1
|
Kandelouei T, Houghton ME, Lewis MR, Keller CC, Marchetti M, Kang X, Edgar BA. Mating and ecdysone signaling modify growth, metabolism, and digestive efficiency in the female Drosophila gut. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.19.624434. [PMID: 39605564 PMCID: PMC11601506 DOI: 10.1101/2024.11.19.624434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Adaptive changes in organ size and physiology occur in most adult animals, but how these changes are regulated is not well understood. Previous research found that mating in Drosophila females drives not only increases in gut size and stem cell proliferation but also alters feeding behavior, intestinal gene expression, and whole-body lipid storage, suggesting altered gut metabolism. Here, we show that mating dramatically alters female gut metabolism and digestive function. In addition to promoting a preference for a high-protein diet, mating also altered levels of TCA cycle intermediates and fatty acids in the gut, increased total gut lipids and protein, reduced relative carbohydrate levels, and enhanced the efficiency of protein digestion relative to carbohydrate digestion. The expression of genes that mediate each of these metabolic processes was similarly altered. In addition, we noted the mating-dependent downregulation of oxidative stress response and autophagy genes. Mating-dependent increases in ecdysone signaling played an important role in re-programming many, but not all, of these changes in the female gut. This study contributes to our understanding of how steroid signaling alters gut physiology to adapt to the demands of reproduction.
Collapse
Affiliation(s)
- Tahmineh Kandelouei
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, U.S.A
| | - Madeline E. Houghton
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, U.S.A
| | - Mitchell R. Lewis
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, U.S.A
| | - Caroline C. Keller
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, U.S.A
| | - Marco Marchetti
- Eccles Institute of Human Genetics, 3i-UCGD Bioinformatics Core, University of Utah, Salt Lake City, Utah, U.S.A
| | - Xiaoyu Kang
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, U.S.A
| | - Bruce A. Edgar
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, U.S.A
| |
Collapse
|
2
|
Colejo-Durán L, Pelletier F, Dillon L, Gagnon A, Bergeron P. Early and adult life environmental effects on reproductive performance in preindustrial women. PLoS One 2024; 19:e0290212. [PMID: 39466728 PMCID: PMC11515999 DOI: 10.1371/journal.pone.0290212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 08/16/2024] [Indexed: 10/30/2024] Open
Abstract
Early life environments can have long-lasting effects on adult reproductive performance, but disentangling the influence of early and adult life environments on fitness is challenging, especially for long-lived species. Using a detailed dataset spanning over two centuries, we studied how both early and adult life environments impacted reproductive performance in preindustrial women. Due to a wide geographic range, agricultural production was lower in northern compared to southern parishes, and health conditions were worse in urban than rural parishes. We tested whether reproductive traits and offspring survival varied between early and adult life environments by comparing women who moved between different environments during their lifetime with those who moved parishes but remained in the same environment. Our findings reveal that urban-born women had an earlier age at first reproduction and less offspring surviving to adulthood than rural-born women. Moreover, switching from urban to rural led to increased offspring survival, while switching from rural to urban had the opposite effect. Finally, women who switched from rural to urban and from South to North had their first child at an older age compared to those who stayed in the same environment type. Our study underscores the complex and interactive effects of early and adult life environments on reproductive traits, highlighting the need to consider both when studying environmental effects on reproductive outcomes.
Collapse
Affiliation(s)
- Lidia Colejo-Durán
- Département de Biologie, Université de Sherbrooke, Sherbrooke, Québec, Canada
- Department of Biology and Biochemistry, Bishop’s University, Sherbrooke, Québec, Canada
| | - Fanie Pelletier
- Département de Biologie, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Lisa Dillon
- Department of Demography, Université de Montréal, Montréal, Québec, Canada
| | - Alain Gagnon
- Department of Demography, Université de Montréal, Montréal, Québec, Canada
| | - Patrick Bergeron
- Department of Biology and Biochemistry, Bishop’s University, Sherbrooke, Québec, Canada
| |
Collapse
|
3
|
Gardeux V, Bevers RPJ, David FPA, Rosschaert E, Rochepeau R, Deplancke B. DGRPool, a web tool leveraging harmonized Drosophila Genetic Reference Panel phenotyping data for the study of complex traits. eLife 2024; 12:RP88981. [PMID: 39431984 PMCID: PMC11493408 DOI: 10.7554/elife.88981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024] Open
Abstract
Genome-wide association studies have advanced our understanding of complex traits, but studying how a GWAS variant can affect a specific trait in the human population remains challenging due to environmental variability. Drosophila melanogaster is in this regard an excellent model organism for studying the relationship between genetic and phenotypic variation due to its simple handling, standardized growth conditions, low cost, and short lifespan. The Drosophila Genetic Reference Panel (DGRP) in particular has been a valuable tool for studying complex traits, but proper harmonization and indexing of DGRP phenotyping data is necessary to fully capitalize on this resource. To address this, we created a web tool called DGRPool (dgrpool.epfl.ch), which aggregates phenotyping data of 1034 phenotypes across 135 DGRP studies in a common environment. DGRPool enables users to download data and run various tools such as genome-wide (GWAS) and phenome-wide (PheWAS) association studies. As a proof-of-concept, DGRPool was used to study the longevity phenotype and uncovered both established and unexpected correlations with other phenotypes such as locomotor activity, starvation resistance, desiccation survival, and oxidative stress resistance. DGRPool has the potential to facilitate new genetic and molecular insights of complex traits in Drosophila and serve as a valuable, interactive tool for the scientific community.
Collapse
Affiliation(s)
- Vincent Gardeux
- Laboratory of Systems Biology and Genetics, Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
- Swiss Institute of BioinformaticsLausanneSwitzerland
| | - Roel PJ Bevers
- Laboratory of Systems Biology and Genetics, Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
| | - Fabrice PA David
- Swiss Institute of BioinformaticsLausanneSwitzerland
- Bioinformatics Competence Center, EPFLLausanneSwitzerland
| | - Emily Rosschaert
- Laboratory of Systems Biology and Genetics, Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
- Laboratory of Behavioral and Developmental Genetics, Center for Human Genetics, KU LeuvenLeuvenBelgium
| | - Romain Rochepeau
- Laboratory of Systems Biology and Genetics, Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
| | - Bart Deplancke
- Laboratory of Systems Biology and Genetics, Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
- Swiss Institute of BioinformaticsLausanneSwitzerland
| |
Collapse
|
4
|
Ruchitha BG, Kumar D, Chandrakanth M, Farooq I, Kumar N, Sura C, Chetan S, Tung S. Effect of developmental and adult diet composition on reproductive aging in Drosophila melanogaster. Exp Gerontol 2024; 194:112501. [PMID: 38897017 PMCID: PMC7616176 DOI: 10.1016/j.exger.2024.112501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 06/14/2024] [Accepted: 06/17/2024] [Indexed: 06/21/2024]
Abstract
Diet significantly affects reproductive outcomes across species, yet the precise effects of macronutrient compositions beyond caloric intake on reproductive aging are understudied. Existing literature presents conflicting views on the fertility impacts of nutrient-rich versus nutrient-poor developmental diets, underscoring a notable research gap. This study addresses these gaps by examining effects of isocaloric diets with varied protein-to-carbohydrate ratios during both developmental and adult stages on reproductive aging of a large, outbred Drosophila melanogaster population (n = ∼2100). Our results clearly demonstrate an age-dependent dietary impact on reproductive output, initially dominated by the developmental diet, then by a combination of developmental and adult diets in early to mid-life, and ultimately by the adult diet in later life. Importantly, we found that the effects of developmental and adult diets on reproductive output are independent, with no significant interaction. Further investigations into the mechanisms revealed that the effect of developmental diet on fecundity is regulated via ovarioles formation and vitellogenesis; while, the effect of adult diet on fecundity is mostly regulated only via vitellogenesis. These insights resolve disputes in the literature about dietary impacts on fertility and offer valuable perspectives for optimizing fertility strategies in improving public health and conservation efforts in this changing world.
Collapse
Affiliation(s)
- B G Ruchitha
- Integrated Genetics and Evolution Laboratory (IGEL), Department of Biology, Ashoka University, Sonipat, Haryana, India, 131029; Indian Institute of Science Education and Research (IISER) Pune, Pune, Maharashtra, India, 411008.
| | - Devashish Kumar
- Integrated Genetics and Evolution Laboratory (IGEL), Department of Biology, Ashoka University, Sonipat, Haryana, India, 131029.
| | - Mohankumar Chandrakanth
- Integrated Genetics and Evolution Laboratory (IGEL), Department of Biology, Ashoka University, Sonipat, Haryana, India, 131029.
| | - Itibaw Farooq
- Integrated Genetics and Evolution Laboratory (IGEL), Department of Biology, Ashoka University, Sonipat, Haryana, India, 131029
| | - Nishant Kumar
- Integrated Genetics and Evolution Laboratory (IGEL), Department of Biology, Ashoka University, Sonipat, Haryana, India, 131029.
| | - Chand Sura
- Integrated Genetics and Evolution Laboratory (IGEL), Department of Biology, Ashoka University, Sonipat, Haryana, India, 131029.
| | - S Chetan
- Integrated Genetics and Evolution Laboratory (IGEL), Department of Biology, Ashoka University, Sonipat, Haryana, India, 131029.
| | - Sudipta Tung
- Integrated Genetics and Evolution Laboratory (IGEL), Department of Biology, Ashoka University, Sonipat, Haryana, India, 131029.
| |
Collapse
|
5
|
Yan W, Li Y, Louis EJ, Kyriacou CP, Hu Y, Cordell RL, Xie X. Quantitative genetic analysis of attractiveness of yeast products to Drosophila. Genetics 2024; 227:iyae048. [PMID: 38560786 PMCID: PMC11151935 DOI: 10.1093/genetics/iyae048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 02/19/2024] [Accepted: 02/20/2024] [Indexed: 04/04/2024] Open
Abstract
An attractive perfume is a complex mixture of compounds, some of which may be unpleasant on their own. This is also true for the volatile combinations from yeast fermentation products in vineyards and orchards when assessed by Drosophila. Here, we used crosses between a yeast strain with an attractive fermentation profile and another strain with a repulsive one and tested fly responses using a T-maze. QTL analysis reveals allelic variation in four yeast genes, namely PTC6, SAT4, YFL040W, and ARI1, that modulated expression levels of volatile compounds [assessed by gas chromatography-mass spectrometry (GC-MS)] and in different combinations, generated various levels of attractiveness. The parent strain that is more attractive to Drosophila has repulsive alleles at two of the loci, while the least attractive parent has attractive alleles. Behavioral assays using artificial mixtures mimicking the composition of odors from fermentation validated the results of GC-MS and QTL mapping, thereby directly connecting genetic variation in yeast to attractiveness in flies. This study can be used as a basis for dissecting the combination of olfactory receptors that mediate the attractiveness/repulsion of flies to yeast volatiles and may also serve as a model for testing the attractiveness of pest species such as Drosophila suzukii to their host fruit.
Collapse
Affiliation(s)
- Weiru Yan
- Institute of Genetics, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
- Department of Genetics & Genome Biology, University of Leicester, Leicester LE1 7RH, UK
| | - Yishen Li
- Department of Genetics & Genome Biology, University of Leicester, Leicester LE1 7RH, UK
| | - Edward J Louis
- Department of Genetics & Genome Biology, University of Leicester, Leicester LE1 7RH, UK
| | | | - Yue Hu
- Department of Genetics & Genome Biology, University of Leicester, Leicester LE1 7RH, UK
| | - Rebecca L Cordell
- School of Chemistry, University of Leicester, University Road, Leicester LE1 7RH, UK
| | - Xiaodong Xie
- Institute of Genetics, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
6
|
Mendoza-Grimau V, Pérez-Gálvez A, Busturia A, Fontecha J. Lipidomic profiling of Drosophila strains Canton-S and white 1118 reveals intraspecific lipid variations in basal metabolic rate. Prostaglandins Leukot Essent Fatty Acids 2024; 201:102618. [PMID: 38795635 DOI: 10.1016/j.plefa.2024.102618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/23/2024] [Accepted: 05/08/2024] [Indexed: 05/28/2024]
Abstract
Drosophila melanogaster is a well-established model system for studies on lipid metabolism and energy homeostasis. In this study, we identified and quantified the main components of the lipid profile of two widely utilized Drosophila strains, namely Canton-S and white1118, under identical experimental conditions. Differences observed between the strains can be attributed to inherent metabolic divergences, thus limiting the influence of confounding factors. Using the comprehensive lipid data acquired, we applied cluster analysis and PLS-DA techniques to ascertain whether the lipidome could effectively differentiate between the strains. Certain lipid features, such as triacylglycerols, polar lipids, and specific sterol components, could be distinguished between flies of both strains regardless of sex. Our results suggest that although Canton-S and white1118 have similar lipid profiles and distributions, a selected subset of lipids demonstrates clear discriminatory potential between strains, thereby bearing significant implications for planning biological studies using these strains as control references.
