1
|
Bailon-Zambrano R, Keating MK, Sales EC, Nichols AR, Gustafson GE, Hopkins CA, Kocha KM, Huang P, Barske L, Nichols JT. The sclerotome is the source of the dorsal and anal fin skeleton and its expansion is required for median fin development. Development 2024; 151:dev203025. [PMID: 39575996 DOI: 10.1242/dev.203025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 11/13/2024] [Indexed: 12/14/2024]
Abstract
Paired locomotion appendages are hypothesized to have redeployed the developmental program of median appendages, such as the dorsal and anal fins. Compared with paired fins, and limbs, median appendages remain surprisingly understudied. Here, we report that a dominant zebrafish mutant, smoothback (smb), fails to develop a dorsal fin. Moreover, the anal fin is reduced along the antero-posterior axis, and spine defects develop. Mechanistically, the smb mutation is caused by an insertion of a sox10:Gal4VP16 transgenic construct into a non-coding region. The first step in fin, and limb, induction is aggregation of undifferentiated mesenchyme at the appendage development site. In smb, this dorsal fin mesenchyme is absent. Lineage tracing demonstrates the previously unknown developmental origin of the mesenchyme, the sclerotome, which also gives rise to the spine. Strikingly, we find that there is significantly less sclerotome in smb than in wild type. Our results give insight into the origin and modularity of understudied median fins, which have changed position, number, size, and even disappeared, across evolutionary time.
Collapse
Affiliation(s)
- Raisa Bailon-Zambrano
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Margaret K Keating
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Emily C Sales
- Department of Biology, University of Oregon, Eugene, OR 97403, USA
| | - Abigail R Nichols
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Grace E Gustafson
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Colette A Hopkins
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Katrinka M Kocha
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Peng Huang
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Lindsey Barske
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - James T Nichols
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
2
|
Todorov LG, Oonuma K, Kusakabe TG, Levine MS, Lemaire LA. Neural crest lineage in the protovertebrate model Ciona. Nature 2024; 635:912-916. [PMID: 39443803 DOI: 10.1038/s41586-024-08111-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 09/25/2024] [Indexed: 10/25/2024]
Abstract
Neural crest cells are multipotent progenitors that produce defining features of vertebrates such as the 'new head'1. Here we use the tunicate, Ciona, to explore the evolutionary origins of neural crest since this invertebrate chordate is among the closest living relatives of vertebrates2-4. Previous studies identified two potential neural crest cell types in Ciona, sensory pigment cells and bipolar tail neurons5,6. Recent findings suggest that bipolar tail neurons are homologous to cranial sensory ganglia rather than derivatives of neural crest7,8. Here we show that the pigment cell lineage also produces neural progenitor cells that form regions of the juvenile nervous system following metamorphosis. Neural progenitors are also a major derivative of neural crest in vertebrates, suggesting that the last common ancestor of tunicates and vertebrates contained a multipotent progenitor population at the neural plate border. It would therefore appear that a key property of neural crest, multipotentiality, preceded the emergence of vertebrates.
Collapse
Affiliation(s)
- Lauren G Todorov
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Kouhei Oonuma
- Department of Biology, Faculty of Science and Engineering and Institute for Integrative Neurobiology, Konan University, Kobe, Japan
- Frontier Research Institute, Chubu University, Kasugai, Japan
| | - Takehiro G Kusakabe
- Department of Biology, Faculty of Science and Engineering and Institute for Integrative Neurobiology, Konan University, Kobe, Japan.
| | - Michael S Levine
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA.
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA.
| | - Laurence A Lemaire
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA.
- Department of Biology, Saint Louis University, St. Louis, MO, USA.
| |
Collapse
|
3
|
Bisanti L, La Corte C, Dara M, Bertini F, Vizioli J, Parisi MG, Cammarata M, Parrinello D. The Interplay of TLR-NFκB Signalling Pathway and Functional Immune-Related Enzymes in the Inflammatory Response of Ciona robusta. Animals (Basel) 2024; 14:2169. [PMID: 39123695 PMCID: PMC11310991 DOI: 10.3390/ani14152169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
The close phylogenetic relationship between ascidians (Tunicata) and vertebrates makes them a powerful model for studying the innate immune system. To better understand the nature and dynamics of immune responses and the mechanisms through which bacterial infections are detected and translated into inflammation in Ciona robusta, we applied an approach combining in vivo lipopolysaccharide (LPS) stimulation, immune-labelling techniques and functional enzymatic analyses. The immunohistochemistry showed that Toll-like receptor 4 (TLR4) and nuclear factor kappa B (NFκB) were expressed during the inflammatory pharynx response 4 h post-LPS, with the formation of nodules in pharynx vessel lumen. Also, the endothelium vessels were involved in the inflammatory response. Observations of histological sections from naive and buffer-inoculated ascidians confirmed an immuno-positive response. Enzyme immune parameters-which included the activity of phenoloxidase, glutathione peroxidase, lysozyme, alkaline phosphatase and esterase-showed up-modulation 4 h after LPS injection, confirming their participation during ascidian inflammatory response. These findings provide new insights into the mechanisms underlying the LPS-induced C. robusta response and suggest that a broad innate immune mechanism, as in vertebrates, is involved in the regulation of inflammatory responses. Further findings in this direction are needed to cover knowledge gaps regarding the organized set of molecular and cellular networks involved in universal immune interactions with pathogens.
Collapse
Affiliation(s)
- Luca Bisanti
- Marine Immunobiology Laboratory, Department of Earth and Marine Sciences, University of Palermo, 90128 Palermo, Italy; (L.B.); (C.L.C.); (F.B.)
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
| | - Claudia La Corte
- Marine Immunobiology Laboratory, Department of Earth and Marine Sciences, University of Palermo, 90128 Palermo, Italy; (L.B.); (C.L.C.); (F.B.)
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
| | - Mariano Dara
- Marine Immunobiology Laboratory, Department of Earth and Marine Sciences, University of Palermo, 90128 Palermo, Italy; (L.B.); (C.L.C.); (F.B.)
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
| | - Federica Bertini
- Marine Immunobiology Laboratory, Department of Earth and Marine Sciences, University of Palermo, 90128 Palermo, Italy; (L.B.); (C.L.C.); (F.B.)
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
| | - Jacopo Vizioli
- Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (Inserm U1192), Département de Biologie, Université de Lille, F-59000 Lille, France
| | - Maria Giovanna Parisi
- Marine Immunobiology Laboratory, Department of Earth and Marine Sciences, University of Palermo, 90128 Palermo, Italy; (L.B.); (C.L.C.); (F.B.)
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
| | - Matteo Cammarata
- Marine Immunobiology Laboratory, Department of Earth and Marine Sciences, University of Palermo, 90128 Palermo, Italy; (L.B.); (C.L.C.); (F.B.)
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
| | - Daniela Parrinello
- Marine Immunobiology Laboratory, Department of Earth and Marine Sciences, University of Palermo, 90128 Palermo, Italy; (L.B.); (C.L.C.); (F.B.)
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
| |
Collapse
|
4
|
Holland ND, Holland LZ. The Rohde-like cells at the posterior end of the dorsal nerve cord of amphioxus (Cephalochordata). J Comp Neurol 2024; 532:e25644. [PMID: 38852044 DOI: 10.1002/cne.25644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/24/2024] [Accepted: 05/15/2024] [Indexed: 06/10/2024]
Abstract
For postmetamorphic specimens of amphioxus (Cephalochordata), serial block-face scanning electron microscopy (SBSEM) is used to describe the long-ignored Rohde-like cells (RLCs) at the extreme posterior end of the dorsal nerve cord. These cells, numbering about three dozen in all, are divisible into a group with larger diameters running near the dorsal side of the cord and a more ventral group with smaller diameters closely associated with the central canal of the neurocoel. It is possible that the smaller ventral cells might be generated at the ependymal zone of the dorsal nerve cord and later migrate to a dorsal position, although a functional reason for this remains a mystery. All the RLCs have conspicuous regions of microvilli covering as much as 40% of their surface; limited data (by others) on the more anterior bona fide Rohde cells also indicate an extensive microvillar surface. Thus, both the RLCs and the better-known Rohde cells appear to be rhabdomeric photoreceptors, although a specific function for this feature is currently unknown. Even more perplexingly, although the Rohde cells are quintessential neurons extending giant processes, each RLC comprises a perikaryon that does not bear any neurites.
Collapse
Affiliation(s)
- Nicholas D Holland
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California, USA
| | - Linda Z Holland
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California, USA
| |
Collapse
|
5
|
Hoyer J, Kolar K, Athira A, van den Burgh M, Dondorp D, Liang Z, Chatzigeorgiou M. Polymodal sensory perception drives settlement and metamorphosis of Ciona larvae. Curr Biol 2024; 34:1168-1182.e7. [PMID: 38335959 DOI: 10.1016/j.cub.2024.01.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 12/04/2023] [Accepted: 01/16/2024] [Indexed: 02/12/2024]
Abstract
The Earth's oceans brim with an incredible diversity of microscopic lifeforms, including motile planktonic larvae, whose survival critically depends on effective dispersal in the water column and subsequent exploration of the seafloor to identify a suitable settlement site. How their nervous systems mediate sensing of diverse multimodal cues remains enigmatic. Here, we uncover that the tunicate Ciona intestinalis larvae employ ectodermal sensory cells to sense various mechanical and chemical cues. Combining whole-brain imaging and chemogenetics, we demonstrate that stimuli encoded at the periphery are sufficient to drive global brain-state changes to promote or impede both larval attachment and metamorphosis behaviors. The ability of C. intestinalis larvae to leverage polymodal sensory perception to support information coding and chemotactile behaviors may explain how marine larvae make complex decisions despite streamlined nervous systems.
Collapse
Affiliation(s)
- Jorgen Hoyer
- Michael Sars Centre, Faculty of Mathematics and Natural Sciences, University of Bergen, Bergen 5006, Norway
| | - Kushal Kolar
- Michael Sars Centre, Faculty of Mathematics and Natural Sciences, University of Bergen, Bergen 5006, Norway
| | - Athira Athira
- Michael Sars Centre, Faculty of Mathematics and Natural Sciences, University of Bergen, Bergen 5006, Norway
| | - Meike van den Burgh
- Michael Sars Centre, Faculty of Mathematics and Natural Sciences, University of Bergen, Bergen 5006, Norway
| | - Daniel Dondorp
- Michael Sars Centre, Faculty of Mathematics and Natural Sciences, University of Bergen, Bergen 5006, Norway
| | - Zonglai Liang
- Michael Sars Centre, Faculty of Mathematics and Natural Sciences, University of Bergen, Bergen 5006, Norway
| | - Marios Chatzigeorgiou
- Michael Sars Centre, Faculty of Mathematics and Natural Sciences, University of Bergen, Bergen 5006, Norway.
| |
Collapse
|
6
|
Marlétaz F, Timoshevskaya N, Timoshevskiy VA, Parey E, Simakov O, Gavriouchkina D, Suzuki M, Kubokawa K, Brenner S, Smith JJ, Rokhsar DS. The hagfish genome and the evolution of vertebrates. Nature 2024; 627:811-820. [PMID: 38262590 PMCID: PMC10972751 DOI: 10.1038/s41586-024-07070-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 01/15/2024] [Indexed: 01/25/2024]
Abstract
As the only surviving lineages of jawless fishes, hagfishes and lampreys provide a crucial window into early vertebrate evolution1-3. Here we investigate the complex history, timing and functional role of genome-wide duplications4-7 and programmed DNA elimination8,9 in vertebrates in the light of a chromosome-scale genome sequence for the brown hagfish Eptatretus atami. Combining evidence from syntenic and phylogenetic analyses, we establish a comprehensive picture of vertebrate genome evolution, including an auto-tetraploidization (1RV) that predates the early Cambrian cyclostome-gnathostome split, followed by a mid-late Cambrian allo-tetraploidization (2RJV) in gnathostomes and a prolonged Cambrian-Ordovician hexaploidization (2RCY) in cyclostomes. Subsequently, hagfishes underwent extensive genomic changes, with chromosomal fusions accompanied by the loss of genes that are essential for organ systems (for example, genes involved in the development of eyes and in the proliferation of osteoclasts); these changes account, in part, for the simplification of the hagfish body plan1,2. Finally, we characterize programmed DNA elimination in hagfish, identifying protein-coding genes and repetitive elements that are deleted from somatic cell lineages during early development. The elimination of these germline-specific genes provides a mechanism for resolving genetic conflict between soma and germline by repressing germline and pluripotency functions, paralleling findings in lampreys10,11. Reconstruction of the early genomic history of vertebrates provides a framework for further investigations of the evolution of cyclostomes and jawed vertebrates.
Collapse
Affiliation(s)
- Ferdinand Marlétaz
- Centre for Life's Origins and Evolution, Department of Genetics, Evolution and Environment, University College London, London, UK.
- Molecular Genetics Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan.
| | | | | | - Elise Parey
- Centre for Life's Origins and Evolution, Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Oleg Simakov
- Molecular Genetics Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
- Department for Neurosciences and Developmental Biology, University of Vienna, Vienna, Austria
| | - Daria Gavriouchkina
- Molecular Genetics Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
- UK Dementia Research Institute, University College London, London, UK
| | - Masakazu Suzuki
- Department of Science, Graduate School of Integrated Science and Technology, Shizuoka University, Shizuoka, Japan
| | - Kaoru Kubokawa
- Ocean Research Institute, The University of Tokyo, Tokyo, Japan
| | - Sydney Brenner
- Comparative and Medical Genomics Laboratory, Institute of Molecular and Cell Biology, A*STAR, Biopolis, Singapore, Singapore
| | - Jeramiah J Smith
- Department of Biology, University of Kentucky, Lexington, KY, USA.
| | - Daniel S Rokhsar
- Molecular Genetics Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan.
