1
|
Khan S, Alson D, Sun L, Maloney C, Sun D. Leveraging Neural Crest-Derived Tumors to Identify NF1 Cancer Stem Cell Signatures. Cancers (Basel) 2024; 16:3639. [PMID: 39518076 PMCID: PMC11545784 DOI: 10.3390/cancers16213639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 10/23/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
Neurofibromatosis type 1 (NF1) is a genetic disorder that predisposes individuals to develop benign and malignant tumors of the nerve sheath. Understanding the signatures of cancer stem cells (CSCs) for NF1-associated tumors may facilitate the early detection of tumor progression. Background: Neural crest cells, the cell of origin of NF1-associated tumors, can initiate multiple tumor types, including melanoma, neuroblastoma, and schwannoma. CSCs within these tumors have been reported; however, identifying and targeting CSC populations remains a challenge. Results: This study aims to leverage existing studies on neural crest-derived CSCs to explore markers pertinent to NF1 tumorigenesis. By focusing on the molecular and cellular dynamics within these tumors, we summarize CSC signatures in tumor maintenance, progression, and treatment resistance. Conclusion: A review of these signatures in the context of NF1 will provide insights into NF1 tumor biology and pave the way for developing targeted therapies and improving treatment outcomes for NF1 patients.
Collapse
Affiliation(s)
- Sajjad Khan
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Donia Alson
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Li Sun
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Caroline Maloney
- Department of Pediatric Surgery, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Cancer Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Daochun Sun
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Cancer Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Pediatric, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Children Research Institute, Milwaukee, WI 53226, USA
| |
Collapse
|
2
|
Narvaez-Rojas AR, Linhares S, Sedighim S, Klingbeil KD, Milikowski C, Elgart G, Jaimes N, Feun L, Lutzky J, De la Cruz Ku G, Avisar E, Möller MG. Is primary breast melanoma a true pathological entity? The argument against it. Heliyon 2024; 10:e37224. [PMID: 39309840 PMCID: PMC11414497 DOI: 10.1016/j.heliyon.2024.e37224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 09/25/2024] Open
Abstract
Background Previous studies have reported cases of primary melanoma of the breast parenchyma (PMBP), but the pathogenesis of this disease remains poorly understood. We review the presentation and outcomes of reported cases and provide detailed pathological analysis of four additional cases. Furthermore, we discuss potential theories regarding the pathogenesis of this clinical presentation. Results We identified 29 published studies (n = 95 patients) and report four new cases (n = 99). Ninety-one (92 %) patients were female, with a median age of 50 years. Previous skin melanomas were reported by 56 % of patients, with the trunk being the most common location (32.7 %) followed by the upper extremities (20 %). The most common tumor location reported (n = 73) was the right (49 %) upper outer quadrant (56 %). The median time from skin melanoma diagnosis to the presence of a breast mass was 65 months (1-192). Nodal status at presentation was reported in n = 67 (68 %) patients. Of these, positive nodal metastases were seen in 40.3 %, while distant metastatic disease at presentation was reported in 30 % of patients. Surgery was performed in 66 %, being partial mastectomy (PM) the most common procedure in 82 %. Adjuvant therapy was described in 38 patients. The reported (n = 12) median survival was 11.5 (1-70) months. Conclusion Melanomas identified in the breast parenchyma are likely the result of nodal or hematogenous spread from previously known or unknown melanomas, and should not be considered as PMBP. Management should be multidisciplinary, including surgical excision aimed at obtaining negative margins with lymphadenectomy of clinically positive nodes and neoadjuvant/adjuvant immunotherapy.
Collapse
Affiliation(s)
- Alexis R. Narvaez-Rojas
- Department of Radiation Oncology, Maimonides Cancer Center, Brooklyn, NY, USA
- International Coalition on Surgical Research, Universidad Nacional Autónoma de Nicaragua, UNAN, Managua, Nicaragua
| | | | - Shaina Sedighim
- Department of Surgery, University of California, Irvine, Orange, CA, USA
| | - Kyle Daniel Klingbeil
- Department of Surgery, University of California, Los Angeles, David Geffen School of Medicine, Los Angeles, CA, USA
| | - Clara Milikowski
- University of Miami Miller School of Medicine, Miami, FL, USA
- Departments of Pathology, Division of Hematology Oncology at University of Miami Miller School of Medicine, Miami, FL, USA
| | - George Elgart
- University of Miami Miller School of Medicine, Miami, FL, USA
- Departments of Dermatology, Division of Hematology Oncology at University of Miami Miller School of Medicine, Miami, FL, USA
| | - Natalia Jaimes
- University of Miami Miller School of Medicine, Miami, FL, USA
- Departments of Dermatology, Division of Hematology Oncology at University of Miami Miller School of Medicine, Miami, FL, USA
| | - Lynn Feun
- University of Miami Miller School of Medicine, Miami, FL, USA
- Departments of Medicine, Division of Hematology Oncology at University of Miami Miller School of Medicine, Miami, FL, USA
| | - Jose Lutzky
- University of Miami Miller School of Medicine, Miami, FL, USA
- Departments of Medicine, Division of Hematology Oncology at University of Miami Miller School of Medicine, Miami, FL, USA
| | | | - Eli Avisar
- University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Surgery, Division of Surgical Oncology at University of Miami Miller School of Medicine, Miami, FL, USA
| | - Mecker G. Möller
- University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Surgery, Division of Surgical Oncology at University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
3
|
Foltz L, Avabhrath N, Lanchy JM, Levy T, Possemato A, Ariss M, Peterson B, Grimes M. Craniofacial chondrogenesis in organoids from human stem cell-derived neural crest cells. iScience 2024; 27:109585. [PMID: 38623327 PMCID: PMC11016914 DOI: 10.1016/j.isci.2024.109585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 02/27/2024] [Accepted: 03/25/2024] [Indexed: 04/17/2024] Open
Abstract
Knowledge of cell signaling pathways that drive human neural crest differentiation into craniofacial chondrocytes is incomplete, yet essential for using stem cells to regenerate craniomaxillofacial structures. To accelerate translational progress, we developed a differentiation protocol that generated self-organizing craniofacial cartilage organoids from human embryonic stem cell-derived neural crest stem cells. Histological staining of cartilage organoids revealed tissue architecture and staining typical of elastic cartilage. Protein and post-translational modification (PTM) mass spectrometry and snRNA-seq data showed that chondrocyte organoids expressed robust levels of cartilage extracellular matrix (ECM) components: many collagens, aggrecan, perlecan, proteoglycans, and elastic fibers. We identified two populations of chondroprogenitor cells, mesenchyme cells and nascent chondrocytes, and the growth factors involved in paracrine signaling between them. We show that ECM components secreted by chondrocytes not only create a structurally resilient matrix that defines cartilage, but also play a pivotal autocrine cell signaling role in determining chondrocyte fate.
Collapse
Affiliation(s)
- Lauren Foltz
- Division of Biological Sciences, Center for Biomolecular Structure and Dynamics, Center for Structural and Functional Neuroscience, The University of Montana, Missoula, MT 59812, USA
| | - Nagashree Avabhrath
- Division of Biological Sciences, Center for Biomolecular Structure and Dynamics, Center for Structural and Functional Neuroscience, The University of Montana, Missoula, MT 59812, USA
| | - Jean-Marc Lanchy
- Division of Biological Sciences, Center for Biomolecular Structure and Dynamics, Center for Structural and Functional Neuroscience, The University of Montana, Missoula, MT 59812, USA
| | - Tyler Levy
- Cell Signaling Technology, Danvers, MA 01923, USA
| | | | - Majd Ariss
- Cell Signaling Technology, Danvers, MA 01923, USA
| | | | - Mark Grimes
- Division of Biological Sciences, Center for Biomolecular Structure and Dynamics, Center for Structural and Functional Neuroscience, The University of Montana, Missoula, MT 59812, USA
| |
Collapse
|
4
|
Bovan D, Krajnović T, Vuković NL, Vukić MD, Mijatović S, Tanić N, Arsenijević N, Maksimović-Ivanić D. Anoikis and cancer cell differentiation: novel modes of shikonin derivatives anticancer action in vitro. Mol Biol Rep 2024; 51:218. [PMID: 38281240 DOI: 10.1007/s11033-023-09093-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 11/30/2023] [Indexed: 01/30/2024]
Abstract
BACKGROUND Shikonin is a naturally occurring naphthoquinone found in the roots of several genera of the Boraginaceae family, widely known for its numerous biological activities, such as antiinflammatory, antioxidant, antimicrobial and anticancer. In this study, the antitumor effect of six naphthoquinones isolated from the roots of Onosma visianii was evaluated using two cell lines, mouse melanoma B16 and highly aggressive rat glioma cell line C6. METHODS AND RESULTS All examined shikonins dose-dependently decreased the viability of tested cells, with compounds 5 and 6 being the most potent ones and hence subjected to further analysis. The diminished viability of B16 melanoma cells was in correlation with detected caspase-mediated apoptosis. Importantly, observed altered cell morphology along with the loss of dividing potential upon exposure to both shikonins implied reprogram of B16 cell phenotype. Elevated expression of myelin basic protein indicated the acquirement of Schwann-like cell phenotype, while detected autophagy might be connected to this phenomenon. On the contrary, upon exposure to both agents, C6 cells underwent specific cell death-anoikis, provoked by detachment from the extracellular matrix and compromised integrin signaling. Oppositely to compound 5, compound 6 realized anoikis in a caspase-independent manner and under sustained ERK1/2 activation, indicating the deviation from standard proanoikis signaling. CONCLUSIONS Herein, we have pointed out the diversity and novelty in the mode of action of shikonin derivatives depending on the tumor cell features, which represents a good platform for new investigations of these promising natural compounds.
Collapse
Affiliation(s)
- Dijana Bovan
- Department of Immunology, Institute for Biological Research "Siniša Stanković", National Institute of the Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11108, Belgrade, Serbia
| | - Tamara Krajnović
- Department of Immunology, Institute for Biological Research "Siniša Stanković", National Institute of the Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11108, Belgrade, Serbia
| | - Nenad L Vuković
- Department of Chemistry, Faculty of Science, University of Kragujevac, Radoja Domanovića 12, 34000, Kragujevac, Serbia
| | - Milena D Vukić
- Department of Chemistry, Faculty of Science, University of Kragujevac, Radoja Domanovića 12, 34000, Kragujevac, Serbia
| | - Sanja Mijatović
- Department of Immunology, Institute for Biological Research "Siniša Stanković", National Institute of the Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11108, Belgrade, Serbia
| | - Nikola Tanić
- Department of Neurobiology, Institute for Biological Research "Siniša Stanković", National Institute of the Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11108, Belgrade, Serbia
| | - Nebojša Arsenijević
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovića 69, 34000, Kragujevac, Serbia
| | - Danijela Maksimović-Ivanić
- Department of Immunology, Institute for Biological Research "Siniša Stanković", National Institute of the Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11108, Belgrade, Serbia.
| |
Collapse
|
5
|
Kakodkar P, Houlihan LM, Preul M, Bermingham N, Lim C. Primary and metastatic paraganglioma of the cranial vault. Br J Neurosurg 2023; 37:967-975. [PMID: 33739182 DOI: 10.1080/02688697.2021.1902477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 03/09/2021] [Indexed: 10/21/2022]
Abstract
AIM Primary paragangliomas (PGs) are extra-adrenal neuroendocrine tumours that are extremely rare. Multiple lesions in the central nervous system raise suspicion of a metastatic process. Lack of consensus on their management warrants the categorization of existing literature to evaluate management options. METHODS A systematic review of the medical literature on paraganglioma within the cranial vault was completed in accordance with PRISMA guidelines using the Medline database. Tumour physical measures, management parameters, and immunohistochemistry of all documented cases of primary and secondary paraganglioma within the cranial vault were descriptively compared. This review was augmented by comparison with our centre's case of a 48-year-old man diagnosed with metastatic PG originating in the cauda equina and seeding in the cerebellum. Histological parameters within the literature was also established. RESULTS The systematic literature review yielded published 52 papers. Most prevalent primary intracranial PGs (n = 37) were in the sellar region (78%, n = 23) and the cerebellum (21%, n = 6). The highest progression free survival was seen in primary sellar PGs (87.5% by 34.5 months) and cerebellar PGs (100% by 35.7 months) when treated with adjuvant radiotherapy with subtotal resection or gross total resection, respectively. Contrasting, the most frequent intracranial PGs metastases (n = 15) occurred in the cerebellum (36%, n = 6), and the cerebral parenchyma (29%, n = 4). Their recurrence rate was between 4 and 10% and these metastasized PG in the cerebellum are slow growing (8.9 years, range: 3-22 years). Adjuvant radiotherapy with Gross Total Resection resulted in the optimum progression-free survival (100% up to 48 months) for the patient with PGs metastasis to the cerebellum. CONCLUSION Metastatic PGs tend to be slow-growing and are clinically silent tumours. Diagnosed patients should undergo regular surveillance neuroradiological assessment, regardless of symptomatology, for metastases along the complete neural axis. We recommend operative management with GTR and adjunct RT in these patients.
Collapse
Affiliation(s)
- Pramath Kakodkar
- School of Medicine, National University of Ireland Galway, Galway, Ireland
| | - Lena Mary Houlihan
- Department of Neurosurgery, Cork University Hospital, Cork, Ireland
- The Loyal and Edith Davis Neurosurgical Research Laboratory, Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, USA
| | - Mark Preul
- The Loyal and Edith Davis Neurosurgical Research Laboratory, Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, USA
| | - Niamh Bermingham
- Department of Neuropathology, Cork University Hospital, Cork, Ireland
| | - Chris Lim
- Department of Neurosurgery, Cork University Hospital, Cork, Ireland
| |
Collapse
|
6
|
Odarenko KV, Salomatina OV, Chernikov IV, Salakhutdinov NF, Zenkova MA, Markov AV. Soloxolone Methyl Reduces the Stimulatory Effect of Leptin on the Aggressive Phenotype of Murine Neuro2a Neuroblastoma Cells via the MAPK/ERK1/2 Pathway. Pharmaceuticals (Basel) 2023; 16:1369. [PMID: 37895840 PMCID: PMC10610011 DOI: 10.3390/ph16101369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/25/2023] [Accepted: 09/25/2023] [Indexed: 10/29/2023] Open
Abstract
Despite the proven tumorigenic effect of leptin on epithelial-derived cancers, its impact on the aggressiveness of neural crest-derived cancers, notably neuroblastoma, remains largely unexplored. In our study, for the first time, transcriptome analysis of neuroblastoma tissue demonstrated that the level of leptin is elevated in neuroblastoma patients along with the severity of the disease and is inversely correlated with patient survival. The treatment of murine Neuro2a neuroblastoma cells with leptin significantly stimulated their proliferation and motility and reduced cell adhesion, thus rendering the phenotype of neuroblastoma cells more aggressive. Given the proven efficacy of cyanoenone-bearing semisynthetic triterpenoids in inhibiting the growth of neuroblastoma and preventing obesity in vivo, the effect of soloxolone methyl (SM) on leptin-stimulated Neuro2a cells was further investigated. We found that SM effectively abolished leptin-induced proliferation of Neuro2a cells by inducing G1/S cell cycle arrest and restored their adhesiveness to extracellular matrix (ECM) proteins to near control levels through the upregulation of vimentin, zonula occludens protein 1 (ZO-1), cell adhesion molecule L1 (L1cam), and neural cell adhesion molecule 1 (Ncam1). Moreover, SM significantly suppressed the leptin-associated phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2) and ribosomal protein S6 kinase A1 (p90RSK), which are key kinases that ensure the survival and proliferation of cancer cells. Further molecular modeling studies demonstrated that the inhibitory effect of SM on the mitogen-activated protein kinase (MAPK)/ERK1/2 signaling pathway can be mediated by its direct interaction with ERK2 and its upstream regulators, son of sevenless homolog 1 (SOS) and mitogen-activated protein kinase kinase 1 (MEK1). Taken together, our findings in murine Neuro2a cells provide novel evidence of the stimulatory effect of leptin on the aggressiveness of neuroblastoma, which requires further detailed studies in human neuroblastoma cells and relevant animal models. The obtained results indicate that SM can be considered a promising drug candidate capable of reducing the impact of adipokines on tumor progression.
