1
|
Liu Q, Zhao RM, Wang DY, Li P, Qu YF, Ji X. Genome-wide characterization of the TGF-β gene family and their expression in different tissues during tail regeneration in the Schlegel's Japanese gecko Gekko japonicus. Int J Biol Macromol 2024; 255:128127. [PMID: 37984573 DOI: 10.1016/j.ijbiomac.2023.128127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 10/19/2023] [Accepted: 11/08/2023] [Indexed: 11/22/2023]
Abstract
The transforming growth factor-β (TGF-β) gene family is unique to animals and is involved in various important processes including tissue regeneration. Here, we identified 52 TGF-β family genes based on genome sequences of the gecko (Gekko japonicus), compared TGF-β genes between G. japonicus and other four reptilian species, and evaluated the expression of 14 randomly selected genes in muscle, kidney, liver, heart, and brain during tail regeneration to investigate whether their expression was tissue-dependent. We detected 23 conserved domains, 13 in the TGF-β ligand subfamily, and 10 in the receptor subfamily. The pattern of higher genetic variation in the ligand subfamily than in the receptor subfamily in vertebrates might result from the precise localization of agonists and antagonists in the cell surface and intracellular compartment. TGF-β genes were unevenly distributed across 15 chromosomes in G. japonicus, presumably resulting from gene losses and gains during evolution. Genes in the TGF-β receptor subfamily (ACVR2A, ACVR2B, ACVR1, BMPR1A, ACVRL1, BMPR2 and TGFBR1) played a vital role in the TGF-β signal pathway. The expression of all 14 randomly selected TGF-β genes was tissue-specific. Our study supports the speculation that some TGF-β family genes are involved in the early stages of tail regeneration.
Collapse
Affiliation(s)
- Qian Liu
- College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Ru-Meng Zhao
- College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Dan-Yan Wang
- College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Peng Li
- College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Yan-Fu Qu
- College of Life Sciences, Nanjing Normal University, Nanjing 210023, China.
| | - Xiang Ji
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Sciences, Wenzhou University, Wenzhou 325035, China.
| |
Collapse
|
2
|
Alibardi L. Activation of cell adhesion molecules and Snail during epithelial to mesenchymal transition prior to formation of the regenerative tail blastema in lizards. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2023; 340:56-67. [PMID: 35451552 DOI: 10.1002/jez.b.23139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 02/24/2022] [Accepted: 04/03/2022] [Indexed: 12/16/2022]
Abstract
After few days from tail amputation in lizards the stump is covered with mesenchymal cells accumulated underneath a wound epidermis and forms a regenerative blastema. During migration, some keratinocytes transit from a compact epidermis into relatively free keratinocytes in a process of "epithelial to mesenchymal transition" (EMT). EMT is also induced after damaging the regenerating epidermis by cauterization, whereas keratinocytes detach and migrate as mesenchymal-like cells among the superficial blastema cells and reconstruct a wound epidermis after about a week from the damage. In normal amputation or after cauterization, no malignant transformation is observed during the transition and migration of keratinocytes. Immunolabeling for markers of EMT confirms the histological description and shows a unique pattern of expression for l-CAM (E-cadherin), N-CAM, and SNAIL-1 and -2 (SLUG). These proteins are present in the cytoplasm and nuclei of migrating keratinocytes. It is hypothesized that the nuclear labeling for E-cadherin coupled to cytoplasmic SNAIL-labeling is somehow related to an initially regulated EMT. After the migrating keratinocytes have reached confluence over the stump, they reverse into a "mesenchymal to epithelial transition" (MET) forming the wound epidermis. The basal layers of the apical wound epidermis of the blastema show some nuclear E-cadherin labeling, while the tail regenerates. It is hypothesized that, together with other tumor suppressors proteins, the apical epidermis and mesenchyme are kept under a tight proliferative control, while in proximal regions the prevalent effect of tumor suppressors determine the differentiation of the new tail tissues.
Collapse
Affiliation(s)
- Lorenzo Alibardi
- Comparative Histolab Padova and Department of Biology, University of Bologna, Bologna, Italy
| |
Collapse
|
3
|
Alibardi L. Immunohistochemistry Indicates That Persistent Inflammation Determines Failure of Tail, Limb and Finger Regeneration in the Lizard Podarcis muralis. Ann Anat 2022; 243:151940. [PMID: 35390473 DOI: 10.1016/j.aanat.2022.151940] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 02/04/2022] [Accepted: 03/17/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND The presence of white blood inflammatory cells in injured tissues and their effect on the process of organ regeneration in lizards has been assessed on tail, limb and digits. METHODS The present immunohistochemical survey analyzes the occurrence of CD68-labeled cells in lizard organs uncapable of regenerating tissues that exhibit strong inflammatory activity. RESULTS This marker mainly identifies macrophages and mast cells present in large number within tissues of injured limbs and digits. Also a high inflammation is associated with amputated tails that do not regenerate, derived from cauterization or infection of tissues of the tail stump. In the healing limbs and fingers at 12-20 days post-amputation, numerous CD68-labeled cells, most likely macrophages, are seen among superficial connective tissues and injured muscles and bones. These cells likely stimulate and give rise to scarring tissues and no regeneration of limb and fingers occurs. In the cauterized or in the infected tail stump a strong accumulation of CD68-positive mast cells and macrophages is observed, where they likely evoke epidermal coagulation, formation of scarring connective tissue, and loss of regeneration. CONCLUSIONS The present observations provide further cytological evidence that support the notion that a strong and lasting inflammatory condition impedes organ regeneration in specifically lizards and, more generally other vertebrates as well.
Collapse
Affiliation(s)
- Lorenzo Alibardi
- Comparative Histolab Padova, Dipartimento di Biologia, University of Bologna, via Selmi 3, 40126, BO, Italy
| |
Collapse
|
4
|
Scott CA, Carney TJ, Amaya E. Aerobic glycolysis is important for zebrafish larval wound closure and tail regeneration. Wound Repair Regen 2022; 30:665-680. [PMID: 36148505 PMCID: PMC9828577 DOI: 10.1111/wrr.13050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 08/02/2022] [Accepted: 09/03/2022] [Indexed: 01/12/2023]
Abstract
The underlying mechanisms of appendage regeneration remain largely unknown and uncovering these mechanisms in capable organisms has far-reaching implications for potential treatments in humans. Recent studies implicate a requirement for metabolic reprogramming reminiscent of the Warburg effect during successful appendage and organ regeneration. As changes are thus predicted to be highly dynamic, methods permitting direct, real-time visualisation of metabolites at the tissue and organismal level would offer a significant advance in defining the influence of metabolism on regeneration and healing. We sought to examine whether glycolytic activity was altered during larval fin regeneration, utilising the genetically encoded biosensor, Laconic, enabling the spatiotemporal assessment of lactate levels in living zebrafish. We present evidence for a rapid increase in lactate levels within min following injury, with a role of aerobic glycolysis in actomyosin contraction and wound closure. We also find a second wave of lactate production, associated with overall larval tail regeneration. Chemical inhibition of glycolysis attenuates both the contraction of the wound and regrowth of tissue following tail amputation, suggesting aerobic glycolysis is necessary at two distinct stages of regeneration.