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
7
|
Bierenbroodspot MJ, Darienko T, de Vries S, Fürst-Jansen JMR, Buschmann H, Pröschold T, Irisarri I, de Vries J. Phylogenomic insights into the first multicellular streptophyte. Curr Biol 2024; 34:670-681.e7. [PMID: 38244543 PMCID: PMC10849092 DOI: 10.1016/j.cub.2023.12.070] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/19/2023] [Accepted: 12/21/2023] [Indexed: 01/22/2024]
Abstract
Streptophytes are best known as the clade containing the teeming diversity of embryophytes (land plants).1,2,3,4 Next to embryophytes are however a range of freshwater and terrestrial algae that bear important information on the emergence of key traits of land plants. Among these, the Klebsormidiophyceae stand out. Thriving in diverse environments-from mundane (ubiquitous occurrence on tree barks and rocks) to extreme (from the Atacama Desert to the Antarctic)-Klebsormidiophyceae can exhibit filamentous body plans and display remarkable resilience as colonizers of terrestrial habitats.5,6 Currently, the lack of a robust phylogenetic framework for the Klebsormidiophyceae hampers our understanding of the evolutionary history of these key traits. Here, we conducted a phylogenomic analysis utilizing advanced models that can counteract systematic biases. We sequenced 24 new transcriptomes of Klebsormidiophyceae and combined them with 14 previously published genomic and transcriptomic datasets. Using an analysis built on 845 loci and sophisticated mixture models, we establish a phylogenomic framework, dividing the six distinct genera of Klebsormidiophyceae in a novel three-order system, with a deep divergence more than 830 million years ago. Our reconstructions of ancestral states suggest (1) an evolutionary history of multiple transitions between terrestrial-aquatic habitats, with stem Klebsormidiales having conquered land earlier than embryophytes, and (2) that the body plan of the last common ancestor of Klebsormidiophyceae was multicellular, with a high probability that it was filamentous whereas the sarcinoids and unicells in Klebsormidiophyceae are likely derived states. We provide evidence that the first multicellular streptophytes likely lived about a billion years ago.
Collapse
Affiliation(s)
- Maaike J Bierenbroodspot
- University of Goettingen, Institute for Microbiology and Genetics, Department of Applied Bioinformatics, Goldschmidtstr. 1, 37077 Goettingen, Germany
| | - Tatyana Darienko
- University of Goettingen, Institute for Microbiology and Genetics, Department of Applied Bioinformatics, Goldschmidtstr. 1, 37077 Goettingen, Germany
| | - Sophie de Vries
- University of Goettingen, Institute for Microbiology and Genetics, Department of Applied Bioinformatics, Goldschmidtstr. 1, 37077 Goettingen, Germany
| | - Janine M R Fürst-Jansen
- University of Goettingen, Institute for Microbiology and Genetics, Department of Applied Bioinformatics, Goldschmidtstr. 1, 37077 Goettingen, Germany; University of Goettingen, Campus Institute Data Science (CIDAS), Goldschmidstr. 1, 37077 Goettingen, Germany
| | - Henrik Buschmann
- University of Applied Sciences Mittweida, Faculty of Applied Computer Sciences and Biosciences, Section Biotechnology and Chemistry, Molecular Biotechnology, Technikumplatz 17, 09648 Mittweida, Germany
| | - Thomas Pröschold
- University of Goettingen, Institute for Microbiology and Genetics, Department of Applied Bioinformatics, Goldschmidtstr. 1, 37077 Goettingen, Germany; University of Innsbruck, Research Department for Limnology, 5310 Mondsee, Austria
| | - Iker Irisarri
- University of Goettingen, Institute for Microbiology and Genetics, Department of Applied Bioinformatics, Goldschmidtstr. 1, 37077 Goettingen, Germany; University of Goettingen, Campus Institute Data Science (CIDAS), Goldschmidstr. 1, 37077 Goettingen, Germany; Section Phylogenomics, Centre for Molecular Biodiversity Research, Leibniz Institute for the Analysis of Biodiversity Change (LIB), Museum of Nature, Hamburg, Martin-Luther-King Platz 3, 20146 Hamburg, Germany.
| | - Jan de Vries
- University of Goettingen, Institute for Microbiology and Genetics, Department of Applied Bioinformatics, Goldschmidtstr. 1, 37077 Goettingen, Germany; University of Goettingen, Campus Institute Data Science (CIDAS), Goldschmidstr. 1, 37077 Goettingen, Germany; University of Goettingen, Goettingen Center for Molecular Biosciences (GZMB), Department of Applied Bioinformatics, Goldschmidtstr. 1, 37077 Goettingen, Germany.
| |
Collapse
|
8
|
Rosner A, Ballarin L, Barnay-Verdier S, Borisenko I, Drago L, Drobne D, Concetta Eliso M, Harbuzov Z, Grimaldi A, Guy-Haim T, Karahan A, Lynch I, Giulia Lionetto M, Martinez P, Mehennaoui K, Oruc Ozcan E, Pinsino A, Paz G, Rinkevich B, Spagnuolo A, Sugni M, Cambier S. A broad-taxa approach as an important concept in ecotoxicological studies and pollution monitoring. Biol Rev Camb Philos Soc 2024; 99:131-176. [PMID: 37698089 DOI: 10.1111/brv.13015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 08/23/2023] [Accepted: 08/28/2023] [Indexed: 09/13/2023]
Abstract
Aquatic invertebrates play a pivotal role in (eco)toxicological assessments because they offer ethical, cost-effective and repeatable testing options. Additionally, their significance in the food chain and their ability to represent diverse aquatic ecosystems make them valuable subjects for (eco)toxicological studies. To ensure consistency and comparability across studies, international (eco)toxicology guidelines have been used to establish standardised methods and protocols for data collection, analysis and interpretation. However, the current standardised protocols primarily focus on a limited number of aquatic invertebrate species, mainly from Arthropoda, Mollusca and Annelida. These protocols are suitable for basic toxicity screening, effectively assessing the immediate and severe effects of toxic substances on organisms. For more comprehensive and ecologically relevant assessments, particularly those addressing long-term effects and ecosystem-wide impacts, we recommended the use of a broader diversity of species, since the present choice of taxa exacerbates the limited scope of basic ecotoxicological studies. This review provides a comprehensive overview of (eco)toxicological studies, focusing on major aquatic invertebrate taxa and how they are used to assess the impact of chemicals in diverse aquatic environments. The present work supports the use of a broad-taxa approach in basic environmental assessments, as it better represents the natural populations inhabiting various ecosystems. Advances in omics and other biochemical and computational techniques make the broad-taxa approach more feasible, enabling mechanistic studies on non-model organisms. By combining these approaches with in vitro techniques together with the broad-taxa approach, researchers can gain insights into less-explored impacts of pollution, such as changes in population diversity, the development of tolerance and transgenerational inheritance of pollution responses, the impact on organism phenotypic plasticity, biological invasion outcomes, social behaviour changes, metabolome changes, regeneration phenomena, disease susceptibility and tissue pathologies. This review also emphasises the need for harmonised data-reporting standards and minimum annotation checklists to ensure that research results are findable, accessible, interoperable and reusable (FAIR), maximising the use and reusability of data. The ultimate goal is to encourage integrated and holistic problem-focused collaboration between diverse scientific disciplines, international standardisation organisations and decision-making bodies, with a focus on transdisciplinary knowledge co-production for the One-Health approach.
Collapse
Affiliation(s)
- Amalia Rosner
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, PO 2336 Sha'ar Palmer 1, Haifa, 3102201, Israel
| | - Loriano Ballarin
- Department of Biology, University of Padova, via Ugo Bassi 58/B, Padova, I-35121, Italy
| | - Stéphanie Barnay-Verdier
- Sorbonne Université; CNRS, INSERM, Université Côte d'Azur, Institute for Research on Cancer and Aging Nice, 28 avenue Valombrose, Nice, F-06107, France
| | - Ilya Borisenko
- Faculty of Biology, Department of Embryology, Saint Petersburg State University, Universitetskaya embankment 7/9, Saint Petersburg, 199034, Russia
| | - Laura Drago
- Department of Biology, University of Padova, via Ugo Bassi 58/B, Padova, I-35121, Italy
| | - Damjana Drobne
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, Ljubljana, 1111, Slovenia
| | - Maria Concetta Eliso
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, 80121, Italy
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Zoya Harbuzov
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, PO 2336 Sha'ar Palmer 1, Haifa, 3102201, Israel
- Leon H. Charney School of Marine Sciences, Department of Marine Biology, University of Haifa, 199 Aba Koushy Ave., Haifa, 3498838, Israel
| | - Annalisa Grimaldi
- Department of Biotechnology and Life Sciences, University of Insubria, Via J. H. Dunant, Varese, 3-21100, Italy
| | - Tamar Guy-Haim
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, PO 2336 Sha'ar Palmer 1, Haifa, 3102201, Israel
| | - Arzu Karahan
- Middle East Technical University, Institute of Marine Sciences, Erdemli-Mersin, PO 28, 33731, Turkey
| | - Iseult Lynch
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Maria Giulia Lionetto
- Department of Biological and Environmental Sciences and Technologies, University of Salento, via prov. le Lecce -Monteroni, Lecce, I-73100, Italy
- NBFC, National Biodiversity Future Center, Piazza Marina, 61, Palermo, I-90133, Italy
| | - Pedro Martinez
- Department de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Av. Diagonal 643, Barcelona, 08028, Spain
- Institut Català de Recerca i Estudis Avançats (ICREA), Passeig de Lluís Companys, Barcelona, 08010, Spain
| | - Kahina Mehennaoui
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), 41, rue du Brill, Belvaux, L-4422, Luxembourg
| | - Elif Oruc Ozcan
- Faculty of Arts and Science, Department of Biology, Cukurova University, Balcali, Saricam, Adana, 01330, Turkey
| | - Annalisa Pinsino
- National Research Council, Institute of Translational Pharmacology (IFT), National Research Council (CNR), Via Ugo La Malfa 153, Palermo, 90146, Italy
| | - Guy Paz
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, PO 2336 Sha'ar Palmer 1, Haifa, 3102201, Israel
| | - Baruch Rinkevich
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, PO 2336 Sha'ar Palmer 1, Haifa, 3102201, Israel
| | - Antonietta Spagnuolo
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, 80121, Italy
| | - Michela Sugni
- Department of Environmental Science and Policy, University of Milan, Via Celoria 26, Milan, 20133, Italy
| | - Sébastien Cambier
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), 41, rue du Brill, Belvaux, L-4422, Luxembourg
| |
Collapse
|
9
|
Holland ND, Holland LZ. Serial block-face scanning electron microscopy of the tail tip of post-metamorphic amphioxus finds novel myomeres with odd shapes and unusually prominent sclerocoels. J Morphol 2024; 285:e21667. [PMID: 38100741 DOI: 10.1002/jmor.21667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/02/2023] [Accepted: 12/05/2023] [Indexed: 12/17/2023]
Abstract
Serial block-face scanning electron microscopy of the tail tip of post-metamorphic amphioxus (Branchiostoma floridae) revealed some terminal myomeres never been seen before with other techniques. The morphology of these myomeres differed markedly from the chevron shapes of their more anterior counterparts. Histologically, these odd-shaped myomeres ranged from empty vesicles bordered by undifferentiated cells to ventral sacs composed of well-developed myotome, dermatome, and sclerotome. Strikingly, several of these ventral sacs gave rise to a nipple-like dorsal projection composed either entirely of sclerotome or a mixture of sclerotome and myotome. Considered as a whole, from posterior to anterior, these odd-shaped posterior myomeres suggested that their more substantial ventral part may represent the ventral limb of a chevron, while the delicate projection represents a nascent dorsal limb. This scenario contrasts with formation of chevron-shaped myomeres along most of the antero-posterior axis. Although typical chevron formation in amphioxus is surprisingly poorly studied, it seems to be attained by a dorso-ventral extension of the myomere accompanied by the assumption of a V-shape; this is similar to what happens (at least superficially) in developing fishes. Another unusual feature of the odd-shaped posterior myomeres of amphioxus is their especially distended sclerocoels. One possible function for these might be to protect the posterior end of the central nervous system from trauma when the animals burrow into the substratum.
Collapse
Affiliation(s)
- Nicholas D Holland
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California at San Diego, La Jolla, California, USA
| | - Linda Z Holland
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California at San Diego, La Jolla, California, USA
| |
Collapse
|
10
|
Dylus D, Altenhoff A, Majidian S, Sedlazeck FJ, Dessimoz C. Inference of phylogenetic trees directly from raw sequencing reads using Read2Tree. Nat Biotechnol 2024; 42:139-147. [PMID: 37081138 PMCID: PMC10791578 DOI: 10.1038/s41587-023-01753-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 03/16/2023] [Indexed: 04/22/2023]
Abstract
Current methods for inference of phylogenetic trees require running complex pipelines at substantial computational and labor costs, with additional constraints in sequencing coverage, assembly and annotation quality, especially for large datasets. To overcome these challenges, we present Read2Tree, which directly processes raw sequencing reads into groups of corresponding genes and bypasses traditional steps in phylogeny inference, such as genome assembly, annotation and all-versus-all sequence comparisons, while retaining accuracy. In a benchmark encompassing a broad variety of datasets, Read2Tree is 10-100 times faster than assembly-based approaches and in most cases more accurate-the exception being when sequencing coverage is high and reference species very distant. Here, to illustrate the broad applicability of the tool, we reconstruct a yeast tree of life of 435 species spanning 590 million years of evolution. We also apply Read2Tree to >10,000 Coronaviridae samples, accurately classifying highly diverse animal samples and near-identical severe acute respiratory syndrome coronavirus 2 sequences on a single tree. The speed, accuracy and versatility of Read2Tree enable comparative genomics at scale.
Collapse
Affiliation(s)
- David Dylus
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
- SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
- F. Hoffmann-La Roche Ltd, Immunology, Infectious Disease, and Ophthalmology (I2O), Roche Pharmaceutical Research and Early Development (pRED), Basel, Switzerland
| | - Adrian Altenhoff
- SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
- Department of Computer Science, ETH, Zurich, Switzerland
| | - Sina Majidian
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
- SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Fritz J Sedlazeck
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA.
- Department of Computer Science, Rice University, Houston, TX, USA.
| | - Christophe Dessimoz
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland.
- SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland.
- Department of Computer Science, University College London, London, UK.