Collapse
Affiliation(s)
- Victor Mendoza-Grimau
- Food Lipid Biomarkers and Health Group, Institute of Food Science Research (CIAL, CSIC-UAM), Madrid 28049, Spain
| | - Antonio Pérez-Gálvez
- Group of Chemistry and Biochemistry of Pigments, Instituto de la Grasa, CSIC, Sevilla 41013, Spain
| | - Ana Busturia
- Tissue and organ homeostasis, Centro de Biología Molecular Severo Ochoa, (CBMSO, CSIC-UAM), Madrid 28049, Spain
| | - Javier Fontecha
- Food Lipid Biomarkers and Health Group, Institute of Food Science Research (CIAL, CSIC-UAM), Madrid 28049, Spain.
| |
Collapse
|
7
|
Gao Y, Cheng X, Tian Y, Yuan Z, Fan X, Yang D, Yang M. Nutritional Programming of the Lifespan of Male Drosophila by Activating FOXO on Larval Low-Nutrient Diet. Nutrients 2023; 15:nu15081840. [PMID: 37111059 PMCID: PMC10142539 DOI: 10.3390/nu15081840] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/30/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
Nutrition during the developmental stages has long-term effects on adult physiology, disease and lifespan, and is termed nutritional programming. However, the underlying molecular mechanisms of nutritional programming are not yet well understood. In this study, we showed that developmental diets could regulate the lifespan of adult Drosophila in a way that interacts with various adult diets during development and adulthood. Importantly, we demonstrated that a developmental low-yeast diet (0.2SY) extended both the health span and lifespan of male flies under nutrient-replete conditions in adulthood through nutritional programming. Males with a low-yeast diets during developmental stages had a better resistance to starvation and lessened decline of climbing ability with age in adulthood. Critically, we revealed that the activity of the Drosophila transcription factor FOXO (dFOXO) was upregulated in adult males under developmental low-nutrient conditions. The knockdown of dFOXO, with both ubiquitous and fat-body-specific patterns, can completely abolish the lifespan-extending effect from the larval low-yeast diet. Ultimately, we identify that the developmental diet achieved the nutritional programming of the lifespan of adult males by modulating the activity of dFOXO in Drosophila. Together, these results provide molecular evidence that the nutrition in the early life of animals could program the health of their later life and their longevity.
Collapse
Affiliation(s)
- Yue Gao
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, China
| | - Xingyi Cheng
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, China
| | - Yao Tian
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhixiao Yuan
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiaolan Fan
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Deying Yang
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Mingyao Yang
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
8
|
Zakharenko LP, Petrovskii DV, Bobrovskikh MA, Gruntenko NE, Yakovleva EY, Markov AV, Putilov AA. Motus Vita Est: Fruit Flies Need to Be More Active and Sleep Less to Adapt to Either a Longer or Harder Life. Clocks Sleep 2023; 5:98-115. [PMID: 36975551 PMCID: PMC10047790 DOI: 10.3390/clockssleep5010011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/15/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
Background: Activity plays a very important role in keeping bodies strong and healthy, slowing senescence, and decreasing morbidity and mortality. Drosophila models of evolution under various selective pressures can be used to examine whether increased activity and decreased sleep duration are associated with the adaptation of this nonhuman species to longer or harder lives. Methods: For several years, descendants of wild flies were reared in a laboratory without and with selection pressure. To maintain the “salt” and “starch” strains, flies from the wild population (called “control”) were reared on two adverse food substrates. The “long-lived” strain was maintained through artificial selection for late reproduction. The 24 h patterns of locomotor activity and sleep in flies from the selected and unselected strains (902 flies in total) were studied in constant darkness for at least, 5 days. Results: Compared to the control flies, flies from the selected strains demonstrated enhanced locomotor activity and reduced sleep duration. The most profound increase in locomotor activity was observed in flies from the starch (short-lived) strain. Additionally, the selection changed the 24 h patterns of locomotor activity and sleep. For instance, the morning and evening peaks of locomotor activity were advanced and delayed, respectively, in flies from the long-lived strain. Conclusion: Flies become more active and sleep less in response to various selection pressures. These beneficial changes in trait values might be relevant to trade-offs among fitness-related traits, such as body weight, fecundity, and longevity.
Collapse
Affiliation(s)
- Lyudmila P. Zakharenko
- Department of Insect Genetics, Institute of Cytology and Genetics of the Siberian Branch, The Russian Academy of Sciences, Novosibirsk 630000, Russia
| | - Dmitrii V. Petrovskii
- Department of Insect Genetics, Institute of Cytology and Genetics of the Siberian Branch, The Russian Academy of Sciences, Novosibirsk 630000, Russia
| | - Margarita A. Bobrovskikh
- Department of Insect Genetics, Institute of Cytology and Genetics of the Siberian Branch, The Russian Academy of Sciences, Novosibirsk 630000, Russia
| | - Nataly E. Gruntenko
- Department of Insect Genetics, Institute of Cytology and Genetics of the Siberian Branch, The Russian Academy of Sciences, Novosibirsk 630000, Russia
| | | | - Alexander V. Markov
- Department of Biological Evolution, The Moscow State University, Moscow 101000, Russia
- Borisyak Paleontological Institute of the Russian Academy of Sciences, Moscow 101000, Russia
| | - Arcady A. Putilov
- Research Group for Math-Modeling of Biomedical Systems, Research Institute for Molecular Biology and Biophysics of the Federal Research Centre for Fundamental and Translational Medicine, Novosibirsk 630000, Russia
- Laboratory of Sleep/Wake Neurobiology, Institute of Higher Nervous Activity and Neurophysiology of the Russian Academy of Sciences, Moscow 101000, Russia
- Correspondence: ; Tel.: +49-30-53674643 or +49-30-61290031
| |
Collapse
|
9
|
Davis TS, Stewart JE, Clark C, Van Buiten C. Nutritional Profile and Ecological Interactions of Yeast Symbionts Associated with North American Spruce Beetle (Dendroctonus rufipennis). MICROBIAL ECOLOGY 2022:10.1007/s00248-022-02158-7. [PMID: 36542127 DOI: 10.1007/s00248-022-02158-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 12/08/2022] [Indexed: 06/17/2023]
Abstract
To better understand functional ecology of bark beetle-microbial symbioses, we characterized yeast associates of North American spruce beetle (Dendroctous rufipennis Kirby) across populations. Seven yeast species were detected; Wickerhamomyces canadensis (Wickerham) Kurtzman et al. (Sachharomycetales: Saccharomycetaceae) was the most common (74% of isolates) and found in all populations. Isolates of W. canadensis were subsequently tested for competitive interactions with symbiotic (Leptographium abietinum, = Grosmannia abietina) and pathogenic (Beauvaria bassiana) filamentous fungi, and isolates were nutritionally profiled (protein and P content). Exposure to yeast headspace emissions had isolate-dependent effects on colony growth of symbiotic and pathogenic fungi; most isolates of W. canadensis slightly inhibited growth rates of symbiotic (L. abietinum, mean effect: - 4%) and entomopathogenic (B. bassiana, mean effect: - 6%) fungi. However, overall variation was high (range: - 35.4 to + 88.6%) and some yeasts enhanced growth of filamentous fungi whereas others were consistently inhibitory. The volatile 2-phenylethanol was produced by W. canadensis and synthetic 2-phenylethanol reduced growth rates of both L. abietinum and B. bassiana by 36% on average. Mean protein and P content of Wickerhamomyces canadensis cultures were 0.8% and 7.2%, respectively, but isolates varied in nutritional content and protein content was similar to that of host tree phloem. We conclude that W. canadensis is a primary yeast symbiont of D. rufipennis in the Rocky Mountains and emits volatiles that can affect growth of associated microbes. Wickerhamomyces canadensis isolates vary substantially in limiting nutrients (protein and P), but concentrations are less than reported for the symbiotic filamentous fungus L. abietinum.
Collapse
Affiliation(s)
- Thomas S Davis
- Forest & Rangeland Stewardship, Warner College of Natural Resources, Colorado State University, Fort Collins, USA.
- Graduate Degree Program in Ecology, Colorado State University, Fort Collins, USA.
| | - Jane E Stewart
- Graduate Degree Program in Ecology, Colorado State University, Fort Collins, USA
- Agricultural Biology, College of Agricultural Sciences, Colorado State University, Fort Collins, USA
| | - Caitlin Clark
- Food Science and Human Nutrition, College of Health and Human Sciences, Colorado State University, Fort Collins, USA
| | - Charlene Van Buiten
- Food Science and Human Nutrition, College of Health and Human Sciences, Colorado State University, Fort Collins, USA
| |
Collapse
|
10
|
Savola E, Vale PF, Walling CA. Larval diet affects adult reproduction, but not survival, independent of the effect of injury and infection in Drosophila melanogaster. JOURNAL OF INSECT PHYSIOLOGY 2022; 142:104428. [PMID: 35932926 DOI: 10.1016/j.jinsphys.2022.104428] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/13/2022] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
Early-life conditions have profound effects on many life-history traits, where early-life diet affects both juvenile development, and adult survival and reproduction. Early-life diet also has consequences for the ability of adults to withstand environmental challenges such as starvation, temperature and desiccation. However, it is less well known how early-life diet influences the consequences of infection in adults. Here we test whether varying the larval diet of female Drosophila melanogaster (through altering protein to carbohydrate ratio, P:C) influences the long-term consequences of injury and infection with the bacterial pathogen Pseudomonasentomophila. Given previous work manipulating adult dietary P:C, we predicted that adults from larvae raised on higher P:C diets would have increased reproduction, but shorter lifespans and an increased rate of ageing, and that the lowest larval P:C diets would be particularly detrimental for adult survival in infected individuals. For larval development, we predicted that low P:C would lead to a longer development time and lower viability. We found that early-life and lifetime egg production were highest at intermediate to high larval P:C diets, but this was independent of injury and infection. There was no effect of larval P:C on adult survival. Larval development was quickest on intermediate P:C and egg-to-pupae and egg-to-adult viability were slightly higher on higher P:C. Overall, despite larval P:C affecting several measured traits, we saw no evidence that larval P:C altered the consequence of infection or injury for adult survival or early-life and lifetime reproduction. Taken together, these data suggest that larval diets appear to have a limited impact on the adult life history consequences of infection.
Collapse
Affiliation(s)
- Eevi Savola
- Institute of Evolutionary Biology, School of Biological Sciences, The University of Edinburgh, Ashworth Laboratories, Edinburgh EH9 3FL, UK
| | - Pedro F Vale
- Institute of Evolutionary Biology, School of Biological Sciences, The University of Edinburgh, Ashworth Laboratories, Edinburgh EH9 3FL, UK
| | - Craig A Walling
- Institute of Evolutionary Biology, School of Biological Sciences, The University of Edinburgh, Ashworth Laboratories, Edinburgh EH9 3FL, UK.
| |
Collapse
|
11
|
Dinh H, Lundbäck I, Kumar S, Than AT, Morimoto J, Ponton F. Sugar-rich larval diet promotes lower adult pathogen load and higher survival after infection in a polyphagous fly. J Exp Biol 2022; 225:276376. [PMID: 35904096 DOI: 10.1242/jeb.243910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 07/19/2022] [Indexed: 11/20/2022]
Abstract
Nutrition is a central factor influencing immunity and resistance to infection, but the extent to which nutrition during development affects adult responses to infections is poorly understood. Our study investigated how the nutritional composition of the larval diet affects the survival, pathogen load, and food intake of adult fruit flies, Bactrocera tryoni, after septic bacterial infection. We found a sex-specific effect of larval diet composition on survival post-infection: survival rate was higher and bacterial load was lower for infected females fed sugar-rich larval diet compared with females fed protein-rich larval diet, an effect that was absent in males. Both males and females were heavier when fed a balanced larval diet compared to protein- or sugar-rich diet, while body lipid reserves were higher in the sugar-rich larval diet compared with other diets. Body protein reserve was lower for sugar-rich larval diets compared to other diets in males, but not females. Both females and males shifted their nutrient intake to ingest a sugar-rich diet when infected compared with sham-infected flies without any effect of the larval diet, suggesting that sugar-rich diets can be beneficial to fight off bacterial infection as shown in previous literature. Overall, our findings show that nutrition during early life can shape individual fitness in adulthood.
