1
|
Beer MA, Trumbo DR, Rautsaw RM, Kozakiewicz CP, Epstein B, Hohenlohe PA, Alford RA, Schwarzkopf L, Storfer A. Spatial variation in genomic signatures of local adaptation during the cane toad invasion of Australia. Mol Ecol 2024; 33:e17464. [PMID: 38994885 DOI: 10.1111/mec.17464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 06/09/2024] [Accepted: 07/01/2024] [Indexed: 07/13/2024]
Abstract
Adaptive evolution can facilitate species' range expansions across environmentally heterogeneous landscapes. However, serial founder effects can limit the efficacy of selection, and the evolution of increased dispersal during range expansions may result in gene flow swamping local adaptation. Here, we study how genetic drift, gene flow and selection interact during the cane toad's (Rhinella marina) invasion across the heterogeneous landscape of Australia. Following its introduction in 1935, the cane toad colonised eastern Australia and established several stable range edges. The ongoing, more rapid range expansion in north-central Australia has occurred concomitant with an evolved increase in dispersal capacity. Using reduced representation genomic data of Australian cane toads from the expansion front and from two areas of their established range, we test the hypothesis that high gene flow constrains local adaptation at the expansion front relative to established areas. Genetic analyses indicate the three study areas are genetically distinct but show similar levels of allelic richness, heterozygosity and inbreeding. Markedly higher gene flow or recency of colonisation at the expansion front have likely hindered local adaptation at the time of sampling, as indicated by reduced slopes of genetic-environment associations (GEAs) estimated using a novel application of geographically weighted regression that accounts for allele surfing; GEA slopes are significantly steeper in established parts of the range. Our work bolsters evidence supporting adaptation of invasive species post-introduction and adds novel evidence for differing strengths of evolutionary forces among geographic areas with different invasion histories.
Collapse
Affiliation(s)
- Marc A Beer
- School of Biological Sciences, Washington State University, Pullman, Washington, USA
| | - Daryl R Trumbo
- Department of Biology, Colorado State University Pueblo, Pueblo, Colorado, USA
| | - Rhett M Rautsaw
- School of Biological Sciences, Washington State University, Pullman, Washington, USA
- Department of Integrative Biology, University of South Florida, Tampa, Florida, USA
| | - Christopher P Kozakiewicz
- W.K. Kellogg Biological Station, Department of Integrative Biology, Michigan State University, Hickory Corners, Michigan, USA
| | - Brendan Epstein
- Department of Plant and Microbial Biology, University of Minnesota, St Paul, Minnesota, USA
| | - Paul A Hohenlohe
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, USA
| | - Ross A Alford
- College of Science and Engineering, James Cook University, Townsville, Queensland, Australia
| | - Lin Schwarzkopf
- College of Science and Engineering, James Cook University, Townsville, Queensland, Australia
| | - Andrew Storfer
- School of Biological Sciences, Washington State University, Pullman, Washington, USA
| |
Collapse
|
2
|
Thomas L, Şahin D, Adam AS, Grimaldi CM, Ryan NM, Duffy SL, Underwood JN, Kennington WJ, Gilmour JP. Resilience to periodic disturbances and the long-term genetic stability in Acropora coral. Commun Biol 2024; 7:410. [PMID: 38575730 PMCID: PMC10995172 DOI: 10.1038/s42003-024-06100-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 03/22/2024] [Indexed: 04/06/2024] Open
Abstract
Climate change is restructuring natural ecosystems. The direct impacts of these events on biodiversity and community structure are widely documented, but the impacts on the genetic variation of populations remains largely unknown. We monitored populations of Acropora coral on a remote coral reef system in northwest Australia for two decades and through multiple cycles of impact and recovery. We combined these demographic data with a temporal genetic dataset of a common broadcast spawning corymbose Acropora to explore the spatial and temporal patterns of connectivity underlying recovery. Our data show that broad-scale dispersal and post-recruitment survival drive recovery from recurrent disturbances, including mass bleaching and mortality. Consequently, genetic diversity and associated patterns of connectivity are maintained through time in the broader metapopulation. The results highlight an inherent resilience in these globally threatened species of coral and showcase their ability to cope with multiple disturbances, given enough time to recover is permitted.