- Centre for Life's Origins and Evolution, Department of Genetics, Evolution and Environment, University College London, London, UK.
| |
Collapse
|
11
|
Olivares-Costa M, Oyarzún GM, Verbel-Vergara D, González MP, Arancibia D, Andrés ME, Opazo JC. Evolution of lysine-specific demethylase 1 and REST corepressor gene families and their molecular interaction. Commun Biol 2023; 6:1267. [PMID: 38097664 PMCID: PMC10721905 DOI: 10.1038/s42003-023-05652-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 11/30/2023] [Indexed: 12/17/2023] Open
Abstract
Lysine-specific demethylase 1A (LSD1) binds to the REST corepressor (RCOR) protein family of corepressors to erase transcriptionally active marks on histones. Functional diversity in these complexes depends on the type of RCOR included, which modulates the catalytic activity of the complex. Here, we studied the duplicative history of the RCOR and LSD gene families and analyzed the evolution of their interaction. We found that RCOR genes are the product of the two rounds of whole-genome duplications that occurred early in vertebrate evolution. In contrast, the origin of the LSD genes traces back before to the divergence of animals and plants. Using bioinformatics tools, we show that the RCOR and LSD1 interaction precedes the RCOR repertoire expansion that occurred in the last common ancestor of jawed vertebrates. Overall, we trace LSD1-RCOR complex evolution and propose that animal non-model species offer advantages in addressing questions about the molecular biology of this epigenetic complex.
Collapse
Affiliation(s)
- Montserrat Olivares-Costa
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Ciencias Biomédica, Facultad de Medicina, Universidad Católica del Norte, Coquimbo, Chile
| | - Gianluca Merello Oyarzún
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
- Department of Biological Sciences, Columbia University, New York, NY, USA
- Department of Genetics and Development, Columbia University Medical Center, New York, NY, USA
| | - Daniel Verbel-Vergara
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Marcela P González
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Duxan Arancibia
- Departamento de Ciencias Farmacéuticas, Facultad de Ciencias, Universidad Católica del Norte, Antofagasta, Chile
| | - María E Andrés
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile.
| | - Juan C Opazo
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Valdivia, Chile.
- Integrative Biology Group, Valdivia, Chile.
- Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Valdivia, Chile.
| |
Collapse
|
12
|
D'Aniello S, Bertrand S, Escriva H. Amphioxus as a model to study the evolution of development in chordates. eLife 2023; 12:e87028. [PMID: 37721204 PMCID: PMC10506793 DOI: 10.7554/elife.87028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 08/10/2023] [Indexed: 09/19/2023] Open
Abstract
Cephalochordates and tunicates represent the only two groups of invertebrate chordates, and extant cephalochordates - commonly known as amphioxus or lancelets - are considered the best proxy for the chordate ancestor, from which they split around 520 million years ago. Amphioxus has been an important organism in the fields of zoology and embryology since the 18th century, and the morphological and genomic simplicity of cephalochordates (compared to vertebrates) makes amphioxus an attractive model for studying chordate biology at the cellular and molecular levels. Here we describe the life cycle of amphioxus, and discuss the natural histories and habitats of the different species of amphioxus. We also describe their use as laboratory animal models, and discuss the techniques that have been developed to study different aspects of amphioxus.
Collapse
Affiliation(s)
- Salvatore D'Aniello
- Biology and Evolution of Marine Organisms (BEOM), Stazione Zoologica Anton DohrnNapoliItaly
| | - Stephanie Bertrand
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins (BIOM), Observatoire OcéanologiqueBanyuls-sur-MerFrance
| | - Hector Escriva
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins (BIOM), Observatoire OcéanologiqueBanyuls-sur-MerFrance
| |
Collapse
|
13
|
Li KL, Nakashima K, Hisata K, Satoh N. Expression and possible functions of a horizontally transferred glycosyl hydrolase gene, GH6-1, in Ciona embryogenesis. EvoDevo 2023; 14:11. [PMID: 37434168 DOI: 10.1186/s13227-023-00215-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 07/01/2023] [Indexed: 07/13/2023] Open
Abstract
BACKGROUND The Tunicata or Urochordata is the only animal group with the ability to synthesize cellulose directly and cellulose is a component of the tunic that covers the entire tunicate body. The genome of Ciona intestinalis type A contains a cellulose synthase gene, CesA, that it acquired via an ancient, horizontal gene transfer. CesA is expressed in embryonic epidermal cells and functions in cellulose production. Ciona CesA is composed of both a glycosyltransferase domain, GT2, and a glycosyl hydrolase domain, GH6, which shows a mutation at a key position and seems functionless. Interestingly, the Ciona genome contains a glycosyl hydrolase gene, GH6-1, in which the GH6 domain seems intact. This suggests expression and possible functions of GH6-1 during Ciona embryogenesis. Is GH6-1 expressed during embryogenesis? If so, in what tissues is the gene expressed? Does GH6-1 serve a function? If so, what is it? Answers to these questions may advance our understanding of evolution of this unique animal group. RESULTS Quantitative reverse transcription PCR and in situ hybridization revealed that GH6-1 is expressed in epidermis of tailbud embryos and in early swimming larvae, a pattern similar to that of CesA. Expression is downregulated at later stages and becomes undetectable in metamorphosed juveniles. The GH6-1 expression level is higher in the anterior-trunk region and caudal-tip regions of late embryos. Single-cell RNA sequencing analysis of the late tailbud stage showed that cells of three clusters with epidermal identity express GH6-1, and that some of them co-express CesA. TALEN-mediated genome editing was used to generate GH6-1 knockout Ciona larvae. Around half of TALEN-electroporated larvae showed abnormal development of adhesive papillae and altered distribution of surface cellulose. In addition, three-fourths of TALEN-electroporated animals failed to complete larval metamorphosis. CONCLUSIONS This study showed that tunicate GH6-1, a gene that originated by horizontal gene transfer of a prokaryote gene, is recruited into the ascidian genome, and that it is expressed and functions in epidermal cells of ascidian embryos. Although further research is required, this observation demonstrates that both CesA and GH6-1 are involved in tunicate cellulose metabolism, impacting tunicate morphology and ecology.
Collapse
Affiliation(s)
- Kun-Lung Li
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, 904-0495, Japan.
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei City, 115, Taiwan.
| | - Keisuke Nakashima
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, 904-0495, Japan
| | - Kanako Hisata
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, 904-0495, Japan
| | - Noriyuki Satoh
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, 904-0495, Japan
| |
Collapse
|
14
|
Jenike AE, Jenike KM, Peterson KJ, Fromm B, Halushka MK. Direct observation of the evolution of cell-type-specific microRNA expression signatures supports the hematopoietic origin model of endothelial cells. Evol Dev 2023; 25:226-239. [PMID: 37157156 PMCID: PMC10302300 DOI: 10.1111/ede.12438] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 03/22/2023] [Accepted: 04/26/2023] [Indexed: 05/10/2023]
Abstract
The evolution of specialized cell-types is a long-standing interest of biologists, but given the deep time-scales very difficult to reconstruct or observe. microRNAs have been linked to the evolution of cellular complexity and may inform on specialization. The endothelium is a vertebrate-specific specialization of the circulatory system that enabled a critical new level of vasoregulation. The evolutionary origin of these endothelial cells is unclear. We hypothesized that Mir-126, an endothelial cell-specific microRNA may be informative. We here reconstruct the evolutionary history of Mir-126. Mir-126 likely appeared in the last common ancestor of vertebrates and tunicates, which was a species without an endothelium, within an intron of the evolutionary much older EGF Like Domain Multiple (Egfl) locus. Mir-126 has a complex evolutionary history due to duplications and losses of both the host gene and the microRNA. Taking advantage of the strong evolutionary conservation of the microRNA among Olfactores, and using RNA in situ hybridization, we localized Mir-126 in the tunicate Ciona robusta. We found exclusive expression of the mature Mir-126 in granular amebocytes, supporting a long-proposed scenario that endothelial cells arose from hemoblasts, a type of proto-endothelial amoebocyte found throughout invertebrates. This observed change of expression of Mir-126 from proto-endothelial amoebocytes in the tunicate to endothelial cells in vertebrates is the first direct observation of the evolution of a cell-type in relation to microRNA expression indicating that microRNAs can be a prerequisite of cell-type evolution.
Collapse
Affiliation(s)
- Ana E. Jenike
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205 USA
| | - Katharine M. Jenike
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205 USA
| | - Kevin J. Peterson
- Department of Biological Sciences, Dartmouth College, Hanover NH, USA
| | - Bastian Fromm
- The Arctic University Museum of Norway, UiT-The Arctic University of Norway, 9006 Tromsø, Norway
| | - Marc K. Halushka
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205 USA
| |
Collapse
|
15
|
Holland ND, Holland LZ. Cephalochordate Hemocytes: First Demonstration for Asymmetron lucayanum (Bahamas Lancelet) Plus Augmented Description for Branchiostoma floridae (Florida Amphioxus). THE BIOLOGICAL BULLETIN 2023; 244:71-81. [PMID: 37725696 DOI: 10.1086/726774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
AbstractWithin phylum Chordata, the subphylum Cephalochordata (amphioxus and lancelets) has figured large in considerations of the evolutionary origin of the vertebrates. To date, these discussions have been predominantly based on knowledge of a single cephalochordate genus (Branchiostoma), almost to the exclusion of the other two genera (Asymmetron and Epigonichthys). This uneven pattern is illustrated by cephalochordate hematology, until now known entirely from work done on Branchiostoma. The main part of the present study is to describe hemocytes in the dorsal aorta of a species of Asymmetron by serial block-face scanning electron microscopy. This technique, which demonstrates three-dimensional fine structure, showed that the hemocytes have a relatively uniform morphology characterized by an oval shape and scanty cytoplasm. Ancillary information is also included for Branchiostoma hemocytes, known from previous studies to have relatively abundant cytoplasm; our serial block-face scanning electron microscopy provides more comprehensive views of the highly variable shapes of these cells, which typically extend one or several pseudopodium-like protrusions. The marked difference in hemocyte morphology found between Asymmetron and Branchiostoma was unexpected and directs attention to investigating comparable cells in the genus Epigonichthys. A broader knowledge of the hemocytes in all three cephalochordate genera would provide more balanced insights into the evolution of vertebrate hematopoiesis.
Collapse
|
16
|
Zhang W, Jiang A, Yu H, Dong B. Comparative Transcriptomic Analysis Reveals the Functionally Segmented Intestine in Tunicate Ascidian. Int J Mol Sci 2023; 24:6270. [PMID: 37047242 PMCID: PMC10094616 DOI: 10.3390/ijms24076270] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/16/2023] [Accepted: 03/25/2023] [Indexed: 03/29/2023] Open
Abstract
The vertebrate intestinal system consists of separate segments that remarkably differ in morphology and function. However, the origin of intestinal segmentation remains unclear. In this study, we investigated the segmentation of the intestine in a tunicate ascidian species, Ciona savignyi, by performing RNA sequencing. The gene expression profiles showed that the whole intestine was separated into three segments. Digestion, ion transport and signal transduction, and immune-related pathway genes were enriched in the proximal, middle, and distal parts of the intestine, respectively, implying that digestion, absorption, and immune function appear to be regional specializations in the ascidian intestine. We further performed a multi-species comparison analysis and found that the Ciona intestine showed a similar gene expression pattern to vertebrates, indicating tunicates and vertebrates might share the conserved intestinal functions. Intriguingly, vertebrate pancreatic homologous genes were expressed in the digestive segment of the Ciona intestine, suggesting that the proximal intestine might play the part of pancreatic functions in C. savignyi. Our results demonstrate that the tunicate intestine can be functionally separated into three distinct segments, which are comparable to the corresponding regions of the vertebrate intestinal system, offering insights into the functional evolution of the digestive system in chordates.
Collapse
Affiliation(s)
- Wei Zhang
- Fang Zongxi Center, MoE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - An Jiang
- Fang Zongxi Center, MoE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Haiyan Yu
- Fang Zongxi Center, MoE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Bo Dong
- Fang Zongxi Center, MoE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
- Laoshan Laboratory for Marine Science and Technology, Qingdao 266237, China
- MoE Key Laboratory of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| |
Collapse
|
17
|
Reply to: Available data do not rule out Ctenophora as the sister group to all other Metazoa. Nat Commun 2023; 14:710. [PMID: 36765060 PMCID: PMC9918546 DOI: 10.1038/s41467-023-36152-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 01/18/2023] [Indexed: 02/12/2023] Open
|
18
|
Opazo JC, Vandewege MW, Hoffmann FG, Zavala K, Meléndez C, Luchsinger C, Cavieres VA, Vargas-Chacoff L, Morera FJ, Burgos PV, Tapia-Rojas C, Mardones GA. How Many Sirtuin Genes Are Out There? Evolution of Sirtuin Genes in Vertebrates With a Description of a New Family Member. Mol Biol Evol 2023; 40:6993039. [PMID: 36656997 PMCID: PMC9897032 DOI: 10.1093/molbev/msad014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/21/2022] [Accepted: 01/10/2023] [Indexed: 01/20/2023] Open
Abstract
Studying the evolutionary history of gene families is a challenging and exciting task with a wide range of implications. In addition to exploring fundamental questions about the origin and evolution of genes, disentangling their evolution is also critical to those who do functional/structural studies to allow a deeper and more precise interpretation of their results in an evolutionary context. The sirtuin gene family is a group of genes that are involved in a variety of biological functions mostly related to aging. Their duplicative history is an open question, as well as the definition of the repertoire of sirtuin genes among vertebrates. Our results show a well-resolved phylogeny that represents an improvement in our understanding of the duplicative history of the sirtuin gene family. We identified a new sirtuin gene family member (SIRT3.2) that was apparently lost in the last common ancestor of amniotes but retained in all other groups of jawed vertebrates. According to our experimental analyses, elephant shark SIRT3.2 protein is located in mitochondria, the overexpression of which leads to an increase in cellular levels of ATP. Moreover, in vitro analysis demonstrated that it has deacetylase activity being modulated in a similar way to mammalian SIRT3. Our results indicate that there are at least eight sirtuin paralogs among vertebrates and that all of them can be traced back to the last common ancestor of the group that existed between 676 and 615 millions of years ago.