Collapse
Affiliation(s)
- Hue Dinh
- School of Natural Sciences, Macquarie University, Australia
| | - Ida Lundbäck
- School of Natural Sciences, Macquarie University, Australia
| | - Sheemal Kumar
- School of Natural Sciences, Macquarie University, Australia
| | - Anh The Than
- School of Natural Sciences, Macquarie University, Australia.,Department of Entomology, Vietnam National University of Agriculture, Vietnam
| | - Juliano Morimoto
- School of Natural Sciences, Macquarie University, Australia.,School of Biological Sciences, University of Aberdeen, Zoology Building, Tillydrone Ave, Aberdeen AB24 2TZ, UK.,Programa de Pós-graduação em Ecologia e Conservação, Universidade Federal do Paraná, Curitiba, 82590-300, Brazil
| | - Fleur Ponton
- School of Natural Sciences, Macquarie University, Australia
| |
Collapse
|
12
|
Shukla N, Kolthur‐Seetharam U. Drosophila Sirtuin 6 mediates developmental diet-dependent programming of adult physiology and survival. Aging Cell 2022; 21:e13576. [PMID: 35233942 PMCID: PMC8920434 DOI: 10.1111/acel.13576] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 01/12/2022] [Accepted: 02/06/2022] [Indexed: 11/29/2022] Open
Abstract
Organisms in the wild experience unpredictable and diverse food availability throughout their lifespan. Over-/under-nutrition during development and in adulthood is known to dictate organismal survival and fitness. Studies using model systems have also established long-term effects of developmental dietary alterations on life-history traits. However, the underlining genetic/molecular factors, which differentially couple nutrient inputs during development with fitness later in life are far less understood. Using Drosophila and loss/gain of function perturbations, our serendipitous findings demonstrate an essential role of Sirtuin 6 in regulating larval developmental kinetics, in a nutrient-dependent manner. The absence of Sirt6 affected ecdysone and insulin signalling and led to accelerated larval development. Moreover, varying dietary glucose and yeast during larval stages resulted in enhanced susceptibility to metabolic and oxidative stress in adults. We also demonstrate an evolutionarily conserved role for Sirt6 in regulating physiological homeostasis, physical activity and organismal lifespan, known only in mammals until now. Our results highlight gene-diet interactions that dictate thresholding of nutrient inputs and physiological plasticity, operative across development and adulthood. In summary, besides showing its role in invertebrate ageing, our study also identifies Sirt6 as a key factor that programs macronutrient-dependent life-history traits.
Collapse
Affiliation(s)
- Namrata Shukla
- Department of Biological Sciences Tata Institute of Fundamental Research Mumbai India
| | - Ullas Kolthur‐Seetharam
- Department of Biological Sciences Tata Institute of Fundamental Research Mumbai India
- Tata Institute of Fundamental Research‐Hyderabad (TIFR‐H) Hyderabad India
| |
Collapse
|
13
|
Li Y, Bagheri P, Chang P, Zeng A, Hao J, Fung A, Wu JY, Shi L. Direct Imaging of Lipid Metabolic Changes in Drosophila Ovary During Aging Using DO-SRS Microscopy. FRONTIERS IN AGING 2022; 2:819903. [PMID: 35822015 PMCID: PMC9261447 DOI: 10.3389/fragi.2021.819903] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 12/29/2021] [Indexed: 01/09/2023]
Abstract
Emerging studies have shown that lipids and proteins play versatile roles in various aspects of aging. High-resolution in situ optical imaging provides a powerful approach to study the metabolic dynamics of lipids and proteins during aging. Here, we integrated D2O probing and stimulated Raman scattering (DO-SRS) microscopy to directly visualize metabolic changes in aging Drosophila ovary. The subcellular spatial distribution of de novo protein synthesis and lipogenesis in ovary was quantitatively imaged and examined. Our Raman spectra showed that early stages follicles were protein-enriched whereas mature eggs were lipid-enriched. DO-SRS imaging showed a higher protein synthesis in the earlier developing stages and an increased lipid turned over at the late stage. Aged (35 days) flies exhibited a dramatic decrease in metabolic turnover activities of both proteins and lipids, particularly, in the germ stem cell niche of germarium. We found an accumulation of unsaturated lipids in the nurse cells and oocytes in old flies, suggesting that unsaturated lipids may play an important role in the processes of oocyte maturation. We further detected changes in mitochondrial morphology and accumulation of Cytochrome c during aging. To our knowledge, this is the first study that directly visualizes spatiotemporal changes in lipid and protein metabolism in Drosophila ovary during development and aging processes. Our study not only demonstrates the application of a new imaging platform in visualizing metabolic dynamics of lipids and proteins in situ but also unravels how the metabolic activity and lipid distribution change in Drosophila ovary during aging.
Collapse
Affiliation(s)
- Yajuan Li
- The Department of Bioengineering, University of California San Diego, La Jolla, CA, United States
| | - Pegah Bagheri
- The Department of Bioengineering, University of California San Diego, La Jolla, CA, United States
| | - Phyllis Chang
- The Department of Bioengineering, University of California San Diego, La Jolla, CA, United States
| | - Audrey Zeng
- The Department of Bioengineering, University of California San Diego, La Jolla, CA, United States
| | - Jie Hao
- The Department of Bioengineering, University of California San Diego, La Jolla, CA, United States
| | - Anthony Fung
- The Department of Bioengineering, University of California San Diego, La Jolla, CA, United States
| | - Jane Y. Wu
- Department of Neurology, Northwestern University, Chicago, IL, United States
| | - Lingyan Shi
- The Department of Bioengineering, University of California San Diego, La Jolla, CA, United States
- *Correspondence: Lingyan Shi,
| |
Collapse
|
14
|
Morimoto J, Than AT, Nguyen B, Lundbäck I, Dinh H, Ponton F. Density-by-diet interactions during larval development shape adult life-history trait expression and fitness in a polyphagous fly. Am Nat 2022; 199:E170-E185. [DOI: 10.1086/718910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
15
|
Krittika S, Yadav P. Trans-generational effect of protein restricted diet on adult body and wing size of Drosophila melanogaster. ROYAL SOCIETY OPEN SCIENCE 2022; 9:211325. [PMID: 35116152 PMCID: PMC8790381 DOI: 10.1098/rsos.211325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 12/23/2021] [Indexed: 06/14/2023]
Abstract
Protein restriction (PR) has established feasible trade-offs in Drosophila melanogaster to understand lifespan or ageing in a nutritionally challenged environment. However, the phenotypes of body size, weight and wing length respond according to factors such as flies' genotype, environmental exposure and parental diet, and hence their understanding is essential. Here, we demonstrate the effect of long-term PR diet on body size, weight, normal and dry wing length of flies subjected to PR50 and PR70 (50% and 70% protein content present in control food, respectively) for 20 generations from the pre-adult stage. We found that PR-fed flies have lower body weight, relative water content (in males), unaltered (PR50%) and higher (PR70%) relative fat content in males, smaller normal and dry body size when compared with control and generations 1 and 2. Interestingly, the wing size and pupal size of PR flies are smaller and showed significant effects on diet and generation. Thus, these traits are sex and generation dependent along with a diet interaction, which is capable of modulating these results variably. Taken together, the trans-generational effect of PR on fitness and fitness-related traits might be helpful to understand the underpinning mechanisms of evolution and ageing in fruit flies D. melanogaster.
Collapse
Affiliation(s)
- Sudhakar Krittika
- Fly Laboratory no. 210, Anusandhan Kendra-II, School of Chemical & Biotechnology, SASTRA Deemed to be University, Thanjavur 613401, Tamil Nadu, India
| | - Pankaj Yadav
- Fly Laboratory no. 210, Anusandhan Kendra-II, School of Chemical & Biotechnology, SASTRA Deemed to be University, Thanjavur 613401, Tamil Nadu, India
| |
Collapse
|
16
|
Yan J, Kibech R, Stone CM. Differential effects of larval and adult nutrition on female survival, fecundity, and size of the yellow fever mosquito, Aedes aegypti. Front Zool 2021; 18:10. [PMID: 33750400 PMCID: PMC7941737 DOI: 10.1186/s12983-021-00395-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 02/28/2021] [Indexed: 11/17/2022] Open
Abstract
Background The yellow fever mosquito, Aedes aegypti, is the principal vector of medically-important infectious viruses that cause severe illness such as dengue fever, yellow fever and Zika. The transmission potential of mosquitoes for these arboviruses is largely shaped by their life history traits, such as size, survival and fecundity. These life history traits, to some degree, depend on environmental conditions, such as larval and adult nutrition (e.g., nectar availability). Both these types of nutrition are known to affect the energetic reserves and life history traits of adults, but whether and how nutrition obtained during larval and adult stages have an interactive influence on mosquito life history traits remains largely unknown. Results Here, we experimentally manipulated mosquito diets to create two nutritional levels at larval and adult stages, that is, a high or low amount of larval food (HL or LL) during larval stage, and a good and poor adult food (GA or PA, represents normal or weak concentration of sucrose) during adult stage. We then compared the size, survival and fecundity of female mosquitoes reared from these nutritional regimes. We found that larval and adult nutrition affected size and survival, respectively, without interactions, while both larval and adult nutrition influenced fecundity. There was a positive relationship between fecundity and size. In addition, this positive relationship was not affected by nutrition. Conclusions These findings highlight how larval and adult nutrition differentially influence female mosquito life history traits, suggesting that studies evaluating nutritional effects on vectorial capacity traits should account for environmental variation across life stages. Supplementary Information The online version contains supplementary material available at 10.1186/s12983-021-00395-z.
Collapse
Affiliation(s)
- Jiayue Yan
- Illinois Natural History Survey, University of Illinois at Urbana-Champaign, 1816 S. Oak St, Champaign, IL, 61820, USA.
| | - Roumaissa Kibech
- Illinois Natural History Survey, University of Illinois at Urbana-Champaign, 1816 S. Oak St, Champaign, IL, 61820, USA
| | - Chris M Stone
- Illinois Natural History Survey, University of Illinois at Urbana-Champaign, 1816 S. Oak St, Champaign, IL, 61820, USA
| |
Collapse
|
17
|
May CM, Van den Akker EB, Zwaan BJ. The Transcriptome in Transition: Global Gene Expression Profiles of Young Adult Fruit Flies Depend More Strongly on Developmental Than Adult Diet. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.624306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Developmental diet is known to exert long-term effects on adult phenotypes in many animal species as well as disease risk in humans, purportedly mediated through long-term changes in gene expression. However, there are few studies linking developmental diet to adult gene expression. Here, we use a full-factorial design to address how three different larval and adult diets interact to affect gene expression in 1-day-old adult fruit flies (Drosophila melanogaster) of both sexes. We found that the largest contributor to transcriptional variation in young adult flies is larval, and not adult diet, particularly in females. We further characterized gene expression variation by applying weighted gene correlation network analysis (WGCNA) to identify modules of co-expressed genes. In adult female flies, the caloric content of the larval diet associated with two strongly negatively correlated modules, one of which was highly enriched for reproduction-related processes. This suggests that gene expression in young adult female flies is in large part related to investment into reproduction-related processes, and that the level of expression is affected by dietary conditions during development. In males, most modules had expression patterns independent of developmental or adult diet. However, the modules that did correlate with larval and/or adult dietary regimes related primarily to nutrient sensing and metabolic functions, and contained genes highly expressed in the gut and fat body. The gut and fat body are among the most important nutrient sensing tissues, and are also the only tissues known to avoid histolysis during pupation. This suggests that correlations between larval diet and gene expression in male flies may be mediated by the carry-over of these tissues into young adulthood. Our results show that developmental diet can have profound effects on gene expression in early life and warrant future research into how they correlate with actual fitness related traits in early adulthood.