Collapse
Affiliation(s)
- L Thomas
- Australian Institute of Marine Science, Indian Ocean Marine Research Centre, Crawley, Australia.
- UWA Oceans Institute, The University of Western Australia, Crawley, Australia.
| | - D Şahin
- Australian Institute of Marine Science, Indian Ocean Marine Research Centre, Crawley, Australia
- UWA Oceans Institute, The University of Western Australia, Crawley, Australia
| | - A S Adam
- Australian Institute of Marine Science, Indian Ocean Marine Research Centre, Crawley, Australia
| | - C M Grimaldi
- Australian Institute of Marine Science, Indian Ocean Marine Research Centre, Crawley, Australia
- UWA Oceans Institute, The University of Western Australia, Crawley, Australia
| | - N M Ryan
- Australian Institute of Marine Science, Indian Ocean Marine Research Centre, Crawley, Australia
| | - S L Duffy
- Australian Institute of Marine Science, Indian Ocean Marine Research Centre, Crawley, Australia
- UWA Oceans Institute, The University of Western Australia, Crawley, Australia
| | - J N Underwood
- Australian Institute of Marine Science, Indian Ocean Marine Research Centre, Crawley, Australia
| | - W J Kennington
- UWA Oceans Institute, The University of Western Australia, Crawley, Australia
- Centre for Evolutionary Biology, School of Animal Biology, The University of Western Australia, Perth, Australia
| | - J P Gilmour
- Australian Institute of Marine Science, Indian Ocean Marine Research Centre, Crawley, Australia
- UWA Oceans Institute, The University of Western Australia, Crawley, Australia
| |
Collapse
|
3
|
Ngeve MN, Engelhardt KAM, Gray M, Neel MC. Calm after the storm? Similar patterns of genetic variation in a riverine foundation species before and after severe disturbance. Ecol Evol 2023; 13:e10670. [PMID: 37920773 PMCID: PMC10618894 DOI: 10.1002/ece3.10670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/28/2023] [Accepted: 10/16/2023] [Indexed: 11/04/2023] Open
Abstract
In summer 2011, Tropical storms Lee and Irene caused an estimated 90% decline of the submersed aquatic plant Vallisneria americana Michx. (Hydrocharitaceae) in the Hudson River of New York (USA). To understand the genetic impact of such large-scale demographic losses, we compared diversity at 10 microsatellite loci in 135 samples collected from five sites just before the storms with 239 shoots collected from nine sites 4 years after. Although 80% of beds sampled in 2011 lacked V. americana in 2015, we found similar genotypic and genetic diversity and effective population sizes in pre-storm versus post-storm sites. These similarities suggest that despite local extirpations concentrated at the upstream end of the sampling area, V. americana was regionally resistant to genetic losses. Similar geographically based structure among sites in both sampling periods suggested that cryptic local refugia at previously occupied sites facilitated re-expansion after the storms. However, this apparent resistance to disturbance may lead to a false sense of security. Low effective population sizes and high clonality in both time periods suggest that V. americana beds were already small and had high frequency of asexual reproduction before the storms. Dispersal was not sufficient to recolonize more isolated sites that had been extirpated. Chronic low diversity and reliance on asexual reproduction for persistence can be risky when more frequent and intense storms are paired with ongoing anthropogenic stressors. Monitoring genetic diversity along with extent and abundance of V. americana will give a more complete picture of long-term potential for resilience.