Collapse
Affiliation(s)
| | - Michael W Vandewege
- College of Veterinary Medicine, North Carolina State University, Raleigh, NC
| | - Federico G Hoffmann
- Department of Biochemistry, Molecular Biology, Entomology, and Plant Pathology, Mississippi State University, Starkville, MS,Institute for Genomics, Biocomputing and Biotechnology, Mississippi State University, Starkville, MS
| | - Kattina Zavala
- Instituto de Ciencias Ambientales y Evolutivas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Catalina Meléndez
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Charlotte Luchsinger
- Department of Physiology, School of Medicine, Universidad Austral de Chile, Valdivia, Chile
| | - Viviana A Cavieres
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Luis Vargas-Chacoff
- Integrative Biology Group, Universidad Austral de Chile, Valdivia, Chile,Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile,Centro Fondap de Investigación de Altas Latitudes (IDEAL), Universidad Austral de Chile, Valdivia, Chile,Millennium Institute Biodiversity of Antarctic and Subantarctic Ecosystems, BASE, Universidad Austral de Chile, Valdivia, Chile
| | - Francisco J Morera
- Integrative Biology Group, Universidad Austral de Chile, Valdivia, Chile,Applied Biochemistry Laboratory, Facultad de Ciencias Veterinarias, Instituto de Farmacología y Morfofisiología, Universidad Austral de Chile, Valdivia, Chile
| | - Patricia V Burgos
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile,Centro Ciencia & Vida, Fundación Ciencia & Vida, Santiago, Chile,Centro de Envejecimiento y Regeneración (CARE-UC), Facultad de Ciencias Biológicas, Pontificia Universidad Católica, Santiago, Chile
| | - Cheril Tapia-Rojas
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile,Centro Ciencia & Vida, Fundación Ciencia & Vida, Santiago, Chile
| | | |
Collapse
|
19
|
Johanson Z. Vertebrate cranial evolution: Contributions and conflict from the fossil record. Evol Dev 2023; 25:119-133. [PMID: 36308394 DOI: 10.1111/ede.12422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 08/12/2022] [Accepted: 10/05/2022] [Indexed: 01/14/2023]
Abstract
In modern vertebrates, the craniofacial skeleton is complex, comprising cartilage and bone of the neurocranium, dermatocranium and splanchnocranium (and their derivatives), housing a range of sensory structures such as eyes, nasal and vestibulo-acoustic capsules, with the splanchnocranium including branchial arches, used in respiration and feeding. It is well understood that the skeleton derives from neural crest and mesoderm, while the sensory elements derive from ectodermal thickenings known as placodes. Recent research demonstrates that neural crest and placodes have an evolutionary history outside of vertebrates, while the vertebrate fossil record allows the sequence of the evolution of these various features to be understood. Stem-group vertebrates such as Metaspriggina walcotti (Burgess Shale, Middle Cambrian) possess eyes, paired nasal capsules and well-developed branchial arches, the latter derived from cranial neural crest in extant vertebrates, indicating that placodes and neural crest evolved over 500 million years ago. Since that time the vertebrate craniofacial skeleton has evolved, including different types of bone, of potential neural crest or mesodermal origin. One problematic part of the craniofacial skeleton concerns the evolution of the nasal organs, with evidence for both paired and unpaired nasal sacs being the primitive state for vertebrates.
Collapse
|
20
|
Mallatt J. Vertebrate origins are informed by larval lampreys (ammocoetes): a response to Miyashita et al., 2021. Zool J Linn Soc 2022. [DOI: 10.1093/zoolinnean/zlac086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Abstract
This paper addresses a recent claim by Miyashita and co-authors that the filter-feeding larval lamprey is a new evolutionary addition to the lamprey life-cycle and does not provide information about early vertebrates, in contrast to the traditional view that this ammocoete stage resembles the first vertebrates. The evidence behind this revolutionary claim comes from fossil lampreys from 360–306 Mya that include young stages – even yolk-sac hatchlings – with adult (predacious) feeding structures. However, the traditional view is not so easily dismissed. The phylogeny on which the non-ammocoete theory is based was not tested in a statistically meaningful way. Additionally, the target article did not consider the known evidence for the traditional view, namely that the complex filter-feeding structures are highly similar in ammocoetes and the invertebrate chordates, amphioxus and tunicates. In further support of the traditional view, I show that ammocoetes are helpful for reconstructing the first vertebrates and the jawless, fossil stem gnathostomes called ostracoderms – their pharynx, oral cavity, mouth opening, lips and filter-feeding mode (but, ironically, not their mandibular/jaw region). From these considerations, I offer a scenario for the evolution of vertebrate life-cycles that fits the traditional, ammocoete-informed theory and puts filter feeding at centre stage.
Collapse
Affiliation(s)
- Jon Mallatt
- The University of Washington WWAMI Medical Education Program at The University of Idaho , Moscow, Idaho 83843 , USA
| |
Collapse
|
21
|
Dylus D, Altenhoff A, Majidian S, Sedlazeck FJ, Dessimoz C. Read2Tree: scalable and accurate phylogenetic trees from raw reads. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.04.18.488678. [PMID: 36561179 PMCID: PMC9774205 DOI: 10.1101/2022.04.18.488678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The inference of phylogenetic trees is foundational to biology. However, state-of-the-art phylogenomics requires running complex pipelines, at significant computational and labour costs, with additional constraints in sequencing coverage, assembly and annotation quality. To overcome these challenges, we present Read2Tree, which directly processes raw sequencing reads into groups of corresponding genes. In a benchmark encompassing a broad variety of datasets, our assembly-free approach was 10-100x faster than conventional approaches, and in most cases more accurate-the exception being when sequencing coverage was high and reference species very distant. To illustrate the broad applicability of the tool, we reconstructed a yeast tree of life of 435 species spanning 590 million years of evolution. Applied to Coronaviridae samples, Read2Tree accurately classified highly diverse animal samples and near-identical SARS-CoV-2 sequences on a single tree-thereby exhibiting remarkable breadth and depth. The speed, accuracy, and versatility of Read2Tree enables comparative genomics at scale.
Collapse
Affiliation(s)
- David Dylus
- Department of Computational Biology, University of Lausanne, 1015 Lausanne, Switzerland
- present address: F. Hoffmann-La Roche Ltd, Immunology, Infectious Disease, and Ophthalmology (I2O), Roche Pharmaceutical Research and Early Development (pRED), Basel, 4070, Switzerland
- SIB Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Adrian Altenhoff
- SIB Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
- Department of Computer Science, ETH, 8092 Zurich, Switzerland
| | - Sina Majidian
- Department of Computational Biology, University of Lausanne, 1015 Lausanne, Switzerland
- SIB Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Fritz J Sedlazeck
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Computer Science, Rice University, Houston, TX, 77005, USA
| | - Christophe Dessimoz
- Department of Computational Biology, University of Lausanne, 1015 Lausanne, Switzerland
- SIB Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
- Department of Computer Science, University College London, London WC1E 6BT, UK
- Centre for Life’s Origins and Evolution, Department of Genetics, Evolution and Environment, University College London, London WC1E, UK
| |
Collapse
|
22
|
Sekiguchi T. Evolution of calcitonin/calcitonin gene-related peptide family in chordates: Identification of CT/CGRP family peptides in cartilaginous fish genome. Gen Comp Endocrinol 2022; 328:114123. [PMID: 36075341 DOI: 10.1016/j.ygcen.2022.114123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 08/29/2022] [Accepted: 08/31/2022] [Indexed: 11/04/2022]
Abstract
The calcitonin (CT)/CT gene-related peptide (CGRP) family is a peptide gene family that is widely found in bilaterians. CT, CGRP, adrenomedullin (AM), amylin (AMY), and CT receptor-stimulating peptide (CRSP) are members of the CT/CGRP family. In mammals, CT is involved in calcium homeostasis, while CGRP and AM primarily function in vasodilation. AMY and CRSP are associated with anorectic effects. Diversification of the molecular features and physiological functions of the CT/CGRP family in vertebrate lineages have been extensively reported. However, the origin and diversification mechanisms of the vertebrate CT/CGRP family of peptides remain unclear. In this review, the molecular characteristics of CT/CGRP family peptides and their receptors, along with their major physiological functions in mammals and teleosts, are introduced. Furthermore, novel candidates of the CT/CGRP family in cartilaginous fish are presented based on genomic information. The CT/CGRP family peptides and receptors in urochordates and cephalochordates, which are closely related to vertebrates, are also described. Finally, a putative evolutionary scenario of the CT/CGRP family peptides and receptors in chordates is discussed.
Collapse
Affiliation(s)
- Toshio Sekiguchi
- Noto Marine Laboratory, Division of Marine Environmental Studies, Institute of Nature and Environmental Technology, Kanazawa University, Housu-gun, Ishikawa 927-0553, Japan.
| |
Collapse
|
23
|
Holland ND, Holland LZ, Somorjai IML. Three-dimensional fine structure of fibroblasts and other mesodermally derived tissues in the dermis of adults of the Bahamas lancelet (Chordata, Cephalohordata), as seen by serial block-face scanning electron microscopy. J Morphol 2022; 283:1289-1298. [PMID: 35971624 DOI: 10.1002/jmor.21502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/27/2022] [Accepted: 08/02/2022] [Indexed: 11/07/2022]
Abstract
Tissues of adult cephalochordates include sparsely distributed fibroblasts. Previous work on these cells has left unsettled such questions as their developmental origin, range of functions, and even their overall shape. Here, we describe fibroblasts of a cephalochordate, the Bahamas lancelet, Asymmetron lucayanum, by serial block-face scanning electron microscopy to demonstrate their three-dimensional (3D) distribution and fine structure in a 0.56-mm length of the tail. The technique reveals in detail their position, abundance, and morphology. In the region studied, we found only 20 fibroblasts, well separated from one another. Each was strikingly stellate with long cytoplasmic processes rather similar to those of a vertebrate telocyte, a possibly fortuitous resemblance that is considered in the discussion section. In the cephalochordate dermis, the fibroblasts were never linked with one another, although they occasionally formed close associations of unknown significance with other cell types. The fibroblasts, in spite of their name, showed no signs of directly synthesizing fibrillar collagen. Instead, they appeared to be involved in the production of nonfibrous components of the extracellular matrix-both by the release of coarsely granular dense material and by secretion of more finely granular material by the local breakdown of their cytoplasmic processes. For context, the 3D structures of two other mesoderm-derived tissues (the midline mesoderm and the posteriormost somite) are also described for the region studied.
Collapse
Affiliation(s)
- Nicholas D Holland
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California at San Diego, La Jolla, California, USA
| | - Linda Z Holland
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California at San Diego, La Jolla, California, USA
| | - Ildiko M L Somorjai
- School of Biology, University of Saint Andrews, St. Andrews, Fife, Scotland, UK
| |
Collapse
|
24
|
Searching for the Origin and the Differentiation of Haemocytes before and after Larval Settlement of the Colonial Ascidian Botryllus schlosseri: An Ultrastructural Viewpoint. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2022. [DOI: 10.3390/jmse10070987] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The colonial ascidian Botryllus schlosseri possesses an innate immunity, which plays fundamental roles in its survival, adaptability, worldwide spread and ecological success. Three lines of differentiation pathways of circulating haemocytes are known to be present in the haemolymph, starting from undifferentiated haemoblasts: (i) the phagocytic line (hyaline amoebocytes and macrophage-like cells), (ii) the cytotoxic line (granular amoebocytes and morula cells) and (iii) the storage cell line (pigment cells and nephrocytes). Many questions remain about their origin, and thus, observations during various stages of development were undertaken in this study. Haemocytes were detected beginning from the early tailbud embryo stage. Haemoblasts were always present and morula cells were the first differentiated haemocytes detected. In both the next stage, just before hatching, and the swimming tadpole larva stage, hyaline amoebocytes and pigment cells were also recognisable. Some morula cells containing active phenoloxidase migrated from the haemolymph into the tunic after having crossed the epidermis, and this behaviour could be related to the preparation of a defensive function for spatial competition. During larval metamorphosis, macrophage-like cells appeared with their phagosomes positive to acid phosphatase activity and containing apoptotic cells from tail tissue degeneration. After metamorphosis, in the filter-feeding oozoid stage, nephrocytes involved in nitrogen catabolism finally appeared. In both the subendostylar sinus and the peripheral blind-sac vessels (ampullae), clusters of haemoblasts were recognisable, some of which showed incipient specialisations, considering the hypothesis of the presence of putative niches of haemolymph stem cells.
Collapse
|
25
|
Effects of Exposure to Trade Antifouling Paints and Biocides on Larval Settlement and Metamorphosis of the Compound Ascidian Botryllus schlosseri. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2022. [DOI: 10.3390/jmse10020123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
To evaluate the effects of antifouling paints and biocides on larval settlement and metamorphosis, newly hatched swimming larvae of the compound ascidian Botryllus schlosseri, a dominant species of soft-fouling in coastal communities, were exposed to (i) substrata coated with seven antifouling paints on the market containing different biocidal mixtures and types of matrices and (ii) sea water containing various concentrations of eight biocidal constituents. All antifouling paints showed high performance, causing 100% mortality and metamorphic inhibition, with ≥75% not-settled dead larvae. All antifouling biocides prevented the settlement of larvae. The most severe larval malformations, i.e., (i) the formation of a bubble encasing the cephalenteron and (ii) the inhibition of tail resorption, were observed after exposure to metal and organometal compounds, including tributyltin (TBT) at 1 μM (325.5 µg L−1), zinc pyrithione (ZnP) at 1 μM (317.7 µg L−1), and CuCl at 0.1 μM (98.99 µg L−1), and to antimicrobials and fungicides, including Sea-Nine 211 at 1 μM (282.2 µg L−1) and Chlorothalonil at 1 μM (265.9 µg L−1). The herbicides seemed to be less active. Irgarol 1051 was not lethal at any of the concentrations tested. Diuron at 250 μM (58.2 mg L−1) and 2,3,5,6-tetrachloro-4-(methylsulphonyl)pyridine (TCMS pyridine) at 50 μM (14.8 mg L−1) completely inhibited larval metamorphosis. These results may have important implications for the practical use of different antifouling components, highlighting the importance of their testing for negative impacts on native benthic species.
