcucio R. Downstream branches of receptor tyrosine kinase signaling act interdependently to shape the face. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.10.627829. [PMID: 39713427 PMCID: PMC11661274 DOI: 10.1101/2024.12.10.627829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Background – Previously we found that increasing fibroblast growth factor (FGF) signaling in the neural crest cells within the frontonasal process (FNP) of the chicken embryo caused dysmorphology that was correlated with reduced proliferation, disrupted cellular orientation, and lower MAPK activation but no change in PLCy and PI3K activation. This suggests RTK signaling may drive craniofacial morphogenesis through specific downstream effectors that affect cellular activities. In this study we inhibited three downstream branches of RTK signaling to determine their role in regulating cellular activities and how these changes affect morphogenesis of the FNP. Results – Small molecule inhibitors of MEK1/2, PI3K, and PLCy were delivered individually and in tandem to the right FNP of chicken embryos. All treatments caused asymmetric proximodistal truncation on the treated side and a mild expansion on the untreated side compared to DMSO control treated FNPs. Inhibiting each pathway caused similar decreased proliferation and disrupted cellular orientation, but did not affect apoptosis. Conclusions – Since RTK signaling is a ubiquitous and tightly regulated biochemical system we conclude that the downstream pathways are robust to developmental perturbation through redundant signaling systems.
Collapse
Affiliation(s)
- Nicholas Hanne
- Department of Orthopaedic Surgery, University of California - San Francisco, San Francisco, California, USA
| | - Diane Hu
- Department of Orthopaedic Surgery, University of California - San Francisco, San Francisco, California, USA
| | - Marta Vidal-García
- Deptartment of Cell Biology & Anatomy, Cumming School of Medicine, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Charlie Allen
- Cardiovascular Research Institute, University of California - San Francisco, San Francisco, California, USA
| | - M Bilal Shakir
- Deptartment of Cell Biology & Anatomy, Cumming School of Medicine, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Wei Liu
- Deptartment of Cell Biology & Anatomy, Cumming School of Medicine, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Benedikt Hallgrímsson
- Deptartment of Cell Biology & Anatomy, Cumming School of Medicine, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Ralph Marcucio
- Department of Orthopaedic Surgery, University of California - San Francisco, San Francisco, California, USA
| |
Collapse
|
2
|
Lu J, Peng B, Wang W, Zou Y. Epithelial-mesenchymal crosstalk: the scriptwriter of craniofacial morphogenesis. Front Cell Dev Biol 2024; 12:1497002. [PMID: 39583201 PMCID: PMC11582012 DOI: 10.3389/fcell.2024.1497002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 10/25/2024] [Indexed: 11/26/2024] Open
Abstract
Epithelial-mesenchymal interactions (EMI) are fundamental mechanisms in regulating development and organogenesis. Here we summarized the signaling mechanisms involved in EMI in the major developmental events during craniofacial morphogenesis, including neural crest cell induction, facial primordial growth as well as fusion processes. Regional specificity/polarity are demonstrated in the expression of most signaling molecules that usually act in a mutually synergistic/antagonistic manner. The underlying mechanisms of pathogenesis due to disrupted EMI was also discussed in this review.
Collapse
Affiliation(s)
- Junjie Lu
- School of Life Science and Technology, Jinan University, Guangzhou, China
| | - Bo Peng
- Institute for Environmental and Climate Research, Jinan University, Guangzhou, China
| | - Wenyi Wang
- School of Life Science and Technology, Jinan University, Guangzhou, China
| | - Yi Zou
- School of Life Science and Technology, Jinan University, Guangzhou, China
| |
Collapse
|
3
|
Mok CH, Hu D, Losa M, Risolino M, Selleri L, Marcucio RS. PBX1 and PBX3 transcription factors regulate SHH expression in the Frontonasal Ectodermal Zone through complementary mechanisms. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.04.597450. [PMID: 38895322 PMCID: PMC11185640 DOI: 10.1101/2024.06.04.597450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Sonic hedgehog (SHH) signaling from the frontonasal ectodermal zone (FEZ) is a key regulator of craniofacial morphogenesis. Along with SHH, pre-B-cell leukemia homeobox (PBX) transcription factors regulate midfacial development. PBXs act in the epithelium during fusion of facial primordia, but their specific interactions with SHH have not been fully investigated. We hypothesized that PBX1/3 regulate SHH expression in the FEZ by activating or repressing transcription. The hypothesis was tested by manipulating PBX1/3 expression in chick embryos and profiling epigenomic landscapes at early developmental stages. PBX1/3 expression was perturbed in the chick face beginning at stage 10 (HH10) using RCAS viruses, and the resulting SHH expression was assessed at HH22. Overexpressing PBX1 expanded SHH expression, while overexpressing PBX3 decreased SHH expression. Conversely, reducing PBX1 expression decreased SHH expression, but reducing PBX3 induced ectopic SHH expression. We performed ATAC-seq and mapped binding of PBX1 and PBX3 with ChIP-seq on the FEZ at HH22 to assess direct interactions of PBX1/3 with the SHH locus. These multi-omics approaches uncovered a 400 bp PBX1-enriched element within intron 1 of SHH (chr2:8,173,222-8,173,621). Enhancer activity of this element was demonstrated by electroporation of reporter constructs in ovo and luciferase reporter assays in vitro . When bound by PBX1, this element upregulates transcription, while it downregulates transcription when bound by PBX3. The present study identifies a cis- regulatory element, named SFE1, that interacts with PBX1/3 to modulate SHH expression in the FEZ and establishes that PBX1 and PBX3 play complementary roles in SHH regulation during embryonic development.
Collapse
|
4
|
Xu J, Iyyanar PPR, Lan Y, Jiang R. Sonic hedgehog signaling in craniofacial development. Differentiation 2023; 133:60-76. [PMID: 37481904 PMCID: PMC10529669 DOI: 10.1016/j.diff.2023.07.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 07/04/2023] [Accepted: 07/12/2023] [Indexed: 07/25/2023]
Abstract
Mutations in SHH and several other genes encoding components of the Hedgehog signaling pathway have been associated with holoprosencephaly syndromes, with craniofacial anomalies ranging in severity from cyclopia to facial cleft to midfacial and mandibular hypoplasia. Studies in animal models have revealed that SHH signaling plays crucial roles at multiple stages of craniofacial morphogenesis, from cranial neural crest cell survival to growth and patterning of the facial primordia to organogenesis of the palate, mandible, tongue, tooth, and taste bud formation and homeostasis. This article provides a summary of the major findings in studies of the roles of SHH signaling in craniofacial development, with emphasis on recent advances in the understanding of the molecular and cellular mechanisms regulating the SHH signaling pathway activity and those involving SHH signaling in the formation and patterning of craniofacial structures.