Collapse
Affiliation(s)
- Claire A. Scott
- Division of Cell Matrix Biology & Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and HealthUniversity of ManchesterManchesterUK,Institute of Molecular and Cell Biology (IMCB)A*STAR (Agency for Science, Technology and Research)SingaporeSingapore
| | - Tom J. Carney
- Institute of Molecular and Cell Biology (IMCB)A*STAR (Agency for Science, Technology and Research)SingaporeSingapore,Lee Kong Chian School of Medicine, Experimental Medicine Building, Yunnan Garden CampusNanyang Technological UniversitySingaporeSingapore
| | - Enrique Amaya
- Division of Cell Matrix Biology & Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and HealthUniversity of ManchesterManchesterUK
| |
Collapse
|
5
|
Sinclair JW, Hoying DR, Bresciani E, Nogare DD, Needle CD, Berger A, Wu W, Bishop K, Elkahloun AG, Chitnis A, Liu P, Burgess SM. The Warburg effect is necessary to promote glycosylation in the blastema during zebrafish tail regeneration. NPJ Regen Med 2021; 6:55. [PMID: 34518542 PMCID: PMC8437957 DOI: 10.1038/s41536-021-00163-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 08/11/2021] [Indexed: 12/21/2022] Open
Abstract
Throughout their lifetime, fish maintain a high capacity for regenerating complex tissues after injury. We utilized a larval tail regeneration assay in the zebrafish Danio rerio, which serves as an ideal model of appendage regeneration due to its easy manipulation, relatively simple mixture of cell types, and superior imaging properties. Regeneration of the embryonic zebrafish tail requires development of a blastema, a mass of dedifferentiated cells capable of replacing lost tissue, a crucial step in all known examples of appendage regeneration. Using this model, we show that tail amputation triggers an obligate metabolic shift to promote glucose metabolism during early regeneration similar to the Warburg effect observed in tumor forming cells. Inhibition of glucose metabolism did not affect the overall health of the embryo but completely blocked the tail from regenerating after amputation due to the failure to form a functional blastema. We performed a time series of single-cell RNA sequencing on regenerating tails with and without inhibition of glucose metabolism. We demonstrated that metabolic reprogramming is required for sustained TGF-β signaling and blocking glucose metabolism largely mimicked inhibition of TGF-β receptors, both resulting in an aberrant blastema. Finally, we showed using genetic ablation of three possible metabolic pathways for glucose, that metabolic reprogramming is required to provide glucose specifically to the hexosamine biosynthetic pathway while neither glycolysis nor the pentose phosphate pathway were necessary for regeneration.
Collapse
Affiliation(s)
- Jason W Sinclair
- Translational and Functional Genomics Branch, National Human Genome Research Institute, Bethesda, MD, USA
| | - David R Hoying
- Translational and Functional Genomics Branch, National Human Genome Research Institute, Bethesda, MD, USA
| | - Erica Bresciani
- Translational and Functional Genomics Branch, National Human Genome Research Institute, Bethesda, MD, USA
| | - Damian Dalle Nogare
- Aquatic Models of Human Development Affinity Group, National Institute of Child Health and Human Development, Bethesda, MD, USA
| | - Carli D Needle
- Translational and Functional Genomics Branch, National Human Genome Research Institute, Bethesda, MD, USA
| | - Alexandra Berger
- Translational and Functional Genomics Branch, National Human Genome Research Institute, Bethesda, MD, USA
| | - Weiwei Wu
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, Bethesda, MD, USA
| | - Kevin Bishop
- Translational and Functional Genomics Branch, National Human Genome Research Institute, Bethesda, MD, USA
| | - Abdel G Elkahloun
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, Bethesda, MD, USA
| | - Ajay Chitnis
- Aquatic Models of Human Development Affinity Group, National Institute of Child Health and Human Development, Bethesda, MD, USA
| | - Paul Liu
- Translational and Functional Genomics Branch, National Human Genome Research Institute, Bethesda, MD, USA
| | - Shawn M Burgess
- Translational and Functional Genomics Branch, National Human Genome Research Institute, Bethesda, MD, USA.
| |
Collapse
|
6
|
Alibardi L. Review: Regeneration of the tail in lizards appears regulated by a balanced expression of oncogenes and tumor suppressors. Ann Anat 2021; 239:151824. [PMID: 34478856 DOI: 10.1016/j.aanat.2021.151824] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/24/2021] [Accepted: 08/26/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Tail regeneration in lizards is the only case of large multi-tissue organ regeneration in amniotes. METHODS The present Review summarizes numerous immunolocalization and gene-expression studies indicating that after tail amputation in lizards the stump is covered in 7-10 days by the migration of keratinocytes. This allows the accumulation of mesenchymal-fibroblasts underneath the wound epidermis and forms a regenerative blastema and a new tail. RESULTS During migration keratinocytes transit from a compact epidermis into relatively free keratinocytes in a process of "Epithelial Mesenchymal Transition" (EMT). While EMT has been implicated in carcinogenesis no malignant transformation is observed during these cell movements in the regenerative blastema. Immunolabeling for E-cadherin and snail shows that these proteins are present in the cytoplasm and nuclei of migrating keratinocytes. The basal layer of the wound epithelium of the apical blastema express onco-proteins (wnt2b, egfr, c-myc, fgfs, fgfr, rhov, etc.) and tumor suppressors (p53/63, fat2, ephr, apc, retinoblastoma, arhgap28 etc.). This suggests that their balanced action regulates proliferation of the blastema. CONCLUSIONS While apical epidermis and mesenchyme are kept under a tight proliferative control, in more proximal regions of the regenerating tail the expression of tumor-suppressors triggers the differentiation of numerous tissues, forming the large myomeres, axial cartilage, simple spinal cord and nerves, new scales, arteries and veins, fat deposits, dermis and other connective tissues. Understanding gene expression patterns of developmental pathways activated during tail regeneration in lizards is useful for cancer research and for future attempts to induce organ regeneration in other amniotes including humans.
Collapse
Affiliation(s)
- Lorenzo Alibardi
- Comparative Histolab Padova and Dipartmento di Biologia, Universita' di Bologna, Italy.
| |
Collapse
|
7
|
Sader F, Roy S. Tgf-β superfamily and limb regeneration: Tgf-β to start and Bmp to end. Dev Dyn 2021; 251:973-987. [PMID: 34096672 DOI: 10.1002/dvdy.379] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/31/2021] [Accepted: 06/02/2021] [Indexed: 12/19/2022] Open
Abstract
Axolotls represent a popular model to study how nature solved the problem of regenerating lost appendages in tetrapods. Our work over many years focused on trying to understand how these animals can achieve such a feat and not end up with a scarred up stump. The Tgf-β superfamily represents an interesting family to target since they are involved in wound healing in adults and pattern formation during development. This family is large and comprises Tgf-β, Bmps, activins and GDFs. In this review, we present work from us and others on Tgf-β & Bmps and highlight interesting observations between these two sub-families. Tgf-β is important for the preparation phase of regeneration and Bmps for the redevelopment phase and they do not overlap with one another. We present novel data showing that the Tgf-β non-canonical pathway is also not active during redevelopment. Finally, we propose a molecular model to explain how Tgf-β and Bmps maintain distinct windows of expression during regeneration in axolotls.