Collapse
Affiliation(s)
- Kirill V. Odarenko
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (K.V.O.); (O.V.S.); (I.V.C.); (M.A.Z.)
| | - Oksana V. Salomatina
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (K.V.O.); (O.V.S.); (I.V.C.); (M.A.Z.)
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia;
| | - Ivan V. Chernikov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (K.V.O.); (O.V.S.); (I.V.C.); (M.A.Z.)
| | - Nariman F. Salakhutdinov
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia;
| | - Marina A. Zenkova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (K.V.O.); (O.V.S.); (I.V.C.); (M.A.Z.)
| | - Andrey V. Markov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (K.V.O.); (O.V.S.); (I.V.C.); (M.A.Z.)
| |
Collapse
|
7
|
Kasago IS, Chatila WK, Lezcano CM, Febres-Aldana CA, Schultz N, Vanderbilt C, Dogan S, Bartlett EK, D'Angelo SP, Tap WD, Singer S, Ladanyi M, Shoushtari AN, Busam KJ, Hameed M. Undifferentiated and Dedifferentiated Metastatic Melanomas Masquerading as Soft Tissue Sarcomas: Mutational Signature Analysis and Immunotherapy Response. Mod Pathol 2023; 36:100165. [PMID: 36990277 PMCID: PMC10698871 DOI: 10.1016/j.modpat.2023.100165] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 03/13/2023] [Accepted: 03/17/2023] [Indexed: 03/29/2023]
Abstract
The distinction between undifferentiated melanoma (UM) or dedifferentiated melanoma (DM) from undifferentiated or unclassifiable sarcoma can be difficult and requires the careful correlation of clinical, pathologic, and genomic findings. In this study, we examined the utility of mutational signatures to identify patients with UM/DM with particular attention as to whether this distinction matters for treatment because the survival of patients with metastatic melanoma has dramatically improved with immunologic therapy, whereas durable responses are less frequent in sarcomas. We identified 19 cases of UM/DM that were initially reported as unclassified or undifferentiated malignant neoplasm or sarcoma and submitted for targeted next-generation sequencing analysis. These cases were confirmed as UM/DM by harboring melanoma driver mutations, UV signature, and high tumor mutation burden. One case of DM showed melanoma in situ. Meanwhile, 18 cases represented metastatic UM/DM. Eleven patients had a prior history of melanoma. Thirteen of 19 (68%) of the tumors were immunohistochemically completely negative for 4 melanocytic markers (S100, SOX10, HMB45, and MELAN-A). All cases harbored a dominant UV signature. Frequent driver mutations involved BRAF (26%), NRAS (32%), and NF1 (42%). In contrast, the control cohort of undifferentiated pleomorphic sarcomas (UPS) of deep soft tissue exhibited a dominant aging signature in 46.6% (7/15) without evidence of UV signature. The median tumor mutation burden for DM/UM vs UPS was 31.5 vs 7.0 mutations/Mb (P < .001). A favorable response to immune checkpoint inhibitor therapy was observed in 66.6% (12/18) of patients with UM/DM. Eight patients exhibited a complete response and were alive with no evidence of disease at the last follow-up (median 45.5 months). Our findings support the usefulness of the UV signature in discriminating DM/UM vs UPS. Furthermore, we present evidence suggesting that patients with DM/UM and UV signatures can benefit from immune checkpoint inhibitor therapy.
Collapse
Affiliation(s)
- Israel S Kasago
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Walid K Chatila
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Cecilia M Lezcano
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | | | - Nikolaus Schultz
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Chad Vanderbilt
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Snjezana Dogan
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Edmund K Bartlett
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Sandra P D'Angelo
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - William D Tap
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Samuel Singer
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Marc Ladanyi
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York; Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | | | - Klaus J Busam
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Meera Hameed
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York.
| |
Collapse
|
8
|
Bechmann N, Westermann F, Eisenhofer G. HIF and MYC signaling in adrenal neoplasms of the neural crest: implications for pediatrics. Front Endocrinol (Lausanne) 2023; 14:1022192. [PMID: 37361539 PMCID: PMC10286580 DOI: 10.3389/fendo.2023.1022192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 05/09/2023] [Indexed: 06/28/2023] Open
Abstract
Pediatric neural crest-derived adrenal neoplasms include neuroblastoma and pheochromocytoma. Both entities are associated with a high degree of clinical heterogeneity, varying from spontaneous regression to malignant disease with poor outcome. Increased expression and stabilization of HIF2α appears to contribute to a more aggressive and undifferentiated phenotype in both adrenal neoplasms, whereas MYCN amplification is a valuable prognostic marker in neuroblastoma. The present review focuses on HIF- and MYC signaling in both neoplasms and discusses the interaction of associated pathways during neural crest and adrenal development as well as potential consequences on tumorigenesis. Emerging single-cell methods together with epigenetic and transcriptomic analyses provide further insights into the importance of a tight regulation of HIF and MYC signaling pathways during adrenal development and tumorigenesis. In this context, increased attention to HIF-MYC/MAX interactions may also provide new therapeutic options for these pediatric adrenal neoplasms.
Collapse
Affiliation(s)
- Nicole Bechmann
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Frank Westermann
- Hopp Children’s Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Neuroblastoma Genomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Graeme Eisenhofer
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Department of Medicine III, University Hospital Carl Gustav Carus, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
9
|
Wenzel CK, von Montfort C, Ebbert L, Klahm NP, Reichert AS, Stahl W, Brenneisen P. The natural chalcone cardamonin selectively induces apoptosis in human neuroblastoma cells. Toxicol In Vitro 2023:105625. [PMID: 37268255 DOI: 10.1016/j.tiv.2023.105625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/11/2023] [Accepted: 05/26/2023] [Indexed: 06/04/2023]
Abstract
Neuroblastoma is the most common extracranial malignant tumor in childhood. Approximately 60% of all patients are classified as high-risk and require intensive treatment including non-selective chemotherapeutic agents leading to severe side effects. Recently, phytochemicals like the natural chalcone cardamonin (CD) have gained attention in cancer research. For the first time, we investigated the selective anti-cancer effects of CD in SH-SY5Y human neuroblastoma cells compared to healthy (normal) fibroblasts (NHDF). Our study revealed selective and dose-dependent cytotoxicity of CD in SH-SY5Y. The natural chalcone CD specifically altered the mitochondrial membrane potential (ΔΨm), as an early marker of apoptosis, in human neuroblastoma cells. Caspase activity was also selectively induced and the amount of cleaved caspase substrates such as PARP was thus increased in human neuroblastoma cells. CD-mediated apoptotic cell death was rescued by pan caspase inhibitor Z-VAD-FMK. The natural chalcone CD selectively induced apoptosis, the programmed cell death, in SH-SY5Y human neuroblastoma cells whereas NHDF being a model for normal (healthy) cells were unaffected. Our data indicates a clinical potential of CD in the more selective and less harmful treatment of neuroblastoma.
Collapse
Affiliation(s)
- Chantal-Kristin Wenzel
- Institute of Biochemistry and Molecular Biology I, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
| | - Claudia von Montfort
- Institute of Biochemistry and Molecular Biology I, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Lara Ebbert
- Institute of Biochemistry and Molecular Biology I, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Niklas P Klahm
- Institute of Biochemistry and Molecular Biology I, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Andreas S Reichert
- Institute of Biochemistry and Molecular Biology I, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Wilhelm Stahl
- Institute of Biochemistry and Molecular Biology I, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Peter Brenneisen
- Institute of Biochemistry and Molecular Biology I, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
10
|
Condurat AL, Aminzadeh-Gohari S, Malnar M, Schider N, Opitz L, Thomas R, Menon V, Kofler B, Pruszak J. Verteporfin-induced proteotoxicity impairs cell homeostasis and survival in neuroblastoma subtypes independent of YAP/TAZ expression. Sci Rep 2023; 13:3760. [PMID: 36882436 PMCID: PMC9992669 DOI: 10.1038/s41598-023-29796-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 02/10/2023] [Indexed: 03/09/2023] Open
Abstract
Neuroblastoma (NB) is a highly aggressive extracranial solid tumor in children. Due to its heterogeneity, NB remains a therapeutic challenge. Several oncogenic factors, including the Hippo effectors YAP/TAZ, are associated with NB tumorigenesis. Verteporfin (VPF) is an FDA-approved drug shown to directly inhibit YAP/TAZ activity. Our study aimed to investigate VPF's potential as a therapeutic agent in NB. We show that VPF selectively and efficiently impairs the viability of YAP/TAZ-expressing NB GI-ME-N and SK-N-AS cells, but not of non-malignant fibroblasts. To investigate whether VPF-mediated NB cell killing is YAP-dependent, we tested VPF potency in CRISPR-mediated YAP/TAZ knock-out GI-ME-N cells, and BE(2)-M17 NB cells (a MYCN-amplified, predominantly YAP-negative NB subtype). Our data shows that VPF-mediated NB cell killing is not dependent on YAP expression. Moreover, we determined that the formation of higher molecular weight (HMW) complexes is an early and shared VPF-induced cytotoxic mechanism in both YAP-positive and YAP-negative NB models. The accumulation of HMW complexes, involving STAT3, GM130 and COX IV proteins, impaired cell homeostasis and triggered cell stress and cell death mechanisms. Altogether, our study shows significant in vitro and in vivo VPF-induced suppression of NB growth, making VPF a potential therapeutic candidate against NB.
Collapse
Affiliation(s)
- Alexandra-Larisa Condurat
- Emmy Noether-Group for Stem Cell Biology, Department of Molecular Embryology, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine and Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Sepideh Aminzadeh-Gohari
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, Salzburg, Austria
| | - Mirjana Malnar
- Institute of Anatomy and Cell Biology, Paracelsus Medical University, Salzburg, Austria
- Center for Anatomy and Cell Biology, Salzburg and Nuremberg, Paracelsus Medical University, Salzburg, Austria
| | - Nicole Schider
- Institute of Anatomy and Cell Biology, Paracelsus Medical University, Salzburg, Austria
- Center for Anatomy and Cell Biology, Salzburg and Nuremberg, Paracelsus Medical University, Salzburg, Austria
| | - Leonie Opitz
- Institute of Anatomy and Cell Biology, Paracelsus Medical University, Salzburg, Austria
- Center for Anatomy and Cell Biology, Salzburg and Nuremberg, Paracelsus Medical University, Salzburg, Austria
| | - Ria Thomas
- Emmy Noether-Group for Stem Cell Biology, Department of Molecular Embryology, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine and Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Vishal Menon
- Emmy Noether-Group for Stem Cell Biology, Department of Molecular Embryology, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine and Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Barbara Kofler
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, Salzburg, Austria
| | - Jan Pruszak
- Emmy Noether-Group for Stem Cell Biology, Department of Molecular Embryology, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
- Institute of Anatomy and Cell Biology, Paracelsus Medical University, Salzburg, Austria.
- Center for Anatomy and Cell Biology, Salzburg and Nuremberg, Paracelsus Medical University, Salzburg, Austria.
| |
Collapse
|
11
|
[ 18F] MFBG PET imaging: biodistribution, pharmacokinetics, and comparison with [ 123I] MIBG in neural crest tumour patients. Eur J Nucl Med Mol Imaging 2023; 50:1134-1145. [PMID: 36435928 DOI: 10.1007/s00259-022-06046-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 11/13/2022] [Indexed: 11/28/2022]
Abstract
PURPOSE Despite its limitations, [123I]MIBG scintigraphy has been the standard for human norepinephrine transporter (hNET) imaging for several decades. Recently, [18F]MFBG has emerged as a promising PET alternative. This prospective trial aimed to evaluate safety, biodistribution, tumour lesion pharmacokinetics, and lesion targeting of [18F]MFBG and perform a head-to-head comparison with [123I]MIBG in neural crest tumour patients. METHODS Six neural crest tumour patients (4 phaeochromocytoma, 1 paraganglioma, 1 neuroblastoma) with a recent routine clinical [123I]MIBG scintigraphy (interval: - 37-75 days) were included. Adult patients (n = 5) underwent a 30-min dynamic PET, followed by 3 whole-body PET/CT scans at 60, 120, and 180 min after injection of 4 MBq/kg [18F]MFBG. One minor participant underwent a single whole-body PET/CT at 60 min after administration of 2 MBq/kg [18F]MFBG. Normal organ uptake (SUVmean) and lesion uptake (SUVmax; tumour-to-background ratio (TBR)) were measured. Regional distribution volumes (VT) were estimated using a Logan graphical analysis in up to 6 lesions per patient. A lesion-by-lesion analysis was performed to compare detection ratios (DR), i.e. fraction of detected lesions, between [18F]MFBG and [123I]MIBG. RESULTS [18F]MFBG was safe and well tolerated. Its biodistribution was overall similar to that of [123I]MIBG, with prominent uptake in the salivary glands, liver, left ventricle wall and adrenals, and mainly urinary excretion. In the phaeochromocytoma subgroup, the median VT was 37.4 mL/cm3 (range: 18.0-144.8) with an excellent correlation between VT and SUVmean at all 3 time points (R2: 0.92-0.94). Mean lesion SUVmax and TBR at 1 h after injection were 19.3 ± 10.7 and 23.6 ± 8.4, respectively. All lesions detected with [123I]MIBG were also observed with [18F]MFBG. The mean DR with [123I]MIBG was significantly lower than with [18F]MFBG (61.0% ± 26.7% vs. 99.8% ± 0.5% at 1 h; p = 0.043). CONCLUSION [18F]MFBG is a promising hNET imaging agent with favourable imaging characteristics and improved lesion targeting compared with [123I]MIBG scintigraphy. TRIAL REGISTRATION Clinicaltrials.gov : NCT04258592 (Registered: 06 February 2020), EudraCT: 2019-003872-37A.
Collapse
|
12
|
Matsuo T, Tanaka T. Resection of Orbital Myxoma With Magnetic Resonance Imaging Evidence of Ethmoid Sinus Origin: Case Report and Review of 20 Patients in the Literature. J Investig Med High Impact Case Rep 2023; 11:23247096231201013. [PMID: 37737575 PMCID: PMC10517617 DOI: 10.1177/23247096231201013] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/13/2023] [Accepted: 08/27/2023] [Indexed: 09/23/2023] Open
Abstract
A 41-year-old woman showed a palpable mass at the superonasal orbital edge on the right side. Magnetic resonance imaging demonstrated a lobulated fluid-containing tubular mass which extended anteriorly to posteriorly along the medial orbital wall, nasal to the eyeball. She was followed once a year for 8 years until the age of 49 years when she decided to undergo surgical resection because of the enlarged mass. The lobulated large mass was resected and the pathology showed sparsely distributed spindle cells, positive for CD34, in alcian blue-positive mucous substances, indicative of myxoma. Postoperative magnetic resonance imaging showed residual lobulated tubular mass along the optic nerve on the medial side and superior to the eyeball. The residual orbital mass showed stable structure with more evident connection with the ethmoid sinus lesion, suggestive of the ethmoid origin, in 12 years until the age of 61 years. In the review of 20 patients with orbital myxomas in the literature, in addition to this case, roughly classified locations in the orbit were retrobulbar in 8 patients, on the lateral side of the orbit in 4, on the superior side in 6, on the medial side in 1 (this patient), and in the orbit with no specific description in 2. In pathological examinations, immunohistochemistry was not done in 8 patients, done but all negative in 2, and positive in 11 patients: nerve sheath myxoma was diagnosed in 3 patients based on positive S100 staining. Orbital myxoma is rare but considered in differential diagnosis of orbital masses.