Collapse
Affiliation(s)
- Magdalene N. Ngeve
- Department of Plant Science and Landscape ArchitectureUniversity of MarylandCollege ParkMarylandUSA
- Department of EntomologyUniversity of MarylandCollege ParkMarylandUSA
| | | | - Michelle Gray
- Department of Plant Science and Landscape ArchitectureUniversity of MarylandCollege ParkMarylandUSA
- Department of EntomologyUniversity of MarylandCollege ParkMarylandUSA
| | - Maile C. Neel
- Department of Plant Science and Landscape ArchitectureUniversity of MarylandCollege ParkMarylandUSA
- Department of EntomologyUniversity of MarylandCollege ParkMarylandUSA
| |
Collapse
|
4
|
Jones GM, Goldberg JF, Wilcox TM, Buckley LB, Parr CL, Linck EB, Fountain ED, Schwartz MK. Fire-driven animal evolution in the Pyrocene. Trends Ecol Evol 2023; 38:1072-1084. [PMID: 37479555 DOI: 10.1016/j.tree.2023.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 06/02/2023] [Accepted: 06/06/2023] [Indexed: 07/23/2023]
Abstract
Fire regimes are a major agent of evolution in terrestrial animals. Changing fire regimes and the capacity for rapid evolution in wild animal populations suggests the potential for rapid, fire-driven adaptive animal evolution in the Pyrocene. Fire drives multiple modes of evolutionary change, including stabilizing, directional, disruptive, and fluctuating selection, and can strongly influence gene flow and genetic drift. Ongoing and future research in fire-driven animal evolution will benefit from further development of generalizable hypotheses, studies conducted in highly responsive taxa, and linking fire-adapted phenotypes to their underlying genetic basis. A better understanding of evolutionary responses to fire has the potential to positively influence conservation strategies that embrace evolutionary resilience to fire in the Pyrocene.
Collapse
Affiliation(s)
- Gavin M Jones
- USDA Forest Service, Rocky Mountain Research Station, Albuquerque, NM 87102, USA.
| | - Joshua F Goldberg
- USDA Forest Service, Rocky Mountain Research Station, Albuquerque, NM 87102, USA
| | - Taylor M Wilcox
- National Genomics Center for Fish and Wildlife Conservation, USDA Forest Service, Rocky Mountain Research Station, Missoula, MT 59801, USA
| | - Lauren B Buckley
- Department of Biology, University of Washington, Seattle, WA 98195, USA
| | - Catherine L Parr
- Department of Earth, Ocean and Ecological Sciences, University of Liverpool, Liverpool, L3 5TR, UK; Department of Zoology and Entomology, University of Pretoria, Pretoria 0028, South Africa; School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Wits 2050, South Africa
| | - Ethan B Linck
- Department of Zoology and Physiology, University of Wyoming, Laramie, WY 82071, USA
| | - Emily D Fountain
- Department of Forest and Wildlife Ecology, University of Wisconsin, Madison, WI 53706, USA
| | - Michael K Schwartz
- National Genomics Center for Fish and Wildlife Conservation, USDA Forest Service, Rocky Mountain Research Station, Missoula, MT 59801, USA
| |
Collapse
|
5
|
Rauschkolb R, Li Z, Godefroid S, Dixon L, Durka W, Májeková M, Bossdorf O, Ensslin A, Scheepens JF. Evolution of plant drought strategies and herbivore tolerance after two decades of climate change. THE NEW PHYTOLOGIST 2022; 235:773-785. [PMID: 35357713 DOI: 10.1111/nph.18125] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 03/24/2022] [Indexed: 06/14/2023]
Abstract
Ongoing global warming, coupled with increased drought frequencies, together with other biotic drivers may have resulted in complex evolutionary adaptation. The resurrection approach, comparing ancestors raised from stored seeds with their contemporary descendants under common conditions, is a powerful method to test for recent evolution in plant populations. We used 21-26-yr-old seeds of four European plant species - Matthiola tricuspidata, Plantago crassifolia, Clinopodium vulgare and Leontodon hispidus - stored in seed banks together with re-collected seeds from their wild populations. To test for evolutionary changes, we conducted a glasshouse experiment that quantified heritable changes in plant responses to drought and simulated insect herbivory. In three out of the four studied species, we found evidence that descendants had evolved shorter life cycles through faster growth and flowering. Shifts in the osmotic potential and leaf dry matter content indicated that descendants also evolved increased drought tolerance. A comparison of quantitative genetic differentiation (QST ) vs neutral molecular differentiation (FST ) values, using double digest restriction-site associated DNA (ddRAD) genotyping data, suggested that directional selection, and therefore adaptive evolution, was underlying some of the observed phenotypic changes. In summary, our study revealed evolutionary changes in plant populations over the last decades that are consistent with adaptation of drought escape and tolerance as well as herbivory avoidance.