Collapse
Affiliation(s)
- Jingyue Xu
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA.
| | - Paul P R Iyyanar
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Yu Lan
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA; Division of Plastic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA; Departments of Pediatrics and Surgery, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Rulang Jiang
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA; Division of Plastic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA; Departments of Pediatrics and Surgery, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA.
| |
Collapse
|
5
|
Kyomen S, Murillo-Rincón AP, Kaucká M. Evolutionary mechanisms modulating the mammalian skull development. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220080. [PMID: 37183900 PMCID: PMC10184257 DOI: 10.1098/rstb.2022.0080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023] Open
Abstract
Mammals possess impressive craniofacial variation that mirrors their adaptation to diverse ecological niches, feeding behaviour, physiology and overall lifestyle. The spectrum of craniofacial geometries is established mainly during embryonic development. The formation of the head represents a sequence of events regulated on genomic, molecular, cellular and tissue level, with each step taking place under tight spatio-temporal control. Even minor variations in timing, position or concentration of the molecular drivers and the resulting events can affect the final shape, size and position of the skeletal elements and the geometry of the head. Our knowledge of craniofacial development increased substantially in the last decades, mainly due to research using conventional vertebrate model organisms. However, how developmental differences in head formation arise specifically within mammals remains largely unexplored. This review highlights three evolutionary mechanisms acknowledged to modify ontogenesis: heterochrony, heterotopy and heterometry. We present recent research that links changes in developmental timing, spatial organization or gene expression levels to the acquisition of species-specific skull morphologies. We highlight how these evolutionary modifications occur on the level of the genes, molecules and cellular processes, and alter conserved developmental programmes to generate a broad spectrum of skull shapes characteristic of the class Mammalia. This article is part of the theme issue 'The mammalian skull: development, structure and function'.
Collapse
Affiliation(s)
- Stella Kyomen
- Max Planck Institute for Evolutionary Biology, August-Thienemann-Strasse 2, Plön 24306, Germany
| | - Andrea P Murillo-Rincón
- Max Planck Institute for Evolutionary Biology, August-Thienemann-Strasse 2, Plön 24306, Germany
| | - Markéta Kaucká
- Max Planck Institute for Evolutionary Biology, August-Thienemann-Strasse 2, Plön 24306, Germany
| |
Collapse
|
6
|
Naqvi S, Sleyp Y, Hoskens H, Indencleef K, Spence JP, Bruffaerts R, Radwan A, Eller RJ, Richmond S, Shriver MD, Shaffer JR, Weinberg SM, Walsh S, Thompson J, Pritchard JK, Sunaert S, Peeters H, Wysocka J, Claes P. Shared heritability of human face and brain shape. Nat Genet 2021; 53:830-839. [PMID: 33821002 PMCID: PMC8232039 DOI: 10.1038/s41588-021-00827-w] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 02/16/2021] [Indexed: 02/08/2023]
Abstract
Evidence from model organisms and clinical genetics suggests coordination between the developing brain and face, but the role of this link in common genetic variation remains unknown. We performed a multivariate genome-wide association study of cortical surface morphology in 19,644 individuals of European ancestry, identifying 472 genomic loci influencing brain shape, of which 76 are also linked to face shape. Shared loci include transcription factors involved in craniofacial development, as well as members of signaling pathways implicated in brain-face cross-talk. Brain shape heritability is equivalently enriched near regulatory regions active in either forebrain organoids or facial progenitors. However, we do not detect significant overlap between shared brain-face genome-wide association study signals and variants affecting behavioral-cognitive traits. These results suggest that early in embryogenesis, the face and brain mutually shape each other through both structural effects and paracrine signaling, but this interplay may not impact later brain development associated with cognitive function.
Collapse
Affiliation(s)
- Sahin Naqvi
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA.
- Departments of Genetics and Biology, Stanford University School of Medicine, Stanford, CA, USA.
| | - Yoeri Sleyp
- Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Hanne Hoskens
- Department of Human Genetics, KU Leuven, Leuven, Belgium
- Medical Imaging Research Center, University Hospitals Leuven, Leuven, Belgium
| | - Karlijne Indencleef
- Medical Imaging Research Center, University Hospitals Leuven, Leuven, Belgium
- Department of Electrical Engineering, ESAT/PSI, KU Leuven, Leuven, Belgium
| | - Jeffrey P Spence
- Departments of Genetics and Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Rose Bruffaerts
- Department of Neurosciences, KU Leuven, Leuven, Belgium, Hasselt University, Hasselt, Belgium
- Neurology Department, University Hospitals Leuven, Leuven, Belgium, Hasselt University, Hasselt, Belgium
- Biomedical Research Institute Hasselt University Hasselt Belgium, Hasselt University, Hasselt, Belgium
| | - Ahmed Radwan
- Medical Imaging Research Center, University Hospitals Leuven, Leuven, Belgium
- Department of Imaging and Pathology, Translational MRI, KU Leuven, Leuven, Belgium
| | - Ryan J Eller
- Department of Biology, Indiana University Purdue University Indianapolis, Indianapolis, IN, USA
| | - Stephen Richmond
- Applied Clinical Research and Public Health, School of Dentistry, Cardiff University, Cardiff, UK
| | - Mark D Shriver
- Department of Anthropology, Pennsylvania State University, State College, PA, USA
| | - John R Shaffer
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Oral and Craniofacial Sciences, Center for Craniofacial and Dental Genetics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Seth M Weinberg
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Oral and Craniofacial Sciences, Center for Craniofacial and Dental Genetics, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Anthropology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Susan Walsh
- Department of Biology, Indiana University Purdue University Indianapolis, Indianapolis, IN, USA
| | - James Thompson
- Department of Psychology, George Mason University, Fairfax, VA, USA
| | - Jonathan K Pritchard
- Departments of Genetics and Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Stefan Sunaert
- Medical Imaging Research Center, University Hospitals Leuven, Leuven, Belgium
- Department of Imaging and Pathology, Translational MRI, KU Leuven, Leuven, Belgium
| | - Hilde Peeters
- Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Joanna Wysocka
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, USA.
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, USA.
| | - Peter Claes
- Department of Human Genetics, KU Leuven, Leuven, Belgium.
- Medical Imaging Research Center, University Hospitals Leuven, Leuven, Belgium.
- Department of Electrical Engineering, ESAT/PSI, KU Leuven, Leuven, Belgium.
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia.
| |
Collapse
|
7
|
Czarkwiani A, Dylus DV, Carballo L, Oliveri P. FGF signalling plays similar roles in development and regeneration of the skeleton in the brittle star Amphiura filiformis. Development 2021; 148:dev180760. [PMID: 34042967 PMCID: PMC8180256 DOI: 10.1242/dev.180760] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 04/13/2021] [Indexed: 12/16/2022]
Abstract
Regeneration as an adult developmental process is in many aspects similar to embryonic development. Although many studies point out similarities and differences, no large-scale, direct and functional comparative analyses between development and regeneration of a specific cell type or structure in one animal exist. Here, we use the brittle star Amphiura filiformis to characterise the role of the FGF signalling pathway during skeletal development in embryos and arm regeneration. In both processes, we find ligands expressed in ectodermal cells that flank underlying skeletal mesenchymal cells, which express the receptors. Perturbation of FGF signalling showed inhibited skeleton formation in both embryogenesis and regeneration, without affecting other key developmental processes. Differential transcriptome analysis finds mostly differentiation genes rather than transcription factors to be downregulated in both contexts. Moreover, comparative gene analysis allowed us to discover brittle star-specific differentiation genes. In conclusion, our results show that the FGF pathway is crucial for skeletogenesis in the brittle star, as in other deuterostomes, and provide evidence for the re-deployment of a developmental gene regulatory module during regeneration.