Collapse
|
13
|
Olfactory Neuroblastoma: Morphological Reappraisal and Molecular Insights with Quantum Leap in Clinical Perspectives. Curr Oncol Rep 2023; 25:11-18. [PMID: 36449116 DOI: 10.1007/s11912-022-01348-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/06/2022] [Indexed: 12/05/2022]
Abstract
PURPOSE OF REVIEW The purpose of review is to provide a comprehensive review of the literature focusing on the recent advances in the diagnosis, molecular underpinning, and targeted therapy of olfactory neuroblastoma (ONB). RECENT FINDINGS Studies focused on the molecular fingerprinting of ONB are critical to engage new promising treatment strategies. Molecular-based subtype classifications have been proposed (basal-like ONB and neural-like ONB) but are not widely used. The rationale for implementation of DNA methylation analysis and IDH2 sequencing in routine work-up for ONB is gaining recognition. Expression of somatostatin receptors (SSTR) in ONB open new avenues for both, diagnostic (especially metastatic disease) and new treatment protocols with somatostatin analogs. Olfactory carcinoma is proposed as a unifying diagnostic terminology pertinent to epithelial divergent differentiation in olfactory neuroblastoma. Molecular (genetic and epigenetic) efforts on olfactory neuroblastoma are promising; however further refinement is needed for employment of these biomarkers as clinical standard of care. Ongoing and future multi-institutional collaborative studies will contribute to further understanding of ONB biology and aid the development of targeted treatments for this disease.
Collapse
|
14
|
Goodman R, Johnson DB. Antibody-Drug Conjugates for Melanoma and Other Skin Malignancies. Curr Treat Options Oncol 2022; 23:1428-1442. [PMID: 36125618 DOI: 10.1007/s11864-022-01018-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/29/2022] [Indexed: 11/03/2022]
Abstract
OPINION STATEMENT While most skin malignancies are successfully treated with surgical excision, advanced and metastatic skin malignancies still often have poor long-term outcomes despite therapeutic advances. Antibody-drug conjugates (ADCs) serve as a potentially promising novel therapeutic approach to treat advanced skin cancers as they combine antibody-associated antigen specificity with cytotoxic anti-tumor effects, thereby maximizing efficacy and minimizing systemic toxicity. While no ADCs have gained regulatory approval for advanced skin cancers, several promising agents are undergoing preclinical and clinical investigation. In addition to identifying and validating skin cancer antigen targets, the key to maximizing therapeutic success is the careful development of each component of the ADC complex: antibodies, cytotoxic drugs, and linkers. It is the optimization of each of these components that will be integral in overcoming resistance, maximizing safety, and improving long-term clinical outcomes.
Collapse
Affiliation(s)
- Rachel Goodman
- Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Douglas B Johnson
- Department of Hematology/Oncology, Vanderbilt University Medical Center and Vanderbilt Ingram Cancer Center, 1161 21st Ave S, Nashville, TN, 37232, USA.
| |
Collapse
|
15
|
Gonzalez Malagon SG, Liu KJ. Linking neural crest development to neuroblastoma pathology. Development 2022; 149:276149. [DOI: 10.1242/dev.200331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
ABSTRACT
Although rare, childhood (paediatric) cancers are a major cause of death in young children. Unlike many adult cancers, paediatric cancers, such as neuroblastoma (NB), are developmental diseases that rarely show genetic predispositions. NB is the most common extracranial solid tumour in children, accounting for ∼15% of paediatric cancer deaths. This heterogeneous cancer arises from undifferentiated neural crest-derived progenitor cells. As neural crest cells are multipotent and migratory, they are often considered the embryonic paradigm of cancer stem cells. However, very little is known about the events that trigger tumour initiation and progression. Here, we discuss recent insights into sympathoadrenal lineage specification, as well as genetic factors associated with NB. With this in mind, we consider the molecular underpinnings of NB in the context of developmental trajectories of the neural crest lineage. This allows us to compare distinct subtypes of the disease and gene-function interactions during sensitive phases of neural crest development.
Collapse
Affiliation(s)
- Sandra Guadalupe Gonzalez Malagon
- Biomedical Research Institute, Foundation for Research and Technology, University of Ioannina Campus 1 , 45115 Ioannina , Greece
- School of Health Sciences and Institute of Biosciences, University Research Centre, University of Ioannina 2 Department of Biological Applications and Technology , , 45110 Ioannina , Greece
| | - Karen J. Liu
- Centre for Craniofacial and Regenerative Biology, King's College London 3 , London SE1 9RT , UK
| |
Collapse
|
16
|
Slavik H, Balik V, Kokas FZ, Slavkovsky R, Vrbkova J, Rehulkova A, Lausova T, Ehrmann J, Gurska S, Uberall I, Hajduch M, Srovnal J. Transcriptomic Profiling Revealed Lnc-GOLGA6A-1 as a Novel Prognostic Biomarker of Meningioma Recurrence. Neurosurgery 2022; 91:360-369. [PMID: 35551164 PMCID: PMC9287111 DOI: 10.1227/neu.0000000000002026] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 03/10/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Meningioma is the most common primary central nervous system neoplasm, accounting for about a third of all brain tumors. Because their growth rates and prognosis cannot be accurately estimated, biomarkers that enable prediction of their biological behavior would be clinically beneficial. OBJECTIVE To identify coding and noncoding RNAs crucial in meningioma prognostication and pathogenesis. METHODS Total RNA was purified from formalin-fixed and paraffin-embedded tumor samples of 64 patients with meningioma with distinct clinical characteristics (16 recurrent, 30 nonrecurrent with follow-up of >5 years, and 18 with follow-up of <5 years without recurrence). Transcriptomic sequencing was performed using the HiSeq 2500 platform (Illumina), and biological and functional differences between meningiomas of different types were evaluated by analyzing differentially expression of messenger RNA (mRNA) and long noncoding RNA (IncRNA). The prognostic value of 11 differentially expressed RNAs was then validated in an independent cohort of 90 patients using reverse transcription quantitative (real-time) polymerase chain reaction. RESULTS In total, 69 mRNAs and 108 lncRNAs exhibited significant differential expression between recurrent and nonrecurrent meningiomas. Differential expression was also observed with respect to sex (12 mRNAs and 59 lncRNAs), World Health Organization grade (58 mRNAs and 98 lncRNAs), and tumor histogenesis (79 mRNAs and 76 lncRNAs). Lnc-GOLGA6A-1, ISLR2, and AMH showed high prognostic power for predicting meningioma recurrence, while lnc-GOLGA6A-1 was the most significant factor for recurrence risk estimation (1/hazard ratio = 1.31; P = .002). CONCLUSION Transcriptomic sequencing revealed specific gene expression signatures of various clinical subtypes of meningioma. Expression of the lnc-GOLGA61-1 transcript was found to be the most reliable predictor of meningioma recurrence.
Collapse
Affiliation(s)
- Hanus Slavik
- Laboratory of Experimental Medicine, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University and University Hospital Olomouc, Olomouc, Czech Republic;
- Department of Neurology, University Hospital Olomouc, Olomouc, Czech Republic;
| | - Vladimir Balik
- Laboratory of Experimental Medicine, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University and University Hospital Olomouc, Olomouc, Czech Republic;
- Department of Neurosurgery, Svet Zdravia Hospital Michalovce, Michalovce, Slovak Republic;
- Department of Neurosurgery, Faculty of Medicine and Dentistry, Palacky University and University Hospital Olomouc, Olomouc, Czech Republic;
| | - Filip Zavadil Kokas
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czech Republic;
| | - Rastislav Slavkovsky
- Laboratory of Experimental Medicine, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University and University Hospital Olomouc, Olomouc, Czech Republic;
| | - Jana Vrbkova
- Laboratory of Experimental Medicine, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University and University Hospital Olomouc, Olomouc, Czech Republic;
| | - Alona Rehulkova
- Laboratory of Experimental Medicine, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University and University Hospital Olomouc, Olomouc, Czech Republic;
| | - Tereza Lausova
- Laboratory of Experimental Medicine, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University and University Hospital Olomouc, Olomouc, Czech Republic;
| | - Jiri Ehrmann
- Department of Clinical and Molecular Pathology, Faculty of Medicine and Dentistry, Palacky University and University Hospital Olomouc, Olomouc, Czech Republic
| | - Sona Gurska
- Laboratory of Experimental Medicine, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University and University Hospital Olomouc, Olomouc, Czech Republic;
| | - Ivo Uberall
- Department of Clinical and Molecular Pathology, Faculty of Medicine and Dentistry, Palacky University and University Hospital Olomouc, Olomouc, Czech Republic
| | - Marian Hajduch
- Laboratory of Experimental Medicine, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University and University Hospital Olomouc, Olomouc, Czech Republic;
| | - Josef Srovnal
- Laboratory of Experimental Medicine, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University and University Hospital Olomouc, Olomouc, Czech Republic;
| |
Collapse
|
17
|
Savary C, Picard C, Corradini N, Castets M. Complex Elucidation of Cells-of-Origin in Pediatric Soft Tissue Sarcoma: From Concepts to Real Life, Hide-and-Seek through Epigenetic and Transcriptional Reprogramming. Int J Mol Sci 2022; 23:6310. [PMID: 35682989 PMCID: PMC9181261 DOI: 10.3390/ijms23116310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/27/2022] [Accepted: 05/29/2022] [Indexed: 02/01/2023] Open
Abstract
Soft tissue sarcoma (STS) comprise a large group of mesenchymal malignant tumors with heterogeneous cellular morphology, proliferative index, genetic lesions and, more importantly, clinical features. Full elucidation of this wide diversity remains a central question to improve their therapeutic management and the identity of cell(s)-of-origin from which these tumors arise is part of this enigma. Cellular reprogramming allows transitions of a mature cell between phenotypes, or identities, and represents one key driver of tumoral heterogeneity. Here, we discuss how cellular reprogramming mediated by driver genes in STS can profoundly reshape the molecular and morphological features of a transformed cell and lead to erroneous interpretation of its cell-of-origin. This review questions the fact that the epigenetic context in which a genetic alteration arises has to be taken into account as a key determinant of STS tumor initiation and progression. Retracing the cancer-initiating cell and its clonal evolution, notably via epigenetic approach, appears as a key lever for understanding the origin of these tumors and improving their clinical management.
Collapse
Affiliation(s)
- Clara Savary
- Childhood Cancer & Cell Death (C3), LabEx DEVweCAN, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon (CRCL), Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, 69008 Lyon, France
| | - Cécile Picard
- Department of Pathology, Hôpital Femme-Mère-Enfant, Hospices Civils de Lyon, Claude Bernard Lyon 1 University, 69002 Lyon, France;
| | - Nadège Corradini
- Department of Pediatric Oncology, Institut d’Hematologie et d’Oncologie Pédiatrique, Centre Léon Bérard, 69008 Lyon, France;
- Department of Translational Research in Pediatric Oncology, Centre Léon Bérard, 69008 Lyon, France
| | - Marie Castets
- Childhood Cancer & Cell Death (C3), LabEx DEVweCAN, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon (CRCL), Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, 69008 Lyon, France
- Department of Translational Research in Pediatric Oncology, Centre Léon Bérard, 69008 Lyon, France
| |
Collapse
|
18
|
Ben Amar D, Thoinet K, Villalard B, Imbaud O, Costechareyre C, Jarrosson L, Reynaud F, Novion Ducassou J, Couté Y, Brunet JF, Combaret V, Corradini N, Delloye-Bourgeois C, Castellani V. Environmental cues from neural crest derivatives act as metastatic triggers in an embryonic neuroblastoma model. Nat Commun 2022; 13:2549. [PMID: 35538114 PMCID: PMC9091272 DOI: 10.1038/s41467-022-30237-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 04/21/2022] [Indexed: 12/04/2022] Open
Abstract
Embryonic malignant transformation is concomitant to organogenesis, often affecting multipotent and migratory progenitors. While lineage relationships between malignant cells and their physiological counterparts are extensively investigated, the contribution of exogenous embryonic signals is not fully known. Neuroblastoma (NB) is a childhood malignancy of the peripheral nervous system arising from the embryonic trunk neural crest (NC) and characterized by heterogeneous and interconvertible tumor cell identities. Here, using experimental models mimicking the embryonic context coupled to proteomic and transcriptomic analyses, we show that signals released by embryonic sympathetic ganglia, including Olfactomedin-1, induce NB cells to shift from a noradrenergic to mesenchymal identity, and to activate a gene program promoting NB metastatic onset and dissemination. From this gene program, we extract a core signature specifically shared by metastatic cancers with NC origin. This reveals non-cell autonomous embryonic contributions regulating the plasticity of NB identities and setting pro-dissemination gene programs common to NC-derived cancers.
Collapse
Affiliation(s)
- Dounia Ben Amar
- University of Lyon, University Claude Bernard Lyon 1, MeLiS, CNRS UMR5284, INSERM U1314, NeuroMyoGene Institute, 69008, Lyon, France, 8 avenue Rockefeller
| | - Karine Thoinet
- University of Lyon, University Claude Bernard Lyon 1, MeLiS, CNRS UMR5284, INSERM U1314, NeuroMyoGene Institute, 69008, Lyon, France, 8 avenue Rockefeller
| | - Benjamin Villalard
- University of Lyon, University Claude Bernard Lyon 1, MeLiS, CNRS UMR5284, INSERM U1314, NeuroMyoGene Institute, 69008, Lyon, France, 8 avenue Rockefeller
| | - Olivier Imbaud
- University of Lyon, University Claude Bernard Lyon 1, MeLiS, CNRS UMR5284, INSERM U1314, NeuroMyoGene Institute, 69008, Lyon, France, 8 avenue Rockefeller
| | | | | | - Florie Reynaud
- University of Lyon, University Claude Bernard Lyon 1, MeLiS, CNRS UMR5284, INSERM U1314, NeuroMyoGene Institute, 69008, Lyon, France, 8 avenue Rockefeller
| | - Julia Novion Ducassou
- University Grenoble Alpes, INSERM, CEA, UMR BioSanté U1292, CNRS, CEA, FR2048 38000, Grenoble, France
| | - Yohann Couté
- University Grenoble Alpes, INSERM, CEA, UMR BioSanté U1292, CNRS, CEA, FR2048 38000, Grenoble, France
| | - Jean-François Brunet
- Institut de Biologie de l'ENS (IBENS), Inserm, CNRS, École normale supérieure, PSL Research University, Paris, France
| | - Valérie Combaret
- Laboratory of Translational Research, Léon Bérard Centre, Lyon, France
| | - Nadège Corradini
- Departments of Oncology and Clinical Research, Centre Léon Berard and Institut d'Hématologie et d'Oncologie Pédiatrique, Lyon, France
| | - Céline Delloye-Bourgeois
- University of Lyon, University Claude Bernard Lyon 1, MeLiS, CNRS UMR5284, INSERM U1314, NeuroMyoGene Institute, 69008, Lyon, France, 8 avenue Rockefeller.
| | - Valérie Castellani
- University of Lyon, University Claude Bernard Lyon 1, MeLiS, CNRS UMR5284, INSERM U1314, NeuroMyoGene Institute, 69008, Lyon, France, 8 avenue Rockefeller.
| |
Collapse
|
19
|
Alhashem Z, Feldner-Busztin D, Revell C, Alvarez-Garcillan Portillo M, Camargo-Sosa K, Richardson J, Rocha M, Gauert A, Corbeaux T, Milanetto M, Argenton F, Tiso N, Kelsh RN, Prince VE, Bentley K, Linker C. Notch controls the cell cycle to define leader versus follower identities during collective cell migration. eLife 2022; 11:e73550. [PMID: 35438077 PMCID: PMC9129880 DOI: 10.7554/elife.73550] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 03/22/2022] [Indexed: 02/06/2023] Open
Abstract
Coordination of cell proliferation and migration is fundamental for life, and its dysregulation has catastrophic consequences, such as cancer. How cell cycle progression affects migration, and vice versa, remains largely unknown. We address these questions by combining in silico modelling and in vivo experimentation in the zebrafish trunk neural crest (TNC). TNC migrate collectively, forming chains with a leader cell directing the movement of trailing followers. We show that the acquisition of migratory identity is autonomously controlled by Notch signalling in TNC. High Notch activity defines leaders, while low Notch determines followers. Moreover, cell cycle progression is required for TNC migration and is regulated by Notch. Cells with low Notch activity stay longer in G1 and become followers, while leaders with high Notch activity quickly undergo G1/S transition and remain in S-phase longer. In conclusion, TNC migratory identities are defined through the interaction of Notch signalling and cell cycle progression.