Collapse
|
26
|
Nourizadeh S, Kassmer S, Rodriguez D, Hiebert LS, De Tomaso AW. Whole body regeneration and developmental competition in two botryllid ascidians. EvoDevo 2021; 12:15. [PMID: 34911568 PMCID: PMC8675491 DOI: 10.1186/s13227-021-00185-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 11/17/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Botryllid ascidians are a group of marine invertebrate chordates that are colonial and grow by repeated rounds of asexual reproduction to form a colony of individual bodies, called zooids, linked by a common vascular network. Two distinct processes are responsible for zooid regeneration. In the first, called blastogenesis, new zooids arise from a region of multipotent epithelium from a pre-existing zooid. In the second, called whole body regeneration (WBR), mobile cells in the vasculature coalesce and are the source of the new zooid. In some botryllid species, blastogenesis and WBR occur concurrently, while in others, blastogenesis is used exclusively for growth, while WBR only occurs following injury or exiting periods of dormancy. In species such as Botrylloides diegensis, injury induced WBR is triggered by the surgical isolation of a small piece of vasculature. However, Botryllus schlosseri has unique requirements that must be met for successful injury induced WBR. Our goal was to understand why there would be different requirements between these two species. RESULTS While WBR in B. diegensis was robust, we found that in B. schlosseri, new zooid growth following injury is unlikely due to circulatory cells, but instead a result of ectopic development of tissues leftover from the blastogenic process. These tissues could be whole, damaged, or partially resorbed developing zooids, and we defined the minimal amount of vascular biomass to support ectopic regeneration. We did find a common theme between the two species: a competitive process exists which results in only a single zooid reaching maturity following injury. We utilized this phenomenon and found that competition is reversible and mediated by circulating factors and/or cells. CONCLUSIONS We propose that WBR does not occur in B. schlosseri and that the unique requirements defined in other studies only serve to increase the chances of ectopic development. This is likely a response to injury as we have discovered a vascular-based reversible competitive mechanism which ensures that only a single zooid completes development. This competition has been described in other species, but the unique response of B. schlosseri to injury provides a new model to study resource allocation and competition within an individual.
Collapse
Affiliation(s)
- Shane Nourizadeh
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, 93106, USA.
| | - Susannah Kassmer
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, 93106, USA
| | - Delany Rodriguez
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, 93106, USA
| | - Laurel S Hiebert
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, 93106, USA
| | - Anthony W De Tomaso
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, 93106, USA
| |
Collapse
|
27
|
Longo V, Parrinello D, Longo A, Parisi MG, Parrinello N, Colombo P, Cammarata M. The conservation and diversity of ascidian cells and molecules involved in the inflammatory reaction: The Ciona robusta model. FISH & SHELLFISH IMMUNOLOGY 2021; 119:384-396. [PMID: 34687879 DOI: 10.1016/j.fsi.2021.10.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 09/27/2021] [Accepted: 10/16/2021] [Indexed: 06/13/2023]
Abstract
Ascidians are marine invertebrate chordates belonging to the earliest branch (Tunicata) in the chordate phylum, therefore, they are of interest for studying the evolution of immune systems. Due to the known genome, the non-colonial Ciona robusta, previously considered to be C. intestinalis type A, is a model species for the study of inflammatory response. The internal defense of ascidians mainly relies on hemocytes circulating in the hemolymph and pharynx. Hemocytes can be in vivo challenged by LPS injection and various granulocyte and vacuolated cell populations differentiated to produce and release inflammatory factors. Molecular biology and gene expression studies revealed complex defense mechanisms involving different inflammatory hemocytes. Furthermore, cloning procedures allowed sequence analyses and molecular studies disclose immune-related gene families including TOLL-like receptors, galectins, C-type lectins, collectins, interlectins, pentraxine-like, peroxinectins, complement factors-like, TNFα-like, IL-17-like, TGF-like, MIF-like. These genes are promptly upregulated by the inflammatory stimulus and show a time course of transcription similar to each other. Domains sequence similarity and phylogenetic relationships with the vertebrate counterparts are shedding some light on immune-related gene evolution. Selective bioassays as well as bioinformatic approaches have allowed the characterization of antimicrobial peptides and the identification of post transcriptional molecular mechanisms able of influencing dynamics of gene regulation are described. In synthesis, the purpose of this article is to further explore the topic of hemocyte and molecules related to internal defence of ascidians involved in the inflammatory reaction, as well as to discuss current and future study options through a detailed literature review.
Collapse
Affiliation(s)
- Valeria Longo
- Institute for Biomedical Research and Innovation, National Research Council, Palermo, Italy
| | | | - Alessandra Longo
- Institute for Biomedical Research and Innovation, National Research Council, Palermo, Italy
| | | | - Nicolò Parrinello
- Department of Earth and Marine Science, University of Palermo, Italy
| | - Paolo Colombo
- Institute for Biomedical Research and Innovation, National Research Council, Palermo, Italy.
| | - Matteo Cammarata
- Department of Earth and Marine Science, University of Palermo, Italy
| |
Collapse
|
28
|
Di Franco A, Baurain D, Glöckner G, Melkonian M, Philippe H. Lower statistical support with larger datasets: insights from the Ochrophyta radiation. Mol Biol Evol 2021; 39:6409865. [PMID: 34694402 PMCID: PMC8763130 DOI: 10.1093/molbev/msab300] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
It is commonly assumed that increasing the number of characters has the potential to resolve evolutionary radiations. Here, we studied photosynthetic stramenopiles (Ochrophyta) using alignments of heterogeneous origin mitochondrion, plastid, and nucleus. Surprisingly while statistical support for the relationships between the six major Ochrophyta lineages increases when comparing the mitochondrion (6,762 sites) and plastid (21,692 sites) trees, it decreases in the nuclear (209,105 sites) tree. Statistical support is not simply related to the data set size but also to the quantity of phylogenetic signal available at each position and our ability to extract it. Here, we show that this ability for current phylogenetic methods is limited, because conflicting results were obtained when varying taxon sampling. Even though the use of a better fitting model improved signal extraction and reduced the observed conflicts, the plastid data set provided higher statistical support for the ochrophyte radiation than the larger nucleus data set. We propose that the higher support observed in the plastid tree is due to an acceleration of the evolutionary rate in one short deep internal branch, implying that more phylogenetic signal per position is available to resolve the Ochrophyta radiation in the plastid than in the nuclear data set. Our work therefore suggests that, in order to resolve radiations, beyond the obvious use of data sets with more positions, we need to continue developing models of sequence evolution that better extract the phylogenetic signal and design methods to search for genes/characters that contain more signal specifically for short internal branches.
Collapse
Affiliation(s)
- Arnaud Di Franco
- Station d'Ecologie Théorique et Expérimentale de Moulis, UMR CNRS 5321, Moulis, France
| | - Denis Baurain
- InBioS-PhytoSYSTEMS, Unité de Phylogénomique des Eucaryotes, Université de Liège, Liège, Belgium
| | - Gernot Glöckner
- Institut für Biochemie I, Medizinische Fakultät, Universität zu Köln, Köln, Germany
| | - Michael Melkonian
- Max Planck Institute for Plant Breeding Research, Integrative Bioinformatics, Cologne, Germany
| | - Hervé Philippe
- Station d'Ecologie Théorique et Expérimentale de Moulis, UMR CNRS 5321, Moulis, France.,Département de Biochimie, Centre Robert-Cedergren, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
29
|
A P, G M, M T, L B, N F. Characterisation and functional role of a novel C1qDC protein from a colonial ascidian. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 122:104077. [PMID: 33905781 DOI: 10.1016/j.dci.2021.104077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/18/2021] [Accepted: 03/18/2021] [Indexed: 06/12/2023]
Abstract
As an invertebrate, the compound ascidian Botryllus schlosseri faces nonself only with innate immunity. In this species, we already identified the key components of the lectin and alternative complement activation pathways. In the present work, by mining the transcriptome, we identified a single transcript codifying for a protein, member of the C1q-domain-containing protein family, with a signal peptide followed by two globular C1q (gC1q) domains. It shares a similar domain organisation with C1q/TNF-related proteins 4, the only vertebrate protein family with two gC1q domains. Our gC1q domain-containing protein, called BsC1qDC, is actively transcribed by immunocytes. The transcription is modulated during the Botryllus blastogenetic cycle and is upregulated following the injection of Bacillus clausii cells in the circulation. Furthermore, the injection of bsc1qdc iRNA in the vasculature results in decreased transcription of the gene and a significant impairment of phagocytosis and degranulation, suggesting the involvement of this molecule in immune responses.
Collapse
Affiliation(s)
- Peronato A
- Department of Biology, University of Padova, Italy
| | - Minervini G
- Department of Biomedical Sciences, University of Padova, Italy
| | - Tabarelli M
- PhD School in Agricultural Science and Biotechnology, University of Udine, Italy
| | - Ballarin L
- Department of Biology, University of Padova, Italy.
| | - Franchi N
- Department of Biology, University of Padova, Italy
| |
Collapse
|
30
|
Ballarin L, Karahan A, Salvetti A, Rossi L, Manni L, Rinkevich B, Rosner A, Voskoboynik A, Rosental B, Canesi L, Anselmi C, Pinsino A, Tohumcu BE, Jemec Kokalj A, Dolar A, Novak S, Sugni M, Corsi I, Drobne D. Stem Cells and Innate Immunity in Aquatic Invertebrates: Bridging Two Seemingly Disparate Disciplines for New Discoveries in Biology. Front Immunol 2021; 12:688106. [PMID: 34276677 PMCID: PMC8278520 DOI: 10.3389/fimmu.2021.688106] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 05/31/2021] [Indexed: 12/12/2022] Open
Abstract
The scopes related to the interplay between stem cells and the immune system are broad and range from the basic understanding of organism's physiology and ecology to translational studies, further contributing to (eco)toxicology, biotechnology, and medicine as well as regulatory and ethical aspects. Stem cells originate immune cells through hematopoiesis, and the interplay between the two cell types is required in processes like regeneration. In addition, stem and immune cell anomalies directly affect the organism's functions, its ability to cope with environmental changes and, indirectly, its role in ecosystem services. However, stem cells and immune cells continue to be considered parts of two branches of biological research with few interconnections between them. This review aims to bridge these two seemingly disparate disciplines towards much more integrative and transformative approaches with examples deriving mainly from aquatic invertebrates. We discuss the current understanding of cross-disciplinary collaborative and emerging issues, raising novel hypotheses and comments. We also discuss the problems and perspectives of the two disciplines and how to integrate their conceptual frameworks to address basic equations in biology in a new, innovative way.
Collapse
Affiliation(s)
| | - Arzu Karahan
- Middle East Technical University, Institute of Marine Sciences, Erdemli, Mersin, Turkey
| | - Alessandra Salvetti
- Department of Clinical and Experimental Medicine, Unit of Experimental Biology and Genetics, University of Pisa, Pisa, Italy
| | - Leonardo Rossi
- Department of Clinical and Experimental Medicine, Unit of Experimental Biology and Genetics, University of Pisa, Pisa, Italy
| | - Lucia Manni
- Department of Biology, University of Padua, Padua, Italy
| | - Baruch Rinkevich
- Department of Biology, Israel Oceanographic and Limnological Research, National Institute of Oceanography, Haifa, Israel
| | - Amalia Rosner
- Department of Biology, Israel Oceanographic and Limnological Research, National Institute of Oceanography, Haifa, Israel
| | - Ayelet Voskoboynik
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, United States
- Department of Biology, Stanford University, Hopkins Marine Station, Pacific Grove, CA, United States
- Department of Biology, Chan Zuckerberg Biohub, San Francisco, CA, United States
| | - Benyamin Rosental
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Center for Regenerative Medicine and Stem Cells, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Laura Canesi
- Department of Earth Environment and Life Sciences (DISTAV), University of Genoa, Genoa, Italy
| | - Chiara Anselmi
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, United States
- Department of Biology, Stanford University, Hopkins Marine Station, Pacific Grove, CA, United States
| | - Annalisa Pinsino
- Institute for Biomedical Research and Innovation, National Research Council, Palermo, Italy
| | - Begüm Ece Tohumcu
- Middle East Technical University, Institute of Marine Sciences, Erdemli, Mersin, Turkey
| | - Anita Jemec Kokalj
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Andraž Dolar
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Sara Novak
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Michela Sugni
- Department of Environmental Science and Policy, University of Milan, Milan, Italy
| | - Ilaria Corsi
- Department of Physical, Earth and Environmental Sciences, University of Siena, Siena, Italy
| | - Damjana Drobne
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
31
|
Onuma TA, Nakanishi R, Sasakura Y, Ogasawara M. Nkx2-1 and FoxE regionalize glandular (mucus-producing) and thyroid-equivalent traits in the endostyle of the chordate Oikopleura dioica. Dev Biol 2021; 477:219-231. [PMID: 34107272 DOI: 10.1016/j.ydbio.2021.05.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 05/29/2021] [Accepted: 05/31/2021] [Indexed: 11/19/2022]
Abstract
The endostyle is a ventral pharyngeal organ used for internal filter feeding of basal chordates and is considered homologous to the follicular thyroid of vertebrates. It contains mucus-producing (glandular) and thyroid-equivalent regions organized along the dorsoventral (DV) axis. Although thyroid-related genes (Nkx2-1, FoxE, and thyroid peroxidase (TPO)) are known to be expressed in the endostyle, their roles in establishing regionalization within the organ have not been demonstrated. We report that Nkx2-1 and FoxE are essential for establishing DV axial identity in the endostyle of Oikopleura dioica. Genome and expression analyses showed von Willebrand factor-like (vWFL) and TPO/dual oxidase (Duox)/Nkx2-1/FoxE as orthologs of glandular and thyroid-related genes, respectively. Knockdown experiments showed that Nkx2-1 is necessary for the expression of glandular and thyroid-related genes, whereas FoxE is necessary only for thyroid-related genes. Moreover, Nkx2-1 expression is necessary for FoxE expression in larvae during organogenesis. The results demonstrate the essential roles of Nkx2-1 and FoxE in establishing regionalization in the endostyle, including (1) the Nkx2-1-dependent glandular region, and (2) the Nkx2-1/FoxE-dependent thyroid-equivalent region. DV axial regionalization may be responsible for organizing glandular and thyroid-equivalent traits of the pharynx along the DV axis.