Collapse
Affiliation(s)
- Anna Czarkwiani
- Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK
| | - David V. Dylus
- Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK
- Centre for Mathematics, Physics and Engineering in the Life Sciences and Experimental Biology, University College London, London WC1E 6BT, UK
| | - Luisana Carballo
- Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK
| | - Paola Oliveri
- Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK
- Centre for Life's Origin and Evolution (CLOE), University College London, London WC1E 6BT, UK
| |
Collapse
|
8
|
Marchini M, Hu D, Lo Vercio L, Young NM, Forkert ND, Hallgrímsson B, Marcucio R. Wnt Signaling Drives Correlated Changes in Facial Morphology and Brain Shape. Front Cell Dev Biol 2021; 9:644099. [PMID: 33855022 PMCID: PMC8039397 DOI: 10.3389/fcell.2021.644099] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 03/08/2021] [Indexed: 11/20/2022] Open
Abstract
Canonical Wnt signaling plays multiple roles critical to normal craniofacial development while its dysregulation is known to be involved in structural birth defects of the face. However, when and how Wnt signaling influences phenotypic variation, including those associated with disease, remains unclear. One potential mechanism is via Wnt signaling’s role in the patterning of an early facial signaling center, the frontonasal ectodermal zone (FEZ), and its subsequent regulation of early facial morphogenesis. For example, Wnt signaling may directly alter the shape and/or magnitude of expression of the sonic hedgehog (SHH) domain in the FEZ. To test this idea, we used a replication-competent avian sarcoma retrovirus (RCAS) encoding Wnt3a to modulate its expression in the facial mesenchyme. We then quantified and compared ontogenetic changes in treated to untreated embryos in the three-dimensional (3D) shape of both the SHH expression domain of the FEZ, and the morphology of the facial primordia and brain using iodine-contrast microcomputed tomography imaging and 3D geometric morphometrics (3DGM). We found that increased Wnt3a expression in early stages of head development produces correlated variation in shape between both structural and signaling levels of analysis. In addition, altered Wnt3a activation disrupted the integration between the forebrain and other neural tube derivatives. These results show that activation of Wnt signaling influences facial shape through its impact on the forebrain and SHH expression in the FEZ, and highlights the close relationship between morphogenesis of the forebrain and midface.
Collapse
Affiliation(s)
- Marta Marchini
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, AB, Canada.,McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Diane Hu
- Department of Orthopaedic Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Lucas Lo Vercio
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, AB, Canada.,McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Nathan M Young
- Department of Orthopaedic Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Nils D Forkert
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada.,Department of Radiology, University of Calgary, Calgary, AB, Canada
| | - Benedikt Hallgrímsson
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, AB, Canada.,McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Ralph Marcucio
- Department of Orthopaedic Surgery, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
9
|
Lee HW, Esteve-Altava B, Abzhanov A. Evolutionary and ontogenetic changes of the anatomical organization and modularity in the skull of archosaurs. Sci Rep 2020; 10:16138. [PMID: 32999389 PMCID: PMC7528100 DOI: 10.1038/s41598-020-73083-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 07/27/2020] [Indexed: 12/12/2022] Open
Abstract
Comparative anatomy studies of the skull of archosaurs provide insights on the mechanisms of evolution for the morphologically and functionally diverse species of crocodiles and birds. One of the key attributes of skull evolution is the anatomical changes associated with the physical arrangement of cranial bones. Here, we compare the changes in anatomical organization and modularity of the skull of extinct and extant archosaurs using an Anatomical Network Analysis approach. We show that the number of bones, their topological arrangement, and modular organization can discriminate birds from non-avian dinosaurs, and crurotarsans. We could also discriminate extant taxa from extinct species when adult birds were included. By comparing within the same framework, juveniles and adults for crown birds and alligator (Alligator mississippiensis), we find that adult and juvenile alligator skulls are topologically similar, whereas juvenile bird skulls have a morphological complexity and anisomerism more similar to those of non-avian dinosaurs and crurotarsans than of their own adult forms. Clade-specific ontogenetic differences in skull organization, such as extensive postnatal fusion of cranial bones in crown birds, can explain this pattern. The fact that juvenile and adult skulls in birds do share a similar anatomical integration suggests the presence of a specific constraint to their ontogenetic growth.
Collapse
Affiliation(s)
- Hiu Wai Lee
- Department of Life Sciences, Imperial College London, Silwood Park Campus, Buckhurst Road, Ascot, SL5 7PY, Berkshire, UK
- Natural History Museum, Cromwell Road, London, SW7 5BD, UK
| | - Borja Esteve-Altava
- Institute of Evolutionary Biology (UPF-CSIC), Department of Experimental and Health Sciences, Pompeu Fabra University, Barcelona, Spain.
| | - Arhat Abzhanov
- Department of Life Sciences, Imperial College London, Silwood Park Campus, Buckhurst Road, Ascot, SL5 7PY, Berkshire, UK.
- Natural History Museum, Cromwell Road, London, SW7 5BD, UK.
| |
Collapse
|
10
|
Richbourg HA, Hu DP, Xu Y, Barczak AJ, Marcucio RS. miR-199 family contributes to regulation of sonic hedgehog expression during craniofacial development. Dev Dyn 2020; 249:1062-1076. [PMID: 32391617 DOI: 10.1002/dvdy.191] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 04/30/2020] [Accepted: 05/04/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND The frontonasal ectodermal zone (FEZ) is a signaling center that regulates patterned development of the upper jaw, and Sonic hedgehog (SHH) mediates FEZ activity. Induction of SHH expression in the FEZ results from SHH-dependent signals from the brain and neural crest cells. Given the role of miRNAs in modulating gene expression, we investigated the extent to which miRNAs regulate SHH expression and FEZ signaling. RESULTS In the FEZ, the miR-199 family appears to be regulated by SHH-dependent signals from the brain; expression of this family increased from HH18 to HH22, and upon activation of SHH signaling in the brain. However, the miR-199 family is more broadly expressed in the mesenchyme of the frontonasal process and adjacent neuroepithelium. Downregulating the miR-199 genes expanded SHH expression in the FEZ, resulting in wider faces, while upregulating miR-199 genes resulted in decreased SHH expression and narrow faces. Hypoxia inducible factor 1 alpha (HIF1A) and mitogen-activated protein kinase kinase kinase 4 (MAP3K4) appear to be potential targets of miR-199b. Reduction of MAP3K4 altered beak development but increased apoptosis, while reducing HIF1A reduced expression of SHH in the FEZ and produced malformations independent of apoptosis. CONCLUSIONS Our results demonstrate that this miRNA family appears to participate in regulating SHH expression in the FEZ; however, specific molecular mechanisms remain unknown.
Collapse
Affiliation(s)
- Heather A Richbourg
- Department of Orthopaedic Surgery, San Francisco General Hospital, University of California, San Francisco, San Francisco, California, USA
| | - Diane P Hu
- Department of Orthopaedic Surgery, San Francisco General Hospital, University of California, San Francisco, San Francisco, California, USA
| | - Yanhua Xu
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Zhejiang University Life Sciences Institute, Hangzhou, China
| | - Andrea J Barczak
- Functional Genomics Core, University of California, San Francisco, San Francisco, California, USA
| | - Ralph S Marcucio
- Department of Orthopaedic Surgery, San Francisco General Hospital, University of California, San Francisco, San Francisco, California, USA
| |
Collapse
|
11
|
Woronowicz KC, Schneider RA. Molecular and cellular mechanisms underlying the evolution of form and function in the amniote jaw. EvoDevo 2019; 10:17. [PMID: 31417668 PMCID: PMC6691539 DOI: 10.1186/s13227-019-0131-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 07/22/2019] [Indexed: 01/16/2023] Open
Abstract
The amniote jaw complex is a remarkable amalgamation of derivatives from distinct embryonic cell lineages. During development, the cells in these lineages experience concerted movements, migrations, and signaling interactions that take them from their initial origins to their final destinations and imbue their derivatives with aspects of form including their axial orientation, anatomical identity, size, and shape. Perturbations along the way can produce defects and disease, but also generate the variation necessary for jaw evolution and adaptation. We focus on molecular and cellular mechanisms that regulate form in the amniote jaw complex, and that enable structural and functional integration. Special emphasis is placed on the role of cranial neural crest mesenchyme (NCM) during the species-specific patterning of bone, cartilage, tendon, muscle, and other jaw tissues. We also address the effects of biomechanical forces during jaw development and discuss ways in which certain molecular and cellular responses add adaptive and evolutionary plasticity to jaw morphology. Overall, we highlight how variation in molecular and cellular programs can promote the phenomenal diversity and functional morphology achieved during amniote jaw evolution or lead to the range of jaw defects and disease that affect the human condition.