Collapse
Affiliation(s)
- Zain Alhashem
- Randall Centre for Cell and Molecular Biophysics, Guy's Campus, King's College LondonLondonUnited Kingdom
| | | | - Christopher Revell
- Cellular Adaptive Behaviour Lab, Francis Crick InstituteLondonUnited Kingdom
| | | | - Karen Camargo-Sosa
- Department of Biology & Biochemistry, University of BathBathUnited Kingdom
| | - Joanna Richardson
- Randall Centre for Cell and Molecular Biophysics, Guy's Campus, King's College LondonLondonUnited Kingdom
| | - Manuel Rocha
- Committee on Development, Regeneration and Stem Cell Biology, The University of ChicagoChicagoUnited States
| | - Anton Gauert
- Randall Centre for Cell and Molecular Biophysics, Guy's Campus, King's College LondonLondonUnited Kingdom
| | - Tatianna Corbeaux
- Randall Centre for Cell and Molecular Biophysics, Guy's Campus, King's College LondonLondonUnited Kingdom
| | | | | | - Natascia Tiso
- Department of Biology, University of PadovaPadovaItaly
| | - Robert N Kelsh
- Department of Biology & Biochemistry, University of BathBathUnited Kingdom
| | - Victoria E Prince
- Committee on Development, Regeneration and Stem Cell Biology, The University of ChicagoChicagoUnited States
- Department of Organismal Biology and Anatomy, The University of ChicagoChicagoUnited States
| | - Katie Bentley
- Cellular Adaptive Behaviour Lab, Francis Crick InstituteLondonUnited Kingdom
- Department of Informatics, King's College LondonLondonUnited Kingdom
| | - Claudia Linker
- Randall Centre for Cell and Molecular Biophysics, Guy's Campus, King's College LondonLondonUnited Kingdom
| |
Collapse
|
20
|
Morrison JA, McLennan R, Teddy JM, Scott AR, Kasemeier-Kulesa JC, Gogol MM, Kulesa PM. Single-cell reconstruction with spatial context of migrating neural crest cells and their microenvironments during vertebrate head and neck formation. Development 2021; 148:273452. [PMID: 35020873 DOI: 10.1242/dev.199468] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 10/15/2021] [Indexed: 12/20/2022]
Abstract
The dynamics of multipotent neural crest cell differentiation and invasion as cells travel throughout the vertebrate embryo remain unclear. Here, we preserve spatial information to derive the transcriptional states of migrating neural crest cells and the cellular landscape of the first four chick cranial to cardiac branchial arches (BA1-4) using label-free, unsorted single-cell RNA sequencing. The faithful capture of branchial arch-specific genes led to identification of novel markers of migrating neural crest cells and 266 invasion genes common to all BA1-4 streams. Perturbation analysis of a small subset of invasion genes and time-lapse imaging identified their functional role to regulate neural crest cell behaviors. Comparison of the neural crest invasion signature to other cell invasion phenomena revealed a shared set of 45 genes, a subset of which showed direct relevance to human neuroblastoma cell lines analyzed after exposure to the in vivo chick embryonic neural crest microenvironment. Our data define an important spatio-temporal reference resource to address patterning of the vertebrate head and neck, and previously unidentified cell invasion genes with the potential for broad impact.
Collapse
Affiliation(s)
- Jason A Morrison
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Rebecca McLennan
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Jessica M Teddy
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Allison R Scott
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | | | | | - Paul M Kulesa
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA.,Department of Anatomy and Cell Biology, University of Kansas School of Medicine, Kansas City, KS 66160, USA
| |
Collapse
|
21
|
Shim J, Goldsmith KC. A New Player in Neuroblastoma: YAP and Its Role in the Neuroblastoma Microenvironment. Cancers (Basel) 2021; 13:cancers13184650. [PMID: 34572875 PMCID: PMC8472533 DOI: 10.3390/cancers13184650] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/11/2021] [Accepted: 09/13/2021] [Indexed: 12/13/2022] Open
Abstract
Neuroblastoma is the most common extra-cranial pediatric solid tumor that accounts for more than 15% of childhood cancer-related deaths. High risk neuroblastomas that recur during or after intense multimodal therapy have a <5% chance at a second sustained remission or cure. The solid tumor microenvironment (TME) has been increasingly recognized to play a critical role in cancer progression and resistance to therapy, including in neuroblastoma. The Yes-Associated Protein (YAP) in the Hippo pathway can regulate cancer proliferation, tumor initiation, and therapy response in many cancer types and as such, its role in the TME has gained interest. In this review, we focus on YAP and its role in neuroblastoma and further describe its demonstrated and potential effects on the neuroblastoma TME. We also discuss the therapeutic strategies for inhibiting YAP in neuroblastoma.
Collapse
Affiliation(s)
- Jenny Shim
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA;
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA
| | - Kelly C. Goldsmith
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA;
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA
- Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
- Correspondence: ; Tel.: +1-404-727-2655
| |
Collapse
|
22
|
Obu S, Umeda K, Ueno H, Sonoda M, Tasaka K, Ogata H, Kouzuki K, Nodomi S, Saida S, Kato I, Hiramatsu H, Okamoto T, Ogawa E, Okajima H, Morita K, Kamikubo Y, Kawaguchi K, Watanabe K, Iwafuchi H, Yagyu S, Iehara T, Hosoi H, Nakahata T, Adachi S, Uemoto S, Heike T, Takita J. CD146 is a potential immunotarget for neuroblastoma. Cancer Sci 2021; 112:4617-4626. [PMID: 34464480 PMCID: PMC8586675 DOI: 10.1111/cas.15124] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 08/13/2021] [Accepted: 08/26/2021] [Indexed: 11/28/2022] Open
Abstract
Neuroblastoma, the most common extracranial solid tumor of childhood, is thought to arise from neural crest‐derived immature cells. The prognosis of patients with high‐risk or recurrent/refractory neuroblastoma remains quite poor despite intensive multimodality therapy; therefore, novel therapeutic interventions are required. We examined the expression of a cell adhesion molecule CD146 (melanoma cell adhesion molecule [MCAM]) by neuroblastoma cell lines and in clinical samples and investigated the anti‐tumor effects of CD146‐targeting treatment for neuroblastoma cells both in vitro and in vivo. CD146 is expressed by 4 cell lines and by most of primary tumors at any stage. Short hairpin RNA‐mediated knockdown of CD146, or treatment with an anti‐CD146 polyclonal antibody, effectively inhibited growth of neuroblastoma cells both in vitro and in vivo, principally due to increased apoptosis via the focal adhesion kinase and/or nuclear factor‐kappa B signaling pathway. Furthermore, the anti‐CD146 polyclonal antibody markedly inhibited tumor growth in immunodeficient mice inoculated with primary neuroblastoma cells. In conclusion, CD146 represents a promising therapeutic target for neuroblastoma.
Collapse
Affiliation(s)
- Satoshi Obu
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Katsutsugu Umeda
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hiroo Ueno
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Mari Sonoda
- Department of Pediatric Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Keiji Tasaka
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hideto Ogata
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kagehiro Kouzuki
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Seishiro Nodomi
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Satoshi Saida
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Itaru Kato
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hidefumi Hiramatsu
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Tatsuya Okamoto
- Department of Pediatric Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Eri Ogawa
- Department of Pediatric Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hideaki Okajima
- Department of Pediatric Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Department of Pediatric Surgery, Kanazawa Medical University, Ishikawa, Japan
| | - Ken Morita
- Department of Human Health Science, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yasuhiko Kamikubo
- Department of Human Health Science, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Koji Kawaguchi
- Department of Hematology and Oncology, Shizuoka Children's Hospital, Shizuoka, Japan
| | - Kenichiro Watanabe
- Department of Hematology and Oncology, Shizuoka Children's Hospital, Shizuoka, Japan
| | - Hideto Iwafuchi
- Department of Pathology, Shizuoka Children's Hospital, Shizuoka, Japan
| | - Shigeki Yagyu
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Tomoko Iehara
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Hajime Hosoi
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Tatsutoshi Nakahata
- Drug Discovery Technology Development Office, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Souichi Adachi
- Department of Human Health Science, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shinji Uemoto
- Department of Pediatric Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Toshio Heike
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Junko Takita
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
23
|
Kochat V, Raman AT, Landers SM, Tang M, Schulz J, Terranova C, Landry JP, Bhalla AD, Beird HC, Wu CC, Jiang Y, Mao X, Lazcano R, Gite S, Ingram DR, Yi M, Zhang J, Keung EZ, Scally CP, Roland CL, Hunt KK, Feig BW, Futreal PA, Hwu P, Wang WL, Lazar AJ, Slopis JM, Wilson-Robles H, Wiener DJ, McCutcheon IE, Wustefeld-Janssens B, Rai K, Torres KE. Enhancer reprogramming in PRC2-deficient malignant peripheral nerve sheath tumors induces a targetable de-differentiated state. Acta Neuropathol 2021; 142:565-590. [PMID: 34283254 DOI: 10.1007/s00401-021-02341-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 06/09/2021] [Accepted: 06/22/2021] [Indexed: 02/03/2023]
Abstract
Malignant peripheral nerve sheath tumors (MPNSTs) are soft tissue sarcomas that frequently harbor genetic alterations in polycomb repressor complex 2 (PRC2) components-SUZ12 and EED. Here, we show that PRC2 loss confers a dedifferentiated early neural-crest phenotype which is exclusive to PRC2-mutant MPNSTs and not a feature of neurofibromas. Neural crest phenotype in PRC2 mutant MPNSTs was validated via cross-species comparative analysis using spontaneous and transgenic MPNST models. Systematic chromatin state profiling of the MPNST cells showed extensive epigenomic reprogramming or chromatin states associated with PRC2 loss and identified gains of active enhancer states/super-enhancers on early neural crest regulators in PRC2-mutant conditions around genomic loci that harbored repressed/poised states in PRC2-WT MPNST cells. Consistently, inverse correlation between H3K27me3 loss and H3K27Ac gain was noted in MPNSTs. Epigenetic editing experiments established functional roles for enhancer gains on DLX5-a key regulator of neural crest phenotype. Consistently, blockade of enhancer activity by bromodomain inhibitors specifically suppressed this neural crest phenotype and tumor burden in PRC2-mutant PDXs. Together, these findings reveal accumulation of dedifferentiated neural crest like state in PRC2-mutant MPNSTs that can be targeted by enhancer blockade.
Collapse
Affiliation(s)
- Veena Kochat
- Department of Surgical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ayush T Raman
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Graduate Program in Quantitative and Computational Biosciences, Baylor College of Medicine, Houston, TX, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Sharon M Landers
- Department of Surgical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ming Tang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jonathan Schulz
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Christopher Terranova
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jace P Landry
- Department of Surgical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Louisiana State University School of Medicine, New Orleans, LA, USA
| | - Angela D Bhalla
- Department of Surgical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hannah C Beird
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Chia-Chin Wu
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yingda Jiang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xizeng Mao
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Rossana Lazcano
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Swati Gite
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Davis R Ingram
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Min Yi
- Department of Surgical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jianhua Zhang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Emily Z Keung
- Department of Surgical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Christopher P Scally
- Department of Surgical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Christina L Roland
- Department of Surgical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kelly K Hunt
- Department of Surgical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Barry W Feig
- Department of Surgical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - P Andrew Futreal
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Patrick Hwu
- Department of Melanoma Medical Oncology and Sarcoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Wei-Lien Wang
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Alexander J Lazar
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - John M Slopis
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Heather Wilson-Robles
- Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Dominique J Wiener
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Science, Texas A&M University, College Station, TX, USA
| | - Ian E McCutcheon
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Brandan Wustefeld-Janssens
- Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA.,Department of Surgical Oncology, Flint Animal Cancer Center, Colorado State University, Fort Collins, CO, USA
| | - Kunal Rai
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA. .,Graduate Program in Quantitative and Computational Biosciences, Baylor College of Medicine, Houston, TX, USA.
| | - Keila E Torres
- Department of Surgical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA. .,Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA. .,Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
24
|
Retinoids Delivery Systems in Cancer: Liposomal Fenretinide for Neuroectodermal-Derived Tumors. Pharmaceuticals (Basel) 2021; 14:ph14090854. [PMID: 34577553 PMCID: PMC8466194 DOI: 10.3390/ph14090854] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 08/23/2021] [Accepted: 08/24/2021] [Indexed: 02/07/2023] Open
Abstract
Retinoids are a class of natural and synthetic compounds derived from vitamin A. They are involved in several biological processes like embryogenesis, reproduction, vision, growth, inflammation, differentiation, proliferation, and apoptosis. In light of their important functions, retinoids have been widely investigated for their therapeutic applications. Thus far, their use for the treatment of several types of cancer and skin disorders has been reported. However, these therapeutic agents present several limitations for their widespread clinical translatability, i.e., poor solubility and chemical instability in water, sensitivity to light, heat, and oxygen, and low bioavailability. These characteristics result in internalization into target cells and tissues only at low concentration and, consequently, at an unsatisfactory therapeutic dose. Furthermore, the administration of retinoids causes severe side-effects. Thus, in order to improve their pharmacological properties and circulating half-life, while minimizing their off-target uptake, various retinoids delivery systems have been recently developed. This review intends to provide examples of retinoids-loaded nano-delivery systems for cancer treatment. In particular, the use and the therapeutic results obtained by using fenretinide-loaded liposomes against neuroectodermal-derived tumors, such as melanoma, in adults, and neuroblastoma, the most common extra-cranial solid tumor of childhood, will be discussed.
Collapse
|
25
|
Unachukwu U, Shiomi T, Goldklang M, Chada K, D'Armiento J. Renal neoplasms in tuberous sclerosis mice are neurocristopathies. iScience 2021; 24:102684. [PMID: 34222844 PMCID: PMC8243016 DOI: 10.1016/j.isci.2021.102684] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 04/20/2021] [Accepted: 05/31/2021] [Indexed: 11/13/2022] Open
Abstract
Tuberous sclerosis (TS) is a rare disorder exhibiting multi-systemic benign neoplasms. We hypothesized the origin of TS neoplastic cells derived from the neural crest given the heterogeneous ecto-mesenchymal phenotype of the most common TS neoplasms. To test this hypothesis, we employed Cre-loxP lineage tracing of myelin protein zero (Mpz)-expressing neural crest cells (NCCs) in spontaneously developing renal tumors of Tsc2 +/- /Mpz(Cre)/TdT fl/fl reporter mice. In these mice, ectopic renal tumor onset was detected at 4 months of age increasing in volume by 16 months of age with concomitant increase in the subpopulation of tdTomato+ NCCs from 0% to 6.45% of the total number of renal tumor cells. Our results suggest that Tsc2 +/- mouse renal tumors arise from domiciled proliferative progenitor cell populations of neural crest origin that co-opt tumorigenesis due to mutations in Tsc2 loci. Targeting neural crest antigenic determinants will provide a potential alternative therapeutic approach for TS pathogenesis.