Collapse
Affiliation(s)
- Fadi Sader
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Montréal, Québec, Canada
| | - Stéphane Roy
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Montréal, Québec, Canada.,Department of Stomatology, Faculty of Dentistry, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
8
|
Wang Z, Bai Y, Nie H, Xu Q, Yin Z, Zhang Y, Yin X, Yan X. Molecular mechanisms of wound healing and regeneration of siphon in the Manila clam Ruditapes philippinarum revealed by transcriptomic analysis. Genomics 2021; 113:1011-1025. [PMID: 33626340 DOI: 10.1016/j.ygeno.2021.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 01/24/2021] [Accepted: 02/18/2021] [Indexed: 10/22/2022]
Abstract
Ruditapes philippinarum is an economically important marine shellfish aquaculture species, and it has the ability to regenerate its siphons. To gain a greater understanding of the molecular mechanisms at work during siphon regeneration and to provide evidence for morphological regeneration, we examined transcriptome responses of siphon tissue of R. philippinarum during regeneration and observed regenerative siphons under the stereomicroscope. The overall process of siphon regeneration was dissected based on the morphological changes of siphon and the identification of up-regulated key differentially expressed genes (DEGs). The protein biosynthesis and metabolism played important roles in wound healing and siphon regeneration of R. philippinarum. Transcriptomic analysis identified the Wnt and TGF-β signaling pathways by focusing on the function and expression pattern of genes in these pathways during siphon regeneration. In addition, we carried out a genome-wide identification and phylogenetic analysis of TGF-β superfamily in R. philippinarum. The expression profiles of the TGF-β superfamily genes were analyzed in eight adult tissues (adductor muscle, mantle, foot, gill, siphon, digestive gland, gonad, and labial palp) and regenerative siphon. This study shed new light on the process of morphological regeneration and regenerative mechanism of siphon of R. philippinarum.
Collapse
Affiliation(s)
- Zhengxing Wang
- College of Fisheries and Life Science, Dalian Ocean University, 116023 Dalian, China; Engineering Research Center of Shellfish Culture and Breeding in Liaoning Province, Dalian Ocean University, 116023 Dalian, China
| | - Yitian Bai
- College of Fisheries and Life Science, Dalian Ocean University, 116023 Dalian, China; Engineering Research Center of Shellfish Culture and Breeding in Liaoning Province, Dalian Ocean University, 116023 Dalian, China
| | - Hongtao Nie
- College of Fisheries and Life Science, Dalian Ocean University, 116023 Dalian, China; Engineering Research Center of Shellfish Culture and Breeding in Liaoning Province, Dalian Ocean University, 116023 Dalian, China.
| | - Qiaoyue Xu
- College of Fisheries and Life Science, Dalian Ocean University, 116023 Dalian, China; Engineering Research Center of Shellfish Culture and Breeding in Liaoning Province, Dalian Ocean University, 116023 Dalian, China
| | - Zhihui Yin
- College of Fisheries and Life Science, Dalian Ocean University, 116023 Dalian, China; Engineering Research Center of Shellfish Culture and Breeding in Liaoning Province, Dalian Ocean University, 116023 Dalian, China
| | - Yanming Zhang
- College of Fisheries and Life Science, Dalian Ocean University, 116023 Dalian, China; Engineering Research Center of Shellfish Culture and Breeding in Liaoning Province, Dalian Ocean University, 116023 Dalian, China
| | - Xuwang Yin
- College of Fisheries and Life Science, Dalian Ocean University, 116023 Dalian, China.
| | - Xiwu Yan
- College of Fisheries and Life Science, Dalian Ocean University, 116023 Dalian, China; Engineering Research Center of Shellfish Culture and Breeding in Liaoning Province, Dalian Ocean University, 116023 Dalian, China.
| |
Collapse
|
9
|
Daponte V, Tylzanowski P, Forlino A. Appendage Regeneration in Vertebrates: What Makes This Possible? Cells 2021; 10:cells10020242. [PMID: 33513779 PMCID: PMC7911911 DOI: 10.3390/cells10020242] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/18/2021] [Accepted: 01/22/2021] [Indexed: 12/26/2022] Open
Abstract
The ability to regenerate amputated or injured tissues and organs is a fascinating property shared by several invertebrates and, interestingly, some vertebrates. The mechanism of evolutionary loss of regeneration in mammals is not understood, yet from the biomedical and clinical point of view, it would be very beneficial to be able, at least partially, to restore that capability. The current availability of new experimental tools, facilitating the comparative study of models with high regenerative ability, provides a powerful instrument to unveil what is needed for a successful regeneration. The present review provides an updated overview of multiple aspects of appendage regeneration in three vertebrates: lizard, salamander, and zebrafish. The deep investigation of this process points to common mechanisms, including the relevance of Wnt/β-catenin and FGF signaling for the restoration of a functional appendage. We discuss the formation and cellular origin of the blastema and the identification of epigenetic and cellular changes and molecular pathways shared by vertebrates capable of regeneration. Understanding the similarities, being aware of the differences of the processes, during lizard, salamander, and zebrafish regeneration can provide a useful guide for supporting effective regenerative strategies in mammals.
Collapse
Affiliation(s)
- Valentina Daponte
- Biochemistry Unit, Department of Molecular Medicine, University of Pavia, via Taramelli 3/B, 27100 Pavia, Italy;
| | - Przemko Tylzanowski
- Skeletal Biology and Engineering Research Center, Department of Development and Regeneration, University of Leuven, 3000 Leuven, Belgium;
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 20-059 Lublin, Poland
| | - Antonella Forlino
- Biochemistry Unit, Department of Molecular Medicine, University of Pavia, via Taramelli 3/B, 27100 Pavia, Italy;
- Correspondence: ; Tel.: +39-0382-987235
| |
Collapse
|
10
|
Abarca-Buis RF, Mandujano-Tinoco EA, Cabrera-Wrooman A, Krötzsch E. The complexity of TGFβ/activin signaling in regeneration. J Cell Commun Signal 2021; 15:7-23. [PMID: 33481173 DOI: 10.1007/s12079-021-00605-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 01/05/2021] [Indexed: 12/11/2022] Open
Abstract
The role of transforming growth factor β TGFβ/activin signaling in wound repair and regeneration is highly conserved in the animal kingdom. Various studies have shown that TGF-β/activin signaling can either promote or inhibit different aspects of the regeneration process (i.e., proliferation, differentiation, and re-epithelialization). It has been demonstrated in several biological systems that some of the different cellular responses promoted by TGFβ/activin signaling depend on the activation of Smad-dependent or Smad-independent signal transduction pathways. In the context of regeneration and wound healing, it has been shown that the type of R-Smad stimulated determines the different effects that can be obtained. However, neither the possible roles of Smad-independent pathways nor the interaction of the TGFβ/activin pathway with other complex signaling networks involved in the regenerative process has been studied extensively. Here, we review the important aspects concerning the TGFβ/activin signaling pathway in the regeneration process. We discuss data regarding the role of TGF-β/activin in the most common animal regenerative models to demonstrate how this signaling promotes or inhibits regeneration, depending on the cellular context.