Collapse
Affiliation(s)
- Takeshi A Onuma
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka, 560-0043, Japan.
| | - Rina Nakanishi
- Department of Biology, Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan
| | - Yasunori Sasakura
- Shimoda Marine Research Center, University of Tsukuba, 5-10-1 Shimoda, Shizuoka, 415-0025, Japan
| | - Michio Ogasawara
- Department of Biology, Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan.
| |
Collapse
|
32
|
Yong LW, Lu TM, Tung CH, Chiou RJ, Li KL, Yu JK. Somite Compartments in Amphioxus and Its Implications on the Evolution of the Vertebrate Skeletal Tissues. Front Cell Dev Biol 2021; 9:607057. [PMID: 34041233 PMCID: PMC8141804 DOI: 10.3389/fcell.2021.607057] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 04/06/2021] [Indexed: 11/13/2022] Open
Abstract
Mineralized skeletal tissues of vertebrates are an evolutionary novelty within the chordate lineage. While the progenitor cells that contribute to vertebrate skeletal tissues are known to have two embryonic origins, the mesoderm and neural crest, the evolutionary origin of their developmental process remains unclear. Using cephalochordate amphioxus as our model, we found that cells at the lateral wall of the amphioxus somite express SPARC (a crucial gene for tissue mineralization) and various collagen genes. During development, some of these cells expand medially to surround the axial structures, including the neural tube, notochord and gut, while others expand laterally and ventrally to underlie the epidermis. Eventually these cell populations are found closely associated with the collagenous matrix around the neural tube, notochord, and dorsal aorta, and also with the dense collagen sheets underneath the epidermis. Using known genetic markers for distinct vertebrate somite compartments, we showed that the lateral wall of amphioxus somite likely corresponds to the vertebrate dermomyotome and lateral plate mesoderm. Furthermore, we demonstrated a conserved role for BMP signaling pathway in somite patterning of both amphioxus and vertebrates. These results suggest that compartmentalized somites and their contribution to primitive skeletal tissues are ancient traits that date back to the chordate common ancestor. The finding of SPARC-expressing skeletal scaffold in amphioxus further supports previous hypothesis regarding SPARC gene family expansion in the elaboration of the vertebrate mineralized skeleton.
Collapse
Affiliation(s)
- Luok Wen Yong
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Tsai-Ming Lu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Che-Huang Tung
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
- Department of Aquatic Biology, Chia-Yi University, Chia-Yi, Taiwan
| | - Ruei-Jen Chiou
- Department of Anatomy and Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Kun-Lung Li
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Jr-Kai Yu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
- Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, Yilan, Taiwan
| |
Collapse
|
33
|
Stundl J, Bertucci PY, Lauri A, Arendt D, Bronner ME. Evolution of new cell types at the lateral neural border. Curr Top Dev Biol 2021; 141:173-205. [PMID: 33602488 DOI: 10.1016/bs.ctdb.2020.11.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
During the course of evolution, animals have become increasingly complex by the addition of novel cell types and regulatory mechanisms. A prime example is represented by the lateral neural border, known as the neural plate border in vertebrates, a region of the developing ectoderm where presumptive neural and non-neural tissue meet. This region has been intensively studied as the source of two important embryonic cell types unique to vertebrates-the neural crest and the ectodermal placodes-which contribute to diverse differentiated cell types including the peripheral nervous system, pigment cells, bone, and cartilage. How did these multipotent progenitors originate in animal evolution? What triggered the elaboration of the border during the course of chordate evolution? How is the lateral neural border patterned in various bilaterians and what is its fate? Here, we review and compare the development and fate of the lateral neural border in vertebrates and invertebrates and we speculate about its evolutionary origin. Taken together, the data suggest that the lateral neural border existed in bilaterian ancestors prior to the origin of vertebrates and became a developmental source of exquisite evolutionary change that frequently enabled the acquisition of new cell types.
Collapse
Affiliation(s)
- Jan Stundl
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| | | | | | - Detlev Arendt
- European Molecular Biology Laboratory, Heidelberg, Germany.
| | - Marianne E Bronner
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States.
| |
Collapse
|
34
|
Holland ND, Somorjai IML. Epidermal changes during tail regeneration in the Bahamas lancelet,
Asymmetron lucayanum
(Cephalochordata). ACTA ZOOL-STOCKHOLM 2021. [DOI: 10.1111/azo.12371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Nicholas D. Holland
- Marine Biology Research Division Scripps Institution of Oceanography University of California at San Diego San Diego CA USA
| | | |
Collapse
|
35
|
Holland ND, Somorjai IML. Tail regeneration in a cephalochordate, the Bahamas lancelet, Asymmetron lucayanum. J Morphol 2020; 282:217-229. [PMID: 33179804 DOI: 10.1002/jmor.21297] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 10/28/2020] [Accepted: 10/30/2020] [Indexed: 01/16/2023]
Abstract
Lancelets (Phylum Chordata, subphylum Cephalochordata) readily regenerate a lost tail. Here, we use light microscopy and serial blockface scanning electron microscopy (SBSEM) to describe tail replacement in the Bahamas lancelet, Asymmetron lucayanum. One day after amputation, the monolayered epidermis has migrated over the wound surface. At 4 days, the regenerate is about 3% as long as the tail length removed. The re-growing nerve cord is a tubular outgrowth of ependymal cells, and the new part of the notochord consists of several degenerating lamellar cells anterior to numerous small vacuolated cells. The cut edges of the mesothelium project into the regenerate as tubular extensions. These tubes anastomose with each other and with midline mesodermal canals beneath the regenerating edges of the dorsal and ventral fins. SBSEM did not reveal a blastema-like aggregation of undifferentiated cells anywhere in the regenerate. At 6 days, the regenerate (10% of the amputated tail length) includes a notochord in which the small vacuolated cells mentioned above are differentiating into lamellar cells. At 10 days, the regenerate is 22% of the amputated tail length: myocytes have appeared in the walls of the myomeres, and sclerocoels have formed. By 14 days, the regenerate is 35% the length of the amputated tail, and the new tissues resemble smaller versions of those originally lost. The present results for A. lucayanum, a species regenerating quickly and with little inter-specimen variability, provide the morphological background for future cell-tracer, molecular genetic, and genomic studies of cephalochordate regeneration.
Collapse
Affiliation(s)
- Nicholas D Holland
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California at San Diego, San Diego, California, USA
| | | |
Collapse
|
36
|
Marín I. Tumor Necrosis Factor Superfamily: Ancestral Functions and Remodeling in Early Vertebrate Evolution. Genome Biol Evol 2020; 12:2074-2092. [PMID: 33210144 PMCID: PMC7674686 DOI: 10.1093/gbe/evaa140] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/29/2020] [Indexed: 01/01/2023] Open
Abstract
The evolution of the tumor necrosis factor superfamily (TNFSF) in early vertebrates is inferred by comparing the TNFSF genes found in humans and nine fishes: three agnathans, two chondrichthyans, three actinopterygians, and the sarcopterygian Latimeria chalumnae. By combining phylogenetic and synteny analyses, the TNFSF sequences detected are classified into five clusters of genes and 24 orthology groups. A model for their evolution since the origin of vertebrates is proposed. Fifteen TNFSF genes emerged from just three progenitors due to the whole-genome duplications (WGDs) that occurred before the agnathan/gnathostome split. Later, gnathostomes not only kept most of the genes emerged in the WGDs but soon added several tandem duplicates. More recently, complex, lineage-specific patterns of duplications and losses occurred in different gnathostome lineages. In agnathan species only seven to eight TNFSF genes are detected, because this lineage soon lost six of the genes emerged in the ancestral WGDs and additional losses in both hagfishes and lampreys later occurred. The orthologs of many of these lost genes are, in mammals, ligands of death-domain-containing TNFSF receptors, indicating that the extrinsic apoptotic pathway became simplified in the agnathan lineage. From the patterns of emergence of these genes, it is deduced that both the regulation of apoptosis and the control of the NF-κB pathway that depends in modern mammals on TNFSF members emerged before the ancestral vertebrate WGDs.
Collapse
Affiliation(s)
- Ignacio Marín
- Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas (IBV-CSIC), Valencia, Spain
| |
Collapse
|
37
|
Ferrario C, Sugni M, Somorjai IML, Ballarin L. Beyond Adult Stem Cells: Dedifferentiation as a Unifying Mechanism Underlying Regeneration in Invertebrate Deuterostomes. Front Cell Dev Biol 2020; 8:587320. [PMID: 33195242 PMCID: PMC7606891 DOI: 10.3389/fcell.2020.587320] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 09/25/2020] [Indexed: 12/15/2022] Open
Abstract
The diversity of regenerative phenomena seen in adult metazoans, as well as their underlying mechanistic bases, are still far from being comprehensively understood. Reviewing both ultrastructural and molecular data, the present work aims to showcase the increasing relevance of invertebrate deuterostomes, i.e., echinoderms, hemichordates, cephalochordates and tunicates, as invaluable models to study cellular aspects of adult regeneration. Our comparative approach suggests a fundamental contribution of local dedifferentiation -rather than mobilization of resident undifferentiated stem cells- as an important cellular mechanism contributing to regeneration in these groups. Thus, elucidating the cellular origins, recruitment and fate of cells, as well as the molecular signals underpinning tissue regrowth in regeneration-competent deuterostomes, will provide the foundation for future research in tackling the relatively limited regenerative abilities of vertebrates, with clear applications in regenerative medicine.
Collapse
Affiliation(s)
- Cinzia Ferrario
- Department of Environmental Science and Policy, University of Milan, Milan, Italy
- Center for Complexity and Biosystems, Department of Physics, University of Milan, Milan, Italy
| | - Michela Sugni
- Department of Environmental Science and Policy, University of Milan, Milan, Italy
- Center for Complexity and Biosystems, Department of Physics, University of Milan, Milan, Italy
- GAIA 2050 Center, Department of Environmental Science and Policy, University of Milan, Milan, Italy
| | - Ildiko M. L. Somorjai
- The Willie Russel Laboratories, Biomedical Sciences Research Complex, North Haugh, University of St Andrews, St Andrews, United Kingdom
| | | |
Collapse
|
38
|
Holland ND, Somorjai IML. Serial blockface SEM suggests that stem cells may participate in adult notochord growth in an invertebrate chordate, the Bahamas lancelet. EvoDevo 2020; 11:22. [PMID: 33088474 PMCID: PMC7568382 DOI: 10.1186/s13227-020-00167-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 10/07/2020] [Indexed: 01/07/2023] Open
Abstract
Background The cellular basis of adult growth in cephalochordates (lancelets or amphioxus) has received little attention. Lancelets and their constituent organs grow slowly but continuously during adult life. Here, we consider whether this slow organ growth involves tissue-specific stem cells. Specifically, we focus on the cell populations in the notochord of an adult lancelet and use serial blockface scanning electron microscopy (SBSEM) to reconstruct the three-dimensional fine structure of all the cells in a tissue volume considerably larger than normally imaged with this technique. Results In the notochordal region studied, we identified 10 cells with stem cell-like morphology at the posterior tip of the organ, 160 progenitor (Müller) cells arranged along its surface, and 385 highly differentiated lamellar cells constituting its core. Each cell type could clearly be distinguished on the basis of cytoplasmic density and overall cell shape. Moreover, because of the large sample size, transitions between cell types were obvious. Conclusions For the notochord of adult lancelets, a reasonable interpretation of our data indicates growth of the organ is based on stem cells that self-renew and also give rise to progenitor cells that, in turn, differentiate into lamellar cells. Our discussion compares the cellular basis of adult notochord growth among chordates in general. In the vertebrates, several studies implied that proliferating cells (chordoblasts) in the cortex of the organ might be stem cells. However, we think it is more likely that such cells actually constitute a progenitor population downstream from and maintained by inconspicuous stem cells. We venture to suggest that careful searches should find stem cells in the adult notochords of many vertebrates, although possibly not in the notochordal vestiges (nucleus pulposus regions) of mammals, where the presence of endogenous proliferating cells remains controversial.
Collapse
Affiliation(s)
- Nicholas D Holland
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California At San Diego, La Jolla, CA 92093 USA
| | - Ildiko M L Somorjai
- School of Biology, University of Saint Andrews, St. Andrews, KY16 9ST Scotland
| |
Collapse
|
39
|
Abstract
How vertebrates evolved from their invertebrate ancestors has long been a central topic of discussion in biology. Evolutionary developmental biology (evodevo) has provided a new tool-using gene expression patterns as phenotypic characters to infer homologies between body parts in distantly related organisms-to address this question. Combined with micro-anatomy and genomics, evodevo has provided convincing evidence that vertebrates evolved from an ancestral invertebrate chordate, in many respects resembling a modern amphioxus. The present review focuses on the role of evodevo in addressing two major questions of chordate evolution: (1) how the vertebrate brain evolved from the much simpler central nervous system (CNS) in of this ancestral chordate and (2) whether or not the head mesoderm of this ancestor was segmented.
Collapse
|
40
|
Rancilhac L, Irisarri I, Angelini C, Arntzen JW, Babik W, Bossuyt F, Künzel S, Lüddecke T, Pasmans F, Sanchez E, Weisrock D, Veith M, Wielstra B, Steinfartz S, Hofreiter M, Philippe H, Vences M. Phylotranscriptomic evidence for pervasive ancient hybridization among Old World salamanders. Mol Phylogenet Evol 2020; 155:106967. [PMID: 33031928 DOI: 10.1016/j.ympev.2020.106967] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 07/09/2020] [Accepted: 09/28/2020] [Indexed: 11/18/2022]
Abstract
Hybridization can leave genealogical signatures in an organism's genome, originating from the parental lineages and persisting over time. This potentially confounds phylogenetic inference methods that aim to represent evolution as a strictly bifurcating tree. We apply a phylotranscriptomic approach to study the evolutionary history of, and test for inter-lineage introgression in the Salamandridae, a Holarctic salamanders group of interest in studies of toxicity and aposematism, courtship behavior, and molecular evolution. Although the relationships between the 21 currently recognized salamandrid genera have been the subject of numerous molecular phylogenetic studies, some branches have remained controversial and sometimes affected by discordances between mitochondrial vs. nuclear trees. To resolve the phylogeny of this family, and understand the source of mito-nuclear discordance, we generated new transcriptomic (RNAseq) data for 20 salamandrids and used these along with published data, including 28 mitochondrial genomes, to obtain a comprehensive nuclear and mitochondrial perspective on salamandrid evolution. Our final phylotranscriptomic data set included 5455 gene alignments for 40 species representing 17 of the 21 salamandrid genera. Using concatenation and species-tree phylogenetic methods, we find (1) Salamandrina sister to the clade of the "True Salamanders" (consisting of Chioglossa, Mertensiella, Lyciasalamandra, and Salamandra), (2) Ichthyosaura sister to the Near Eastern genera Neurergus and Ommatotriton, (3) Triturus sister to Lissotriton, and (4) Cynops paraphyletic with respect to Paramesotriton and Pachytriton. Combining introgression tests and phylogenetic networks, we find evidence for introgression among taxa within the clades of "Modern Asian Newts" and "Modern European Newts". However, we could not unambiguously identify the number, position, and direction of introgressive events. Combining evidence from nuclear gene analysis with the observed mito-nuclear phylogenetic discordances, we hypothesize a scenario with hybridization and mitochondrial capture among ancestral lineages of (1) Lissotriton into Ichthyosaura and (2) Triturus into Calotriton, plus introgression of nuclear genes from Triturus into Lissotriton. Furthermore, both mitochondrial capture and nuclear introgression may have occurred among lineages assigned to Cynops. More comprehensive genomic data will, in the future, allow testing this against alternative scenarios involving hybridization with other, extinct lineages of newts.