Collapse
Affiliation(s)
- Robert Rauschkolb
- Plant Evolutionary Ecology, Institute of Evolution and Ecology, University of Tübingen, Auf der Morgenstelle 5, 72076, Tübingen, Germany
- Department of Plant Biodiversity, Institute of Ecology and Evolution with Herbarium Haussknecht and Botanical Garden, Friedrich Schiller University Jena, Germany, Philosophenweg 16, 07743, Jena, Germany
| | - Zixin Li
- Plant Evolutionary Ecology, Institute of Evolution and Ecology, University of Tübingen, Auf der Morgenstelle 5, 72076, Tübingen, Germany
| | | | - Lara Dixon
- Conservatoire Botanique National Méditerranéen de Porquerolles, 34 avenue Gambetta, 83400, Hyères, France
| | - Walter Durka
- Department of Community Ecology, Helmholtz Centre for Environmental Research - UFZ, Theodor-Lieser-Straße 4, 06120, Halle, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103, Leipzig, Germany
| | - Maria Májeková
- Plant Ecology, Institute of Evolution and Ecology, University of Tübingen, Auf der Morgenstelle 5, 72076, Tübingen, Germany
| | - Oliver Bossdorf
- Plant Evolutionary Ecology, Institute of Evolution and Ecology, University of Tübingen, Auf der Morgenstelle 5, 72076, Tübingen, Germany
| | - Andreas Ensslin
- Conservatory and Botanic Garden of the City of Geneva, 1296, Chambésy, Geneva, Switzerland
| | - J F Scheepens
- Plant Evolutionary Ecology, Faculty of Biological Sciences, Institute of Ecology, Evolution and Diversity, Goethe University Frankfurt, Max-von-Laue-Str. 13, 60438, Frankfurt am Main, Germany
| |
Collapse
|
6
|
Pilger TJ, Gido KB, Propst DL, Whitney JE, Turner TF. Demography predicts genetic effective size in a desert stream fish community. Am Nat 2022; 200:275-291. [DOI: 10.1086/720208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
7
|
Meyer EM, Swift JF, Bassüner B, Smith SA, Menges ES, Oberle B, Edwards CE. Understanding how an amphicarpic species with a mixed mating system responds to fire: a population genetic approach. AOB PLANTS 2021; 13:plab067. [PMID: 34858568 PMCID: PMC8633637 DOI: 10.1093/aobpla/plab067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 10/19/2021] [Indexed: 06/13/2023]
Abstract
Amphicarpic plants produce both above-ground and below-ground seeds. Because below-ground seeds are protected in the soil and may maintain viability when above-ground conditions are stressful, they were proposed as an adaptation to recolonize a site after disturbance. However, whether below-ground seeds are the main colonizers after a disturbance remains unknown. Our goal was to understand whether recolonization by an amphicarpic species after fire was accomplished primarily through germination of seeds produced above-ground or below-ground. We investigated Polygala lewtonii, an amphicarpic, perennial species endemic to fire-prone Florida sandhill and scrub, where fire kills plants but subsequently increases recruitment and population sizes. Polygala lewtonii produces three flower types: above-ground chasmogamous flowers and above-ground and below-ground cleistogamous flowers, with previous research demonstrating chasmogamous flowers produce a much greater proportion of seeds than cleistogamous flowers. We quantified outcrossing in seeds produced by chasmogamous flowers to determine whether it differed from the 100 % self-fertilized below-ground seeds. Approximately 25 % of seeds from chasmogamous flowers showed evidence of cross-pollination. Assuming that chasmogamous flowers produce the majority of the above-ground seeds, as was shown previously, this indicates it is possible to differentiate between germination by above-ground versus below-ground seeds in post-fire colonization. We next compared genetic diversity, admixture, inbreeding and population genetic structure pre- and post-fire. If fire promoted germination of chasmogamous seeds, heterozygosity and admixture would increase, and genetic structure and inbreeding would decrease. Instead, inbreeding and genetic structure increased and admixture decreased, suggesting that the below-ground selfed seeds (with limited dispersal ability) increased their contribution to the population after fire, possibly because fire reduced above-ground seed viability. Additionally, new alleles not found previously in range-wide analyses emerged from the seed bank post-fire. These results suggest that amphicarpy is a powerful adaptation to preserve genetic variation, maintain adaptive potential and promote rapid post-fire colonization.