Collapse
Affiliation(s)
- Katherine C Woronowicz
- 1Department of Orthopaedic Surgery, University of California at San Francisco, 513 Parnassus Avenue, S-1161, Box 0514, San Francisco, CA 94143-0514 USA.,2Present Address: Department of Genetics, Harvard Medical School, Orthopaedic Research Laboratories, Children's Hospital Boston, Boston, MA 02115 USA
| | - Richard A Schneider
- 1Department of Orthopaedic Surgery, University of California at San Francisco, 513 Parnassus Avenue, S-1161, Box 0514, San Francisco, CA 94143-0514 USA
| |
Collapse
|
12
|
Schneider RA. Neural crest and the origin of species-specific pattern. Genesis 2018; 56:e23219. [PMID: 30134069 PMCID: PMC6108449 DOI: 10.1002/dvg.23219] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 05/15/2018] [Accepted: 05/16/2018] [Indexed: 12/20/2022]
Abstract
For well over half of the 150 years since the discovery of the neural crest, the special ability of these cells to function as a source of species-specific pattern has been clearly recognized. Initially, this observation arose in association with chimeric transplant experiments among differentially pigmented amphibians, where the neural crest origin for melanocytes had been duly noted. Shortly thereafter, the role of cranial neural crest cells in transmitting species-specific information on size and shape to the pharyngeal arch skeleton as well as in regulating the timing of its differentiation became readily apparent. Since then, what has emerged is a deeper understanding of how the neural crest accomplishes such a presumably difficult mission, and this includes a more complete picture of the molecular and cellular programs whereby neural crest shapes the face of each species. This review covers studies on a broad range of vertebrates and describes neural-crest-mediated mechanisms that endow the craniofacial complex with species-specific pattern. A major focus is on experiments in quail and duck embryos that reveal a hierarchy of cell-autonomous and non-autonomous signaling interactions through which neural crest generates species-specific pattern in the craniofacial integument, skeleton, and musculature. By controlling size and shape throughout the development of these systems, the neural crest underlies the structural and functional integration of the craniofacial complex during evolution.
Collapse
Affiliation(s)
- Richard A. Schneider
- Department of Orthopedic SurgeryUniversity of California at San Francisco, 513 Parnassus AvenueS‐1161San Francisco, California
| |
Collapse
|
13
|
Fish JL. Evolvability of the vertebrate craniofacial skeleton. Semin Cell Dev Biol 2017; 91:13-22. [PMID: 29248471 DOI: 10.1016/j.semcdb.2017.12.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Revised: 11/22/2017] [Accepted: 12/07/2017] [Indexed: 01/05/2023]
Abstract
The skull is a vertebrate novelty. Morphological adaptations of the skull are associated with major evolutionary transitions, including the shift to a predatory lifestyle and the ability to masticate while breathing. These adaptations include the chondrocranium, dermatocranium, articulated jaws, primary and secondary palates, internal choanae, the middle ear, and temporomandibular joint. The incredible adaptive diversity of the vertebrate skull indicates an underlying bauplan that promotes evolvability. Comparative studies in craniofacial development suggest that the craniofacial bauplan includes three secondary organizers, two that are bilaterally placed at the Hinge of the developing jaw, and one situated in the midline of the developing face (the FEZ). These organizers regulate tissue interactions between the cranial neural crest, the neuroepithelium, and facial and pharyngeal epithelia that regulate the development and evolvability of the craniofacial skeleton.
Collapse
Affiliation(s)
- Jennifer L Fish
- University of Massachusetts Lowell, Department of Biological Sciences, 198 Riverside St., Olsen Hall 619, Lowell, MA 01854, U.S.A..
| |
Collapse
|
14
|
Schock EN, Struve JN, Chang CF, Williams TJ, Snedeker J, Attia AC, Stottmann RW, Brugmann SA. A tissue-specific role for intraflagellar transport genes during craniofacial development. PLoS One 2017; 12:e0174206. [PMID: 28346501 PMCID: PMC5367710 DOI: 10.1371/journal.pone.0174206] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 03/06/2017] [Indexed: 01/13/2023] Open
Abstract
Primary cilia are nearly ubiquitous, cellular projections that function to transduce molecular signals during development. Loss of functional primary cilia has a particularly profound effect on the developing craniofacial complex, causing several anomalies including craniosynostosis, micrognathia, midfacial dysplasia, cleft lip/palate and oral/dental defects. Development of the craniofacial complex is an intricate process that requires interactions between several different tissues including neural crest cells, neuroectoderm and surface ectoderm. To understand the tissue-specific requirements for primary cilia during craniofacial development we conditionally deleted three separate intraflagellar transport genes, Kif3a, Ift88 and Ttc21b with three distinct drivers, Wnt1-Cre, Crect and AP2-Cre which drive recombination in neural crest, surface ectoderm alone, and neural crest, surface ectoderm and neuroectoderm, respectively. We found that tissue-specific conditional loss of ciliary genes with different functions produces profoundly different facial phenotypes. Furthermore, analysis of basic cellular behaviors in these mutants suggests that loss of primary cilia in a distinct tissue has unique effects on development of adjacent tissues. Together, these data suggest specific spatiotemporal roles for intraflagellar transport genes and the primary cilium during craniofacial development.