Collapse
|
18
|
Rehman N, Varghese J. Larval nutrition influences adult fat stores and starvation resistance in Drosophila. PLoS One 2021; 16:e0247175. [PMID: 33606785 PMCID: PMC7895371 DOI: 10.1371/journal.pone.0247175] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 02/02/2021] [Indexed: 12/16/2022] Open
Abstract
Insulin plays a major role in connecting nutrient availability to energy homeostasis by regulating metabolic pathways. Defects in insulin signalling is the primary cause for diabetes, obesity and various metabolic disorders. Nutritional status during growth and developmental stages play a crucial role in determining adult size, fecundity and ageing. However, the association between developmental nutrition and adult metabolic disorders has not been fully explored. Here, we address the effects of nutrient status during the larval growth phase on adult metabolism in Drosophila. We report that restricted food supply in larvae led to higher fat reserves and starvation resistance in mature adult flies, which we attribute to low insulin signalling. A lesser amount of stored fat was mobilised during early adult stages and during acute starvation, which accounts for the metabolic effects. Furthermore, larval diet influenced the expression of fat mobilisation genes brummer and lipid storage droplet-2 in adult flies, which led to the metabolic phenotypes reported here. Thus, the restricted nutrient environment in developing larvae led to adaptive changes that entrain the adult flies for scarce food availability.
Collapse
Affiliation(s)
- Niyas Rehman
- School of Biology, Indian Institute of Science Education and Research (IISER TVM), Thiruvananthapuram, Kerala, India
| | - Jishy Varghese
- School of Biology, Indian Institute of Science Education and Research (IISER TVM), Thiruvananthapuram, Kerala, India
- * E-mail:
| |
Collapse
|
19
|
Duxbury EML, Chapman T. Sex-Specific Responses of Life Span and Fitness to Variation in Developmental Versus Adult Diets in Drosophila melanogaster. J Gerontol A Biol Sci Med Sci 2021; 75:1431-1438. [PMID: 31362304 PMCID: PMC7357588 DOI: 10.1093/gerona/glz175] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Indexed: 11/20/2022] Open
Abstract
Nutritional variation across the lifetime can have significant and sex-specific impacts on fitness. Using Drosophila melanogaster, we measured these impacts by testing the effects on life span and reproductive success of high or low yeast content in developmental versus adult diets, separately for each sex. We tested two hypotheses: that dietary mismatches between development and adulthood are costly and that any such costs are sex-specific. Overall, the results revealed the rich and complex responses of each sex to dietary variation across the lifetime. Contrary to the first hypothesis, dietary mismatches between developmental and adult life stages were not universally costly. Where costs of nutritional variation across the life course did occur, they were sex-, context-, and trait-specific, consistent with hypothesis 2. We found effects of mismatches between developmental and adult diets on reproductive success in females but not males. Adult diet was the main determinant of survival, and life span was significantly longer on high yeast adult food, in comparison to low, in both sexes. Developing on a high yeast diet also benefited adult female life span and reproductive success, regardless of adult diet. In contrast, a high yeast developmental diet was only beneficial for male life span when it was followed by low yeast adult food. Adult diet affected mating frequency in opposing directions, with males having higher mating frequency on high and females on low, with no interaction with developmental diet for either sex. The results emphasize the importance of sex differences and of the directionality of dietary mismatches in the responses to nutritional variation.
Collapse
Affiliation(s)
| | - Tracey Chapman
- School of Biological Sciences, University of East Anglia, Norwich Research Park, UK
| |
Collapse
|
20
|
Min KW, Jang T, Lee KP. Thermal and nutritional environments during development exert different effects on adult reproductive success in Drosophila melanogaster. Ecol Evol 2021; 11:443-457. [PMID: 33437441 PMCID: PMC7790642 DOI: 10.1002/ece3.7064] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/29/2020] [Accepted: 10/30/2020] [Indexed: 11/11/2022] Open
Abstract
Environments experienced during development have long-lasting consequences for adult performance and fitness. The "environmental matching" hypothesis predicts that individuals perform best when adult and developmental environments match whereas the "silver spoon" hypothesis expects that fitness is higher in individuals developed under favorable environments regardless of adult environments. Temperature and nutrition are the two most influential determinants of environmental quality, but it remains to be elucidated which of these hypotheses better explains the long-term effects of thermal and nutritional histories on adult fitness traits. Here we compared how the temperature and nutrition of larval environment would affect adult survivorship and reproductive success in the fruit fly, Drosophila melanogaster. The aspect of nutrition focused on in this study was the dietary protein-to-carbohydrate (P:C) ratio. The impact of low developmental and adult temperature was to improve adult survivorship. High P:C diet had a negative effect on adult survivorship when ingested during the adult stage, but had a positive effect when ingested during development. No matter whether adult and developmental environments matched or not, females raised in warm and protein-enriched environments produced more eggs than those raised in cool and protein-limiting environments, suggesting the presence of a significant silver spoon effect of larval temperature and nutrition. The effect of larval temperature on adult egg production was weak but persisted across the early adult stage whereas that of larval nutrition was initially strong but diminished rapidly after day 5 posteclosion. Egg production after day 5 was strongly influenced by the P:C ratio of the adult diet, indicating that the diet contributing mainly to reproduction had shifted from larval to adult diet. Our results highlight the importance of thermal and nutritional histories in shaping organismal performance and fitness and also demonstrate how the silver spoon effects of these aspects of environmental histories differ fundamentally in their nature, strength, and persistence.
Collapse
Affiliation(s)
- Kyeong Woon Min
- Department of Agricultural BiotechnologySeoul National UniversitySeoulKorea
| | - Taehwan Jang
- Department of Agricultural BiotechnologySeoul National UniversitySeoulKorea
| | - Kwang Pum Lee
- Department of Agricultural BiotechnologySeoul National UniversitySeoulKorea
| |
Collapse
|
21
|
Size variation does not act as insurance in bumble bees; instead, workers add weight in an unpredictable environment. Anim Behav 2020. [DOI: 10.1016/j.anbehav.2020.10.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
22
|
Arora J, Mars Brisbin MA, Mikheyev AS. Effects of microbial evolution dominate those of experimental host-mediated indirect selection. PeerJ 2020; 8:e9350. [PMID: 32676220 PMCID: PMC7334978 DOI: 10.7717/peerj.9350] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 05/23/2020] [Indexed: 12/31/2022] Open
Abstract
Microbes ubiquitously inhabit animals and plants, often affecting their host's phenotype. As a result, even in a constant genetic background, the host's phenotype may evolve through indirect selection on the microbiome. 'Microbiome engineering' offers a promising novel approach for attaining desired host traits but has been attempted only a few times. Building on the known role of the microbiome on development in fruit flies, we attempted to evolve earlier-eclosing flies by selecting on microbes in the growth media. We carried out parallel evolution experiments in no- and high-sugar diets by transferring media associated with fast-developing fly lines over the course of four selection cycles. In each cycle, we used sterile eggs from the same inbred population, and assayed mean fly eclosion times. Ultimately, flies eclosed seven to twelve hours earlier, depending on the diet, but microbiome engineering had no effect relative to a random-selection control treatment. 16S rRNA gene sequencing showed that the microbiome did evolve, particularly in the no sugar diet, with an increase in Shannon diversity over time. Thus, while microbiome evolution did affect host eclosion times, these effects were incidental. Instead, any experimentally enforced selection effects were swamped by uncontrolled microbial evolution, likely resulting in its adaptation to the media. These results imply that selection on host phenotypes must be strong enough to overcome other selection pressures simultaneously operating on the microbiome. The independent evolutionary trajectories of the host and the microbiome may limit the extent to which indirect selection on the microbiome can ultimately affect host phenotype. Random-selection lines accounting for independent microbial evolution are essential for experimental microbiome engineering studies.
Collapse
Affiliation(s)
- Jigyasa Arora
- Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa, Japan
| | | | - Alexander S. Mikheyev
- Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa, Japan
- Research School of Biology, Australian National University, Acton, ACT, Australia
| |
Collapse
|
23
|
Kastamonuluoğlu S, Büyükgüzel K, Büyükgüzel E. The Use of Dietary Antifungal Agent Terbinafine in Artificial Diet and Its Effects on Some Biological and Biochemical Parameters of the Model Organism Galleria mellonella (Lepidoptera: Pyralidae). JOURNAL OF ECONOMIC ENTOMOLOGY 2020; 113:1110-1117. [PMID: 32173755 DOI: 10.1093/jee/toaa039] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Indexed: 06/10/2023]
Abstract
Diet quality widely affects the survival, development, fecundity, longevity, and hatchability of insects. We used the greater wax moth Galleria mellonella (Linnaeus) to determine the effects of the antifungal, antibiotic terbinafine on some of its' biological parameters. The effects of terbinafine on malondialdehyde (MDA) and protein carbonyl (PCO) contents and the activity of the detoxification enzyme, glutathione S-transferase (GST), in the midgut of seventh-instar larvae of G. mellonella were also investigated. The insects were reared on an artificial diet containing terbinafine at concentrations of 0.001, 0.01, 0.1, and 1 g. The survival rates at all development stages of G. mellonella were significantly decreased at all terbinafine concentrations. The females from a control diet produced 82.9 ± 18.1 eggs; however, this number was significantly reduced to 51.4 ± 9.6 in females given a 0.1 g terbinafine diet. The highest concentration of terbinafine (1 g) completely inhibited egg laying. Terbinafine significantly increased MDA content and GST activity in the midgut tissue of seventh-instar larvae in a dose-dependent manner. Relative to controls, these low dietary concentrations of terbinafine significantly increased midgut PCO content; a 0.1 g terbinafine concentration raised PCO content from 155.19 ± 21.8 to 737.17 ± 36.4 nmol/mg protein. This study shows concentration-dependent effects on the biological traits of the greater wax moth G. mellonella, including the oxidative status and detoxification capacity of the midgut. Low terbinafine concentrations may be possible for use as an antifungal agent in insect-rearing diets.
Collapse
Affiliation(s)
- Suzan Kastamonuluoğlu
- Zonguldak Bülent Ecevit University, Science and Art Faculty, Moleculer Biology and Genetics Department, Zonguldak, Turkey
| | - Kemal Büyükgüzel
- Zonguldak Bülent Ecevit University, Science and Art Faculty, Biology Department, Zonguldak, Turkey
| | - Ender Büyükgüzel
- Zonguldak Bülent Ecevit University, Science and Art Faculty, Moleculer Biology and Genetics Department, Zonguldak, Turkey
| |
Collapse
|
24
|
Mbande A, Tedder M, Chidawanyika F. Offspring diet supersedes the transgenerational effects of parental diet in a specialist herbivore Neolema abbreviata under manipulated foliar nitrogen variability. INSECT SCIENCE 2020; 27:361-374. [PMID: 30298557 DOI: 10.1111/1744-7917.12644] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 09/19/2018] [Accepted: 09/27/2018] [Indexed: 06/08/2023]
Abstract
Diet quality influences organismal fitness within and across generations. For herbivorous insects, the transgenerational effects of diet remain relatively underexplored. Using a 3 × 3 × 2 factorial experiment, we evaluated how N enrichment in parental diets of Neolema abbreviata (Larcordaire) (Coleoptera: Chrysomelidae), a biological control agent for Tradescantia fluminensis Vell. (Commelinaceae), may influence life history and performance of F1 and F2 offspring under reciprocal experiments. We found limited transgenerational effects of foliar nitrogen variability among life-history traits in both larvae and adults. Larval weight gain and mortality were responsive to parental diet contrary to feeding damage, pupal weight and duration taken to pupate. There were significant parental diet × test interactions in larval feeding damage, weight gain, pupal weight and time to pupation. Generally, offspring from parents under high N plants performed better even under low N test plants. Adult traits including oviposition selection, feeding weight and longevity did not respond to the effects of parental diet nor its interaction with test diet as was the case in the larval stage. However, the main effects of test diet were more important in determining adult performance in both generations suggesting limited sensitivity to parental diet in the adult stage. Our results show conflicting responses to parental diet between larvae and adults of the same generation among an insect species with both actively feeding larval and adult life stages. These transgenerational effects, or lack thereof, may have implications on the field performance of N. abbrevita under heterogeneous nutritional landscapes.