Collapse
Affiliation(s)
- René Fernando Abarca-Buis
- Laboratory of Connective Tissue, Centro Nacional de Investigación y Atención de Quemados, Instituto Nacional de Rehabilitación "Luís Guillermo Ibarra Ibarra", Calzada México-Xochimilco No. 289, Col. Arenal de Guadalupe, Tlalpan, 14389, Mexico City, Mexico.
| | - Edna Ayerim Mandujano-Tinoco
- Laboratory of Connective Tissue, Centro Nacional de Investigación y Atención de Quemados, Instituto Nacional de Rehabilitación "Luís Guillermo Ibarra Ibarra", Calzada México-Xochimilco No. 289, Col. Arenal de Guadalupe, Tlalpan, 14389, Mexico City, Mexico
| | - Alejandro Cabrera-Wrooman
- Laboratory of Connective Tissue, Centro Nacional de Investigación y Atención de Quemados, Instituto Nacional de Rehabilitación "Luís Guillermo Ibarra Ibarra", Calzada México-Xochimilco No. 289, Col. Arenal de Guadalupe, Tlalpan, 14389, Mexico City, Mexico
| | - Edgar Krötzsch
- Laboratory of Connective Tissue, Centro Nacional de Investigación y Atención de Quemados, Instituto Nacional de Rehabilitación "Luís Guillermo Ibarra Ibarra", Calzada México-Xochimilco No. 289, Col. Arenal de Guadalupe, Tlalpan, 14389, Mexico City, Mexico
| |
Collapse
|
11
|
Verissimo KM, Perez LN, Dragalzew AC, Senevirathne G, Darnet S, Barroso Mendes WR, Ariel Dos Santos Neves C, Monteiro Dos Santos E, Nazare de Sousa Moraes C, Elewa A, Shubin N, Fröbisch NB, de Freitas Sousa J, Schneider I. Salamander-like tail regeneration in the West African lungfish. Proc Biol Sci 2020; 287:20192939. [PMID: 32933441 DOI: 10.1098/rspb.2019.2939] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Salamanders, frog tadpoles and diverse lizards have the remarkable ability to regenerate tails. Palaeontological data suggest that this capacity is plesiomorphic, yet when the developmental and genetic architecture of tail regeneration arose is poorly understood. Here, we show morphological and molecular hallmarks of tetrapod tail regeneration in the West African lungfish Protopterus annectens, a living representative of the sister group of tetrapods. As in salamanders, lungfish tail regeneration occurs via the formation of a proliferative blastema and restores original structures, including muscle, skeleton and spinal cord. In contrast with lizards and similar to salamanders and frogs, lungfish regenerate spinal cord neurons and reconstitute dorsoventral patterning of the tail. Similar to salamander and frog tadpoles, Shh is required for lungfish tail regeneration. Through RNA-seq analysis of uninjured and regenerating tail blastema, we show that the genetic programme deployed during lungfish tail regeneration maintains extensive overlap with that of tetrapods, with the upregulation of genes and signalling pathways previously implicated in amphibian and lizard tail regeneration. Furthermore, the lungfish tail blastema showed marked upregulation of genes encoding post-transcriptional RNA processing components and transposon-derived genes. Our results show that the developmental processes and genetic programme of tetrapod tail regeneration were present at least near the base of the sarcopterygian clade and establish the lungfish as a valuable research system for regenerative biology.
Collapse
Affiliation(s)
- Kellen Matos Verissimo
- Instituto de Ciências Biológicas, Universidade Federal do Pará, 66075-900, Belém, Brazil
| | - Louise Neiva Perez
- Instituto de Ciências Biológicas, Universidade Federal do Pará, 66075-900, Belém, Brazil.,Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, 10115 Berlin, Germany
| | - Aline Cutrim Dragalzew
- Instituto de Ciências Biológicas, Universidade Federal do Pará, 66075-900, Belém, Brazil
| | - Gayani Senevirathne
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL 60637, USA
| | - Sylvain Darnet
- Instituto de Ciências Biológicas, Universidade Federal do Pará, 66075-900, Belém, Brazil
| | | | | | | | | | - Ahmed Elewa
- Department of Cell and Molecular Biology, Karolinska Institute, S-171 77, Stockholm, Sweden
| | - Neil Shubin
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL 60637, USA
| | - Nadia Belinda Fröbisch
- Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, 10115 Berlin, Germany
| | | | - Igor Schneider
- Instituto de Ciências Biológicas, Universidade Federal do Pará, 66075-900, Belém, Brazil.,Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
12
|
Transcriptional analysis of scar-free wound healing during early stages of tail regeneration in the green anole lizard, Anolis carolinensis. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.regen.2019.100025] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
13
|
Wong AY, Whited JL. Parallels between wound healing, epimorphic regeneration and solid tumors. Development 2020; 147:147/1/dev181636. [PMID: 31898582 DOI: 10.1242/dev.181636] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Striking similarities between wound healing, epimorphic regeneration and the progression of solid tumors have been uncovered by recent studies. In this Review, we discuss systemic effects of tumorigenesis that are now being appreciated in epimorphic regeneration, including genetic, cellular and metabolic heterogeneity, changes in circulating factors, and the complex roles of immune cells and immune modulation at systemic and local levels. We suggest that certain mechanisms enabling regeneration may be co-opted by cancer to promote growth at primary and metastatic sites. Finally, we advocate that working with a unified approach could complement research in both fields.
Collapse
Affiliation(s)
- Alan Y Wong
- Harvard/MIT MD-PhD Program, Harvard Medical School, Boston, MA 02138, USA
| | - Jessica L Whited
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
14
|
Miller BM, Johnson K, Whited JL. Common themes in tetrapod appendage regeneration: a cellular perspective. EvoDevo 2019; 10:11. [PMID: 31236203 PMCID: PMC6572735 DOI: 10.1186/s13227-019-0124-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 06/08/2019] [Indexed: 01/13/2023] Open
Abstract
Complete and perfect regeneration of appendages is a process that has fascinated and perplexed biologists for centuries. Some tetrapods possess amazing regenerative abilities, but the regenerative abilities of others are exceedingly limited. The reasons underlying these differences have largely remained mysterious. A great deal has been learned about the morphological events that accompany successful appendage regeneration, and a handful of experimental manipulations can be reliably applied to block the process. However, only in the last decade has the goal of attaining a thorough molecular and cellular biological understanding of appendage regeneration in tetrapods become within reach. Advances in molecular and genetic tools for interrogating these remarkable events are now allowing for unprecedented access to the fundamental biology at work in appendage regeneration in a variety of species. This information will be critical for integrating the large body of detailed observations from previous centuries with a modern understanding of how cells sense and respond to severe injury and loss of body parts. Understanding commonalities between regenerative modes across diverse species is likely to illuminate the most important aspects of complex tissue regeneration.