Collapse
Affiliation(s)
- Elena M Meyer
- Center for Conservation and Sustainable Development, Missouri Botanical Garden, 4344 Shaw Blvd., St. Louis, MO 63110, USA
- Division of Natural Sciences, New College of Florida, 5800 Bay Shore Road, Sarasota, FL 34243, USA
| | - Joel F Swift
- Center for Conservation and Sustainable Development, Missouri Botanical Garden, 4344 Shaw Blvd., St. Louis, MO 63110, USA
| | - Burgund Bassüner
- Present address: Department of Biology, Saint Louis University, 1008 Spring Avenue, St. Louis, MO 63110, USA
| | - Stacy A Smith
- Plant Ecology Program, Archbold Biological Station, 123 Main Drive, Venus, FL 33960, USA
| | - Eric S Menges
- Plant Ecology Program, Archbold Biological Station, 123 Main Drive, Venus, FL 33960, USA
| | - Brad Oberle
- Division of Natural Sciences, New College of Florida, 5800 Bay Shore Road, Sarasota, FL 34243, USA
| | - Christine E Edwards
- Center for Conservation and Sustainable Development, Missouri Botanical Garden, 4344 Shaw Blvd., St. Louis, MO 63110, USA
| |
Collapse
|
8
|
Avilés-Rodríguez KJ, Winchell KM, De León LF, Revell LJ. Phenotypic response to a major hurricane in Anolis lizards in urban and forest habitats. Biol J Linn Soc Lond 2021. [DOI: 10.1093/biolinnean/blab011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Abstract
Little is known about the synergistic impacts of urbanization and hurricanes on synanthropes. We compared morphological traits of the lizard Anolis cristatellus on Puerto Rico sampled before the 2017 category 5 Hurricane Maria and 4 and 11 months after the hurricane. We measured limb lengths, toepad size and the number of subdigital scales, termed lamellae, that facilitate adhesion. We hypothesized that the hurricane should have selected for longer limbs and larger toepads with more lamellae, which are traits that other research has suggested to increase clinging performance. Given prior work demonstrating that urban lizards of this species tend to share this phenotype, we also predicted increased phenotypic overlap between post-hurricane urban–forest pairs. Instead, we found that forest and urban populations alike had smaller body sizes, along with a small size-adjusted decrease in most traits, at 4 months after the hurricane event. Many traits returned to prehurricane values by 11 months post-hurricane. Toe morphology differed in the response to the hurricane between urban and forest populations, with significantly decreased trait values in forest but not in urban populations. This difference could be attributable to the different biomechanical demands of adhesion to anthropogenic substrates compared with natural substrates during intense winds. Overall, more research will be required to understand the impacts of hurricanes on urban species and whether differential natural selection can result.