Collapse
Affiliation(s)
- Uchenna Unachukwu
- Center for LAM and Rare Lung Disease, Department of Anesthesiology, College of Physicians and Surgeons, Columbia University, 630 West 168 Street, New York, NY 10032, USA
| | - Takayuki Shiomi
- Department of Pathology, International University of Health and Welfare, School of Medicine, 4-3 Kouzunomori, Narita-shi, Chiba 286-8686, Japan
| | - Monica Goldklang
- Center for LAM and Rare Lung Disease, Department of Anesthesiology, College of Physicians and Surgeons, Columbia University, 630 West 168 Street, New York, NY 10032, USA
| | - Kiran Chada
- Department of Biochemistry, Rutgers-Robert Wood Johnson Medical School, Rutgers University, 675 Hoes Lane, Piscataway, NJ 08854, USA
| | - Jeanine D'Armiento
- Center for LAM and Rare Lung Disease, Department of Anesthesiology, College of Physicians and Surgeons, Columbia University, 630 West 168 Street, New York, NY 10032, USA
| |
Collapse
|
26
|
Zhang A, Aslam H, Sharma N, Warmflash A, Fakhouri WD. Conservation of Epithelial-to-Mesenchymal Transition Process in Neural Crest Cells and Metastatic Cancer. Cells Tissues Organs 2021; 210:151-172. [PMID: 34218225 DOI: 10.1159/000516466] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 04/12/2021] [Indexed: 11/19/2022] Open
Abstract
Epithelial to mesenchymal transition (EMT) is a highly conserved cellular process in several species, from worms to humans. EMT plays a fundamental role in early embryogenesis, wound healing, and cancer metastasis. For neural crest cell (NCC) development, EMT typically results in forming a migratory and potent cell population that generates a wide variety of cell and tissue, including cartilage, bone, connective tissue, endocrine cells, neurons, and glia amongst many others. The degree of conservation between the signaling pathways that regulate EMT during development and metastatic cancer (MC) has not been fully established, despite ample studies. This systematic review and meta-analysis dissects the major signaling pathways involved in EMT of NCC development and MC to unravel the similarities and differences. While the FGF, TGFβ/BMP, SHH, and NOTCH pathways have been rigorously investigated in both systems, the EGF, IGF, HIPPO, Factor Receptor Superfamily, and their intracellular signaling cascades need to be the focus of future NCC studies. In general, meta-analyses of the associated signaling pathways show a significant number of overlapping genes (particularly ligands, transcription regulators, and targeted cadherins) involved in each signaling pathway of both systems without stratification by body segments and cancer type. Lack of stratification makes it difficult to meaningfully evaluate the intracellular downstream effectors of each signaling pathway. Finally, pediatric neuroblastoma and melanoma are NCC-derived malignancies, which emphasize the importance of uncovering the EMT events that convert NCC into treatment-resistant malignant cells.
Collapse
Affiliation(s)
- April Zhang
- Center for Craniofacial Research, Department of Diagnostic and Biomedical Sciences, School of Dentistry, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Hira Aslam
- Center for Craniofacial Research, Department of Diagnostic and Biomedical Sciences, School of Dentistry, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Neha Sharma
- Center for Craniofacial Research, Department of Diagnostic and Biomedical Sciences, School of Dentistry, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Aryeh Warmflash
- Department of Biosciences, Rice University, Houston, Texas, USA
| | - Walid D Fakhouri
- Center for Craniofacial Research, Department of Diagnostic and Biomedical Sciences, School of Dentistry, University of Texas Health Science Center at Houston, Houston, Texas, USA.,Department of Pediatrics, McGovern Medical School, University of Texas Health Science Center, Houston, Texas, USA
| |
Collapse
|
27
|
Cunningham RL, Kramer ET, DeGeorgia SK, Godoy PM, Zarov AP, Seneviratne S, Grigura V, Kaufman CK. Functional in vivo characterization of sox10 enhancers in neural crest and melanoma development. Commun Biol 2021; 4:695. [PMID: 34099848 PMCID: PMC8184803 DOI: 10.1038/s42003-021-02211-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 05/11/2021] [Indexed: 02/05/2023] Open
Abstract
The role of a neural crest developmental transcriptional program, which critically involves Sox10 upregulation, is a key conserved aspect of melanoma initiation in both humans and zebrafish, yet transcriptional regulation of sox10 expression is incompletely understood. Here we used ATAC-Seq analysis of multiple zebrafish melanoma tumors to identify recurrently open chromatin domains as putative melanoma-specific sox10 enhancers. Screening in vivo with EGFP reporter constructs revealed 9 of 11 putative sox10 enhancers with embryonic activity in zebrafish. Focusing on the most active enhancer region in melanoma, we identified a region 23 kilobases upstream of sox10, termed peak5, that drives EGFP reporter expression in a subset of neural crest cells, Kolmer-Agduhr neurons, and early melanoma patches and tumors with high specificity. A ~200 base pair region, conserved in Cyprinidae, within peak5 is required for transgenic reporter activity in neural crest and melanoma. This region contains dimeric SoxE/Sox10 dimeric binding sites essential for peak5 neural crest and melanoma activity. We show that deletion of the endogenous peak5 conserved genomic locus decreases embryonic sox10 expression and disrupts adult stripe patterning in our melanoma model background. Our work demonstrates the power of linking developmental and cancer models to better understand neural crest identity in melanoma.
Collapse
Affiliation(s)
- Rebecca L Cunningham
- Division of Medical Oncology, Department of Medicine and Department of Developmental Biology, Washington University in Saint Louis, St. Louis, MO, USA
| | - Eva T Kramer
- Division of Medical Oncology, Department of Medicine and Department of Developmental Biology, Washington University in Saint Louis, St. Louis, MO, USA
| | - Sophia K DeGeorgia
- Division of Medical Oncology, Department of Medicine and Department of Developmental Biology, Washington University in Saint Louis, St. Louis, MO, USA
| | - Paula M Godoy
- Division of Medical Oncology, Department of Medicine and Department of Developmental Biology, Washington University in Saint Louis, St. Louis, MO, USA
| | - Anna P Zarov
- Division of Medical Oncology, Department of Medicine and Department of Developmental Biology, Washington University in Saint Louis, St. Louis, MO, USA
| | - Shayana Seneviratne
- School of Arts and Sciences, Washington University in Saint Louis, St. Louis, MO, USA
| | - Vadim Grigura
- Division of Medical Oncology, Department of Medicine and Department of Developmental Biology, Washington University in Saint Louis, St. Louis, MO, USA
| | - Charles K Kaufman
- Division of Medical Oncology, Department of Medicine and Department of Developmental Biology, Washington University in Saint Louis, St. Louis, MO, USA.
| |
Collapse
|
28
|
Jimenez-García MP, Lucena-Cacace A, Otero-Albiol D, Carnero A. Regulation of sarcomagenesis by the empty spiracles homeobox genes EMX1 and EMX2. Cell Death Dis 2021; 12:515. [PMID: 34016958 PMCID: PMC8137939 DOI: 10.1038/s41419-021-03801-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/03/2021] [Accepted: 05/03/2021] [Indexed: 02/07/2023]
Abstract
The EMX (Empty Spiracles Homeobox) genes EMX1 and EMX2 are two homeodomain gene members of the EMX family of transcription factors involved in the regulation of various biological processes, such as cell proliferation, migration, and differentiation, during brain development and neural crest migration. They play a role in the specification of positional identity, the proliferation of neural stem cells, and the differentiation of certain neuronal cell phenotypes. In general, they act as transcription factors in early embryogenesis and neuroembryogenesis from metazoans to higher vertebrates. The EMX1 and EMX2's potential as tumor suppressor genes has been suggested in some cancers. Our work showed that EMX1/EMX2 act as tumor suppressors in sarcomas by repressing the activity of stem cell regulatory genes (OCT4, SOX2, KLF4, MYC, NANOG, NES, and PROM1). EMX protein downregulation, therefore, induced the malignance and stemness of cells both in vitro and in vivo. In murine knockout (KO) models lacking Emx genes, 3MC-induced sarcomas were more aggressive and infiltrative, had a greater capacity for tumor self-renewal, and had higher stem cell gene expression and nestin expression than those in wild-type models. These results showing that EMX genes acted as stemness regulators were reproduced in different subtypes of sarcoma. Therefore, it is possible that the EMX genes could have a generalized behavior regulating proliferation of neural crest-derived progenitors. Together, these results indicate that the EMX1 and EMX2 genes negatively regulate these tumor-altering populations or cancer stem cells, acting as tumor suppressors in sarcoma.
Collapse
Affiliation(s)
- Manuel Pedro Jimenez-García
- grid.411109.c0000 0000 9542 1158Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, Sevilla, Spain ,CIBER de Cancer, IS Carlos III, Madrid, Spain
| | - Antonio Lucena-Cacace
- grid.258799.80000 0004 0372 2033Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Daniel Otero-Albiol
- grid.411109.c0000 0000 9542 1158Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, Sevilla, Spain ,CIBER de Cancer, IS Carlos III, Madrid, Spain
| | - Amancio Carnero
- grid.411109.c0000 0000 9542 1158Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, Sevilla, Spain ,CIBER de Cancer, IS Carlos III, Madrid, Spain
| |
Collapse
|
29
|
Gao B, Baudis M. Signatures of Discriminative Copy Number Aberrations in 31 Cancer Subtypes. Front Genet 2021; 12:654887. [PMID: 34054918 PMCID: PMC8155688 DOI: 10.3389/fgene.2021.654887] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 04/15/2021] [Indexed: 12/13/2022] Open
Abstract
Copy number aberrations (CNA) are one of the most important classes of genomic mutations related to oncogenetic effects. In the past three decades, a vast amount of CNA data has been generated by molecular-cytogenetic and genome sequencing based methods. While this data has been instrumental in the identification of cancer-related genes and promoted research into the relation between CNA and histo-pathologically defined cancer types, the heterogeneity of source data and derived CNV profiles pose great challenges for data integration and comparative analysis. Furthermore, a majority of existing studies have been focused on the association of CNA to pre-selected "driver" genes with limited application to rare drivers and other genomic elements. In this study, we developed a bioinformatics pipeline to integrate a collection of 44,988 high-quality CNA profiles of high diversity. Using a hybrid model of neural networks and attention algorithm, we generated the CNA signatures of 31 cancer subtypes, depicting the uniqueness of their respective CNA landscapes. Finally, we constructed a multi-label classifier to identify the cancer type and the organ of origin from copy number profiling data. The investigation of the signatures suggested common patterns, not only of physiologically related cancer types but also of clinico-pathologically distant cancer types such as different cancers originating from the neural crest. Further experiments of classification models confirmed the effectiveness of the signatures in distinguishing different cancer types and demonstrated their potential in tumor classification.
Collapse
Affiliation(s)
- Bo Gao
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
- Swiss Institute of Bioinformatics, Zurich, Switzerland
| | - Michael Baudis
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
- Swiss Institute of Bioinformatics, Zurich, Switzerland
| |
Collapse
|
30
|
Rekler D, Kalcheim C. From Neural Crest to Definitive Roof Plate: The Dynamic Behavior of the Dorsal Neural Tube. Int J Mol Sci 2021; 22:3911. [PMID: 33920095 PMCID: PMC8070085 DOI: 10.3390/ijms22083911] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/07/2021] [Accepted: 04/08/2021] [Indexed: 01/11/2023] Open
Abstract
Research on the development of the dorsal neural tube is particularly challenging. In this highly dynamic domain, a temporal transition occurs between early neural crest progenitors that undergo an epithelial-to-mesenchymal transition and exit the neural primordium, and the subsequent roof plate, a resident epithelial group of cells that constitutes the dorsal midline of the central nervous system. Among other functions, the roof plate behaves as an organizing center for the generation of dorsal interneurons. Despite extensive knowledge of the formation, emigration and migration of neural crest progenitors, little is known about the mechanisms leading to the end of neural crest production and the transition into a roof plate stage. Are these two mutually dependent or autonomously regulated processes? Is the generation of roof plate and dorsal interneurons induced by neural tube-derived factors throughout both crest and roof plate stages, respectively, or are there differences in signaling properties and responsiveness as a function of time? In this review, we discuss distinctive characteristics of each population and possible mechanisms leading to the shift between the above cell types.
Collapse
Affiliation(s)
| | - Chaya Kalcheim
- Department of Medical Neurobiology, Institute of Medical Research Israel-Canada (IMRIC) and the Edmond and Lily Safra Center for Brain Sciences (ELSC), Hebrew University of Jerusalem-Hadassah Medical School, P.O.Box 12272, Jerusalem 9112102, Israel;
| |
Collapse
|
31
|
Fountain DM, Smith MJ, O'Leary C, Pathmanaban ON, Roncaroli F, Bobola N, King AT, Evans DG. The spatial phenotype of genotypically distinct meningiomas demonstrate potential implications of the embryology of the meninges. Oncogene 2021; 40:875-884. [PMID: 33262459 PMCID: PMC8440207 DOI: 10.1038/s41388-020-01568-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/05/2020] [Accepted: 11/11/2020] [Indexed: 12/29/2022]
Abstract
Meningiomas are the most common primary brain tumor and their incidence and prevalence is increasing. This review summarizes current evidence regarding the embryogenesis of the human meninges in the context of meningioma pathogenesis and anatomical distribution. Though not mutually exclusive, chromosomal instability and pathogenic variants affecting the long arm of chromosome 22 (22q) result in meningiomas in neural-crest cell-derived meninges, while variants affecting Hedgehog signaling, PI3K signaling, TRAF7, KLF4, and POLR2A result in meningiomas in the mesodermal-derived meninges of the midline and paramedian anterior, central, and ventral posterior skull base. Current evidence regarding the common pathways for genetic pathogenesis and the anatomical distribution of meningiomas is presented alongside existing understanding of the embryological origins for the meninges prior to proposing next steps for this work.