Collapse
Affiliation(s)
- Abongile Mbande
- Weeds Division, Plant Protection Research Institute, Agricultural Research Council, Hilton, South Africa
- School of Life Sciences, University of KwaZulu-Natal, Scottsville, Pietermaritzburg, South Africa
| | - Michelle Tedder
- School of Life Sciences, University of KwaZulu-Natal, Scottsville, Pietermaritzburg, South Africa
| | - Frank Chidawanyika
- Weeds Division, Plant Protection Research Institute, Agricultural Research Council, Hilton, South Africa
- School of Life Sciences, University of KwaZulu-Natal, Scottsville, Pietermaritzburg, South Africa
| |
Collapse
|
25
|
Flatt T. Life-History Evolution and the Genetics of Fitness Components in Drosophila melanogaster. Genetics 2020; 214:3-48. [PMID: 31907300 PMCID: PMC6944413 DOI: 10.1534/genetics.119.300160] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 10/03/2019] [Indexed: 12/28/2022] Open
Abstract
Life-history traits or "fitness components"-such as age and size at maturity, fecundity and fertility, age-specific rates of survival, and life span-are the major phenotypic determinants of Darwinian fitness. Analyzing the evolution and genetics of these phenotypic targets of selection is central to our understanding of adaptation. Due to its simple and rapid life cycle, cosmopolitan distribution, ease of maintenance in the laboratory, well-understood evolutionary genetics, and its versatile genetic toolbox, the "vinegar fly" Drosophila melanogaster is one of the most powerful, experimentally tractable model systems for studying "life-history evolution." Here, I review what has been learned about the evolution and genetics of life-history variation in D. melanogaster by drawing on numerous sources spanning population and quantitative genetics, genomics, experimental evolution, evolutionary ecology, and physiology. This body of work has contributed greatly to our knowledge of several fundamental problems in evolutionary biology, including the amount and maintenance of genetic variation, the evolution of body size, clines and climate adaptation, the evolution of senescence, phenotypic plasticity, the nature of life-history trade-offs, and so forth. While major progress has been made, important facets of these and other questions remain open, and the D. melanogaster system will undoubtedly continue to deliver key insights into central issues of life-history evolution and the genetics of adaptation.
Collapse
Affiliation(s)
- Thomas Flatt
- Department of Biology, University of Fribourg, CH-1700, Switzerland
| |
Collapse
|
26
|
Hoedjes KM, van den Heuvel J, Kapun M, Keller L, Flatt T, Zwaan BJ. Distinct genomic signals of lifespan and life history evolution in response to postponed reproduction and larval diet in Drosophila. Evol Lett 2019; 3:598-609. [PMID: 31867121 PMCID: PMC6906992 DOI: 10.1002/evl3.143] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 09/08/2019] [Accepted: 09/11/2019] [Indexed: 12/14/2022] Open
Abstract
Reproduction and diet are two major factors controlling the physiology of aging and life history, but how they interact to affect the evolution of longevity is unknown. Moreover, although studies of large-effect mutants suggest an important role of nutrient sensing pathways in regulating aging, the genetic basis of evolutionary changes in lifespan remains poorly understood. To address these questions, we analyzed the genomes of experimentally evolved Drosophila melanogaster populations subjected to a factorial combination of two selection regimes: reproductive age (early versus postponed), and diet during the larval stage ("low," "control," "high"), resulting in six treatment combinations with four replicate populations each. Selection on reproductive age consistently affected lifespan, with flies from the postponed reproduction regime having evolved a longer lifespan. In contrast, larval diet affected lifespan only in early-reproducing populations: flies adapted to the "low" diet lived longer than those adapted to control diet. Here, we find genomic evidence for strong independent evolutionary responses to either selection regime, as well as loci that diverged in response to both regimes, thus representing genomic interactions between the two. Overall, we find that the genomic basis of longevity is largely independent of dietary adaptation. Differentiated loci were not enriched for "canonical" longevity genes, suggesting that naturally occurring genic targets of selection for longevity differ qualitatively from variants found in mutant screens. Comparing our candidate loci to those from other "evolve and resequence" studies of longevity demonstrated significant overlap among independent experiments. This suggests that the evolution of longevity, despite its presumed complex and polygenic nature, might be to some extent convergent and predictable.
Collapse
Affiliation(s)
- Katja M. Hoedjes
- Department of Ecology and EvolutionUniversity of LausanneLausanneSwitzerland
| | - Joost van den Heuvel
- Laboratory of Genetics, Plant Sciences GroupWageningen UniversityWageningenThe Netherlands
- Institute for Cell and Molecular BiosciencesNewcastle UniversityNewcastle Upon TyneUnited Kingdom
| | - Martin Kapun
- Department of Ecology and EvolutionUniversity of LausanneLausanneSwitzerland
- Department of BiologyUniversity of FribourgFribourgSwitzerland
- Current Address: Department of Evolutionary Biology and Environmental StudiesUniversity of ZurichZurichSwitzerland
| | - Laurent Keller
- Department of Ecology and EvolutionUniversity of LausanneLausanneSwitzerland
| | - Thomas Flatt
- Department of Ecology and EvolutionUniversity of LausanneLausanneSwitzerland
- Department of BiologyUniversity of FribourgFribourgSwitzerland
| | - Bas J. Zwaan
- Laboratory of Genetics, Plant Sciences GroupWageningen UniversityWageningenThe Netherlands
| |
Collapse
|
27
|
Nanda KP, Kumari C, Dubey M, Firdaus H. Chronic lead (Pb) exposure results in diminished hemocyte count and increased susceptibility to bacterial infection in Drosophila melanogaster. CHEMOSPHERE 2019; 236:124349. [PMID: 31326753 DOI: 10.1016/j.chemosphere.2019.124349] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 07/09/2019] [Accepted: 07/10/2019] [Indexed: 06/10/2023]
Abstract
Heavy metal Pb is a common toxic pollutant present in our environment adversely affecting health of the living organisms. Recent studies suggest positive correlation between heavy metal exposure and immune dysfunction and present work utilizes Drosophila to address this issue in relation to Pb exposure. In-vivo Pb toxicity was established by dietary intake where essential parameters like development and life span were found to be hampered and augmented upon metallothionein B (mtnB) downregulation hinting towards potential role of mtnB in Pb detoxification. Further response of Drosophila to B. subtilis bacterial infection was monitored by carrying out oral infections. Pb fed flies showed increased susceptibility to infection as compared to their controls. Since Drosophila hemocytes play dual role as immune cells, we checked for the total hemocyte count and found significant decrease in hemocyte numbers in Pb fed larvae. Both crystal cells and plasmatocytes, the two major hemocytes in third instar larval hemolymph were reduced. However we did not find any visible morphological changes in Giemsa stained hemocytes. Crystal cells are crucial for synthesis and release of phenoloxidase (PO), an enzyme required for melanin clot synthesis and deposition. PO activity assessed from total hemolymph protein isolates was found to be substantially decreased in Pb raised animals. Results were also confirmed by spot test and native gel activity assay of PO. Overall our results suggest immunotoxic effect of Pb through decrease in hemocyte count including crystal cell which in turn leads to decreased PO activity and increased susceptibility to B. subtilis.
Collapse
Affiliation(s)
- Kumari Pragati Nanda
- Department of Life Sciences, Central University of Jharkhand, Ratu-Lohardaga Road, Brambe, Ranchi, 835205, Jharkhand, India
| | - Chandani Kumari
- Department of Life Sciences, Central University of Jharkhand, Ratu-Lohardaga Road, Brambe, Ranchi, 835205, Jharkhand, India
| | - Madhavi Dubey
- Department of Life Sciences, Central University of Jharkhand, Ratu-Lohardaga Road, Brambe, Ranchi, 835205, Jharkhand, India
| | - Hena Firdaus
- Department of Life Sciences, Central University of Jharkhand, Ratu-Lohardaga Road, Brambe, Ranchi, 835205, Jharkhand, India.
| |
Collapse
|
28
|
Akami M, Ren XM, Qi X, Mansour A, Gao B, Cao S, Niu CY. Symbiotic bacteria motivate the foraging decision and promote fecundity and survival of Bactrocera dorsalis (Diptera: Tephritidae). BMC Microbiol 2019; 19:229. [PMID: 31640545 PMCID: PMC6805663 DOI: 10.1186/s12866-019-1607-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 09/30/2019] [Indexed: 01/30/2023] Open
Abstract
Background The gut bacteria of tephritid fruit flies play prominent roles in nutrition, reproduction, maintenance and ecological adaptations of the host. Here, we adopted an approach based on direct observation of symbiotic or axenic flies feeding on dishes seeded with drops of full diet (containing all amino acids) or full diet supplemented with bacteria at similar concentrations to explore the effects of intestinal bacteria on foraging decision and fitness of Bactrocera dorsalis. Results The results show that intestinal probiotics elicit beneficial foraging decision and enhance the female reproduction fitness and survival of B. dorsalis (symbiotic and axenic), yet preferences for probiotic diets were significantly higher in axenic flies to which they responded faster compared to full diet. Moreover, females fed diet supplemented with Pantoea dispersa and Enterobacter cloacae laid more eggs but had shorter lifespan while female fed Enterococcus faecalis and Klebsiella oxytoca enriched diets lived longer but had lower fecundity compared to the positive control. Conversely, flies fed sugar diet (negative control) were not able to produce eggs, but lived longer than those from the positive control. Conclusions These results suggest that intestinal bacteria can drive the foraging decision in a way which promotes the reproduction and survival of B. dorsalis. Our data highlight the potentials of gut bacterial isolates to control the foraging behavior of the fly and empower the sterile insect technique (SIT) program through the mass rearing.
Collapse
Affiliation(s)
- Mazarin Akami
- Department of Plant Protection, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China.,Department of Biological Sciences, Faculty of Science, University of Ngaoundere, P.O Box 454, Ngaoundere, Cameroon
| | - Xue-Ming Ren
- Department of Plant Protection, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xuewei Qi
- Department of Plant Protection, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Abdelaziz Mansour
- Department of Plant Protection, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China.,Department of Economic Entomology and Pesticides, Faculty of Agriculture, Cairo University, Giza, 12613, Egypt
| | - Bingli Gao
- Department of Plant Protection, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shuai Cao
- Department of Plant Protection, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chang-Ying Niu
- Department of Plant Protection, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
29
|
Olazcuaga L, Rode NO, Foucaud J, Facon B, Ravigné V, Ausset A, Leménager N, Loiseau A, Gautier M, Estoup A, Hufbauer RA. Oviposition Preference and Larval Performance of Drosophila suzukii (Diptera: Drosophilidae), Spotted-Wing Drosophila: Effects of Fruit Identity and Composition. ENVIRONMENTAL ENTOMOLOGY 2019; 48:867-881. [PMID: 31157861 DOI: 10.1093/ee/nvz062] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Indexed: 06/09/2023]
Abstract
A better understanding of the factors affecting host plant use by spotted-wing drosophila (Drosophila suzukii) could aid in the development of efficient management tools and practices to control this pest. Here, proxies of both preference (maternal oviposition behavior) and performance (adult emergence) were evaluated for 12 different fruits in the form of purees. The effect of the chemical composition of the fruits on preference and performance traits was then estimated. We synthesized the literature to interpret our findings in the light of previous studies that measured oviposition preference and larval performance of D. suzukii. We show that fruit identity influences different parts of the life cycle, including oviposition preference under both choice and no-choice conditions, emergence rate, development time, and number of emerging adults. Blackcurrant was always among the most preferred fruit we used, while grape and tomato were the least preferred fruits. Larvae performed better in cranberry, raspberry, strawberry, and cherry than in the other fruits tested. We found that fruit chemical compounds can explain part of the effect of fruit on D. suzukii traits. In particular, oviposition preference under choice conditions was strongly influenced by fruit phosphorus content. In general, the consensus across studies is that raspberry, blackberry, and strawberry are among the best hosts while blackcurrant, grape and rose hips are poor hosts. Our results generally confirm this view but also suggest that oviposition preferences do not necessarily match larval performances. We discuss opportunities to use our results to develop new approaches for pest management.