Collapse
Affiliation(s)
- Elizabeth N. Schock
- Division of Plastic Surgery, Department of Surgery, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
- Division of Developmental Biology, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Jaime N. Struve
- Division of Plastic Surgery, Department of Surgery, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
- Division of Developmental Biology, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Ching-Fang Chang
- Division of Plastic Surgery, Department of Surgery, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
- Division of Developmental Biology, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Trevor J. Williams
- Department of Craniofacial Biology, University of Colorado School of Dental Medicine, Aurora, Colorado, United States of America
| | - John Snedeker
- Division of Human Genetics, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Aria C. Attia
- Division of Human Genetics, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Rolf W. Stottmann
- Division of Developmental Biology, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
- Division of Human Genetics, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Samantha A. Brugmann
- Division of Plastic Surgery, Department of Surgery, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
- Division of Developmental Biology, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| |
Collapse
|
15
|
Chang CF, Chang YT, Millington G, Brugmann SA. Craniofacial Ciliopathies Reveal Specific Requirements for GLI Proteins during Development of the Facial Midline. PLoS Genet 2016; 12:e1006351. [PMID: 27802276 PMCID: PMC5089743 DOI: 10.1371/journal.pgen.1006351] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 09/08/2016] [Indexed: 11/19/2022] Open
Abstract
Ciliopathies represent a broad class of disorders that affect multiple organ systems. The craniofacial complex is among those most severely affected when primary cilia are not functional. We previously reported that loss of primary cilia on cranial neural crest cells, via a conditional knockout of the intraflagellar transport protein KIF3a, resulted in midfacial widening due to a gain of Hedgehog (HH) activity. Here, we examine the molecular mechanism of how a loss of primary cilia can produce facial phenotypes associated with a gain of HH function. We show that loss of intraflagellar transport proteins (KIF3a or IFT88) caused aberrant GLI processing such that the amount of GLI3FL and GLI2FL was increased, thus skewing the ratio of GLIFL to GLIR in favor of the FL isoform. Genetic addition of GLI3R partially rescued the ciliopathic midfacial widening. Interestingly, despite several previous studies suggesting midfacial development relies heavily on GLI3R activity, the conditional loss of GLI3 alone did not reproduce the ciliopathic phenotype. Only the combined loss of both GLI2 and GLI3 was able to phenocopy the ciliopathic midfacial appearance. Our findings suggest that ciliopathic facial phenotypes are generated via loss of both GLI3R and GLI2R and that this pathology occurs via a de-repression mechanism. Furthermore, these studies suggest a novel role for GLI2R in craniofacial development. Primary cilia are ubiquitous organelles that serve to transduce molecular signals within a cell. Loss of functional primary cilia results in a disease class called ciliopathies. Ciliopathies have a broad range of phenotypes; however, severe facial anomalies are commonly associated with this disease class. The facial midline is particularly sensitive to loss of primary cilia, frequently undergoing a significant widening. This phenotype is similar to that which occurs when there are gain-of-function defects in the Sonic Hedgehog pathway. This manuscript addresses the molecular basis for midfacial widening in ciliopathies. Importantly, we determine mechanisms to both rescue and phenocopy the ciliopathic midfacial phenotype. In sum, this work provides novel insight into the molecular mechanisms of midfacial patterning and the extent to which loss of cilia impact that process.
Collapse
Affiliation(s)
- Ching-Fang Chang
- Division of Plastic Surgery, Department of Surgery and Division of Developmental Biology, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati
| | - Ya-Ting Chang
- Division of Plastic Surgery, Department of Surgery and Division of Developmental Biology, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati
| | - Grethel Millington
- Division of Plastic Surgery, Department of Surgery and Division of Developmental Biology, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati
| | - Samantha A. Brugmann
- Division of Plastic Surgery, Department of Surgery and Division of Developmental Biology, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati
- * E-mail:
| |
Collapse
|
16
|
Ealba EL, Jheon AH, Hall J, Curantz C, Butcher KD, Schneider RA. Neural crest-mediated bone resorption is a determinant of species-specific jaw length. Dev Biol 2015; 408:151-63. [PMID: 26449912 PMCID: PMC4698309 DOI: 10.1016/j.ydbio.2015.10.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 09/29/2015] [Accepted: 10/01/2015] [Indexed: 11/28/2022]
Abstract
Precise control of jaw length during development is crucial for proper form and function. Previously we have shown that in birds, neural crest mesenchyme (NCM) confers species-specific size and shape to the beak by regulating molecular and histological programs for the induction and deposition of cartilage and bone. Here we reveal that a hitherto unrecognized but similarly essential mechanism for establishing jaw length is the ability of NCM to mediate bone resorption. Osteoclasts are considered the predominant cells that resorb bone, although osteocytes have also been shown to participate in this process. In adults, bone resorption is tightly coupled to bone deposition as a means to maintain skeletal homeostasis. Yet, the role and regulation of bone resorption during growth of the embryonic skeleton have remained relatively unexplored. We compare jaw development in short-beaked quail versus long-billed duck and find that quail have substantially higher levels of enzymes expressed by bone-resorbing cells including tartrate-resistant acid phosphatase (TRAP), Matrix metalloproteinase 13 (Mmp13), and Mmp9. Then, we transplant NCM destined to form the jaw skeleton from quail to duck and generate chimeras in which osteocytes arise from quail donor NCM and osteoclasts come exclusively from the duck host. Chimeras develop quail-like jaw skeletons coincident with dramatically elevated expression of TRAP, Mmp13, and Mmp9. To test for a link between bone resorption and jaw length, we block resorption using a bisphosphonate, osteoprotegerin protein, or an MMP13 inhibitor, and this significantly lengthens the jaw. Conversely, activating resorption with RANKL protein shortens the jaw. Finally, we find that higher resorption in quail presages their relatively lower adult jaw bone mineral density (BMD) and that BMD is also NCM-mediated. Thus, our experiments suggest that NCM not only controls bone resorption by its own derivatives but also modulates the activity of mesoderm-derived osteoclasts, and in so doing enlists bone resorption as a key patterning mechanism underlying the functional morphology and evolution of the jaw.
Collapse
Affiliation(s)
- Erin L Ealba
- Department of Orofacial Sciences, University of California, San Francisco, USA; Department of Orthopaedic Surgery, University of California, San Francisco, USA
| | - Andrew H Jheon
- Department of Orofacial Sciences, University of California, San Francisco, USA; Department of Orthopaedic Surgery, University of California, San Francisco, USA
| | - Jane Hall
- Department of Orthopaedic Surgery, University of California, San Francisco, USA
| | - Camille Curantz
- Department of Orthopaedic Surgery, University of California, San Francisco, USA
| | - Kristin D Butcher
- Department of Orthopaedic Surgery, University of California, San Francisco, USA
| | - Richard A Schneider
- Department of Orofacial Sciences, University of California, San Francisco, USA; Department of Orthopaedic Surgery, University of California, San Francisco, USA.
| |
Collapse
|
17
|
Abstract
Molecular and cellular mechanisms that control jaw length are becoming better understood. This is significant since the jaws are not only critical for species-specific adaptation and survival, but they are often affected by a variety of size-related anomalies including mandibular hypoplasia, retrognathia, asymmetry, and clefting. This chapter overviews how jaw length is established during the allocation, proliferation, differentiation, and growth of jaw precursor cells, which originate from neural crest mesenchyme (NCM). The focus is mainly on results from experiments transplanting NCM between quail and duck embryos. Quail have short jaws whereas those of duck are relatively long. Quail-duck chimeras reveal that the determinants of jaw length are NCM mediated throughout development and include species-specific differences in jaw progenitor number, differential regulation of various signaling pathways, and the autonomous activation of programs for skeletal matrix deposition and resorption. Such insights help make the goal of devising new therapies for birth defects, diseases, and injuries to the jaw skeleton seem ever more likely.
Collapse
Affiliation(s)
- Richard A Schneider
- Department of Orthopaedic Surgery, University of California at San Francisco, San Francisco, California, USA.
| |
Collapse
|
18
|
Facial Morphogenesis: Physical and Molecular Interactions Between the Brain and the Face. Curr Top Dev Biol 2015; 115:299-320. [PMID: 26589930 DOI: 10.1016/bs.ctdb.2015.09.001] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Morphogenesis of the brain and face is intrinsically linked by a number of factors. These include: origins of tissues, adjacency allowing their physical interactions, and molecular cross talk controlling growth. Neural crest cells that form the facial primordia originate on the dorsal neural tube. In the caudal pharyngeal arches, a Homeobox code regulates arch identity. In anterior regions, positional information is acquired locally. Second, the brain is a structural platform that influences positioning of the facial primordia, and brain growth influences the timing of primordia fusion. Third, the brain helps induce a signaling center, the frontonasal ectodermal zone, in the ectoderm, which participates in patterned growth of the upper jaw. Similarly, signals from neural crest cells regulate expression of fibroblast growth factor 8 in the anterior neural ridge, which controls growth of the anterior forebrain. Disruptions to these interactions have significant consequences for normal development of the craniofacial complex, leading to structural malformations and birth defects.