Collapse
Affiliation(s)
- Bess M. Miller
- Department of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity Ave, Cambridge, MA 02138 USA
| | - Kimberly Johnson
- Department of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity Ave, Cambridge, MA 02138 USA
| | - Jessica L. Whited
- Department of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity Ave, Cambridge, MA 02138 USA
| |
Collapse
|
15
|
Patel S, Ranadive I, Rajaram S, Desai I, Balakrishnan S. Ablation of BMP signaling hampers the blastema formation in Poecilia latipinna by dysregulating the extracellular matrix remodeling and cell cycle turnover. ZOOLOGY 2019; 133:17-26. [PMID: 30979387 DOI: 10.1016/j.zool.2019.02.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 02/11/2019] [Accepted: 02/11/2019] [Indexed: 12/25/2022]
Abstract
Bone morphogenetic proteins play a pivotal role in the epimorphic regeneration in vertebrates. Blastema formation is central to the epimorphic regeneration and crucially determines its fate. Despite an elaborate understanding of importance of Bone morphogenetic protein signaling in regeneration, its specific role during the blastema formation remains to be addressed. Regulatory role of BMP signaling during blastema formation was investigated using LDN193189, a potent inhibitor of BMP receptors. The study involved morphological observation, in vivo proliferation assay by incorporation of BrdU, comet assay, qRT-PCR and western blot. Blastemal outgrowth was seen reduced due to LDN193189 treatment, typified by dimensional differences, reduced number of proliferating cells and decreased levels of PCNA. Additionally, proapoptotic markers were found to be upregulated signifying a skewed cellular turnover. Further, the cell migration was seen obstructed and ECM remodeling was disturbed as well. These findings were marked by differential transcript as well as protein expressions of the key signaling and regulatory components, their altered enzymatic activities and other microscopic as well as molecular characterizations. Our results signify, for the first time, that BMP signaling manifests its effect on blastema formation by controlling the pivotal cellular processes possibly via PI3K/AKT. Our results indicate the pleiotropic role of BMPs specifically during blastema formation in regulating cell migration, cell proliferation and apoptosis, and lead to the generation of a molecular regulatory map of determinative molecules.
Collapse
Affiliation(s)
- Sonam Patel
- Department of Zoology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India
| | - Isha Ranadive
- Department of Zoology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India
| | - Shailja Rajaram
- Department of Zoology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India
| | - Isha Desai
- N. V. Patel College of Pure and Applied Sciences, Vallabh Vidya Nagar, Anand, Gujarat, India
| | - Suresh Balakrishnan
- Department of Zoology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India.
| |
Collapse
|
16
|
Wiggans KT, Sanchez-Migallon Guzman D, Reilly CM, Vergneau-Grosset C, Kass PH, Hollingsworth SR. Diagnosis, treatment, and outcome of and risk factors for ophthalmic disease in leopard geckos (Eublepharis macularius) at a veterinary teaching hospital: 52 cases (1985-2013). J Am Vet Med Assoc 2019; 252:316-323. [PMID: 29346051 DOI: 10.2460/javma.252.3.316] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To describe diagnosis, treatment, and outcome of and risk factors for ophthalmic disease in leopard geckos (Eublepharis macularius) evaluated at a veterinary teaching hospital. DESIGN Retrospective case series. ANIMALS 112 of 144 (78%) leopard geckos that were evaluated at a veterinary teaching hospital in January 1985 through October 2013 and for which sufficient medical record information was available. PROCEDURES Information from medical records was used to identify leopard geckos with ophthalmic disease, characterize cases, and determine risk factors for the presence of ophthalmic disease. RESULTS Of the 112 leopard geckos, 52 (46%) had ophthalmic disease (mainly corneal or conjunctival disease). Female geckos were less likely to have ophthalmic disease, and there was a positive association between increasing age and ophthalmic disease. Use of a paper towel substrate, absence of any heat source, and lack of vitamin A supplementation were positively associated with a diagnosis of ophthalmic disease. Head dysecdysis was the only concurrent disorder significantly associated with ophthalmic disease. At necropsy, 5 affected leopard geckos had squamous metaplasia of the conjunctivae. CONCLUSIONS AND CLINICAL RELEVANCE Results indicated that ophthalmic disease is a common finding in leopard geckos. The cause of ocular surface disease in leopard geckos may be multifactorial, and hypovitaminosis A may be an important risk factor. Although animals receiving supplemental vitamin A were less likely to have ophthalmic disease, further understanding is required regarding the metabolism of and nutritional requirements for vitamin A in leopard geckos.
Collapse
|
17
|
Shinji J, Gotoh H, Miyanishi H, Lavine MD, Lavine LC. The activin signaling transcription factor Smox is an essential regulator of appendage size during regeneration after autotomy in the crayfish. Evol Dev 2018; 21:44-55. [DOI: 10.1111/ede.12277] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Junpei Shinji
- Department of Entomology; Washington State University; Pullman Washington
| | - Hiroki Gotoh
- Graduate School of Bioagricultural Sciences; Nagoya University, Furo-cho, Chikusa-ku; Nagoya Japan
| | - Hiroshi Miyanishi
- Faculty of Agriculture; University of Miyazaki, Gakuen-kibanadai-nishi; Miyazaki Japan
| | - Mark D. Lavine
- Department of Entomology; Washington State University; Pullman Washington
| | | |
Collapse
|
18
|
Alibardi L. Review: The Regenerating Tail Blastema of Lizards as a Model to Study Organ Regeneration and Tumor Growth Regulation in Amniotes. Anat Rec (Hoboken) 2018; 302:1469-1490. [DOI: 10.1002/ar.24029] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Revised: 09/04/2018] [Accepted: 09/13/2018] [Indexed: 12/31/2022]
Affiliation(s)
- Lorenzo Alibardi
- Comparative Histolab Padova and Department of Biology at University of Bologna Bologna Italy
| |
Collapse
|
19
|
Subramaniam N, Petrik JJ, Vickaryous MK. VEGF, FGF-2 and TGFβ expression in the normal and regenerating epidermis of geckos: implications for epidermal homeostasis and wound healing in reptiles. J Anat 2018; 232:768-782. [PMID: 29417581 PMCID: PMC5879961 DOI: 10.1111/joa.12784] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/05/2018] [Indexed: 01/17/2023] Open
Abstract
The skin is a bilayered organ that serves as a key barrier between an organism and its environment. In addition to protecting against microbial invasion, physical trauma and environmental damage, skin participates in maintaining homeostasis. Skin is also capable of spontaneous self-repair following injury. These functions are mediated by numerous pleiotrophic growth factors, including members of the vascular endothelial growth factor (VEGF), fibroblast growth factor (FGF), and transforming growth factor β (TGFβ) families. Although growth factor expression has been well documented in mammals, particularly during wound healing, for groups such as reptiles less is known. Here, we investigate the spatio-temporal pattern of expression of multiple growth factors in normal skin and following a full-thickness cutaneous injury in the representative lizard Eublepharis macularius, the leopard gecko. Unlike mammals, leopard geckos can heal cutaneous wounds without scarring. We demonstrate that before, during and after injury, keratinocytes of the epidermis express a diverse panel of growth factor ligands and receptors, including: VEGF, VEGFR1, VEGFR2, and phosphorylated VEGFR2; FGF-2 and FGFR1; and phosphorylated SMAD2, TGFβ1, and activin βA. Unexpectedly, only the tyrosine kinase receptors VEGFR1 and FGFR1 were dynamically expressed, and only during the earliest phases of re-epithelization; otherwise all the proteins of interest were constitutively present. We propose that the ubiquitous pattern of growth factor expression by keratinocytes is associated with various roles during tissue homeostasis, including protection against ultraviolet photodamage and coordinated body-wide skin shedding.