Collapse
Affiliation(s)
- Daniel M Fountain
- Geoffrey Jefferson Brain Research Centre, Salford Royal NHS Foundation Trust and the University of Manchester, Manchester, UK.
| | - Miriam J Smith
- Manchester Centre for Genomic Medicine, Manchester Academic Health Sciences Centre (MAHSC), St Mary's Hospital, School of Biological Sciences, Division of Evolution and Genomic Sciences, University of Manchester, Manchester, UK
| | - Claire O'Leary
- Geoffrey Jefferson Brain Research Centre, Salford Royal NHS Foundation Trust and the University of Manchester, Manchester, UK
| | - Omar N Pathmanaban
- Geoffrey Jefferson Brain Research Centre, Salford Royal NHS Foundation Trust and the University of Manchester, Manchester, UK
| | - Federico Roncaroli
- Geoffrey Jefferson Brain Research Centre, Salford Royal NHS Foundation Trust and the University of Manchester, Manchester, UK
| | - Nicoletta Bobola
- School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Andrew T King
- Geoffrey Jefferson Brain Research Centre, Salford Royal NHS Foundation Trust and the University of Manchester, Manchester, UK
| | - Dafydd Gareth Evans
- Manchester Centre for Genomic Medicine, Manchester Academic Health Sciences Centre (MAHSC), St Mary's Hospital, School of Biological Sciences, Division of Evolution and Genomic Sciences, University of Manchester, Manchester, UK
| |
Collapse
|
32
|
Williams AL, Bohnsack BL. The Ocular Neural Crest: Specification, Migration, and Then What? Front Cell Dev Biol 2021; 8:595896. [PMID: 33425902 PMCID: PMC7785809 DOI: 10.3389/fcell.2020.595896] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 12/04/2020] [Indexed: 12/11/2022] Open
Abstract
During vertebrate embryonic development, a population of dorsal neural tube-derived stem cells, termed the neural crest (NC), undergo a series of morphogenetic changes and extensive migration to become a diverse array of cell types. Around the developing eye, this multipotent ocular NC cell population, called the periocular mesenchyme (POM), comprises migratory mesenchymal cells that eventually give rise to many of the elements in the anterior of the eye, such as the cornea, sclera, trabecular meshwork, and iris. Molecular cell biology and genetic analyses of congenital eye diseases have provided important information on the regulation of NC contributions to this area of the eye. Nevertheless, a complete understanding of the NC as a contributor to ocular development remains elusive. In addition, positional information during ocular NC migration and the molecular pathways that regulate end tissue differentiation have yet to be fully elucidated. Further, the clinical challenges of ocular diseases, such as Axenfeld-Rieger syndrome (ARS), Peters anomaly (PA) and primary congenital glaucoma (PCG), strongly suggest the need for better treatments. While several aspects of NC evolution have recently been reviewed, this discussion will consolidate the most recent current knowledge on the specification, migration, and contributions of the NC to ocular development, highlighting the anterior segment and the knowledge obtained from the clinical manifestations of its associated diseases. Ultimately, this knowledge can inform translational discoveries with potential for sorely needed regenerative therapies.
Collapse
Affiliation(s)
- Antionette L Williams
- Division of Ophthalmology, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, United States
| | - Brenda L Bohnsack
- Division of Ophthalmology, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, United States.,Department of Ophthalmology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| |
Collapse
|
33
|
Deroubaix A, Busakwe K, Kramer B. Tracking the movement of individual avian neural crest cells in vitro. In Vitro Cell Dev Biol Anim 2021; 57:53-65. [PMID: 33415663 DOI: 10.1007/s11626-020-00528-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 10/25/2020] [Indexed: 11/30/2022]
Abstract
The origin, migratory pathways and adult derivatives of neural crest cells (NCCs) are well known. However, less is known about how these cells migrate. In this study, in a laboratory based in a low-resource setting, a hanging drop culture assay was utilised to study the movement of individual avian trunk neural crest cells. Mode of migration by means of lamellipodia and filopodia was studied in live cell cultures with a laser scanning confocal microscope and Airyscan module. Both distance migrated and speed of migration were calculated. NCCs migrated in a chain soon after emerging from the explanted neural tube, but were more dispersed and had random movements when they reached the periphery of the culture. While the distances travelled by these NCCs were less and the cells were slower on gelatine than on other extracellular matrices reported in the literature, the assay afforded detailed observation of actin filament distribution and cytoplasmic protrusions. The study has provided unique evidence of individual NCC movements in vitro, in a simple hanging drop assay optimized for the study of NCCs. The assay could be used for further analysis of the behaviour of NCCs on different extracellular matrices or with targeted action.
Collapse
Affiliation(s)
- Aurélie Deroubaix
- Life Sciences Imaging Facility, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.
| | - Khanyisile Busakwe
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Beverley Kramer
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
34
|
Abstract
Ewing sarcoma (EwS) is a highly aggressive pediatric bone cancer that is defined by a somatic fusion between the EWSR1 gene and an ETS family member, most frequently the FLI1 gene, leading to expression of a chimeric transcription factor EWSR1-FLI1. Otherwise, EwS is one of the most genetically stable cancers. The situation when the major cancer driver is well known looks like a unique opportunity for applying the systems biology approach in order to understand the EwS mechanisms as well as to uncover some general mechanistic principles of carcinogenesis. A number of studies have been performed revealing the direct and indirect effects of EWSR1-FLI1 on multiple aspects of cellular life. Nevertheless, the emerging picture of the oncogene action appears to be highly complex and systemic, with multiple reciprocal influences between the immediate consequences of the driver mutation and intracellular and intercellular molecular mechanisms, including regulation of transcription, epigenome, and tumoral microenvironment. In this chapter, we present an overview of existing molecular profiling resources available for EwS tumors and cell lines and provide an online comprehensive catalogue of publicly available omics and other datasets. We further highlight the systems biology studies of EwS, involving mathematical modeling of networks and integration of molecular data. We conclude that despite the seeming simplicity, a lot has yet to be understood on the systems-wide mechanisms connecting the driver mutation and the major cellular phenotypes of this pediatric cancer. Overall, this chapter can serve as a guide for a systems biology researcher to start working on EwS.
Collapse
|
35
|
Gandhi S, Hutchins EJ, Maruszko K, Park JH, Thomson M, Bronner ME. Bimodal function of chromatin remodeler Hmga1 in neural crest induction and Wnt-dependent emigration. eLife 2020; 9:57779. [PMID: 32965216 PMCID: PMC7591248 DOI: 10.7554/elife.57779] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 09/23/2020] [Indexed: 12/12/2022] Open
Abstract
During gastrulation, neural crest cells are specified at the neural plate border, as characterized by Pax7 expression. Using single-cell RNA sequencing coupled with high-resolution in situ hybridization to identify novel transcriptional regulators, we show that chromatin remodeler Hmga1 is highly expressed prior to specification and maintained in migrating chick neural crest cells. Temporally controlled CRISPR-Cas9-mediated knockouts uncovered two distinct functions of Hmga1 in neural crest development. At the neural plate border, Hmga1 regulates Pax7-dependent neural crest lineage specification. At premigratory stages, a second role manifests where Hmga1 loss reduces cranial crest emigration from the dorsal neural tube independent of Pax7. Interestingly, this is rescued by stabilized ß-catenin, thus implicating Hmga1 as a canonical Wnt activator. Together, our results show that Hmga1 functions in a bimodal manner during neural crest development to regulate specification at the neural plate border, and subsequent emigration from the neural tube via canonical Wnt signaling. The neural plate is a structure that serves as the basis for the brain and central nervous system during the development of animals with a backbone. In particular, the tissues at the border of the neural plate become the neural crest, a group of highly mobile cells that can specialize to form nerves and parts of the face. The exact molecular mechanisms that allow the crest to emerge are still unknown. The protein Hmga1 alters how genes are packaged and organized inside cells, which in turn influences how genes are switched on and off. Here, Gandhi et al. studied how Hmga1 helps to shape the neural crest in developing chicken embryos. To do so, they harnessed a genetic tool called CRISPR-Cas9, and deleted the gene that encodes Hmga1 at specific developmental stages. This manipulation highlighted two periods where Hmga1 is active. First, Hmga1 helped to define neural crest cells at the neural plate border by activating a gene called pax7. Then, at a later stage, Hmga1 allowed these cells to move to other parts of the body by triggering the Wnt communication system. Failure for the neural crest to develop properly causes birth defects and cancers such as melanoma and childhood neuroblastoma, highlighting the need to better understand how this structure is formed. In addition, a better grasp of the roles of Hmga1 in healthy development could help to appreciate how it participates in a range of adult cancers.
Collapse
Affiliation(s)
- Shashank Gandhi
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Erica J Hutchins
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Krystyna Maruszko
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Jong H Park
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Matthew Thomson
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Marianne E Bronner
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| |
Collapse
|
36
|
Iwanaga R, Truong BT, Hsu JY, Lambert KA, Vyas R, Orlicky D, Shellman YG, Tan AC, Ceol C, Artinger KB. Loss of prdm1a accelerates melanoma onset and progression. Mol Carcinog 2020; 59:1052-1063. [PMID: 32562448 PMCID: PMC7864383 DOI: 10.1002/mc.23236] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 06/04/2020] [Indexed: 12/19/2022]
Abstract
Melanoma is an aggressive, deadly skin cancer derived from melanocytes, a neural crest cell derivative. Melanoma cells mirror the developmental program of neural crest cells in that they exhibit the same gene expression patterns and utilize similar cellular mechanisms, including increased cell proliferation, epithelial-mesenchymal transition, and migration. Here we studied the role of neural crest regulator PRDM1 in melanoma onset and progression. In development, Prdm1a functions to promote neural crest progenitor fate, and in melanoma, we found that PRDM1 has reduced copy number and is recurrently deleted in both zebrafish and humans. When examining expression of neural crest and melanocyte development genes, we show that sox10 progenitor expression is high in prdm1a-/- mutants, while more differentiated melanocyte markers are reduced, suggesting that normally Prdm1a is required for differentiation. Data mining of human melanoma datasets indicates that high PRDM1 expression in human melanoma is correlated with better patient survival and decreased PRDM1 expression is common in metastatic tumors. When one copy of prdm1a is lost in the zebrafish melanoma model Tg(mitfa:BRAFV600E );p53-/- ;prdm1a+/- , melanoma onset occurs more quickly, and the tumors that form have a larger area with increased expression of sox10. These data demonstrate a novel role for PRDM1 as a tumor suppressor in melanoma.
Collapse
Affiliation(s)
- Ritsuko Iwanaga
- Department of Craniofacial Biology, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado
| | - Brittany T. Truong
- Department of Craniofacial Biology, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado
- Human Medical Genetics & Genomics Graduate Program, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado
| | - Jessica Y. Hsu
- Pharmacology Graduate Program, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado
| | - Karoline A. Lambert
- Department of Dermatology, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado
| | - Rajesh Vyas
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts
| | - David Orlicky
- Department of Pathology, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado
| | - Yiqun G. Shellman
- Department of Dermatology, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado
| | - Aik-Choon Tan
- Division of Medical Oncology, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado
| | - Craig Ceol
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Kristin Bruk Artinger
- Department of Craniofacial Biology, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado
| |
Collapse
|
37
|
Rapizzi E, Benvenuti S, Deledda C, Martinelli S, Sarchielli E, Fibbi B, Luciani P, Mazzanti B, Pantaleo M, Marroncini G, Vannelli GB, Maggi M, Mannelli M, Luconi M, Peri A. A unique neuroendocrine cell model derived from the human foetal neural crest. J Endocrinol Invest 2020; 43:1259-1269. [PMID: 32157664 DOI: 10.1007/s40618-020-01213-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Accepted: 03/02/2020] [Indexed: 10/24/2022]
Abstract
PURPOSE Nowadays, no human neuroendocrine cell models derived from the neural crest are available. In this study, we present non-transformed long-term primary Neural Crest Cells (NCCs) isolated from the trunk region of the neural crest at VIII-XII gestational weeks of human foetuses obtained from voluntary legal abortion. METHODS AND RESULTS In NCC, quantitative real-time RT PCR demonstrated the expression of neural crest specifier genes, such as Snail1, Snail2/SLUG, Sox10, FoxD3, c-Myc, and p75NTR. Moreover, these cell populations expressed stemness markers (such as Nanog and nestin), as well as markers of motility and invasion (TAGLN, MMP9, CXCR4, and CXCR7), and of neuronal/glial differentiation (MAP2, GFAP, SYP, and TAU). Functional analysis demonstrated that these cells not only possessed high migration properties, but most importantly, they expressed markers of sympatho-adrenal lineage, such as ASCL1 and tyrosine hydroxylase (TH). Moreover, the expression of TH increased after the induction with two different protocols of differentiation towards neuronal and sympatho-adrenal phenotypes. Finally, exposure to conditioned culture media from NCC induced a mature phenotype in a neuronal cell model (namely SH-SY5Y), suggesting that NCC may also act like Schwann precursors. CONCLUSION This unique human cell model provides a solid tool for future studies addressing the bases of human neural crest-derived neuroendocrine tumours.
Collapse
Affiliation(s)
- E Rapizzi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - S Benvenuti
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Viale Pieraccini 6, 50139, Florence, Italy
| | - C Deledda
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Viale Pieraccini 6, 50139, Florence, Italy
| | - S Martinelli
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Viale Pieraccini 6, 50139, Florence, Italy
| | - E Sarchielli
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - B Fibbi
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Viale Pieraccini 6, 50139, Florence, Italy
| | - P Luciani
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Viale Pieraccini 6, 50139, Florence, Italy
| | - B Mazzanti
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - M Pantaleo
- Genetics and Molecular Medicine Unit, Anna Meyer Children's University Hospital, Florence, Italy
| | - G Marroncini
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Viale Pieraccini 6, 50139, Florence, Italy
| | - G B Vannelli
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - M Maggi
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Viale Pieraccini 6, 50139, Florence, Italy
- Istituto Nazionale Biostrutture e Biosistemi (INBB), viale delle Medaglie d'Oro 305, 00136, Rome, Italy
| | - M Mannelli
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Viale Pieraccini 6, 50139, Florence, Italy
| | - M Luconi
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Viale Pieraccini 6, 50139, Florence, Italy.
- Istituto Nazionale Biostrutture e Biosistemi (INBB), viale delle Medaglie d'Oro 305, 00136, Rome, Italy.
| | - A Peri
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Viale Pieraccini 6, 50139, Florence, Italy
| |
Collapse
|
38
|
Vidal A, Redmer T. Decoding the Role of CD271 in Melanoma. Cancers (Basel) 2020; 12:cancers12092460. [PMID: 32878000 PMCID: PMC7564075 DOI: 10.3390/cancers12092460] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 08/10/2020] [Accepted: 08/25/2020] [Indexed: 11/26/2022] Open
Abstract
The evolution of melanoma, the most aggressive type of skin cancer, is triggered by driver mutations that are acquired in the coding regions of particularly BRAF (rat fibrosarcoma serine/threonine kinase, isoform B) or NRAS (neuroblastoma-type ras sarcoma virus) in melanocytes. Although driver mutations strongly determine tumor progression, additional factors are likely required and prerequisite for melanoma formation. Melanocytes are formed during vertebrate development in a well-controlled differentiation process of multipotent neural crest stem cells (NCSCs). However, mechanisms determining the properties of melanocytes and melanoma cells are still not well understood. The nerve growth factor receptor CD271 is likewise expressed in melanocytes, melanoma cells and NCSCs and programs the maintenance of a stem-like and migratory phenotype via a comprehensive network of associated genes. Moreover, CD271 regulates phenotype switching, a process that enables the rapid and reversible conversion of proliferative into invasive or non-stem-like states into stem-like states by yet largely unknown mechanisms. Here, we summarize current findings about CD271-associated mechanisms in melanoma cells and illustrate the role of CD271 for melanoma cell migration and metastasis, phenotype-switching, resistance to therapeutic interventions, and the maintenance of an NCSC-like state.
Collapse
|
39
|
Kobayashi GS, Musso CM, Moreira DDP, Pontillo-Guimarães G, Hsia GSP, Caires-Júnior LC, Goulart E, Passos-Bueno MR. Recapitulation of Neural Crest Specification and EMT via Induction from Neural Plate Border-like Cells. Stem Cell Reports 2020; 15:776-788. [PMID: 32857981 PMCID: PMC7486307 DOI: 10.1016/j.stemcr.2020.07.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 07/27/2020] [Accepted: 07/28/2020] [Indexed: 12/12/2022] Open
Abstract
Neural crest cells (NCCs) contribute to several tissues during embryonic development. NCC formation depends on activation of tightly regulated molecular programs at the neural plate border (NPB) region, which initiate NCC specification and epithelial-to-mesenchymal transition (EMT). Although several approaches to investigate NCCs have been devised, these early events of NCC formation remain largely unknown in humans, and currently available cellular models have not investigated EMT. Here, we report that the E6 neural induction protocol converts human induced pluripotent stem cells into NPB-like cells (NBCs), from which NCCs can be efficiently derived. NBC-to-NCC induction recapitulates gene expression dynamics associated with NCC specification and EMT, including downregulation of NPB factors and upregulation of NCC specifiers, coupled with other EMT-associated cell-state changes, such as cadherin modulation and activation of TWIST1 and other EMT inducers. This strategy will be useful in future basic or translational research focusing on these early steps of NCC formation.