Collapse
Affiliation(s)
| | | | - Luis F De León
- Department of Biology, University of Massachusetts Boston, Boston, MA, USA
| | - Liam J Revell
- Department of Biology, University of Massachusetts Boston, Boston, MA, USA
- Facultad de Ciencias, Universidad Católica de la Santísima Concepción, Concepción, Chile
| |
Collapse
|
9
|
Kollars NM, DuBois K, Stachowicz JJ. Sequential disturbances alter the outcome of inter‐genotypic interactions in a clonal plant. Funct Ecol 2020. [DOI: 10.1111/1365-2435.13690] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- Nicole M. Kollars
- Center for Population Biology University of California Davis CA USA
- Department of Evolution and Ecology University of California Davis CA USA
| | - Katherine DuBois
- Department of Evolution and Ecology University of California Davis CA USA
- Bodega Marine Laboratory Bodega Bay CA USA
| | - John J. Stachowicz
- Center for Population Biology University of California Davis CA USA
- Department of Evolution and Ecology University of California Davis CA USA
| |
Collapse
|
10
|
Unravelling effects of grazing intensity on genetic diversity and fitness of desert vegetation. Perspect Ecol Conserv 2020. [DOI: 10.1016/j.pecon.2020.06.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
11
|
Sitters H, Di Stefano J. Integrating functional connectivity and fire management for better conservation outcomes. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2020; 34:550-560. [PMID: 31777984 DOI: 10.1111/cobi.13446] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 11/11/2019] [Accepted: 11/22/2019] [Indexed: 06/10/2023]
Abstract
Globally, the mean abundance of terrestrial animals has fallen by 50% since 1970, and populations face ongoing threats associated with habitat loss, fragmentation, climate change, and disturbance. Climate change can influence the quality of remaining habitat directly and indirectly by precipitating increases in the extent, frequency, and severity of natural disturbances, such as fire. Species face the combined threats of habitat clearance, changing climates, and altered disturbance regimes, each of which may interact and have cascading impacts on animal populations. Typically, conservation agencies are limited in their capacity to mitigate rates of habitat clearance, habitat fragmentation, or climate change, yet fire management is increasingly used worldwide to reduce wildfire risk and achieve conservation outcomes. A popular approach to ecological fire management involves the creation of fire mosaics to promote animal diversity. However, this strategy has 2 fundamental limitations: the effect of fire on animal movement within or among habitat patches is not considered and the implications of the current fire regime for long-term population persistence are overlooked. Spatial and temporal patterns in fire history can influence animal movement, which is essential to the survival of individual animals, maintenance of genetic diversity, and persistence of populations, species, and ecosystems. We argue that there is rich potential for fire managers to manipulate animal movement patterns; enhance functional connectivity, gene flow, and genetic diversity; and increase the capacity of populations to persist under shifting environmental conditions. Recent methodological advances, such as spatiotemporal connectivity modeling, spatially explicit individual-based simulation, and fire-regime modeling can be integrated to achieve better outcomes for biodiversity in human-modified, fire-prone landscapes. Article impact statement: Land managers may conserve populations by using fire to sustain or enhance functional connectivity.
Collapse
Affiliation(s)
- Holly Sitters
- School of Ecosystem and Forest Sciences, The University of Melbourne, Creswick, Victoria, 3363, Australia
| | - Julian Di Stefano
- School of Ecosystem and Forest Sciences, The University of Melbourne, Creswick, Victoria, 3363, Australia
| |
Collapse
|
12
|
Phair NL, Toonen RJ, Knapp ISS, von der Heyden S. Anthropogenic pressures negatively impact genomic diversity of the vulnerable seagrass Zostera capensis. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 255:109831. [PMID: 32063316 DOI: 10.1016/j.jenvman.2019.109831] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 11/03/2019] [Accepted: 11/05/2019] [Indexed: 06/10/2023]
Abstract
Zostera capensis is a keystone species providing essential ecosystem services to southern African coastal systems. Like most seagrasses globally, Z. capensis is declining and under threat from anthropogenic pressures, and indicators of seagrass health and resilience may be of interest in preventing further declines. As intraspecific diversity is an important component of resilience, we used a pooled RADseq approach to generate genome-wide measures of variation across the entire South African distribution of Z. capensis. Using nucleotide diversity, heterozygosity and allelic richness we tested for associations with fine-scale anthropogenic pressure data compiled by the South African National Biodiversity Assessment using generalised linear models. Increased fishing effort, habitat loss, sand mining and a change in estuary flow dynamics were found to play an important role in decreasing nucleotide diversity and expected heterozygosity, most likely due to the loss of less resilient genotypes as a result of direct physical damage or indirect consequences. As the building block for adaptation, nucleotide diversity is particularly important for resilience. Because of this, as well as the fact that nucleotide diversity displayed the most distinct difference between the west and east coast, and responded most strongly to anthropogenic pressures, we suggest that this may be a useful measure for monitoring genetic or genomic variation. As genomic diversity influences resilience and resistance to disturbances, the remaining diversity in South African seagrass beds urgently needs to be conserved through restoration efforts and careful management of pressures.