Collapse
Affiliation(s)
- Laure Olazcuaga
- CBGP, INRA, CIRAD, IRD, Montpellier SupAgro, Univ Montpellier, Montpellier, France
| | - Nicolas O Rode
- CBGP, INRA, CIRAD, IRD, Montpellier SupAgro, Univ Montpellier, Montpellier, France
| | - Julien Foucaud
- CBGP, INRA, CIRAD, IRD, Montpellier SupAgro, Univ Montpellier, Montpellier, France
| | | | | | - Aurélien Ausset
- CBGP, INRA, CIRAD, IRD, Montpellier SupAgro, Univ Montpellier, Montpellier, France
| | - Nicolas Leménager
- CBGP, CIRAD, Montpellier SupAgro, INRA, IRD, Univ Montpellier, Montpellier, France
| | - Anne Loiseau
- CBGP, INRA, CIRAD, IRD, Montpellier SupAgro, Univ Montpellier, Montpellier, France
| | - Mathieu Gautier
- CBGP, INRA, CIRAD, IRD, Montpellier SupAgro, Univ Montpellier, Montpellier, France
| | - Arnaud Estoup
- CBGP, INRA, CIRAD, IRD, Montpellier SupAgro, Univ Montpellier, Montpellier, France
| | - Ruth A Hufbauer
- CBGP, INRA, CIRAD, IRD, Montpellier SupAgro, Univ Montpellier, Montpellier, France
- Department of Bioagricultural Science and Pest Management and Graduate Degree Program in Ecology, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
30
|
Aslan N, Büyükgüzel E, Büyükgüzel K. Oxidative Effects of Gemifloxacin on Some Biological Traits of Drosophila melanogaster (Diptera: Drosophilidae). ENVIRONMENTAL ENTOMOLOGY 2019; 48:667-673. [PMID: 30994172 DOI: 10.1093/ee/nvz039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Indexed: 06/09/2023]
Abstract
In recent times, several studies have been undertaken on the artificial mass-rearing of insects in which clinical antibacterial antibiotics, including gemifloxacin, which is a DNA gyrase and topoisomerases inhibitor, are amended into the diet to control microbial contamination and preserve diet. The findings of these studies have suggested the possibility that these antibiotics influence the biological traits of insects in relation to their oxidative effects. This study investigated the effects of gemifloxacin on Drosophila melanogaster (Meigen) survival rates, development times, and male-female adult longevity. And we also determined the effects of gemifloxacin on lipid peroxidation product, malondialdehyde, protein carbonyl levels, and glutathione S-transferase activity of fruit fly eggs. First instars were fed on artificial diets containing 150, 300, 600, and 900 mg/liter concentrations of gemifloxacin until adult emergence. Our results indicate that sublethal effects of gemifloxacin are likely to significantly impair adult fitness and life-history parameters in D. melanogaster, probably because of its oxidative effects.
Collapse
Affiliation(s)
- Nilay Aslan
- Molecular Biology and Genetics Department, Zonguldak Bülent Ecevit University, Zonguldak, Turkey
| | - Ender Büyükgüzel
- Molecular Biology and Genetics Department, Zonguldak Bülent Ecevit University, Zonguldak, Turkey
| | - Kemal Büyükgüzel
- Biology Department, Zonguldak Bülent Ecevit University, Zonguldak, Turkey
| |
Collapse
|
31
|
Nash W, Mohorianu I, Chapman T. Mate choice and gene expression signatures associated with nutritional adaptation in the medfly (Ceratitis capitata). Sci Rep 2019; 9:6704. [PMID: 31040302 PMCID: PMC6491435 DOI: 10.1038/s41598-019-42610-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 02/25/2019] [Indexed: 11/09/2022] Open
Abstract
Evolutionary responses to nutrition are key to understanding host shifts and the resulting potential for reproductive isolation. Experimental evolution has previously been used to describe the responses of the medfly (Ceratitis capitata) to larval diets with different nutritional properties. Within 30 generations this led to divergence in larval development time, egg to adult survival and adaptation in adult body size. Here we used mRNA-seq to identify differences in gene expression patterns in these same populations, using males from the 60th generation of nutritional selection. We validated differential expression by using qRT-PCR and found that genes linked to metabolism, oxidative phosphorylation and proteolysis were significantly over-represented among the differentially expressed genes. The results provide the first genome-wide survey of the putative mechanisms underpinning evolved responses to nutritional adaptation. In addition, we tested the hypothesis that nutritional adaptation can alter mating patterns. We found evidence for assortative mating by diet at generation 60, but not 90. Hence, the pattern was variable across generations and there was no evidence overall for any isolating mating divergence between the lines. Overall, the results provide insight into the mechanisms underpinning dietary adaptation and extend our knowledge of which traits represent core responses to nutritional selection.
Collapse
Affiliation(s)
- Will Nash
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK.,Earlham Institute, Norwich Research Park, Norwich, NR4 7UZ, UK
| | - Irina Mohorianu
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK. .,School of Computing Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK.
| | - Tracey Chapman
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK.
| |
Collapse
|
32
|
Morimoto J, Tabrizi ST, Lundbäck I, Mainali B, Taylor PW, Ponton F. Larval foraging decisions in competitive heterogeneous environments accommodate diets that support egg-to-adult development in a polyphagous fly. ROYAL SOCIETY OPEN SCIENCE 2019; 6:190090. [PMID: 31183148 PMCID: PMC6502372 DOI: 10.1098/rsos.190090] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 03/20/2019] [Indexed: 06/09/2023]
Abstract
In holometabolous insects, larval nutrition is a key factor underpinning development and fitness. Heterogeneity in the nutritional environment and larval competition can force larvae to forage in suboptimal diets, with potential downstream fitness effects. Little is known about how larvae respond to competitive heterogeneous environments, and whether variation in these responses affects current and next generations. Here, we designed nutritionally heterogeneous foraging arenas by modifying nutrient concentration, where groups of the polyphagous fruit fly Bactrocera tryoni could forage freely at various levels of larval competition. Larval foraging preferences were highly consistent and independent of larval competition, with greatest foraging propensity for high (100%) followed by intermediate (80% and 60%) nutrient concentration diets, and avoidance of lower concentration diets (less than 60%). We then used these larval preferences (i.e. 100%, 80% and 60% diets) in fitness assays in which larvae competition was maintained constant, and showed that nutrient concentrations selected by the larvae in the foraging trials had no effect on fitness-related traits such as egg hatching and pupation success, adult flight ability, sex ratio, percentage of emergence, nor on adult cold tolerance, fecundity and next-generation pupal weight. These results support the idea that polyphagous species can exploit diverse hosts and nutritional conditions with minimal fitness costs to thrive in new environments.
Collapse
Affiliation(s)
- Juliano Morimoto
- Department of Biological Sciences, Macquarie University, New South Wales 2109, Australia
- Programa de Pós-Graduação em Ecologia e Conservação, Federal University of Paraná, Curitiba 19031, CEP: 81531-990, Brazil
| | - Shabnam Tarahi Tabrizi
- Department of Biological Sciences, Macquarie University, New South Wales 2109, Australia
| | - Ida Lundbäck
- Department of Biological Sciences, Macquarie University, New South Wales 2109, Australia
| | - Bishwo Mainali
- Department of Biological Sciences, Macquarie University, New South Wales 2109, Australia
| | - Phillip W. Taylor
- Department of Biological Sciences, Macquarie University, New South Wales 2109, Australia
| | - Fleur Ponton
- Department of Biological Sciences, Macquarie University, New South Wales 2109, Australia
| |
Collapse
|
33
|
Jaumann S, Snell-Rood EC. Adult nutritional stress decreases oviposition choosiness and fecundity in female butterflies. Behav Ecol 2019. [DOI: 10.1093/beheco/arz022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Sarah Jaumann
- Department of Ecology, Evolution and Behavior, University of Minnesota, MN, USA
- Department of Biological Sciences, The George Washington University, NW, Suite, Washington, DC, USA
| | - Emilie C Snell-Rood
- Department of Ecology, Evolution and Behavior, University of Minnesota, MN, USA
| |
Collapse
|
34
|
May CM, van den Heuvel J, Doroszuk A, Hoedjes KM, Flatt T, Zwaan BJ. Adaptation to developmental diet influences the response to selection on age at reproduction in the fruit fly. J Evol Biol 2019; 32:425-437. [PMID: 30735275 PMCID: PMC6850652 DOI: 10.1111/jeb.13425] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 02/04/2019] [Indexed: 11/30/2022]
Abstract
Experimental evolution (EE) is a powerful tool for addressing how environmental factors influence life-history evolution. While in nature different selection pressures experienced across the lifespan shape life histories, EE studies typically apply selection pressures one at a time. Here, we assess the consequences of adaptation to three different developmental diets in combination with classical selection for early or late reproduction in the fruit fly Drosophila melanogaster. We find that the response to each selection pressure is similar to that observed when they are applied independently, but the overall magnitude of the response depends on the selection regime experienced in the other life stage. For example, adaptation to increased age at reproduction increased lifespan across all diets; however, the extent of the increase was dependent on the dietary selection regime. Similarly, adaptation to a lower calorie developmental diet led to faster development and decreased adult weight, but the magnitude of the response was dependent on the age-at-reproduction selection regime. Given that multiple selection pressures are prevalent in nature, our findings suggest that trade-offs should be considered not only among traits within an organism, but also among adaptive responses to different-sometimes conflicting-selection pressures, including across life stages.
Collapse
Affiliation(s)
- Christina M May
- Laboratory of Genetics, Wageningen University, Wageningen, the Netherlands
| | - Joost van den Heuvel
- Laboratory of Genetics, Wageningen University, Wageningen, the Netherlands.,Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, UK
| | - Agnieszka Doroszuk
- Laboratory of Genetics, Wageningen University, Wageningen, the Netherlands.,Rijk Zwaan, Hague, the Netherlands
| | - Katja M Hoedjes
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Thomas Flatt
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland.,Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Bas J Zwaan
- Laboratory of Genetics, Wageningen University, Wageningen, the Netherlands
| |
Collapse
|
35
|
Karataş A. Dairy Products Added to Rearing Media Negatively Effect Drosophila melanogaster (Diptera: Drosophilidae) Egg Production and Larval Development. JOURNAL OF INSECT SCIENCE (ONLINE) 2018; 18:5184453. [PMID: 30445635 PMCID: PMC6237243 DOI: 10.1093/jisesa/iey107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Indexed: 06/09/2023]
Abstract
This study examined the effect of kefir, yogurt, and milk on egg production and development in Drosophila melanogaster Meigen. Kefir, yogurt, and milk were added to the Drosophila culture medium. First they were fed to mature individuals and then these females laid eggs on medium containing kefir, yogurt, and milk. Later the development of eggs and larvae was examined. The experiments were conducted on two generations, the F1 generation reared with additives in the media and F2 without the additives. The effects of these substances on the basic stages of development were also examined. In the experimental groups, the numbers of eggs and larvae decreased considerably in both the F1 and F2 generations. The comparison between the experimental groups themselves also showed a difference. In both generations, development of eggs into third instar larvae was reduced and metamorphosis was delayed. In addition, morphological abnormalities were observed in the larvae. Overall the results showed that kefir, yogurt, and milk affected egg and larva development negatively and this negative effect continued in the F2 generation. The continuation of this negative effect in the F2 generation, which was not exposed to various milk additives, is an interesting finding. These results indicate that the nutrients from the milk and the milk products used were neither utilized by nor beneficial for this insect.