Collapse
Affiliation(s)
- Noeline Subramaniam
- Department of Biomedical SciencesOntario Veterinary CollegeUniversity of GuelphGuelphONCanada
- Institute of Medical ScienceFaculty of MedicineUniversity of TorontoTorontoONCanada
- Keenan Research Centre in the Li Ka Shing Knowledge InstituteSt. Michael's HospitalDepartment of MedicineUniversity of TorontoTorontoONCanada
| | - James J. Petrik
- Department of Biomedical SciencesOntario Veterinary CollegeUniversity of GuelphGuelphONCanada
| | - Matthew K. Vickaryous
- Department of Biomedical SciencesOntario Veterinary CollegeUniversity of GuelphGuelphONCanada
| |
Collapse
|
20
|
Liu FY, Hsu TC, Choong P, Lin MH, Chuang YJ, Chen BS, Lin C. Uncovering the regeneration strategies of zebrafish organs: a comprehensive systems biology study on heart, cerebellum, fin, and retina regeneration. BMC SYSTEMS BIOLOGY 2018; 12:29. [PMID: 29560825 PMCID: PMC5861487 DOI: 10.1186/s12918-018-0544-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Background Regeneration is an important biological process for the restoration of organ mass, structure, and function after damage, and involves complex bio-physiological mechanisms including cell differentiation and immune responses. We constructed four regenerative protein-protein interaction (PPI) networks using dynamic models and AIC (Akaike’s Information Criterion), based on time-course microarray data from the regeneration of four zebrafish organs: heart, cerebellum, fin, and retina. We extracted core and organ-specific proteins, and proposed a recalled-blastema-like formation model to uncover regeneration strategies in zebrafish. Results It was observed that the core proteins were involved in TGF-β signaling for each step in the recalled-blastema-like formation model and TGF-β signaling may be vital for regeneration. Integrins, FGF, and PDGF accelerate hemostasis during heart injury, while Bdnf shields retinal neurons from secondary damage and augments survival during the injury response. Wnt signaling mediates the growth and differentiation of cerebellum and fin neural stem cells, potentially providing a signal to trigger differentiation. Conclusion Through our analysis of all four zebrafish regenerative PPI networks, we provide insights that uncover the underlying strategies of zebrafish organ regeneration.
Collapse
Affiliation(s)
- Fang-Yu Liu
- Department of Electrical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Te-Cheng Hsu
- Department of Electrical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Patrick Choong
- Department of Electrical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Min-Hsuan Lin
- Department of Medical Science and Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Yung-Jen Chuang
- Department of Medical Science and Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Bor-Sen Chen
- Department of Electrical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Che Lin
- Department of Electrical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan.
| |
Collapse
|
21
|
Jacyniak K, McDonald RP, Vickaryous MK. Tail regeneration and other phenomena of wound healing and tissue restoration in lizards. J Exp Biol 2017; 220:2858-2869. [DOI: 10.1242/jeb.126862] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
ABSTRACT
Wound healing is a fundamental evolutionary adaptation with two possible outcomes: scar formation or reparative regeneration. Scars participate in re-forming the barrier with the external environment and restoring homeostasis to injured tissues, but are well understood to represent dysfunctional replacements. In contrast, reparative regeneration is a tissue-specific program that near-perfectly replicates that which was lost or damaged. Although regeneration is best known from salamanders (including newts and axolotls) and zebrafish, it is unexpectedly widespread among vertebrates. For example, mice and humans can replace their digit tips, while many lizards can spontaneously regenerate almost their entire tail. Whereas the phenomenon of lizard tail regeneration has long been recognized, many details of this process remain poorly understood. All of this is beginning to change. This Review provides a comparative perspective on mechanisms of wound healing and regeneration, with a focus on lizards as an emerging model. Not only are lizards able to regrow cartilage and the spinal cord following tail loss, some species can also regenerate tissues after full-thickness skin wounds to the body, transections of the optic nerve and even lesions to parts of the brain. Current investigations are advancing our understanding of the biological requirements for successful tissue and organ repair, with obvious implications for biomedical sciences and regenerative medicine.
Collapse
Affiliation(s)
- Kathy Jacyniak
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | - Rebecca P. McDonald
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | - Matthew K. Vickaryous
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| |
Collapse
|
22
|
Alibardi L. Review: Biological and Molecular Differences between Tail Regeneration and Limb Scarring in Lizard: An Inspiring Model Addressing Limb Regeneration in Amniotes. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2017; 328:493-514. [DOI: 10.1002/jez.b.22754] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Revised: 05/16/2017] [Accepted: 05/24/2017] [Indexed: 01/29/2023]
Affiliation(s)
- Lorenzo Alibardi
- Comparative Histolab and Department of Biology; University of Bologna; Bologna Italy
| |
Collapse
|
23
|
Shen T, Wang Y, Zhang Q, Bai X, Wei S, Zhang X, Wang W, Yuan Y, Liu Y, Liu M, Gu X, Wang Y. Potential Involvement of Snail Members in Neuronal Survival and Astrocytic Migration during the Gecko Spinal Cord Regeneration. Front Cell Neurosci 2017; 11:113. [PMID: 28484372 PMCID: PMC5401887 DOI: 10.3389/fncel.2017.00113] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 04/04/2017] [Indexed: 01/16/2023] Open
Abstract
Certain regenerative vertebrates such as fish, amphibians and reptiles are capable of regenerating spinal cord after injury. Most neurons of spinal cord will survive from the injury and regrow axons to repair circuits with an absence of glial scar formation. However, the underlying mechanisms of neuronal anti-apoptosis and glia-related responses have not been fully clarified during the regenerative process. Gecko has becoming an inspiring model to address spinal cord regeneration in amniotes. In the present study, we investigated the regulatory roles of Snail family members, the important transcriptional factors involved in both triggering of the cell migration and cell survival, during the spontaneous spinal cord regeneration. Both Snail1 and Snail3 have been shown to promote neuronal survival and astrocytic migration via anti-apoptotic and GTPases signaling following gecko tail amputation. Transforming growth factor-beta (TGFβ), together with other cytokines were involved in inducing expression of Snail protein. Our data indicate a conserved function of Snail proteins in embryonic development and tissue regeneration, which may provide clues for CNS repair in the mammals.