Collapse
Affiliation(s)
- Gerson Shigeru Kobayashi
- Centro de Pesquisa sobre o Genoma Humano e Células-Tronco, Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil.
| | - Camila Manso Musso
- Centro de Pesquisa sobre o Genoma Humano e Células-Tronco, Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Danielle de Paula Moreira
- Centro de Pesquisa sobre o Genoma Humano e Células-Tronco, Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Giovanna Pontillo-Guimarães
- Centro de Pesquisa sobre o Genoma Humano e Células-Tronco, Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Gabriella Shih Ping Hsia
- Centro de Pesquisa sobre o Genoma Humano e Células-Tronco, Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Luiz Carlos Caires-Júnior
- Centro de Pesquisa sobre o Genoma Humano e Células-Tronco, Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Ernesto Goulart
- Centro de Pesquisa sobre o Genoma Humano e Células-Tronco, Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Maria Rita Passos-Bueno
- Centro de Pesquisa sobre o Genoma Humano e Células-Tronco, Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
40
|
Ito J, Nakano Y, Shima H, Miwa T, Kogure Y, Isshiki K, Yamazaki F, Oishi Y, Morimoto Y, Kataoka K, Okita H, Hirato J, Ichimura K, Shimada H. Central nervous system ganglioneuroblastoma harboring MYO5A-NTRK3 fusion. Brain Tumor Pathol 2020; 37:105-110. [PMID: 32556925 DOI: 10.1007/s10014-020-00371-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 06/10/2020] [Indexed: 02/06/2023]
Abstract
Central nervous system (CNS) ganglioneuroblastoma is a rare neuroectodermal neoplasm and little is known about its clinical and biological features. Herein, we report a pediatric case of CNS ganglioneuroblastoma harboring MYO5A-NTRK3 fusion. The patient, a 4-year-old boy, underwent a partial resection of a supratentorial tumor that was histopathologically diagnosed as a CNS ganglioneuroblastoma. Treatment with radiotherapy was started per the St Jude Medulloblastoma 03 (SJMB03) protocol; however, the tumor progressed rapidly and radiotherapy was temporally discontinued. Meanwhile, the patient underwent a second surgery, in which a gross total resection was successfully performed, following which he completed the remaining protocol-based therapy. Although an early focal recurrence was detected for which he received additional radiotherapy and oral temozolomide, the patient remained in complete remission for 14 months after the completion of the treatment. A central pathological review and molecular analysis were performed that revealed a MYO5A-NTRK3 fusion. Interestingly, the MYO5A-NTRK3 fusion has been recurrently detected in melanocytic tumors but not in other types of tumors. Therefore, it can be speculated that our case might partly share tumorigenesis mechanisms with MYO5A-NTRK3-positive melanocytic tumors. In addition, our case may enable an improved understanding of the pathogenesis and clinical features of CNS ganglioneuroblastomas.
Collapse
Affiliation(s)
- Jumpei Ito
- Department of Pediatrics, Keio University School of Medicine, Tokyo, Japan
| | - Yoshiko Nakano
- Division of Brain Tumor Translational Research, National Cancer Center Research Institute, Tokyo, Japan.
| | - Haruko Shima
- Department of Pediatrics, Keio University School of Medicine, Tokyo, Japan
| | - Tomoru Miwa
- Department of Neurosurgery, Keio University School of Medicine, Tokyo, Japan
| | - Yasunori Kogure
- Division of Molecular Oncology, National Cancer Center Research Institute, Tokyo, Japan
| | - Kyohei Isshiki
- Department of Pediatrics, Keio University School of Medicine, Tokyo, Japan
| | - Fumito Yamazaki
- Department of Pediatrics, Keio University School of Medicine, Tokyo, Japan
| | - Yumiko Oishi
- Department of Neurosurgery, Keio University School of Medicine, Tokyo, Japan
| | - Yukina Morimoto
- Department of Neurosurgery, Keio University School of Medicine, Tokyo, Japan
| | - Keisuke Kataoka
- Division of Molecular Oncology, National Cancer Center Research Institute, Tokyo, Japan
| | - Hajime Okita
- Division of Diagnostic Pathology, Keio University School of Medicine, Tokyo, Japan
| | - Junko Hirato
- Department of Pathology, Gunma University Hospital, Maebashi, Japan
| | - Koichi Ichimura
- Division of Brain Tumor Translational Research, National Cancer Center Research Institute, Tokyo, Japan
| | - Hiroyuki Shimada
- Department of Pediatrics, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
41
|
Schraw JM, Desrosiers TA, Nembhard WN, Langlois PH, Meyer RE, Canfield MA, Rasmussen SA, Chambers TM, Spector LG, Plon SE, Lupo PJ. Cancer diagnostic profile in children with structural birth defects: An assessment in 15,000 childhood cancer cases. Cancer 2020; 126:3483-3492. [PMID: 32469081 DOI: 10.1002/cncr.32982] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 04/27/2020] [Accepted: 05/01/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND Birth defects are established risk factors for childhood cancer. Nonetheless, cancer epidemiology in children with birth defects is not well characterized. METHODS Using data from population-based registries in 4 US states, this study compared children with cancer but no birth defects (n = 13,111) with children with cancer and 1 or more nonsyndromic birth defects (n = 1616). The objective was to evaluate cancer diagnostic characteristics, including tumor type, age at diagnosis, and stage at diagnosis. RESULTS Compared with the general population of children with cancer, children with birth defects were diagnosed with more embryonal tumors (26.6% vs 18.7%; q < 0.001), including neuroblastoma (12.5% vs 8.2%; q < 0.001) and hepatoblastoma (5.0% vs 1.3%; q < 0.001), but fewer hematologic malignancies, including acute lymphoblastic leukemia (12.4% vs 24.4%; q < 0.001). In age-stratified analyses, differences in tumor type were evident among children younger than 1 year and children 1 to 4 years old, but they were attenuated among children 5 years of age or older. The age at diagnosis was younger in children with birth defects for most cancers, including leukemia, lymphoma, astrocytoma, medulloblastoma, ependymoma, embryonal tumors, and germ cell tumors (all q < 0.05). CONCLUSIONS The results indicate possible etiologic heterogeneity in children with birth defects, have implications for future surveillance efforts, and raise the possibility of differential cancer ascertainment in children with birth defects. LAY SUMMARY Scientific studies suggest that children with birth defects are at increased risk for cancer. However, these studies have not been able to determine whether important tumor characteristics, such as the type of tumor diagnosed, the age at which the tumor is diagnosed, and the degree to which the tumor has spread at the time of diagnosis, are different for children with birth defects and children without birth defects. This study attempts to answer these important questions. By doing so, it may help scientists and physicians to understand the causes of cancer in children with birth defects and diagnose cancer at earlier stages when it is more treatable.
Collapse
Affiliation(s)
- Jeremy M Schraw
- Department of Medicine, Baylor College of Medicine, Houston, Texas.,Center for Epidemiology and Population Health, Baylor College of Medicine, Houston, Texas
| | - Tania A Desrosiers
- Department of Epidemiology, University of North Carolina, Chapel Hill, North Carolina
| | - Wendy N Nembhard
- Department of Epidemiology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Peter H Langlois
- Birth Defects Epidemiology and Surveillance Branch, Department of State Health Services, Austin, Texas
| | - Robert E Meyer
- Department of Maternal and Child Health, University of North Carolina, Chapel Hill, North Carolina.,State Center for Health Statistics, North Carolina Division of Public Health, Raleigh, North Carolina
| | - Mark A Canfield
- Birth Defects Epidemiology and Surveillance Branch, Department of State Health Services, Austin, Texas
| | - Sonja A Rasmussen
- Department of Pediatrics, University of Florida College of Medicine, Gainesville, Florida.,Department of Epidemiology, University of Florida College of Medicine and College of Public Health and Health Professions, Gainesville, Florida
| | - Tiffany M Chambers
- Center for Epidemiology and Population Health, Baylor College of Medicine, Houston, Texas.,Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Logan G Spector
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota
| | - Sharon E Plon
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Philip J Lupo
- Department of Medicine, Baylor College of Medicine, Houston, Texas.,Center for Epidemiology and Population Health, Baylor College of Medicine, Houston, Texas.,Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
42
|
Giacomozzi C, Guaraldi F, Cambiaso P, Niceta M, Verrillo E, Tartaglia M, Cutrera R. Anti-Hypothalamus and Anti-Pituitary Auto-antibodies in ROHHAD Syndrome: Additional Evidence Supporting an Autoimmune Etiopathogenesis. Horm Res Paediatr 2020; 92:124-132. [PMID: 31039576 DOI: 10.1159/000499163] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 02/27/2019] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Rapid-onset Obesity with Hypothalamic dysfunction, Hypoventilation and Autonomic Dysregulation (ROHHAD) is a very rare and complex pediatric syndrome characterized by altered hypothalamic thermal regulation, pain threshold, and respiratory control, hyperphagia with rapid weight gain and, often, hypothalamic-pituitary dysfunction. Its etiopathogenesis remains undetermined. We investigated the presence of alterations to target genes and hypothalamic-pituitary autoimmunity in a patient with -ROHHAD syndrome. METHODS A 3-year-old girl presenting with obesity after rapid weight gain was diagnosed with ROHHAD syndrome based on clinical features and abnormal biochemical and functional testing results. Because of worsening of rapid symptoms and demonstration of oligoclonal bands on cerebrospinal fluid (CSF) analysis, she was treated with plasmapheresis, methylprednisolone, anti-CD20 monoclonal antibodies, and azathioprine. Despite initial partial clinical improvement, the patient soon died of cardiorespiratory arrest. Post-mortem, whole exome sequencing, high-resolution comparative genomic hybridization array, and optimized indirect immunofluorescence (IIF) analysis were performed on blood and CSF. RESULTS No putative causative genomic variants compatible with dominant or recessive inheritance nor clinically significant structural rearrangement were detected. IIF on serum and CSF demonstrated the presence of anti-pituitary and anti-hypothalamus autoantibodies. CONCLUSIONS These findings support the involvement of autoimmunity in ROHHAD syndrome. However, response to immunosuppressive treatment was only transient and the patient died. Further cases are required to define the complex disease pathogenesis.
Collapse
Affiliation(s)
| | - Federica Guaraldi
- Pituitary Unit, IRCCS Institute of Neurological Sciences of Bologna, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Paola Cambiaso
- Unit of Endocrinology and Diabetes, Bambino Gesù Children's Hospital, Rome, Italy
| | - Marcello Niceta
- Genetics and Rare Diseases Research Division, Bambino Gesù Children's Hospital, Rome, Italy
| | - Elisabetta Verrillo
- Genetics and Rare Diseases Research Division, Bambino Gesù Children's Hospital, Rome, Italy.,Respiratory Unit, Pediatric Academic Department, Bambino Gesù Children's Hospital, Rome, Italy
| | - Marco Tartaglia
- Genetics and Rare Diseases Research Division, Bambino Gesù Children's Hospital, Rome, Italy
| | - Renato Cutrera
- Genetics and Rare Diseases Research Division, Bambino Gesù Children's Hospital, Rome, Italy.,Respiratory Unit, Pediatric Academic Department, Bambino Gesù Children's Hospital, Rome, Italy
| |
Collapse
|
43
|
Avitabile M, Succoio M, Testori A, Cardinale A, Vaksman Z, Lasorsa VA, Cantalupo S, Esposito M, Cimmino F, Montella A, Formicola D, Koster J, Andreotti V, Ghiorzo P, Romano MF, Staibano S, Scalvenzi M, Ayala F, Hakonarson H, Corrias MV, Devoto M, Law MH, Iles MM, Brown K, Diskin S, Zambrano N, Iolascon A, Capasso M. Neural crest-derived tumor neuroblastoma and melanoma share 1p13.2 as susceptibility locus that shows a long-range interaction with the SLC16A1 gene. Carcinogenesis 2020; 41:284-295. [PMID: 31605138 PMCID: PMC7346310 DOI: 10.1093/carcin/bgz153] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 08/28/2019] [Accepted: 09/04/2019] [Indexed: 12/27/2022] Open
Abstract
Neuroblastoma (NB) and malignant cutaneous melanoma (CMM) are neural crest cells (NCC)-derived tumors and may have a shared genetic basis, but this has not been investigated systematically by genome-wide association studies (GWAS). We took a three-staged approach to conduct cross-disease meta-analysis of GWAS for NB and CMM (2101 NB cases and 4202 controls; 12 874 CMM cases and 23 203 controls) to identify shared loci. Findings were replicated in 1403 NB cases and 1403 controls of European ancestry and in 636 NB, 508 CMM cases and 2066 controls of Italian origin. We found a cross-association at locus 1p13.2 (rs2153977, odds ratio = 0.91, P = 5.36 × 10-8). We also detected a suggestive (P < 10-7) NB-CMM cross-association at 2q37.1 with opposite effect on cancer risk. Pathway analysis of 110 NB-CMM risk loci with P < 10-4 demonstrated enrichment of biological processes such as cell migration, cell cycle, metabolism and immune response, which are essential of human NCC development, underlying both tumors. In vitro and in silico analyses indicated that the rs2153977-T protective allele, located in an NB and CMM enhancer, decreased expression of SLC16A1 via long-range loop formation and altered a T-box protein binding site. Upon depletion of SLC16A1, we observed a decrease of cellular proliferation and invasion in both NB and CMM cell lines, suggesting its role as oncogene. This is the largest study to date examining pleiotropy across two NC cell-derived tumors identifying 1p13.2 as common susceptibility locus for NB and CMM risk. We demonstrate that combining genome-wide association studies results across cancers with same origins can identify new loci common to neuroblastoma and melanoma arising from tissues which originate from neural crest cells. Our results also show 1p13.2 confer risk to neuroblastoma and melanoma by regulating SLC16A1.