Collapse
Affiliation(s)
- Ayla Karataş
- Education Faculty, Kocaeli University, Umuttepe Campus, Kocaeli, Turkey
| |
Collapse
|
36
|
Aw WC, Towarnicki SG, Melvin RG, Youngson NA, Garvin MR, Hu Y, Nielsen S, Thomas T, Pickford R, Bustamante S, Vila-Sanjurjo A, Smyth GK, Ballard JWO. Genotype to phenotype: Diet-by-mitochondrial DNA haplotype interactions drive metabolic flexibility and organismal fitness. PLoS Genet 2018; 14:e1007735. [PMID: 30399141 PMCID: PMC6219761 DOI: 10.1371/journal.pgen.1007735] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 10/02/2018] [Indexed: 02/07/2023] Open
Abstract
Diet may be modified seasonally or by biogeographic, demographic or cultural shifts. It can differentially influence mitochondrial bioenergetics, retrograde signalling to the nuclear genome, and anterograde signalling to mitochondria. All these interactions have the potential to alter the frequencies of mtDNA haplotypes (mitotypes) in nature and may impact human health. In a model laboratory system, we fed four diets varying in Protein: Carbohydrate (P:C) ratio (1:2, 1:4, 1:8 and 1:16 P:C) to four homoplasmic Drosophila melanogaster mitotypes (nuclear genome standardised) and assayed their frequency in population cages. When fed a high protein 1:2 P:C diet, the frequency of flies harbouring Alstonville mtDNA increased. In contrast, when fed the high carbohydrate 1:16 P:C food the incidence of flies harbouring Dahomey mtDNA increased. This result, driven by differences in larval development, was generalisable to the replacement of the laboratory diet with fruits having high and low P:C ratios, perturbation of the nuclear genome and changes to the microbiome. Structural modelling and cellular assays suggested a V161L mutation in the ND4 subunit of complex I of Dahomey mtDNA was mildly deleterious, reduced mitochondrial functions, increased oxidative stress and resulted in an increase in larval development time on the 1:2 P:C diet. The 1:16 P:C diet triggered a cascade of changes in both mitotypes. In Dahomey larvae, increased feeding fuelled increased β-oxidation and the partial bypass of the complex I mutation. Conversely, Alstonville larvae upregulated genes involved with oxidative phosphorylation, increased glycogen metabolism and they were more physically active. We hypothesise that the increased physical activity diverted energy from growth and cell division and thereby slowed development. These data further question the use of mtDNA as an assumed neutral marker in evolutionary and population genetic studies. Moreover, if humans respond similarly, we posit that individuals with specific mtDNA variations may differentially metabolise carbohydrates, which has implications for a variety of diseases including cardiovascular disease, obesity, and perhaps Parkinson's Disease.
Collapse
Affiliation(s)
- Wen C. Aw
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Samuel G. Towarnicki
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Richard G. Melvin
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Neil A. Youngson
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Michael R. Garvin
- School of Biological Sciences, Washington State University, Pullman, Washington, United States of America
| | - Yifang Hu
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
| | - Shaun Nielsen
- Centre for Marine Bio-Innovation and School of Biological, Earth and Environmental Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Torsten Thomas
- Centre for Marine Bio-Innovation and School of Biological, Earth and Environmental Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Russell Pickford
- Bioanalytical Mass Spectrometry Facility, Mark Wainwright Analytical Center, The University of New South Wales, Sydney, NSW, Australia
| | - Sonia Bustamante
- Bioanalytical Mass Spectrometry Facility, Mark Wainwright Analytical Center, The University of New South Wales, Sydney, NSW, Australia
| | - Antón Vila-Sanjurjo
- Grupo GIBE, Bioloxía Celular e Molecular, Facultade de Ciencias, Universidade da Coruña (UDC), Campus Zapateira s/n, A Coruña, Spain
| | - Gordon K. Smyth
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- School of Mathematics and Statistics, The University of Melbourne, Melbourne, Victoria, Australia
| | - J. William O. Ballard
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
37
|
Buchanan JL, Meiklejohn CD, Montooth KL. Mitochondrial Dysfunction and Infection Generate Immunity-Fecundity Tradeoffs in Drosophila. Integr Comp Biol 2018; 58:591-603. [PMID: 29945242 PMCID: PMC6145415 DOI: 10.1093/icb/icy078] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Physiological responses to short-term environmental stressors, such as infection, can have long-term consequences for fitness, particularly if the responses are inappropriate or nutrient resources are limited. Genetic variation affecting energy acquisition, storage, and usage can limit cellular energy availability and may influence resource-allocation tradeoffs even when environmental nutrients are plentiful. Here, we utilized Drosophila mitochondrial-nuclear genotypes to test whether disrupted mitochondrial function interferes with nutrient-sensing pathways, and whether this disruption has consequences for tradeoffs between immunity and fecundity. We found that an energetically-compromised genotype was relatively resistant to rapamycin-a drug that targets nutrient-sensing pathways and mimics resource limitation. Dietary resource limitation decreased survival of energetically-compromised flies. Furthermore, survival of infection with a natural pathogen was decreased in this genotype, and females of this genotype experienced immunity-fecundity tradeoffs that were not evident in genotypic controls with normal energy metabolism. Together, these results suggest that this genotype may have little excess energetic capacity and fewer cellular nutrients, even when environmental nutrients are not limiting. Genetic variation in energy metabolism may therefore act to limit the resources available for allocation to life-history traits in ways that generate tradeoffs even when environmental resources are not limiting.
Collapse
Affiliation(s)
- Justin L Buchanan
- School of Biological Sciences, University of Nebraska–Lincoln, 1104 T St, Lincoln, NE 68588-0118, USA
| | - Colin D Meiklejohn
- School of Biological Sciences, University of Nebraska–Lincoln, 1104 T St, Lincoln, NE 68588-0118, USA
| | - Kristi L Montooth
- School of Biological Sciences, University of Nebraska–Lincoln, 1104 T St, Lincoln, NE 68588-0118, USA
| |
Collapse
|
38
|
Shimell M, Pan X, Martin FA, Ghosh AC, Leopold P, O'Connor MB, Romero NM. Prothoracicotropic hormone modulates environmental adaptive plasticity through the control of developmental timing. Development 2018; 145:dev.159699. [PMID: 29467242 DOI: 10.1242/dev.159699] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 02/12/2018] [Indexed: 12/19/2022]
Abstract
Adult size and fitness are controlled by a combination of genetics and environmental cues. In Drosophila, growth is confined to the larval phase and final body size is impacted by the duration of this phase, which is under neuroendocrine control. The neuropeptide prothoracicotropic hormone (PTTH) has been proposed to play a central role in controlling the length of the larval phase through regulation of ecdysone production, a steroid hormone that initiates larval molting and metamorphosis. Here, we test this by examining the consequences of null mutations in the Ptth gene for Drosophila development. Loss of Ptth causes several developmental defects, including a delay in developmental timing, increase in critical weight, loss of coordination between body and imaginal disc growth, and reduced adult survival in suboptimal environmental conditions such as nutritional deprivation or high population density. These defects are caused by a decrease in ecdysone production associated with altered transcription of ecdysone biosynthetic genes. Therefore, the PTTH signal contributes to coordination between environmental cues and the developmental program to ensure individual fitness and survival.
Collapse
Affiliation(s)
- MaryJane Shimell
- Department of Genetics Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Xueyang Pan
- Department of Genetics Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Francisco A Martin
- University Côte d'Azur, CNRS, Inserm, Institute of Biology Valrose, Parc Valrose, 06108 Nice, France.,Cajal Institute, Av Doctor Arce 37, 28002 Madrid, Spain
| | - Arpan C Ghosh
- Department of Genetics Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Pierre Leopold
- University Côte d'Azur, CNRS, Inserm, Institute of Biology Valrose, Parc Valrose, 06108 Nice, France
| | - Michael B O'Connor
- Department of Genetics Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Nuria M Romero
- University Côte d'Azur, CNRS, Inserm, Institute of Biology Valrose, Parc Valrose, 06108 Nice, France
| |
Collapse
|
39
|
Wang F, Chambi C, Li Z, Huang C, Ma Y, Li C, Tian X, Sangija F, Ntambo MS, Kankonda OM, Hafeez S, Anwar T, Sharif R. Influence of Supplemental Protein on the Life Expectancy and Reproduction of the Chinese Citrus Fruit Fly, Bactrocera minax (Enderlein) (Tetradacus minax) (Diptera: Tephritidae). JOURNAL OF INSECT SCIENCE (ONLINE) 2018; 18:4924853. [PMID: 29718487 PMCID: PMC5842393 DOI: 10.1093/jisesa/iey008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Indexed: 06/08/2023]
Abstract
Bactrocera minax (Enderlein) (Diptera: Tephritidae) is a major citrus pest in China, whose artificial rearing technology of the adult is not well documented to date. In this study, we tried to determine if supplementing proteins to the adult diet could result in the enhancement of some fitness parameters of B. minax. Four feeds with varying protein source were provided as F0 (water), F1 (sucrose), F2 (sucrose + yeast), and F3 (sucrose + peptone). F0 and F1 being the control, F2 and F3 were protein food types. The results showed that adults fed by F2 and F3 lived longer with 40.1 d and 32.8 d, respectively, had reduced death rates (death peaks were delayed for 5.6 d and 4.1 d, respectively), increased mating frequencies (8.1 and 5.3 per females, 4.7 and 7.3 per males, respectively), and longer mating durations (with 42 d and 34 d). In addition, females recorded an increased adult ovary development, more egg load (with 94.8 and 77.3 brood eggs per ovary) and to greater oviposition rates of 63.2 eggs/female and 19.3 eggs/female. Based on our results, protein supplements enhanced B. minax survival, mating, and fecundity. This study does not only provide basic knowledge to implement artificial rearing of B. minax, but also deepens our understanding on its physiology that could be used to enhance the management of the pest.
Collapse
Affiliation(s)
- Fulian Wang
- Hubei Collaborative Innovation Center for Grain Industry, Institute of Insect Sciences, College of Agriculture, Yangtze University, Jingzhou, China
| | - Consolatha Chambi
- Hubei Collaborative Innovation Center for Grain Industry, Institute of Insect Sciences, College of Agriculture, Yangtze University, Jingzhou, China
- Ministry of Agriculture, Livestock and Fisheries, Department of Land use Planning and Management, Dodoma, Tanzania
| | - Zaiyuan Li
- Hubei Collaborative Innovation Center for Grain Industry, Institute of Insect Sciences, College of Agriculture, Yangtze University, Jingzhou, China
| | - Cong Huang
- Hubei Collaborative Innovation Center for Grain Industry, Institute of Insect Sciences, College of Agriculture, Yangtze University, Jingzhou, China
| | - Yuekun Ma
- Hubei Collaborative Innovation Center for Grain Industry, Institute of Insect Sciences, College of Agriculture, Yangtze University, Jingzhou, China
| | - Chuanren Li
- Hubei Collaborative Innovation Center for Grain Industry, Institute of Insect Sciences, College of Agriculture, Yangtze University, Jingzhou, China
| | - Xiaohai Tian
- Engineering Research of Ecology and Agricultural Uses of Wetlands (China Ministry of Education), Yangtze University Jingzhou, Hubei, P.R. China
| | - Frank Sangija
- College of food science, Southwest University, Beibei Chongqing, China PRC
| | - Mbuya Sylvain Ntambo
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Onesime M Kankonda
- Laboratory of Ecology and Management of Animal Resources, Faculty of Sciences and Biodiversity Monitoring Center, University of Kisangani, Kisangani, Democratic Republic of Congo
| | - Sumaira Hafeez
- Engineering Research of Ecology and Agricultural Uses of Wetlands (China Ministry of Education), Yangtze University Jingzhou, Hubei, P.R. China
| | - Toheed Anwar
- Engineering Research of Ecology and Agricultural Uses of Wetlands (China Ministry of Education), Yangtze University Jingzhou, Hubei, P.R. China
| | - Rahat Sharif
- College of Horticulture, Northwest Agriculture and Forestry University, Yangling, China
| |
Collapse
|
40
|
Young Y, Buckiewicz N, Long TAF. Nutritional geometry and fitness consequences in Drosophila suzukii, the Spotted-Wing Drosophila. Ecol Evol 2018; 8:2842-2851. [PMID: 29531699 PMCID: PMC5838031 DOI: 10.1002/ece3.3849] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 12/13/2017] [Accepted: 12/19/2017] [Indexed: 01/17/2023] Open
Abstract
Since its arrival to North America less than a decade ago, the invasive Spotted-Wing Drosophila (Drosophila suzukii) has inflicted substantial economic losses on soft fruit agriculture due to its ability to oviposit into ripening fruits. More effective management approaches for this species are needed, but little is known about the factors that influence behavioral choices made by D. suzukii when selecting hosts, or the consequences that their offspring experience when developing in different environments. Using a nutritional geometry methodology, we found that the ratio of proteins-to-carbohydrates (P:C) present in media greatly influenced adult D. suzukii behavior and subsequent offspring development. Whereas adult flies showed a strong bias in their oviposition and association behaviors toward carbohydrate-rich foods, larval survival and eclosion rate were strongly dependent on protein availability. Here, we explore the preference-performance hypothesis (PPH), in which females are predicted to oviposit on medias that provide the greatest offspring benefits, in regard to its relevance in D. suzukii behavior and consequences for management. Our results provide valuable insight into the ecology and evolution of this species that may hopefully lead to more effective management strategies.