Collapse
Affiliation(s)
- Nikki Leanne Phair
- Evolutionary Genomics Group, Department of Botany and Zoology, University of Stellenbosch, Private Bag X1, Matieland, South Africa.
| | - Robert John Toonen
- Hawai'i Institute of Marine Biology, School of Ocean and Earth Science and Technology, University of Hawai'i at Mānoa, USA.
| | - Ingrid Sally Sigrid Knapp
- Hawai'i Institute of Marine Biology, School of Ocean and Earth Science and Technology, University of Hawai'i at Mānoa, USA.
| | - Sophie von der Heyden
- Evolutionary Genomics Group, Department of Botany and Zoology, University of Stellenbosch, Private Bag X1, Matieland, South Africa.
| |
Collapse
|
13
|
von Takach Dukai B, Peakall R, Lindenmayer DB, Banks SC. The influence of fire and silvicultural practices on the landscape-scale genetic structure of an Australian foundation tree species. CONSERV GENET 2019. [DOI: 10.1007/s10592-019-01245-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
14
|
Nimmo DG, Avitabile S, Banks SC, Bliege Bird R, Callister K, Clarke MF, Dickman CR, Doherty TS, Driscoll DA, Greenville AC, Haslem A, Kelly LT, Kenny SA, Lahoz‐Monfort JJ, Lee C, Leonard S, Moore H, Newsome TM, Parr CL, Ritchie EG, Schneider K, Turner JM, Watson S, Westbrooke M, Wouters M, White M, Bennett AF. Animal movements in fire‐prone landscapes. Biol Rev Camb Philos Soc 2018; 94:981-998. [DOI: 10.1111/brv.12486] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 11/08/2018] [Accepted: 11/14/2018] [Indexed: 01/14/2023]
Affiliation(s)
- Dale G. Nimmo
- School of Environmental Science Institute for Land, Water and Society, Charles Sturt University Albury New South Wales 2640 Australia
| | - Sarah Avitabile
- Department of Ecology, Environment and Evolution, School of Life Sciences La Trobe University Bundoora Victoria 3086 Australia
| | - Sam C. Banks
- Research Institute for the Environment and Livelihoods, College of Engineering, IT and the Environment, Charles Darwin University Casuarina Northern Territory 0810 Australia
| | - Rebecca Bliege Bird
- Department of Anthropology Pennsylvania State University University Park PA 16802 U.S.A
| | - Kate Callister
- Department of Ecology, Environment and Evolution, School of Life Sciences La Trobe University Bundoora Victoria 3086 Australia
| | - Michael F. Clarke
- Department of Ecology, Environment and Evolution, School of Life Sciences La Trobe University Bundoora Victoria 3086 Australia
- Research Centre for Future Landscapes, La Trobe University Bundoora Victoria 3086 Australia
| | - Chris R. Dickman
- School of Life and Environmental Sciences University of Sydney Sydney New South Wales 2006 Australia
| | - Tim S. Doherty
- School of Life and Environmental Sciences Centre for Integrative Ecology (Burwood campus), Deakin University Geelong Victoria 3220 Australia
| | - Don A. Driscoll
- School of Life and Environmental Sciences Centre for Integrative Ecology (Burwood campus), Deakin University Geelong Victoria 3220 Australia
| | - Aaron C. Greenville
- School of Life and Environmental Sciences University of Sydney Sydney New South Wales 2006 Australia
| | - Angie Haslem
- Department of Ecology, Environment and Evolution, School of Life Sciences La Trobe University Bundoora Victoria 3086 Australia
| | - Luke T. Kelly