Collapse
Affiliation(s)
- Marianna Avitabile
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Naples, Italy
- CEINGE Biotecnologie Avanzate, Naples, Italy
| | | | - Alessandro Testori
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Naples, Italy
| | - Antonella Cardinale
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Naples, Italy
- CEINGE Biotecnologie Avanzate, Naples, Italy
| | - Zalman Vaksman
- Division of Oncology and Center for Childhood Cancer Research, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Vito Alessandro Lasorsa
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Naples, Italy
- CEINGE Biotecnologie Avanzate, Naples, Italy
| | | | - Matteo Esposito
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Naples, Italy
| | | | | | | | - Jan Koster
- Department of Oncogenomics, Academic Medical Center, University of Amsterdam, Meibergdreef, Amsterdam, The Netherlands
| | - Virginia Andreotti
- Dipartimento di Medicina Oncologica Integrata, Università degli Studi di Genova,Genova, Italy
| | - Paola Ghiorzo
- Dipartimento di Medicina Oncologica Integrata, Università degli Studi di Genova,Genova, Italy
| | - Maria Fiammetta Romano
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Naples, Italy
| | - Stefania Staibano
- Dipartimento di Scienze Biomediche Avanzate, Università degli Studi di Napoli Federico II, Naples, Italy
| | - Massimiliano Scalvenzi
- Dipartimento di Medicina clinica e Chirurgia, Università degli Studi di Napoli Federico II, Naples, Italy
| | - Fabrizio Ayala
- National Cancer Institute, ‘Fondazione G. Pascale’-IRCCS, Naples, Italy
| | - Hakon Hakonarson
- Department of Pediatrics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Division of Genetics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- The Center for Applied Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | | | - Marcella Devoto
- Department of Pediatrics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Division of Genetics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Translational and Precision Medicine, University of Rome Sapienza, Rome, Italy
| | - Matthew H Law
- Statistical Genetics, QIMR Berghofer Medical Research Institute Brisbane, Queensland, Australia
| | - Mark M Iles
- Section of Epidemiology and Biostatistics, Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, UK
| | - Kevin Brown
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sharon Diskin
- Division of Oncology and Center for Childhood Cancer Research, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Nicola Zambrano
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Naples, Italy
- CEINGE Biotecnologie Avanzate, Naples, Italy
| | - Achille Iolascon
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Naples, Italy
- CEINGE Biotecnologie Avanzate, Naples, Italy
| | - Mario Capasso
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Naples, Italy
- CEINGE Biotecnologie Avanzate, Naples, Italy
- IRCCS SDN, Naples, Italy
| |
Collapse
|
44
|
Pauwels E, Van Aerde M, Bormans G, Deroose CM. Molecular imaging of norepinephrine transporter-expressing tumors: current status and future prospects. THE QUARTERLY JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING : OFFICIAL PUBLICATION OF THE ITALIAN ASSOCIATION OF NUCLEAR MEDICINE (AIMN) [AND] THE INTERNATIONAL ASSOCIATION OF RADIOPHARMACOLOGY (IAR), [AND] SECTION OF THE SOCIETY OF RADIOPHARMACEUTICAL CHEMISTRY AND BIOLOGY 2020; 64:234-249. [PMID: 32397701 DOI: 10.23736/s1824-4785.20.03261-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The human norepinephrine transporter (hNET) is a transmembrane protein responsible for reuptake of norepinephrine in presynaptic sympathetic nerve terminals and adrenal chromaffin cells. Neural crest tumors, such as neuroblastoma, paraganglioma and pheochromocytoma often show high hNET expression. Molecular imaging of these tumors can be done using radiolabeled norepinephrine analogs that target hNET. Currently, the most commonly used radiopharmaceutical for hNET imaging is meta-[123I]iodobenzylguanidine ([123I]MIBG) and this has been the case since its development several decades ago. The γ-emitter, iodine-123 only allows for planar scintigraphy and single photon emission computed tomography imaging. These modalities typically have a poorer spatial resolution and lower sensitivity than positron emission tomography (PET). Additional practical disadvantages include the fact that a two-day imaging protocol is required and the need for thyroid blockade. Therefore, several PET alternatives for hNET imaging are actively being explored. This review gives an in-depth overview of the current status and recent developments in clinical trials leading to the next generation of clinical PET ligands for imaging of hNET-expressing tumors.
Collapse
Affiliation(s)
- Elin Pauwels
- Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, University Hospitals Leuven, Leuven, Belgium.,Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, KU Leuven, Belgium
| | - Matthias Van Aerde
- Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, University Hospitals Leuven, Leuven, Belgium.,Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, KU Leuven, Belgium
| | - Guy Bormans
- Radiopharmaceutical Research, Department of Pharmacy and Pharmacology, KU Leuven, Leuven, Belgium
| | - Christophe M Deroose
- Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, University Hospitals Leuven, Leuven, Belgium - .,Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, KU Leuven, Belgium
| |
Collapse
|
45
|
Bhattacharya D, Azambuja AP, Simoes-Costa M. Metabolic Reprogramming Promotes Neural Crest Migration via Yap/Tead Signaling. Dev Cell 2020; 53:199-211.e6. [PMID: 32243782 PMCID: PMC7236757 DOI: 10.1016/j.devcel.2020.03.005] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 01/05/2020] [Accepted: 03/04/2020] [Indexed: 02/04/2023]
Abstract
The Warburg effect is one of the metabolic hallmarks of cancer cells, characterized by enhanced glycolysis even under aerobic conditions. This physiological adaptation is associated with metastasis , but we still have a superficial understanding of how it affects cellular processes during embryonic development. Here we report that the neural crest, a migratory stem cell population in vertebrate embryos, undergoes an extensive metabolic remodeling to engage in aerobic glycolysis prior to delamination. This increase in glycolytic flux promotes Yap/Tead signaling, which activates the expression of a set of transcription factors to drive epithelial-to-mesenchymal transition. Our results demonstrate how shifts in carbon metabolism can trigger the gene regulatory circuits that control complex cell behaviors. These findings support the hypothesis that the Warburg effect is a precisely regulated developmental mechanism that is anomalously reactivated during tumorigenesis and metastasis.
Collapse
Affiliation(s)
| | - Ana Paula Azambuja
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14850, USA
| | - Marcos Simoes-Costa
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14850, USA.
| |
Collapse
|
46
|
Sharma J, Krupenko SA. Folate pathways mediating the effects of ethanol in tumorigenesis. Chem Biol Interact 2020; 324:109091. [PMID: 32283069 DOI: 10.1016/j.cbi.2020.109091] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 04/02/2020] [Indexed: 02/08/2023]
Abstract
Folate and alcohol are dietary factors affecting the risk of cancer development in humans. The interaction between folate status and alcohol consumption in carcinogenesis involves multiple mechanisms. Alcoholism is typically associated with folate deficiency due to reduced dietary folate intake. Heavy alcohol consumption also decreases folate absorption, enhances urinary folate excretion and inhibits enzymes pivotal for one-carbon metabolism. While folate metabolism is involved in several key biochemical pathways, aberrant DNA methylation, due to the deficiency of methyl donors, is considered as a common downstream target of the folate-mediated effects of ethanol. The negative effects of low intakes of nutrients that provide dietary methyl groups, with high intakes of alcohol are additive in general. For example, low methionine, low-folate diets coupled with alcohol consumption could increase the risk for colorectal cancer in men. To counteract the negative effects of alcohol consumption, increased intake of nutrients, such as folate, providing dietary methyl groups is generally recommended. Here mechanisms involving dietary folate and folate metabolism in cancer disease, as well as links between these mechanisms and alcohol effects, are discussed. These mechanisms include direct effects on folate pathways and indirect mediation by oxidative stress, hypoxia, and microRNAs.
Collapse
Affiliation(s)
- Jaspreet Sharma
- Nutrition Research Institute and Department of Nutrition, University of North Carolina, Chapel Hill, USA
| | - Sergey A Krupenko
- Nutrition Research Institute and Department of Nutrition, University of North Carolina, Chapel Hill, USA; Department of Nutrition, University of North Carolina, Chapel Hill, USA.
| |
Collapse
|
47
|
Innate and Adaptive Immunity Linked to Recognition of Antigens Shared by Neural Crest-Derived Tumors. Cancers (Basel) 2020; 12:cancers12040840. [PMID: 32244473 PMCID: PMC7226441 DOI: 10.3390/cancers12040840] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/21/2020] [Accepted: 03/26/2020] [Indexed: 12/12/2022] Open
Abstract
In the adult, many embryologic processes can be co-opted by during cancer progression. The mechanisms of divisions, migration, and the ability to escape immunity recognition linked to specific embryo antigens are also expressed by malignant cells. In particular, cells derived from neural crests (NC) contribute to the development of multiple cell types including melanocytes, craniofacial cartilage, glia, neurons, peripheral and enteric nervous systems, and the adrenal medulla. This plastic performance is due to an accurate program of gene expression orchestrated with cellular/extracellular signals finalized to regulate long-distance migration, proliferation, differentiation, apoptosis, and survival. During neurulation, prior to initiating their migration, NC cells must undergo an epithelial–mesenchymal transition (EMT) in which they alter their actin cytoskeleton, lose their cell–cell junctions, apicobasal polarity, and acquire a motile phenotype. Similarly, during the development of the tumors derived from neural crests, comprising a heterogeneous group of neoplasms (Neural crest-derived tumors (NCDTs)), a group of genes responsible for the EMT pathway is activated. Here, retracing the molecular pathways performed by pluripotent cells at the boundary between neural and non-neural ectoderm in relation to the natural history of NCDT, points of contact or interposition are highlighted to better explain the intricate interplay between cancer cells and the innate and adaptive immune response.
Collapse
|
48
|
Cerrizuela S, Vega-Lopez GA, Aybar MJ. The role of teratogens in neural crest development. Birth Defects Res 2020; 112:584-632. [PMID: 31926062 DOI: 10.1002/bdr2.1644] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 12/11/2019] [Accepted: 12/22/2019] [Indexed: 12/13/2022]
Abstract
The neural crest (NC), discovered by Wilhelm His 150 years ago, gives rise to a multipotent migratory embryonic cell population that generates a remarkably diverse and important array of cell types during the development of the vertebrate embryo. These cells originate in the neural plate border (NPB), which is the ectoderm between the neural plate and the epidermis. They give rise to the neurons and glia of the peripheral nervous system, melanocytes, chondrocytes, smooth muscle cells, odontoblasts and neuroendocrine cells, among others. Neurocristopathies are a class of congenital diseases resulting from the abnormal induction, specification, migration, differentiation or death of NC cells (NCCs) during embryonic development and have an important medical and societal impact. In general, congenital defects affect an appreciable percentage of newborns worldwide. Some of these defects are caused by teratogens, which are agents that negatively impact the formation of tissues and organs during development. In this review, we will discuss the teratogens linked to the development of many birth defects, with a strong focus on those that specifically affect the development of the NC, thereby producing neurocristopathies. Although increasing attention is being paid to the effect of teratogens on embryonic development in general, there is a strong need to critically evaluate the specific role of these agents in NC development. Therefore, increased understanding of the role of these factors in NC development will contribute to the planning of strategies aimed at the prevention and treatment of human neurocristopathies, whose etiology was previously not considered.
Collapse
Affiliation(s)
- Santiago Cerrizuela
- Área Biología Experimental, Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT), Tucumán, Argentina.,Instituto de Biología "Dr. Francisco D. Barbieri", Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Tucumán, Argentina
| | - Guillermo A Vega-Lopez
- Área Biología Experimental, Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT), Tucumán, Argentina.,Instituto de Biología "Dr. Francisco D. Barbieri", Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Tucumán, Argentina
| | - Manuel J Aybar
- Área Biología Experimental, Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT), Tucumán, Argentina.,Instituto de Biología "Dr. Francisco D. Barbieri", Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Tucumán, Argentina
| |
Collapse
|
49
|
Classe M, Yao H, Mouawad R, Creighton CJ, Burgess A, Allanic F, Wassef M, Leroy X, Verillaud B, Mortuaire G, Bielle F, Le Tourneau C, Kurtz JE, Khayat D, Su X, Malouf GG. Integrated Multi-omic Analysis of Esthesioneuroblastomas Identifies Two Subgroups Linked to Cell Ontogeny. Cell Rep 2019; 25:811-821.e5. [PMID: 30332658 DOI: 10.1016/j.celrep.2018.09.047] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 07/18/2018] [Accepted: 09/12/2018] [Indexed: 12/23/2022] Open
Abstract
Esthesioneuroblastoma (ENB) is a rare cancer of the olfactory mucosa, with no established molecular stratification to date. We report similarities of ENB with tumors arising in the neural crest and perform integrative analysis of these tumors. We propose a molecular-based subtype classification of ENB as basal or neural, both of which have distinct pathological, transcriptomic, proteomic, and immune features. Among the basal subtype, we uncovered an IDH2 R172 mutant-enriched subgroup (∼35%) harboring a CpG island methylator phenotype reminiscent of IDH2 mutant gliomas. Compared with the basal ENB methylome, the neural ENB methylome shows genome-wide reprogramming with loss of DNA methylation at the enhancers of axonal guidance genes. Our study reveals insights into the molecular pathogenesis of ENB and provides classification information of potential therapeutic relevance.
Collapse
Affiliation(s)
- Marion Classe
- Department of Medical Oncology, Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique Hôpitaux de Paris, Sorbonnes-Universités, University Pierre and Marie Curie, Paris, France.
| | - Hui Yao
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Roger Mouawad
- Department of Medical Oncology, Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique Hôpitaux de Paris, Sorbonnes-Universités, University Pierre and Marie Curie, Paris, France
| | - Chad J Creighton
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Division of Biostatistics, Department of Medicine and Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Alice Burgess
- Department of Otolaryngology-Head and Neck Surgery, Lariboisière Hospital, Assistance Publique Hôpitaux de Paris, Université Paris-Diderot Paris VII, Paris, France
| | - Frederick Allanic
- Department of Medical Oncology, Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique Hôpitaux de Paris, Sorbonnes-Universités, University Pierre and Marie Curie, Paris, France
| | - Michel Wassef
- Department of Pathology, Lariboisière, Assistance Publique-Hôpitaux de Paris, Université Paris-Diderot Paris VII, Paris, France
| | - Xavier Leroy
- Department of Pathology, CHRU de Lille, Université Lille 2, Lille, France
| | - Benjamin Verillaud
- Department of Otolaryngology-Head and Neck Surgery, Lariboisière Hospital, Assistance Publique Hôpitaux de Paris, Université Paris-Diderot Paris VII, Paris, France
| | - Geoffrey Mortuaire
- Department of Otolaryngology-Head and Neck Surgery, CHRU de Lille, Université Lille 2, Lille, France
| | - Franck Bielle
- Department of Neuropathology Raymond Escourolle, AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Paris, 75013, France
| | - Christophe Le Tourneau
- Department of Drug Development and Innovation, Institut Curie, Saint-Cloud, France; INSERM U900 Research Unit, Saint-Cloud, France; Versailles-Saint-Quentin-en-Yvelines University, Montigny-le-Bretonneux, France
| | - Jean-Emmanuel Kurtz
- Department of Hematology and Medical Oncology, CHRU Strasbourg, Hôpital Hautepierre, Strasbourg, France
| | - David Khayat
- Department of Medical Oncology, Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique Hôpitaux de Paris, Sorbonnes-Universités, University Pierre and Marie Curie, Paris, France
| | - Xiaoping Su
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Gabriel G Malouf
- Department of Medical Oncology, Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique Hôpitaux de Paris, Sorbonnes-Universités, University Pierre and Marie Curie, Paris, France; Department of Hematology and Medical Oncology, CHRU Strasbourg, Hôpital Hautepierre, Strasbourg, France; Institut Génomique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch-Graffenstaden, France.
| |
Collapse
|
50
|
Wnt Signaling in Neural Crest Ontogenesis and Oncogenesis. Cells 2019; 8:cells8101173. [PMID: 31569501 PMCID: PMC6829301 DOI: 10.3390/cells8101173] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 09/23/2019] [Accepted: 09/25/2019] [Indexed: 02/06/2023] Open
Abstract
Neural crest (NC) cells are a temporary population of multipotent stem cells that generate a diverse array of cell types, including craniofacial bone and cartilage, smooth muscle cells, melanocytes, and peripheral neurons and glia during embryonic development. Defective neural crest development can cause severe and common structural birth defects, such as craniofacial anomalies and congenital heart disease. In the early vertebrate embryos, NC cells emerge from the dorsal edge of the neural tube during neurulation and then migrate extensively throughout the anterior-posterior body axis to generate numerous derivatives. Wnt signaling plays essential roles in embryonic development and cancer. This review summarizes current understanding of Wnt signaling in NC cell induction, delamination, migration, multipotency, and fate determination, as well as in NC-derived cancers.
Collapse
|