Collapse
Affiliation(s)
- Loïs Rancilhac
- Zoological Institute, Technische Universität Braunschweig, Mendelssohnstr. 4, 38106 Braunschweig, Germany.
| | - Iker Irisarri
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales, José Gutiérrez Abascal 2, 28006 Madrid, Spain
| | | | - Jan W Arntzen
- Naturalis Biodiversity Center, 2300 RA Leiden, the Netherlands
| | - Wiesław Babik
- Institute of Environmental Sciences, Jagiellonian University, ul. Gronostajowa 7, 30-387 Kraków, Poland
| | - Franky Bossuyt
- Amphibian Evolution Lab, Biology Department, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels Belgium
| | - Sven Künzel
- Max Planck Institute for Evolutionary Biology, 24306 Plön, Germany
| | - Tim Lüddecke
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Winchesterstr. 2, 35394 Gießen, Germany; LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325 Frankfurt, Germany
| | - Frank Pasmans
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium
| | - Eugenia Sanchez
- Zoological Institute, Technische Universität Braunschweig, Mendelssohnstr. 4, 38106 Braunschweig, Germany; Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - David Weisrock
- Department of Biology, University of Kentucky, Lexington, KY 40506, USA
| | - Michael Veith
- Biogeography Department, Trier University, 54286 Trier, Germany
| | - Ben Wielstra
- Institute of Biology Leiden, Leiden University, 2300 RA Leiden, the Netherlands
| | - Sebastian Steinfartz
- Institute of Biology, Molecular Evolution and Systematics of Animals, University of Leipzig, Talstrasse 33, 04103, Leipzig, Germany
| | - Michael Hofreiter
- Faculty of Mathematics and Natural Sciences, Institute for Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany
| | - Hervé Philippe
- Centre for Biodiversity Theory and Modelling, UMR CNRS 5321, Station of Theoretical and Experimental Ecology, 2 route du CNRS, 09200 Moulis, France
| | - Miguel Vences
- Zoological Institute, Technische Universität Braunschweig, Mendelssohnstr. 4, 38106 Braunschweig, Germany
| |
Collapse
|
41
|
Phylogenetic Analyses of Glycosyl Hydrolase Family 6 Genes in Tunicates: Possible Horizontal Transfer. Genes (Basel) 2020; 11:genes11080937. [PMID: 32823766 PMCID: PMC7464555 DOI: 10.3390/genes11080937] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/08/2020] [Accepted: 08/10/2020] [Indexed: 12/23/2022] Open
Abstract
Horizontal gene transfer (HGT) is the movement of genetic material between different species. Although HGT is less frequent in eukaryotes than in bacteria, several instances of HGT have apparently shaped animal evolution. One well-known example is the tunicate cellulose synthase gene, CesA, in which a gene, probably transferred from bacteria, greatly impacted tunicate evolution. A Glycosyl Hydrolase Family 6 (GH6) hydrolase-like domain exists at the C-terminus of tunicate CesA, but not in cellulose synthases of other organisms. The recent discovery of another GH6 hydrolase-like gene (GH6-1) in tunicate genomes further raises the question of how tunicates acquired GH6. To examine the probable origin of these genes, we analyzed the phylogenetic relationship of GH6 proteins in tunicates and other organisms. Our analyses show that tunicate GH6s, the GH6-1 gene, and the GH6 part of the CesA gene, form two independent, monophyletic gene groups. We also compared their sequence signatures and exon splice sites. All tunicate species examined have shared splice sites in GH6-containing genes, implying ancient intron acquisitions. It is likely that the tunicate CesA and GH6-1 genes existed in the common ancestor of all extant tunicates.
Collapse
|
42
|
Siomava N, Fuentes JSM, Diogo R. Deconstructing the long‐standing a priori assumption that serial homology generally involves ancestral similarity followed by anatomical divergence. J Morphol 2020; 281:1110-1132. [DOI: 10.1002/jmor.21236] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/18/2020] [Accepted: 07/07/2020] [Indexed: 12/26/2022]
Affiliation(s)
- Natalia Siomava
- Department of Anatomy Howard University College of Medicine Washington District of Columbia USA
| | | | - Rui Diogo
- Department of Anatomy Howard University College of Medicine Washington District of Columbia USA
| |
Collapse
|
43
|
Gordon T, Roth L, Caicci F, Manni L, Shenkar N. Spawning induction, development and culturing of the solitary ascidian Polycarpa mytiligera, an emerging model for regeneration studies. Front Zool 2020; 17:19. [PMID: 32536959 PMCID: PMC7288498 DOI: 10.1186/s12983-020-00365-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 05/21/2020] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Ascidians (phylum Chordata, class Ascidiacea) represent the closest living invertebrate relatives of the vertebrates and constitute an important model for studying the evolution of chordate development. The solitary ascidian Polycarpa mytiligera exhibits a robust regeneration ability, unique among solitary chordates, thus offering a promising new model for regeneration studies. Understanding its reproductive development and establishing land-based culturing methods is pivotal for utilizing this species for experimental studies. Its reproduction cycle, spawning behavior, and developmental processes were therefore studied in both the field and the lab, and methods were developed for its culture in both open and closed water systems. RESULTS Field surveys revealed that P. mytiligera's natural recruitment period starts in summer (June) and ends in winter (December) when seawater temperature decreases. Laboratory experiments revealed that low temperature (21 °C) has a negative effect on its fertilization and development. Although spontaneous spawning events occur only between June and December, we were able to induce spawning under controlled conditions year-round by means of gradual changes in the environmental conditions. Spawning events, followed by larval development and metamorphosis, took place in ascidians maintained in either artificial or natural seawater facilities. P. mytiligera's fast developmental process indicated its resemblance to other oviparous species, with the larvae initiating settlement and metamorphosis at about 12 h post-hatching, and reaching the juvenile stage 3 days later. CONCLUSIONS Polycarpa mytiligera can be induced to spawn in captivity year-round, independent of the natural reproduction season. The significant advantages of P. mytiligera as a model system for regenerative studies, combined with the detailed developmental data and culturing methods presented here, will contribute to future research addressing developmental and evolutionary questions, and promote the use of this species as an applicable model system for experimental studies.
Collapse
Affiliation(s)
- Tal Gordon
- George S. Wise Faculty of Life Sciences, School of Zoology, Tel-Aviv University, 6997801 Tel-Aviv, Israel
| | - Lachan Roth
- George S. Wise Faculty of Life Sciences, School of Zoology, Tel-Aviv University, 6997801 Tel-Aviv, Israel
| | - Federico Caicci
- Department of Biology, University of Padova, 35121 Padova, Italy
| | - Lucia Manni
- Department of Biology, University of Padova, 35121 Padova, Italy
| | - Noa Shenkar
- George S. Wise Faculty of Life Sciences, School of Zoology, Tel-Aviv University, 6997801 Tel-Aviv, Israel
- The Steinhardt Museum of Natural History, Israel National Center for Biodiversity Studies, Tel-Aviv University, 6997801 Tel-Aviv, Israel
| |
Collapse
|
44
|
Parrinello D, Parisi M, Parrinello N, Cammarata M. Ciona robusta hemocyte populational dynamics and PO-dependent cytotoxic activity. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 103:103519. [PMID: 31610182 DOI: 10.1016/j.dci.2019.103519] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 10/10/2019] [Accepted: 10/10/2019] [Indexed: 06/10/2023]
Abstract
Hemocyte populations from the ascidian Ciona robusta, separated through a Percoll discontinuous density gradient, are further characterized by May-Grünwald-Giemsa staining and a cytochemical reaction for phenoloxidase. Variability in cell density, acidophilic property and phenoloxidase activity suggest multiple hemocyte type populations, cell lineages and morphotypes that may be involved in distinct cellular responses. Therefore, unilocular refractile granulocytes, typical of this ascidian species, enriched in a fraction separated from the hemolymph show in vitro phenoloxidase-dependent cytotoxic activity against mammalian erythrocytes and a tumor cell lineage, in addition the properties listed above indicate relationships with vacuolated signet ring cells. Finally, bromo-deoxyuridine with, diamino-phenylindole fluorescent reaction and May-Grünwald-Giemsa staining show that in the hemolymph there are hyaline amoebocytes and granulocytes with potential proliferating activity. Present findings and reviewed images of previously reported inflammatory hemocytes in the tunic and pharynx allow us to speculate on theoretical outlines of hemocyte differentiation pathways.
Collapse
Affiliation(s)
- Daniela Parrinello
- Department of Heart and Marine Science DISTEM, Marine Immunobiology Laboratory, University of Palermo, Viale delle Scienze Ed. 16, Palermo, Italy
| | - Mariagiovanna Parisi
- Department of Heart and Marine Science DISTEM, Marine Immunobiology Laboratory, University of Palermo, Viale delle Scienze Ed. 16, Palermo, Italy
| | - Nicolò Parrinello
- Department of Heart and Marine Science DISTEM, Marine Immunobiology Laboratory, University of Palermo, Viale delle Scienze Ed. 16, Palermo, Italy
| | - Matteo Cammarata
- Department of Heart and Marine Science DISTEM, Marine Immunobiology Laboratory, University of Palermo, Viale delle Scienze Ed. 16, Palermo, Italy.
| |
Collapse
|
45
|
Dardaillon J, Dauga D, Simion P, Faure E, Onuma TA, DeBiasse MB, Louis A, Nitta KR, Naville M, Besnardeau L, Reeves W, Wang K, Fagotto M, Guéroult-Bellone M, Fujiwara S, Dumollard R, Veeman M, Volff JN, Roest Crollius H, Douzery E, Ryan JF, Davidson B, Nishida H, Dantec C, Lemaire P. ANISEED 2019: 4D exploration of genetic data for an extended range of tunicates. Nucleic Acids Res 2020; 48:D668-D675. [PMID: 31680137 PMCID: PMC7145539 DOI: 10.1093/nar/gkz955] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/08/2019] [Accepted: 10/11/2019] [Indexed: 12/22/2022] Open
Abstract
ANISEED (https://www.aniseed.cnrs.fr) is the main model organism database for the worldwide community of scientists working on tunicates, the vertebrate sister-group. Information provided for each species includes functionally-annotated gene and transcript models with orthology relationships within tunicates, and with echinoderms, cephalochordates and vertebrates. Beyond genes the system describes other genetic elements, including repeated elements and cis-regulatory modules. Gene expression profiles for several thousand genes are formalized in both wild-type and experimentally-manipulated conditions, using formal anatomical ontologies. These data can be explored through three complementary types of browsers, each offering a different view-point. A developmental browser summarizes the information in a gene- or territory-centric manner. Advanced genomic browsers integrate the genetic features surrounding genes or gene sets within a species. A Genomicus synteny browser explores the conservation of local gene order across deuterostome. This new release covers an extended taxonomic range of 14 species, including for the first time a non-ascidian species, the appendicularian Oikopleura dioica. Functional annotations, provided for each species, were enhanced through a combination of manual curation of gene models and the development of an improved orthology detection pipeline. Finally, gene expression profiles and anatomical territories can be explored in 4D online through the newly developed Morphonet morphogenetic browser.
Collapse
Affiliation(s)
| | - Delphine Dauga
- Bioself Communication; 28 rue de la Bibliothèque, F-13001 Marseille, France
| | - Paul Simion
- ISEM, Université de Montpellier, CNRS, IRD, EPHE, Montpellier, France
| | - Emmanuel Faure
- Laboratoire d’Informatique de Robotique et de Microélectronique de Montpellier (LIRMM), Université de Montpellier, CNRS, Montpellier, France
| | - Takeshi A Onuma
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | - Melissa B DeBiasse
- Whitney Laboratory for Marine Bioscience, 9505 Ocean Shore Boulevard, St. Augustine, FL 32080, USA
- Department of Biology, University of Florida, 220 Bartram Hall, Gainesville, FL 32611, USA
| | - Alexandra Louis
- DYOGEN, IBENS, Département de Biologie, Ecole Normale Supérieure, CNRS, Inserm, PSL Research University, F-75005 Paris, France
| | | | - Magali Naville
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, CNRS; 46 allée d’Italie, F-69364 Lyon, France
| | - Lydia Besnardeau
- Laboratoire de Biologie du Développement de Villefranche-sur-mer (LBDV), Sorbonne Universités, Université Pierre-et-Marie-Curie, CNRS; Quai de la Darse, F-06234 Villefranche-sur-Mer Cedex, France
| | - Wendy Reeves
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Kai Wang
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | | | | | - Shigeki Fujiwara
- Department of Chemistry and Biotechnology, Faculty of Science and Technology, Kochi University, Kochi-shi, Kochi, Japan
| | - Rémi Dumollard
- Laboratoire de Biologie du Développement de Villefranche-sur-mer (LBDV), Sorbonne Universités, Université Pierre-et-Marie-Curie, CNRS; Quai de la Darse, F-06234 Villefranche-sur-Mer Cedex, France
| | - Michael Veeman
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Jean-Nicolas Volff
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, CNRS; 46 allée d’Italie, F-69364 Lyon, France
| | - Hugues Roest Crollius
- DYOGEN, IBENS, Département de Biologie, Ecole Normale Supérieure, CNRS, Inserm, PSL Research University, F-75005 Paris, France
| | - Emmanuel Douzery
- ISEM, Université de Montpellier, CNRS, IRD, EPHE, Montpellier, France
| | - Joseph F Ryan
- Whitney Laboratory for Marine Bioscience, 9505 Ocean Shore Boulevard, St. Augustine, FL 32080, USA
- Department of Biology, University of Florida, 220 Bartram Hall, Gainesville, FL 32611, USA
| | - Bradley Davidson
- Department of Biology, Swarthmore College, Swarthmore, PA 19081, USA
| | - Hiroki Nishida
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | | | | |
Collapse
|
46
|
Garcia-Porta J, Irisarri I, Kirchner M, Rodríguez A, Kirchhof S, Brown JL, MacLeod A, Turner AP, Ahmadzadeh F, Albaladejo G, Crnobrnja-Isailovic J, De la Riva I, Fawzi A, Galán P, Göçmen B, Harris DJ, Jiménez-Robles O, Joger U, Jovanović Glavaš O, Karış M, Koziel G, Künzel S, Lyra M, Miles D, Nogales M, Oğuz MA, Pafilis P, Rancilhac L, Rodríguez N, Rodríguez Concepción B, Sanchez E, Salvi D, Slimani T, S'khifa A, Qashqaei AT, Žagar A, Lemmon A, Moriarty Lemmon E, Carretero MA, Carranza S, Philippe H, Sinervo B, Müller J, Vences M, Wollenberg Valero KC. Environmental temperatures shape thermal physiology as well as diversification and genome-wide substitution rates in lizards. Nat Commun 2019; 10:4077. [PMID: 31501432 PMCID: PMC6733905 DOI: 10.1038/s41467-019-11943-x] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 08/13/2019] [Indexed: 11/09/2022] Open
Abstract
Climatic conditions changing over time and space shape the evolution of organisms at multiple levels, including temperate lizards in the family Lacertidae. Here we reconstruct a dated phylogenetic tree of 262 lacertid species based on a supermatrix relying on novel phylogenomic datasets and fossil calibrations. Diversification of lacertids was accompanied by an increasing disparity among occupied bioclimatic niches, especially in the last 10 Ma, during a period of progressive global cooling. Temperate species also underwent a genome-wide slowdown in molecular substitution rates compared to tropical and desert-adapted lacertids. Evaporative water loss and preferred temperature are correlated with bioclimatic parameters, indicating physiological adaptations to climate. Tropical, but also some populations of cool-adapted species experience maximum temperatures close to their preferred temperatures. We hypothesize these species-specific physiological preferences may constitute a handicap to prevail under rapid global warming, and contribute to explaining local lizard extinctions in cool and humid climates.