Collapse
|
19
|
Hu D, Young NM, Xu Q, Jamniczky H, Green RM, Mio W, Marcucio RS, Hallgrimsson B. Signals from the brain induce variation in avian facial shape. Dev Dyn 2015; 244:1133-1143. [PMID: 25903813 DOI: 10.1002/dvdy.24284] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 04/09/2015] [Accepted: 04/11/2015] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND How developmental mechanisms generate the phenotypic variation that is the raw material for evolution is largely unknown. Here, we explore whether variation in a conserved signaling axis between the brain and face contributes to differences in morphogenesis of the avian upper jaw. In amniotes, including both mice and avians, signals from the brain establish a signaling center in the ectoderm (the Frontonasal ectodermal zone or "FEZ") that directs outgrowth of the facial primordia. RESULTS Here we show that the spatial organization of this signaling center differs among avians, and these correspond to Sonic hedgehog (Shh) expression in the basal forebrain and embryonic facial shape. In ducks this basal forebrain domain is present almost the entire width, while in chickens it is restricted to the midline. When the duck forebrain is unilaterally transplanted into stage matched chicken embryos the face on the treated side resembles that of the donor. CONCLUSIONS Combined with previous findings, these results demonstrate that variation in a highly conserved developmental pathway has the potential to contribute to evolutionary differences in avian upper jaw morphology. Developmental Dynamics 244:1133-1143, 2015. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Diane Hu
- Department of Orthopaedic Surgery, San Francisco General Hospital, Orthopaedic Trauma Institute, The University of California at San Francisco, School of Medicine, San Francisco, California
| | - Nathan M Young
- Department of Orthopaedic Surgery, San Francisco General Hospital, Orthopaedic Trauma Institute, The University of California at San Francisco, School of Medicine, San Francisco, California
| | - Qiuping Xu
- Department of Mathematics, Florida State University, Tallahassee, Florida
| | - Heather Jamniczky
- Department of Cell Biology and Anatomy, Alberta Children's Research Institute for Child and Maternal Health and the McCaig Bone and Joint Institute, University of Calgary, Calgary, Canada
| | - Rebecca M Green
- Department of Cell Biology and Anatomy, Alberta Children's Research Institute for Child and Maternal Health and the McCaig Bone and Joint Institute, University of Calgary, Calgary, Canada
| | - Washington Mio
- Department of Mathematics, Florida State University, Tallahassee, Florida
| | - Ralph S Marcucio
- Department of Orthopaedic Surgery, San Francisco General Hospital, Orthopaedic Trauma Institute, The University of California at San Francisco, School of Medicine, San Francisco, California
| | - Benedikt Hallgrimsson
- Department of Cell Biology and Anatomy, Alberta Children's Research Institute for Child and Maternal Health and the McCaig Bone and Joint Institute, University of Calgary, Calgary, Canada
| |
Collapse
|
20
|
Bhullar BAS, Morris ZS, Sefton EM, Tok A, Tokita M, Namkoong B, Camacho J, Burnham DA, Abzhanov A. A molecular mechanism for the origin of a key evolutionary innovation, the bird beak and palate, revealed by an integrative approach to major transitions in vertebrate history. Evolution 2015; 69:1665-77. [PMID: 25964090 DOI: 10.1111/evo.12684] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2014] [Accepted: 04/08/2015] [Indexed: 12/17/2022]
Abstract
The avian beak is a key evolutionary innovation whose flexibility has permitted birds to diversify into a range of disparate ecological niches. We approached the problem of the mechanism behind this innovation using an approach bridging paleontology, comparative anatomy, and experimental developmental biology. First, we used fossil and extant data to show the beak is distinctive in consisting of fused premaxillae that are geometrically distinct from those of ancestral archosaurs. To elucidate underlying developmental mechanisms, we examined candidate gene expression domains in the embryonic face: the earlier frontonasal ectodermal zone (FEZ) and the later midfacial WNT-responsive region, in birds and several reptiles. This permitted the identification of an autapomorphic median gene expression region in Aves. To test the mechanism, we used inhibitors of both pathways to replicate in chicken the ancestral amniote expression. Altering the FEZ altered later WNT responsiveness to the ancestral pattern. Skeletal phenotypes from both types of experiments had premaxillae that clustered geometrically with ancestral fossil forms instead of beaked birds. The palatal region was also altered to a more ancestral phenotype. This is consistent with the fossil record and with the tight functional association of avian premaxillae and palate in forming a kinetic beak.
Collapse
Affiliation(s)
- Bhart-Anjan S Bhullar
- Department of Organismic and Evolutionary Biology, Harvard University, 16 Divinity Avenue, Cambridge, Massachusetts, 02138. .,Department of Organismal Biology and Anatomy, University of Chicago, 1027 E. 57th St., Anatomy 306, Chicago, Illinois, 60637. .,Department of Geology and Geophysics, Yale University, P.O. Box 208109, New Haven, Connecticut, 06520. .,Peabody Museum of Natural History, Yale University, P.O. Box 208109, New Haven, Connecticut, 06520.
| | - Zachary S Morris
- Department of Organismic and Evolutionary Biology, Harvard University, 16 Divinity Avenue, Cambridge, Massachusetts, 02138
| | - Elizabeth M Sefton
- Department of Organismic and Evolutionary Biology, Harvard University, 16 Divinity Avenue, Cambridge, Massachusetts, 02138.,Museum of Comparative Zoology, Harvard University, 26 Oxford Street, Cambridge, Massachusetts, 02138
| | - Atalay Tok
- Department of Organismic and Evolutionary Biology, Harvard University, 16 Divinity Avenue, Cambridge, Massachusetts, 02138
| | - Masayoshi Tokita
- Department of Organismic and Evolutionary Biology, Harvard University, 16 Divinity Avenue, Cambridge, Massachusetts, 02138
| | - Bumjin Namkoong
- Department of Organismic and Evolutionary Biology, Harvard University, 16 Divinity Avenue, Cambridge, Massachusetts, 02138
| | - Jasmin Camacho
- Department of Organismic and Evolutionary Biology, Harvard University, 16 Divinity Avenue, Cambridge, Massachusetts, 02138
| | - David A Burnham
- Biodiversity Institute and Natural History Museum, University of Kansas, 1345 Jayhawk Boulevard, Lawrence, Kansas, 66045
| | - Arhat Abzhanov
- Department of Organismic and Evolutionary Biology, Harvard University, 16 Divinity Avenue, Cambridge, Massachusetts, 02138. .,Current address: Department of Life Sciences, Imperial College London, Silwood Park Campus Buckhurst Road, Ascot, Berkshire SL5 7PY, United Kingdom. .,Natural History Museum, Cromwell Road, London, SW7 5BD, United Kingdom.
| |
Collapse
|
21
|
Hu D, Young NM, Li X, Xu Y, Hallgrímsson B, Marcucio RS. A dynamic Shh expression pattern, regulated by SHH and BMP signaling, coordinates fusion of primordia in the amniote face. Development 2015; 142:567-74. [PMID: 25605783 DOI: 10.1242/dev.114835] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The mechanisms of morphogenesis are not well understood, yet shaping structures during development is essential for establishing correct organismal form and function. Here, we examine mechanisms that help to shape the developing face during the crucial period of facial primordia fusion. This period of development is a time when the faces of amniote embryos exhibit the greatest degree of similarity, and it probably results from the necessity for fusion to occur to establish the primary palate. Our results show that hierarchical induction mechanisms, consisting of iterative signaling by Sonic hedgehog (SHH) followed by Bone morphogenetic proteins (BMPs), regulate a dynamic expression pattern of Shh in the ectoderm covering the frontonasal (FNP) and maxillary (MxP) processes. Furthermore, this Shh expression domain contributes to the morphogenetic processes that drive the directional growth of the globular process of the FNP toward the lateral nasal process and MxP, in part by regulating cell proliferation in the facial mesenchyme. The nature of the induction mechanism that we discovered suggests that the process of fusion of the facial primordia is intrinsically buffered against producing maladaptive morphologies, such as clefts of the primary palate, because there appears to be little opportunity for variation to occur during expansion of the Shh expression domain in the ectoderm of the facial primordia. Ultimately, these results might explain why this period of development constitutes a phylotypic stage of facial development among amniotes.