Collapse
Affiliation(s)
- Tingting Shen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Yingjie Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Qing Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Xue Bai
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Sumei Wei
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Xuejie Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Wenjuan Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Ying Yuan
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Yan Liu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Mei Liu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Xiaosong Gu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Yongjun Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| |
Collapse
|
24
|
Spina EJ, Guzman E, Zhou H, Kosik KS, Smith WC. A microRNA-mRNA expression network during oral siphon regeneration in Ciona. Development 2017; 144:1787-1797. [PMID: 28432214 DOI: 10.1242/dev.144097] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 04/10/2017] [Indexed: 12/14/2022]
Abstract
Here we present a parallel study of mRNA and microRNA expression during oral siphon (OS) regeneration in Ciona robusta, and the derived network of their interactions. In the process of identifying 248 mRNAs and 15 microRNAs as differentially expressed, we also identified 57 novel microRNAs, several of which are among the most highly differentially expressed. Analysis of functional categories identified enriched transcripts related to stress responses and apoptosis at the wound healing stage, signaling pathways including Wnt and TGFβ during early regrowth, and negative regulation of extracellular proteases in late stage regeneration. Consistent with the expression results, we found that inhibition of TGFβ signaling blocked OS regeneration. A correlation network was subsequently inferred for all predicted microRNA-mRNA target pairs expressed during regeneration. Network-based clustering associated transcripts into 22 non-overlapping groups, the functional analysis of which showed enrichment of stress response, signaling pathway and extracellular protease categories that could be related to specific microRNAs. Predicted targets of the miR-9 cluster suggest a role in regulating differentiation and the proliferative state of neural progenitors through regulation of the cytoskeleton and cell cycle.
Collapse
Affiliation(s)
- Elijah J Spina
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Elmer Guzman
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Hongjun Zhou
- Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Kenneth S Kosik
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA.,Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - William C Smith
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA .,Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| |
Collapse
|
25
|
Tedeschi A, Omura T, Costigan M. CNS repair and axon regeneration: Using genetic variation to determine mechanisms. Exp Neurol 2017; 287:409-422. [PMID: 27163547 PMCID: PMC5097896 DOI: 10.1016/j.expneurol.2016.05.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 05/02/2016] [Accepted: 05/05/2016] [Indexed: 10/21/2022]
Abstract
The importance of genetic diversity in biological investigation has been recognized since the pioneering studies of Gregor Johann Mendel and Charles Darwin. Research in this area has been greatly informed recently by the publication of genomes from multiple species. Genes regulate and create every part and process in a living organism, react with the environment to create each living form and morph and mutate to determine the history and future of each species. The regenerative capacity of neurons differs profoundly between animal lineages and within the mammalian central and peripheral nervous systems. Here, we discuss research that suggests that genetic background contributes to the ability of injured axons to regenerate in the mammalian central nervous system (CNS), by controlling the regulation of specific signaling cascades. We detail the methods used to identify these pathways, which include among others Activin signaling and other TGF-β superfamily members. We discuss the potential of altering these pathways in patients with CNS damage and outline strategies to promote regeneration and repair by combinatorial manipulation of neuron-intrinsic and extrinsic determinants.
Collapse
Affiliation(s)
- Andrea Tedeschi
- German Center for Neurodegenerative Diseases (DZNE), 53175 Bonn, Germany.
| | - Takao Omura
- Department of Orthopaedic Surgery, Hamamatsu University School of Medicine, Hamamatsu, Japan.
| | - Michael Costigan
- FM Kirby Neurobiology Center and Anesthesia Department, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
26
|
Signalling by Transforming Growth Factor Beta Isoforms in Wound Healing and Tissue Regeneration. J Dev Biol 2016; 4:jdb4020021. [PMID: 29615587 PMCID: PMC5831781 DOI: 10.3390/jdb4020021] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 06/14/2016] [Accepted: 06/17/2016] [Indexed: 12/14/2022] Open
Abstract
Transforming growth factor beta (TGFβ) signalling is essential for wound healing, including both non-specific scar formation and tissue-specific regeneration. Specific TGFβ isoforms and downstream mediators of canonical and non-canonical signalling play different roles in each of these processes. Here we review the role of TGFβ signalling during tissue repair, with a particular focus on the prototypic isoforms TGFβ1, TGFβ2, and TGFβ3. We begin by introducing TGFβ signalling and then discuss the role of these growth factors and their key downstream signalling mediators in determining the balance between scar formation and tissue regeneration. Next we discuss examples of the pleiotropic roles of TGFβ ligands during cutaneous wound healing and blastema-mediated regeneration, and how inhibition of the canonical signalling pathway (using small molecule inhibitors) blocks regeneration. Finally, we review various TGFβ-targeting therapeutic strategies that hold promise for enhancing tissue repair.
Collapse
|
27
|
Immunolocalization of FGF8/10 in the Apical Epidermal Peg and Blastema of the regenerating tail in lizard marks this apical growing area. Ann Anat 2016; 206:14-20. [PMID: 27113329 DOI: 10.1016/j.aanat.2016.03.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Revised: 03/28/2016] [Accepted: 03/30/2016] [Indexed: 11/20/2022]
Abstract
Previous studies have shown that Fibroblast Growth Factors are present in the regenerating tail tissues of lizards where they may stimulate the process of regeneration. The present study is focused on the immunolocalization of FGF8 and FGF10 in the regenerating lizard tail, two signaling proteins of the apical epidermal cup/ridge and mesenchymal blastema sustaining tail and limb regeneration in amphibians and the development of the tail and limbs in vertebrate embryos. Main immunoreactive protein bands at 15-18kDa for FGF8/10 are detected in the regenerating epidermis and only a band at 30 or 35kDa in the underlying connective tissues. FGF8 appears particularly localized in cells and nuclei of the apical epidermal peg and of the ependymal ampulla present at the tip of the regenerating tail. FGF10 is also immuno-localized in the apical epidermis but is particularly intensely localized in the mesenchyme of the apical blastema. In accordance with previous studies, the present observations supports the hypothesis that the apical epidermal peg and the ependymal tube with the few regenerated neurons present within it, release FGF8/10 that may contribute to maintenance of cell proliferation in the apical front of the mesenchyme for the growth of the regenerating tail.