Collapse
Affiliation(s)
- Joan Garcia-Porta
- CREAF, 08193, Cerdanyola del Vallès, Spain
- Department of Biology, Washington University in Saint Louis, St. Louis, MO, 63130, USA
| | - Iker Irisarri
- Department of Organismal Biology, Uppsala University, Norbyvägen 18D, 752 36, Uppsala, Sweden
| | - Martin Kirchner
- Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Invalidenstr. 43, 10115, Berlin, Germany
| | - Ariel Rodríguez
- Institute of Zoology, Tierärztliche Hochschule Hannover, Bünteweg 17, 30559, Hannover, Germany
| | - Sebastian Kirchhof
- Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Invalidenstr. 43, 10115, Berlin, Germany
| | - Jason L Brown
- Department of Zoology, Southern Illinois University, Carbondale, IL, USA
| | - Amy MacLeod
- Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Invalidenstr. 43, 10115, Berlin, Germany
| | - Alexander P Turner
- School of Engineering and Computer Science, University of Hull, Cottingham Road, HU6 7RX, Kingston-Upon-Hull, UK
| | - Faraham Ahmadzadeh
- Department of Biodiversity and Ecosystem Management, Environmental Sciences Research Institute, Shahid Beheshti University, G.C, Tehran, Iran
| | - Gonzalo Albaladejo
- Instituto de Productos Naturales y Agrobiología (IPNA), Consejo Superior de Investigaciones Científicas (CSIC), c/Astrofísico Francisco Sánchez, 38206, Tenerife, Canary Islands, Spain
| | - Jelka Crnobrnja-Isailovic
- Department of Biology and Ecology, Faculty of Sciences and Mathematics, University of Niš, Višegradska 33, 18000 Niš, Institute for Biological Research "S. Stanković" University of Belgrade, Despota Stefana 142, Belgrade, 11000, Serbia
| | - Ignacio De la Riva
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales, CSIC, C/José Gutiérrez Abascal 2, 28006, Madrid, Spain
| | - Adnane Fawzi
- Faculty of Sciences, Biodiversity and Ecosystem Dynamics Laboratory, Cadi Ayyad University, Marrakech, Morocco
| | - Pedro Galán
- Departamento de Bioloxía, Facultade de Ciencias, Universidade da Coruña, Grupo de Investigación en Biología Evolutiva (GIBE), 15071, A Coruña, Spain
| | - Bayram Göçmen
- Zoology Section, Biology Department, Faculty of Science, Ege University, 35100, Bornova, Izmir, Turkey
| | - D James Harris
- CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, University of Porto, Campus Agrário de Vairão, 4485-661, Vairão, Portugal
| | - Octavio Jiménez-Robles
- Department of Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT, Australia
| | - Ulrich Joger
- Staatliches Naturhistorisches Museum, Braunschweig, Germany
| | | | - Mert Karış
- Department of Chemistry and Chemical Process Technologies, Acıgöl Vocational High School of Technical Sciences, Nevşehir Hacı Bektaş Veli University, 50300, Nevşehir, Turkey
| | - Giannina Koziel
- Zoological Institute, Braunschweig University of Technology, Mendelssohnstr. 4, 38106, Braunschweig, Germany
| | - Sven Künzel
- Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Mariana Lyra
- Departamento de Zoologia, Instituto de Biociências, UNESP - Universidade Estadual Paulista, Rio Claro, Brazil
| | - Donald Miles
- Department of Biological Sciences, Ohio University, Athens, OH, 45701, USA
| | - Manuel Nogales
- Instituto de Productos Naturales y Agrobiología (IPNA), Consejo Superior de Investigaciones Científicas (CSIC), c/Astrofísico Francisco Sánchez, 38206, Tenerife, Canary Islands, Spain
| | - Mehmet Anıl Oğuz
- Zoology Section, Biology Department, Faculty of Science, Ege University, 35100, Bornova, Izmir, Turkey
| | - Panayiotis Pafilis
- Section of Zoology and Marine Biology, Department of Biology, National and Kapodistrian University of Athens, Panepistimioupolis, Ilissia, Athens, 157-84, Greece
| | - Loïs Rancilhac
- Zoological Institute, Braunschweig University of Technology, Mendelssohnstr. 4, 38106, Braunschweig, Germany
| | - Noemí Rodríguez
- Instituto de Productos Naturales y Agrobiología (IPNA), Consejo Superior de Investigaciones Científicas (CSIC), c/Astrofísico Francisco Sánchez, 38206, Tenerife, Canary Islands, Spain
| | - Benza Rodríguez Concepción
- Instituto de Productos Naturales y Agrobiología (IPNA), Consejo Superior de Investigaciones Científicas (CSIC), c/Astrofísico Francisco Sánchez, 38206, Tenerife, Canary Islands, Spain
| | - Eugenia Sanchez
- Zoological Institute, Braunschweig University of Technology, Mendelssohnstr. 4, 38106, Braunschweig, Germany
| | - Daniele Salvi
- CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, University of Porto, Campus Agrário de Vairão, 4485-661, Vairão, Portugal
- Department of Health, Life and Environmental Sciences, University of L'Aquila, 67100, Coppito, L'Aquila, Italy
| | - Tahar Slimani
- Faculty of Sciences, Biodiversity and Ecosystem Dynamics Laboratory, Cadi Ayyad University, Marrakech, Morocco
| | - Abderrahim S'khifa
- Faculty of Sciences, Biodiversity and Ecosystem Dynamics Laboratory, Cadi Ayyad University, Marrakech, Morocco
| | - Ali Turk Qashqaei
- Department of Biodiversity and Ecosystem Management, Environmental Sciences Research Institute, Shahid Beheshti University, G.C, Tehran, Iran
| | - Anamarija Žagar
- National Institute of Biology NIB, Department of Organisms and Ecosystems Research, Vecna pot 111, 1000, Ljubljana, Slovenia
| | - Alan Lemmon
- Department of Scientific Computing, Florida State University, Dirac Science Library, Tallahassee, FL, USA
| | | | - Miguel Angel Carretero
- CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, University of Porto, Campus Agrário de Vairão, 4485-661, Vairão, Portugal
| | - Salvador Carranza
- Institute of Evolutionary Biology (CSIC-Universitat, Pompeu Fabra), Passeig Marítim de la Barceloneta 37-,49, 08003, Barcelona, Spain
| | - Hervé Philippe
- Centre for Biodiversity Theory and Modelling, UMR CNRS 5321, Station of Theoretical and Experimental Ecology, 09200, Moulis, France
| | - Barry Sinervo
- Department of Ecology and Evolutionary Biology, and Institute for the Study of the Ecological and Evolutionary Climate Impacts, University of California, 130 McAllister Way, Coastal Biology Building, Santa Cruz, CA, 95064, USA
| | - Johannes Müller
- Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Invalidenstr. 43, 10115, Berlin, Germany
| | - Miguel Vences
- Zoological Institute, Braunschweig University of Technology, Mendelssohnstr. 4, 38106, Braunschweig, Germany.
| | | |
Collapse
|
47
|
Feng H, Raasholm M, Moosmann A, Campsteijn C, Thompson EM. Switching of INCENP paralogs controls transitions in mitotic chromosomal passenger complex functions. Cell Cycle 2019; 18:2006-2025. [PMID: 31306061 PMCID: PMC6681789 DOI: 10.1080/15384101.2019.1634954] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 06/13/2019] [Accepted: 06/14/2019] [Indexed: 01/29/2023] Open
Abstract
A single inner centromere protein (INCENP) found throughout eukaryotes modulates Aurora B kinase activity and chromosomal passenger complex (CPC) localization, which is essential for timely mitotic progression. It has been proposed that INCENP might act as a rheostat to regulate Aurora B activity through mitosis, with successively higher activity threshold levels for chromosome alignment, the spindle checkpoint, anaphase spindle transfer and finally spindle elongation and cytokinesis. It remains mechanistically unclear how this would be achieved. Here, we reveal that the urochordate, Oikopleura dioica, possesses two INCENP paralogs, which display distinct localizations and subfunctionalization in order to complete M-phase. INCENPa was localized on chromosome arms and centromeres by prometaphase, and modulated Aurora B activity to mediate H3S10/S28 phosphorylation, chromosome condensation, spindle assembly and transfer of the CPC to the central spindle. Polo-like kinase (Plk1) recruitment to CDK1 phosphorylated INCENPa was crucial for INCENPa-Aurora B enrichment on centromeres. The second paralog, INCENPb was enriched on centromeres from prometaphase, and relocated to the central spindle at anaphase onset. In the absence of INCENPa, meiotic spindles failed to form, and homologous chromosomes did not segregate. INCENPb was not required for early to mid M-phase events but became essential for the activity and localization of Aurora B on the central spindle and midbody during cytokinesis in order to allow abscission to occur. Together, our results demonstrate that INCENP paralog switching on centromeres modulates Aurora B kinase localization, thus chronologically regulating CPC functions during fast embryonic divisions in the urochordate O. dioica. Abbreviations: CCAN: constitutive centromere-associated network; CENPs: centromere proteins; cmRNA: capped messenger RNA; CPC: chromosomal passenger complex; INCENP: inner centromere protein; Plk1: polo-like kinase 1; PP1: protein phosphatase 1; PP2A: protein phosphatase 2A; SAC: spindle assembly checkpoint; SAH: single α-helix domain.
Collapse
Affiliation(s)
- Haiyang Feng
- Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Martina Raasholm
- Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway
| | - Alexandra Moosmann
- Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway
| | - Coen Campsteijn
- Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway
- Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Eric M. Thompson
- Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| |
Collapse
|
48
|
Razy-Krajka F, Stolfi A. Regulation and evolution of muscle development in tunicates. EvoDevo 2019; 10:13. [PMID: 31249657 PMCID: PMC6589888 DOI: 10.1186/s13227-019-0125-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 06/08/2019] [Indexed: 12/16/2022] Open
Abstract
For more than a century, studies on tunicate muscle formation have revealed many principles of cell fate specification, gene regulation, morphogenesis, and evolution. Here, we review the key studies that have probed the development of all the various muscle cell types in a wide variety of tunicate species. We seize this occasion to explore the implications and questions raised by these findings in the broader context of muscle evolution in chordates.
Collapse
Affiliation(s)
- Florian Razy-Krajka
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, USA
| | - Alberto Stolfi
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, USA
| |
Collapse
|
49
|
BMP controls dorsoventral and neural patterning in indirect-developing hemichordates providing insight into a possible origin of chordates. Proc Natl Acad Sci U S A 2019; 116:12925-12932. [PMID: 31189599 DOI: 10.1073/pnas.1901919116] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A defining feature of chordates is the unique presence of a dorsal hollow neural tube that forms by internalization of the ectodermal neural plate specified via inhibition of BMP signaling during gastrulation. While BMP controls dorsoventral (DV) patterning across diverse bilaterians, the BMP-active side is ventral in chordates and dorsal in many other bilaterians. How this phylum-specific DV inversion occurs and whether it is coupled to the emergence of the dorsal neural plate are unknown. Here we explore these questions by investigating an indirect-developing enteropneust from the hemichordate phylum, which together with echinoderms form a sister group of the chordates. We found that in the hemichordate larva, BMP signaling is required for DV patterning and is sufficient to repress neurogenesis. We also found that transient overactivation of BMP signaling during gastrulation concomitantly blocked mouth formation and centralized the nervous system to the ventral ectoderm in both hemichordate and sea urchin larvae. Moreover, this mouthless, neurogenic ventral ectoderm displayed a medial-to-lateral organization similar to that of the chordate neural plate. Thus, indirect-developing deuterostomes use BMP signaling in DV and neural patterning, and an elevated BMP level during gastrulation drives pronounced morphological changes reminiscent of a DV inversion. These findings provide a mechanistic basis to support the hypothesis that an inverse chordate body plan emerged from an indirect-developing ancestor by tinkering with BMP signaling.
Collapse
|
50
|
Abstract
The BMP signaling pathway has been shown to be involved in different aspects of embryonic development across diverse metazoan phyla. Comparative studies on the roles of the BMP signaling pathway provide crucial insights into the evolution of the animal body plans. In this chapter, we present the general workflow on how to investigate the roles of BMP signaling pathway during amphioxus embryonic development. As amphioxus are basal invertebrate chordates, studies on the BMP signaling pathway in amphioxus could elucidate the functional evolution of BMP pathway in the chordate group. Here, we describe methods for animal husbandry, spawning induction, and manipulation of the BMP signaling pathway during embryonic development through drug inhibitors and recombinant proteins. We also introduce an efficient method of using mesh baskets to handle amphioxus embryos for fluorescence immunostaining and multicolor fluorescence in situ hybridization and to assay the effects of manipulating BMP signaling pathway during amphioxus embryogenesis.
Collapse
|