Collapse
Affiliation(s)
- Diane Hu
- Department of Orthopaedic Surgery, San Francisco General Hospital, Orthopaedic Trauma Institute, The University of California at San Francisco, School of Medicine, San Francisco, CA 94110, USA
| | - Nathan M Young
- Department of Orthopaedic Surgery, San Francisco General Hospital, Orthopaedic Trauma Institute, The University of California at San Francisco, School of Medicine, San Francisco, CA 94110, USA
| | - Xin Li
- Department of Orthopaedic Surgery, San Francisco General Hospital, Orthopaedic Trauma Institute, The University of California at San Francisco, School of Medicine, San Francisco, CA 94110, USA National Key Laboratory of Bio-Macromolecule, Chinese Academy of Sciences, Beijing 100101, China
| | - Yanhua Xu
- Department of Orthopaedic Surgery, San Francisco General Hospital, Orthopaedic Trauma Institute, The University of California at San Francisco, School of Medicine, San Francisco, CA 94110, USA Epitomizes, Inc., 1418 Moganshan Road, Hangzhou, Zhejiang 310011, China
| | - Benedikt Hallgrímsson
- Department of Anatomy and Cell Biology, University of Calgary, McCaig Institute for Bone and Joint Health, Calgary, Alberta, Canada T2N 4N1
| | - Ralph S Marcucio
- Department of Orthopaedic Surgery, San Francisco General Hospital, Orthopaedic Trauma Institute, The University of California at San Francisco, School of Medicine, San Francisco, CA 94110, USA
| |
Collapse
|
22
|
Aoto K, Trainor PA. Co-ordinated brain and craniofacial development depend upon Patched1/XIAP regulation of cell survival. Hum Mol Genet 2014; 24:698-713. [PMID: 25292199 DOI: 10.1093/hmg/ddu489] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Congenital brain and craniofacial defects often occur together as a consequence of their developmental dependency on common progenitor tissue interactions and signaling pathways during embryogenesis. A classic example of this is perturbation of midline embryo development, and disruption of Hedgehog (Hh) signaling in the pathogenesis of holoprosencephaly. However, our understanding of how Hh signaling governs cell and tissue survival remains incomplete. Patched1 (Ptch1) is a well-known receptor for Hh ligands and Ptch1 overexpression is associated with cell and tissue-specific apoptosis. Here, we demonstrate that the X-linked inhibitory apoptosis protein (XIAP) associates with the C terminus of Ptch1 (Ptch1-C) in primary cilia to inhibit Ptch1-mediated cell death. Consistent with this observation, inhibition of XIAP suppresses cell proliferation, resulting in cell death and pathogenesis of an Hh loss-of-function phenotype. Thus, co-ordinated development of the brain and face is dependent in part upon XIAP mediation of Hh/Ptch1-regulated cell survival and apoptosis during embryogenesis.
Collapse
Affiliation(s)
- Kazushi Aoto
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA and
| | - Paul A Trainor
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA and Department of Anatomy & Cell Biology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66202, USA
| |
Collapse
|
23
|
Hall J, Jheon AH, Ealba EL, Eames BF, Butcher KD, Mak SS, Ladher R, Alliston T, Schneider RA. Evolution of a developmental mechanism: Species-specific regulation of the cell cycle and the timing of events during craniofacial osteogenesis. Dev Biol 2014; 385:380-95. [PMID: 24262986 PMCID: PMC3953612 DOI: 10.1016/j.ydbio.2013.11.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 11/02/2013] [Accepted: 11/10/2013] [Indexed: 12/27/2022]
Abstract
Neural crest mesenchyme (NCM) controls species-specific pattern in the craniofacial skeleton but how this cell population accomplishes such a complex task remains unclear. To elucidate mechanisms through which NCM directs skeletal development and evolution, we made chimeras from quail and duck embryos, which differ markedly in their craniofacial morphology and maturation rates. We show that quail NCM, when transplanted into duck, maintains its faster timetable for development and autonomously executes molecular and cellular programs for the induction, differentiation, and mineralization of bone, including premature expression of osteogenic genes such as Runx2 and Col1a1. In contrast, the duck host systemic environment appears to be relatively permissive and supports osteogenesis independently by providing circulating minerals and a vascular network. Further experiments reveal that NCM establishes the timing of osteogenesis by regulating cell cycle progression in a stage- and species-specific manner. Altering the time-course of D-type cyclin expression mimics chimeras by accelerating expression of Runx2 and Col1a1. We also discover higher endogenous expression of Runx2 in quail coincident with their smaller craniofacial skeletons, and by prematurely over-expressing Runx2 in chick embryos we reduce the overall size of the craniofacial skeleton. Thus, our work indicates that NCM establishes species-specific size in the craniofacial skeleton by controlling cell cycle, Runx2 expression, and the timing of key events during osteogenesis.
Collapse
Affiliation(s)
- Jane Hall
- University of California at San Francisco, Department of Orthopaedic Surgery, 513 Parnassus Avenue, S-1161, San Francisco, CA 94143-0514, USA
| | - Andrew H Jheon
- University of California at San Francisco, Department of Orthopaedic Surgery, 513 Parnassus Avenue, S-1161, San Francisco, CA 94143-0514, USA
| | - Erin L Ealba
- University of California at San Francisco, Department of Orthopaedic Surgery, 513 Parnassus Avenue, S-1161, San Francisco, CA 94143-0514, USA
| | - B Frank Eames
- University of California at San Francisco, Department of Orthopaedic Surgery, 513 Parnassus Avenue, S-1161, San Francisco, CA 94143-0514, USA
| | - Kristin D Butcher
- University of California at San Francisco, Department of Orthopaedic Surgery, 513 Parnassus Avenue, S-1161, San Francisco, CA 94143-0514, USA
| | - Siu-Shan Mak
- RIKEN Center for Developmental Biology, 2-2-3 Minatojima-minami, Chuo-ku Kobe 650-0047, Japan
| | - Raj Ladher
- RIKEN Center for Developmental Biology, 2-2-3 Minatojima-minami, Chuo-ku Kobe 650-0047, Japan
| | - Tamara Alliston
- University of California at San Francisco, Department of Orthopaedic Surgery, 513 Parnassus Avenue, S-1161, San Francisco, CA 94143-0514, USA
| | - Richard A Schneider
- University of California at San Francisco, Department of Orthopaedic Surgery, 513 Parnassus Avenue, S-1161, San Francisco, CA 94143-0514, USA.