Collapse
|
28
|
Alibardi L. Cell proliferation in the amputated limb of lizard leading to scarring is reduced compared to the regenerating tail. ACTA ZOOL-STOCKHOLM 2016. [DOI: 10.1111/azo.12161] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Lorenzo Alibardi
- Comparative Histolab and Dipartimento di Bigea; Università di Bologna; via Selmi 3 Bologna 40126 Italy
| |
Collapse
|
29
|
Abstract
UNLABELLED Understanding why adult CNS neurons fail to regenerate their axons following injury remains a central challenge of neuroscience research. A more complete appreciation of the biological mechanisms shaping the injured nervous system is a crucial prerequisite for the development of robust therapies to promote neural repair. Historically, the identification of regeneration associated signaling pathways has been impeded by the limitations of available genetic and molecular tools. As we progress into an era in which the high-throughput interrogation of gene expression is commonplace and our knowledge base of interactome data is rapidly expanding, we can now begin to assemble a more comprehensive view of the complex biology governing axon regeneration. Here, we highlight current and ongoing work featuring transcriptomic approaches toward the discovery of novel molecular mechanisms that can be manipulated to promote neural repair. SIGNIFICANCE STATEMENT Transcriptional profiling is a powerful technique with broad applications in the field of neuroscience. Recent advances such as single-cell transcriptomics, CNS cell type-specific and developmental stage-specific expression libraries are rapidly enhancing the power of transcriptomics for neuroscience applications. However, extracting biologically meaningful information from large transcriptomic datasets remains a formidable challenge. This mini-symposium will highlight current work using transcriptomic approaches to identify regulatory networks in the injured nervous system. We will discuss analytical strategies for transcriptomics data, the significance of noncoding RNA networks, and the utility of multiomic data integration. Though the studies featured here specifically focus on neural repair, the approaches highlighted in this mini-symposium will be of broad interest and utility to neuroscientists working in diverse areas of the field.
Collapse
|
30
|
Denis JF, Sader F, Gatien S, Villiard É, Philip A, Roy S. Activation of Smad2 but not Smad3 is required for mediating TGF-beta signaling during limb regeneration in axolotls. Development 2016; 143:3481-3490. [DOI: 10.1242/dev.131466] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 08/08/2016] [Indexed: 01/25/2023]
Abstract
Axolotls are unique amongst vertebrates in their ability to regenerate their tissues (e.g. limbs, tail, skin etc.). The axolotl limb is the most studied regenerating structure. The process is well characterized morphologically; however, it is not well understood at the molecular level. We demonstrate that TGF-β1 is highly regulated during regeneration and that its signaling is necessary. The present study clearly shows that the basement membrane is not prematurely formed in animals treated with the TGF-β antagonist SB-431542. More importantly, it shows that Smad2 and Smad3 are differentially regulated post-translationally during the preparation phase of limb regeneration. Using specific antagonists for Smad2 and Smad3, results indicate that Smad2 is responsible for the action of TGF-β during regeneration and that Smad3 is not required. We also show that Smad2 target genes (MMP2 & 9) are inhibited in SB-431542 treated limbs and non-canonical TGF-β targets are not affected (e.g. MMP13). This is the first study to show that Smad2 and Smad3 are differentially regulated during regeneration and places Smad2 at the heart of TGF-β signaling supporting the regenerative process.
Collapse
Affiliation(s)
- Jean-François Denis
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Montréal (Québec), Canada
| | - Fadi Sader
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Montréal (Québec), Canada
| | - Samuel Gatien
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Montréal (Québec), Canada
| | - Éric Villiard
- Department of Stomatology, Faculty of Dentistry, Université de Montréal, Montréal (Québec), Canada
| | - Anie Philip
- Department of Surgery, Faculty of Medicine, McGill University, Montréal (Québec), Canada
| | - Stéphane Roy
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Montréal (Québec), Canada
- Department of Stomatology, Faculty of Dentistry, Université de Montréal, Montréal (Québec), Canada
| |
Collapse
|
31
|
Regeneration: Lessons from the Lizard. INNOVATIONS IN MOLECULAR MECHANISMS AND TISSUE ENGINEERING 2016. [DOI: 10.1007/978-3-319-44996-8_2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
32
|
Robust Axonal Regeneration Occurs in the Injured CAST/Ei Mouse CNS. Neuron 2015; 86:1215-27. [PMID: 26004914 DOI: 10.1016/j.neuron.2015.05.005] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 03/11/2015] [Accepted: 04/24/2015] [Indexed: 12/16/2022]
Abstract
Axon regeneration in the CNS requires reactivating injured neurons' intrinsic growth state and enabling growth in an inhibitory environment. Using an inbred mouse neuronal phenotypic screen, we find that CAST/Ei mouse adult dorsal root ganglion neurons extend axons more on CNS myelin than the other eight strains tested, especially when pre-injured. Injury-primed CAST/Ei neurons also regenerate markedly in the spinal cord and optic nerve more than those from C57BL/6 mice and show greater sprouting following ischemic stroke. Heritability estimates indicate that extended growth in CAST/Ei neurons on myelin is genetically determined, and two whole-genome expression screens yield the Activin transcript Inhba as most correlated with this ability. Inhibition of Activin signaling in CAST/Ei mice diminishes their CNS regenerative capacity, whereas its activation in C57BL/6 animals boosts regeneration. This screen demonstrates that mammalian CNS regeneration can occur and reveals a molecular pathway that contributes to this ability.
Collapse
|
33
|
Gilbert EAB, Delorme SL, Vickaryous MK. The regeneration blastema of lizards: an amniote model for the study of appendage replacement. ACTA ACUST UNITED AC 2015; 2:45-53. [PMID: 27499867 PMCID: PMC4895314 DOI: 10.1002/reg2.31] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Revised: 02/12/2015] [Accepted: 02/12/2015] [Indexed: 01/03/2023]
Abstract
Although amniotes (reptiles, including birds, and mammals) are capable of replacing certain tissues, complete appendage regeneration is rare. Perhaps the most striking example is the lizard tail. Tail loss initiates a spontaneous epimorphic (blastema‐mediated) regenerative program, resulting in a fully functional but structurally non‐identical replacement. Here we review lizard tail regeneration with a particular focus on the blastema. In many lizards, the original tail has evolved a series of fracture planes, anatomical modifications that permit the tail to be self‐detached or autotomized. Following tail loss, the wound site is covered by a specialized wound epithelium under which the blastema develops. An outgrowth of the spinal cord, the ependymal tube, plays a key role in governing growth (and likely patterning) of the regenerate tail. In some species (e.g., geckos), the blastema forms as an apical aggregation of proliferating cells, similar to that of urodeles and teleosts. For other species (e.g., anoles) the identification of a proliferative blastema is less obvious, suggesting an unexpected diversity in regenerative mechanisms among tail‐regenerating lizards.
Collapse
Affiliation(s)
- E A B Gilbert
- Department of Biomedical Sciences, Ontario Veterinary College University of Guelph 50 Stone Rd Guelph ON Canada
| | - S L Delorme
- Department of Biomedical Sciences, Ontario Veterinary College University of Guelph 50 Stone Rd Guelph ON Canada
| | - M K Vickaryous
- Department of Biomedical Sciences, Ontario Veterinary College University of Guelph 50 Stone Rd Guelph ON Canada
| |
Collapse
|
34
|
Alibardi L. Histochemical, Biochemical and Cell Biological aspects of tail regeneration in lizard, an amniote model for studies on tissue regeneration. ACTA ACUST UNITED AC 2014; 48:143-244. [DOI: 10.1016/j.proghi.2013.12.001] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|