Collapse
Affiliation(s)
- Yvonne Young
- Department of BiologyWilfrid Laurier UniversityWaterlooONCanada
| | | | | |
Collapse
|
41
|
Jang T, Lee KP. Comparing the impacts of macronutrients on life-history traits in larval and adult Drosophila melanogaster: the use of nutritional geometry and chemically defined diets. J Exp Biol 2018; 221:jeb.181115. [DOI: 10.1242/jeb.181115] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 08/28/2018] [Indexed: 01/04/2023]
Abstract
Protein and carbohydrate are the two major macronutrients that exert profound influences over fitness in many organisms, including Drosophila melanogaster. Our understanding of how these macronutrients shape the components of fitness in D. melanogaster has been greatly enhanced by the use of nutritional geometry, but most nutritional geometric analyses on this species have been conducted using semi-synthetic diets that are not chemically well-defined. Here we combined the use of nutritional geometry and chemically defined diets to compare the patterns of larval and adult life-history traits expressed across 34 diets systematically varying in protein:carbohydrate (P:C) ratio and in protein plus carbohydrate (P+C) concentration. The shape of the response surfaces constructed for all larval and adult traits differed significantly from one another, with the nutritional optima being identified at P:C 1:4 for lifespan (P+C 120 g l−1), 1:2 for egg-to-adult viability (120 g l−1), 1:1 for female body mass at adult eclosion (240 g l−1) and lifetime fecundity (360 g l−1), 2:1 for larval developmental rate (60 g l−1), and 8:1 for egg production rate (120 g l−1). Such divergence in nutritional optima among life-history traits indicates that D. melanogaster confined to a single diet cannot maximize the expression of these traits simultaneously and thus may face a life-history trade-off. Our data provide the most comprehensive and nutritionally explicit analysis of the impacts of macronutrients on life-history traits in D. melanogaster and support the emerging notion that the fundamental trade-offs among life-history traits are mediated by macronutrients.
Collapse
Affiliation(s)
- Taehwan Jang
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea
| | - Kwang Pum Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
42
|
Stefana MI, Driscoll PC, Obata F, Pengelly AR, Newell CL, MacRae JI, Gould AP. Developmental diet regulates Drosophila lifespan via lipid autotoxins. Nat Commun 2017; 8:1384. [PMID: 29123106 PMCID: PMC5680271 DOI: 10.1038/s41467-017-01740-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Accepted: 10/13/2017] [Indexed: 12/19/2022] Open
Abstract
Early-life nourishment exerts long-term influences upon adult physiology and disease risk. These lasting effects of diet are well established but the underlying mechanisms are only partially understood. Here we show that restricting dietary yeast during Drosophila development can, depending upon the subsequent adult environment, more than double median lifespan. Developmental diet acts via a long-term influence upon the adult production of toxic molecules, which we term autotoxins, that are shed into the environment and shorten the lifespan of both sexes. Autotoxins are synthesised by oenocytes and some of them correspond to alkene hydrocarbons that also act as pheromones. This study identifies a mechanism by which the developmental dietary history of an animal regulates its own longevity and that of its conspecific neighbours. It also has important implications for the design of lifespan experiments as autotoxins can influence the regulation of longevity by other factors including diet, sex, insulin signalling and population density.
Collapse
Affiliation(s)
- M Irina Stefana
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
- JDRF/Wellcome Diabetes and Inflammation Laboratory, Wellcome Centre for Human Genetics, Nuffield Department of Medicine, NIHR Oxford Biomedical Research Centre, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Paul C Driscoll
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Fumiaki Obata
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | | | - Clare L Newell
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - James I MacRae
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Alex P Gould
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.
| |
Collapse
|
43
|
Brookheart RT, Duncan JG. Modeling dietary influences on offspring metabolic programming in Drosophila melanogaster. Reproduction 2017; 152:R79-90. [PMID: 27450801 DOI: 10.1530/rep-15-0595] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 05/17/2016] [Indexed: 01/08/2023]
Abstract
The influence of nutrition on offspring metabolism has become a hot topic in recent years owing to the growing prevalence of maternal and childhood obesity. Studies in mammals have identified several factors correlating with parental and early offspring dietary influences on progeny health; however, the molecular mechanisms that underlie these factors remain undiscovered. Mammalian metabolic tissues and pathways are heavily conserved in Drosophila melanogaster, making the fly an invaluable genetic model organism for studying metabolism. In this review, we discuss the metabolic similarities between mammals and Drosophila and present evidence supporting its use as an emerging model of metabolic programming.
Collapse
Affiliation(s)
- Rita T Brookheart
- Department of PediatricsWashington University School of Medicine, St Louis, MO, USA
| | - Jennifer G Duncan
- Department of PediatricsWashington University School of Medicine, St Louis, MO, USA
| |
Collapse
|
44
|
Fischman BJ, Pitts-Singer TL, Robinson GE. Nutritional Regulation of Phenotypic Plasticity in a Solitary Bee (Hymenoptera: Megachilidae). ENVIRONMENTAL ENTOMOLOGY 2017; 46:1070-1079. [PMID: 28981639 PMCID: PMC5850749 DOI: 10.1093/ee/nvx119] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Indexed: 05/16/2023]
Abstract
Phenotypic plasticity involves adaptive responses to predictable environmental fluctuations and may promote evolutionary change. We studied the regulation of phenotypic plasticity in an important agricultural pollinator, the solitary alfalfa leafcutting bee (Megachile rotundata F.). Specifically, we investigated how larval nutrition affects M. rotundata diapause plasticity and how diapause plasticity affects adult female reproductive behavior. Field surveys and laboratory manipulations of aspects of larval diet demonstrated nutritional regulation of M. rotundata diapause plasticity. Manipulation of larval diet quality through the addition of royal jelly, the caste-determining substance of the honey bee Apis mellifera L., increased the probability of diapause in M. rotundata. We also found that larval nutrition and diapause status affected M. rotundata adult female reproductive behavior. Nutritional effects on larval diapause that also impact adult fitness have intriguing implications for the evolution of developmental plasticity in bees. In particular, as the solitary lifestyle of M. rotundata is considered to be the ancestral condition in bees, nutritionally regulated plasticity may have been an ancestral condition in all bees that facilitated the evolution of other forms of phenotypic plasticity, such as the castes of social bees.
Collapse
Affiliation(s)
- Brielle J Fischman
- Program in Ecology, Evolution, and Conservation Biology, University of Illinois, Urbana, IL 61801 ()
- Current address: Department of Biology, Hobart and William Smith Colleges, Geneva, NY 14456
| | | | - Gene E Robinson
- Department of Entomology, Neuroscience Program, and Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, IL 61801 ()
| |
Collapse
|
45
|
Zandveld J, van den Heuvel J, Mulder M, Brakefield PM, Kirkwood TBL, Shanley DP, Zwaan BJ. Pervasive gene expression responses to a fluctuating diet in Drosophila melanogaster: The importance of measuring multiple traits to decouple potential mediators of life span and reproduction. Evolution 2017; 71:2572-2583. [PMID: 28833068 DOI: 10.1111/evo.13327] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 08/02/2017] [Accepted: 08/03/2017] [Indexed: 01/08/2023]
Abstract
Phenotypic plasticity is an important concept in life-history evolution, and most organisms, including Drosophila melanogaster, show a plastic life-history response to diet. However, little is known about how these life-history responses are mediated. In this study, we compared adult female flies fed an alternating diet (yoyo flies) with flies fed a constant low (CL) or high (CH) diet and tested how whole genome expression was affected by these diet regimes and how the transcriptional responses related to different life-history traits. We showed that flies were able to respond quickly to diet fluctuations throughout life span by drastically changing their transcription. Importantly, by measuring the response of multiple life-history traits we were able to decouple groups of genes associated with life span or reproduction, life-history traits that often covary with a diet change. A coexpression network analysis uncovered which genes underpin the separate and shared regulation of these life-history traits. Our study provides essential insights to help unravel the genetic architecture mediating life-history responses to diet, and it shows that the flies' whole genome transcription response is highly plastic.
Collapse
Affiliation(s)
- Jelle Zandveld
- Plant Sciences Group, Laboratory of Genetics, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Joost van den Heuvel
- Plant Sciences Group, Laboratory of Genetics, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands.,Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle Upon Tyne, NE4 5PL, United Kingdom
| | - Maarten Mulder
- Evolutionary Biology Group, Institute Biology Leiden, Leiden University, Rapenburg 58, 2311 EZ, Leiden, The Netherlands
| | - Paul M Brakefield
- Department of Zoology, University Museum of Zoology Cambridge, University of Cambridge, CB2 3EJ Cambridge, United Kingdom
| | - Thomas B L Kirkwood
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle Upon Tyne, NE4 5PL, United Kingdom.,Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Daryl P Shanley
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle Upon Tyne, NE4 5PL, United Kingdom
| | - Bas J Zwaan
- Plant Sciences Group, Laboratory of Genetics, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| |
Collapse
|
46
|
May CM, Zwaan BJ. Relating past and present diet to phenotypic and transcriptomic variation in the fruit fly. BMC Genomics 2017; 18:640. [PMID: 28830340 PMCID: PMC5568309 DOI: 10.1186/s12864-017-3968-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 07/31/2017] [Indexed: 01/22/2023] Open
Abstract
Background Sub-optimal developmental diets often have adverse effects on long-term fitness and health. One hypothesis is that such effects are caused by mismatches between the developmental and adult environment, and may be mediated by persistent changes in gene expression. However, there are few experimental tests of this hypothesis. Here we address this using the fruit fly, Drosophila melanogaster. We vary diet during development and adulthood in a fully factorial design and assess the consequences for both adult life history traits and gene expression at middle and old age. Results We find no evidence that mismatches between developmental and adult diet are detrimental to either lifespan or fecundity. Rather, developmental and adult diet exert largely independent effects on both lifespan and gene expression, with adult diet having considerably more influence on both traits. Furthermore, we find effects of developmental diet on the transcriptome that persist into middle and old-age. Most of the genes affected show no correlation with the observed phenotypic effects of larval diet on lifespan. However, in each sex we identify a cluster of ribosome, transcription, and translation-related genes whose expression is altered across the lifespan and negatively correlated with lifespan. Conclusions As several recent studies have linked decreased expression of ribosomal and transcription related proteins to increased lifespan, these provide promising candidates for mediating the effects of larval diet on lifespan. We place our findings in the context of theories linking developmental conditions to late-life phenotypes and discuss the likelihood that gene expression differences caused by developmental exposure causally relate to adult ageing phenotypes. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3968-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Christina M May
- Laboratory of Genetics, Plant Sciences, Wageningen University, Wageningen, 6708, PB, the Netherlands.
| | - Bas J Zwaan
- Laboratory of Genetics, Plant Sciences, Wageningen University, Wageningen, 6708, PB, the Netherlands
| |
Collapse
|
47
|
Jaumann S, Snell-Rood EC. Butterflies Do Not Alter Conspecific Avoidance in Response to Variation in Density. Integr Comp Biol 2017; 57:396-406. [DOI: 10.1093/icb/icx034] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|