| |
Collapse
|
24
|
Cebra-Thomas JA, Terrell A, Branyan K, Shah S, Rice R, Gyi L, Yin M, Hu Y, Mangat G, Simonet J, Betters E, Gilbert SF. Late-emigrating trunk neural crest cells in turtle embryos generate an osteogenic ectomesenchyme in the plastron. Dev Dyn 2013; 242:1223-35. [PMID: 23904174 DOI: 10.1002/dvdy.24018] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 06/13/2013] [Accepted: 07/03/2013] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND The turtle plastron is composed of a keratinized epidermis overlying nine dermal bones. Its developmental origin has been controversial; recent evidence suggests that the plastral bones derive from trunk neural crest cells (NCCs). RESULTS This study extends the observations that there is a turtle-specific, second wave of trunk NCC delamination and migration, after the original NCCs have reached their destination and differentiated. This second wave was confirmed by immunohistochemistry in whole-mounts and serial sections, by injecting DiI (1,1', di-octadecyl-3,3,3',3',-tetramethylindo-carbocyanine perchlorate) into the lumen of the neural tube and tracing labeled cells into the plastron, and by isolating neural tubes from older turtle embryos and observing delaminating NCCs. This later migration gives rise to a plastral ectomesenchyme that expresses NCC markers and can be induced to initiate bone formation. CONCLUSIONS The NCCs of this second migration have properties similar to those of the earlier NCCs, but also express markers characteristic of cranial NCCs. The majority of the cells of the plastron mesenchyme express neural crest markers, and have osteogenic differentiation capabilities that are similar or identical to craniofacial ectomesenchyme. Our evidence supports the contention that turtle plastron bones are derived from a late emigrating population of cells derived from the trunk neural crest.
Collapse
|
25
|
Li X, Young NM, Tropp S, Hu D, Xu Y, Hallgrímsson B, Marcucio RS. Quantification of shape and cell polarity reveals a novel mechanism underlying malformations resulting from related FGF mutations during facial morphogenesis. Hum Mol Genet 2013; 22:5160-72. [PMID: 23906837 DOI: 10.1093/hmg/ddt369] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Fibroblast growth factor (FGF) signaling mutations are a frequent contributor to craniofacial malformations including midfacial anomalies and craniosynostosis. FGF signaling has been shown to control cellular mechanisms that contribute to facial morphogenesis and growth such as proliferation, survival, migration and differentiation. We hypothesized that FGF signaling not only controls the magnitude of growth during facial morphogenesis but also regulates the direction of growth via cell polarity. To test this idea, we infected migrating neural crest cells of chicken embryos with replication-competent avian sarcoma virus expressing either FgfR2(C278F), a receptor mutation found in Crouzon syndrome or the ligand Fgf8. Treated embryos exhibited craniofacial malformations resembling facial dysmorphologies in craniosynostosis syndrome. Consistent with our hypothesis, ectopic activation of FGF signaling resulted in decreased cell proliferation, increased expression of the Sprouty class of FGF signaling inhibitors, and repressed phosphorylation of ERK/MAPK. Furthermore, quantification of cell polarity in facial mesenchymal cells showed that while orientation of the Golgi body matches the direction of facial prominence outgrowth in normal cells, in FGF-treated embryos this direction is randomized, consistent with aberrant growth that we observed. Together, these data demonstrate that FGF signaling regulates cell proliferation and cell polarity and that these cell processes contribute to facial morphogenesis.
Collapse
Affiliation(s)
- Xin Li
- Department of Orthopedic Surgery, Orthopedic Trauma Institute, San Francisco General Hospital, University of California, San Francisco, CA, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Bhatt S, Diaz R, Trainor PA. Signals and switches in Mammalian neural crest cell differentiation. Cold Spring Harb Perspect Biol 2013; 5:5/2/a008326. [PMID: 23378583 DOI: 10.1101/cshperspect.a008326] [Citation(s) in RCA: 145] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Neural crest cells (NCCs) comprise a multipotent, migratory cell population that generates a diverse array of cell and tissue types during vertebrate development. These include cartilage and bone, tendons, and connective tissue, as well as neurons, glia, melanocytes, and endocrine and adipose cells; this remarkable lineage potential persists into adult life. Taken together with a limited capacity for self-renewal, neural crest cells bear the hallmarks of stem and progenitor cells and are considered to be synonymous with vertebrate evolution. The neural crest has provided a system for exploring the mechanisms that govern developmental processes such as morphogenetic induction, cell migration, and fate determination. Today, much of the focus on neural crest cells revolves around their stem cell-like characteristics and potential for use in regenerative medicine. A thorough understanding of the signals and switches that govern mammalian neural crest patterning is central to potential therapeutic application of these cells and better appreciation of the role that neural crest cells play in vertebrate evolution, development, and disease.
Collapse
Affiliation(s)
- Shachi Bhatt
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | | | | |
Collapse
|
27
|
Boije H, Harun-Or-Rashid M, Lee YJ, Imsland F, Bruneau N, Vieaud A, Gourichon D, Tixier-Boichard M, Bed’hom B, Andersson L, Hallböök F. Sonic Hedgehog-signalling patterns the developing chicken comb as revealed by exploration of the pea-comb mutation. PLoS One 2012; 7:e50890. [PMID: 23227218 PMCID: PMC3515514 DOI: 10.1371/journal.pone.0050890] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Accepted: 10/25/2012] [Indexed: 12/17/2022] Open
Abstract
The genetic basis and mechanisms behind the morphological variation observed throughout the animal kingdom is still relatively unknown. In the present work we have focused on the establishment of the chicken comb-morphology by exploring the Pea-comb mutant. The wild-type single-comb is reduced in size and distorted in the Pea-comb mutant. Pea-comb is formed by a lateral expansion of the central comb anlage into three ridges and is caused by a mutation in SOX5, which induces ectopic expression of the SOX5 transcription factor in mesenchyme under the developing comb. Analysis of differential gene expression identified decreased Sonic hedgehog (SHH) receptor expression in Pea-comb mesenchyme. By experimentally blocking SHH with cyclopamine, the wild-type single-comb was transformed into a Pea-comb-like phenotype. The results show that the patterning of the chicken comb is under the control of SHH and suggest that ectopic SOX5 expression in the Pea-comb change the response of mesenchyme to SHH signalling with altered comb morphogenesis as a result. A role for the mesenchyme during comb morphogenesis is further supported by the recent finding that another comb-mutant (Rose-comb), is caused by ectopic expression of a transcription factor in comb mesenchyme. The present study does not only give knowledge about how the chicken comb is formed, it also adds to our understanding how mutations or genetic polymorphisms may contribute to inherited variations in the human face.
Collapse
Affiliation(s)
- Henrik Boije
- Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | | | - Yu-Jen Lee
- Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Freyja Imsland
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Nicolas Bruneau
- Institut National de la Recherche Agronomique, AgroParisTech, UMR1313 Animal Genetics and Integrative Biology, Jouy-en-Josas, France
| | - Agathe Vieaud
- Institut National de la Recherche Agronomique, AgroParisTech, UMR1313 Animal Genetics and Integrative Biology, Jouy-en-Josas, France
| | - David Gourichon
- Institut National de la Recherche Agronomique, UE1295 Poultry Experimental Platform of Tours, Nouzilly, France
| | - Michèle Tixier-Boichard
- Institut National de la Recherche Agronomique, AgroParisTech, UMR1313 Animal Genetics and Integrative Biology, Jouy-en-Josas, France
| | - Bertrand Bed’hom
- Institut National de la Recherche Agronomique, AgroParisTech, UMR1313 Animal Genetics and Integrative Biology, Jouy-en-Josas, France
| | - Leif Andersson
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Finn Hallböök
- Department of Neuroscience, Uppsala University, Uppsala, Sweden
- * E-mail:
| |
Collapse
|