- School of Ecosystem and Forest Sciences The University of Melbourne Parkville Victoria 3010 Australia
| | - Sally A. Kenny
- Victorian Department of Environment, Land Water & Planning Arthur Rylah Institute for Environmental Research 123 Brown St, Heidelberg Victoria 3081 Australia
| | - José J. Lahoz‐Monfort
- School of Ecosystem and Forest Sciences The University of Melbourne Parkville Victoria 3010 Australia
| | - Connie Lee
- School of Life and Environmental Sciences Centre for Integrative Ecology (Burwood campus), Deakin University Geelong Victoria 3220 Australia
| | - Steven Leonard
- Department of Ecology, Environment and Evolution, School of Life Sciences La Trobe University Bundoora Victoria 3086 Australia
| | - Harry Moore
- School of Environmental Science Institute for Land, Water and Society, Charles Sturt University Albury New South Wales 2640 Australia
| | - Thomas M. Newsome
- School of Life and Environmental Sciences University of Sydney Sydney New South Wales 2006 Australia
| | - Catherine L. Parr
- School of Environmental Sciences University of Liverpool Liverpool L69 3GP U.K
- Department of Zoology & Entomology University of Pretoria Pretoria 0002 South Africa
- School of Animal, Plant and Environmental Sciences University of the Witwatersrand Wits 2050 South Africa
| | - Euan G. Ritchie
- School of Life and Environmental Sciences University of Sydney Sydney New South Wales 2006 Australia
| | | | - James M. Turner
- School of Environmental Science Institute for Land, Water and Society, Charles Sturt University Albury New South Wales 2640 Australia
| | - Simon Watson
- Department of Ecology, Environment and Evolution, School of Life Sciences La Trobe University Bundoora Victoria 3086 Australia
| | - Martin Westbrooke
- School of Environmental Science Federation University Ballarat Victoria 3350 Australia
| | - Mike Wouters
- Fire & Flood Management, Department for Environment and Water Adelaide South Australia 5000 Australia
| | - Matthew White
- School of Ecosystem and Forest Sciences The University of Melbourne Parkville Victoria 3010 Australia
| | - Andrew F. Bennett
- Department of Ecology, Environment and Evolution, School of Life Sciences La Trobe University Bundoora Victoria 3086 Australia
- Research Centre for Future Landscapes, La Trobe University Bundoora Victoria 3086 Australia
- Victorian Department of Environment, Land Water & Planning Arthur Rylah Institute for Environmental Research 123 Brown St, Heidelberg Victoria 3081 Australia
| |
Collapse
|
15
|
Greenhorn JE, Bowman J, Wilson PJ. Genetic monitoring suggests increasing structure following recolonization by fishers. J Wildl Manage 2018. [DOI: 10.1002/jwmg.21495] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Janet E. Greenhorn
- Environmental and Life Sciences Graduate Program; Trent University; 2140 East Bank Drive Peterborough ON K9L 0G2 Canada
| | - Jeff Bowman
- Wildlife Research and Monitoring Section; Ontario Ministry of Natural Resources and Forestry; 2140 East Bank Drive Peterborough ON K9L 0G2 Canada
| | - Paul J. Wilson
- Department of Biology; Trent University; 2140 East Bank Drive Peterborough ON K9L 0G2 Canada
| |
Collapse
|
16
|
Importance of landscape features and fire refuges on genetic diversity of Thuya occidentalis L., in boreal fire dominated landscapes. CONSERV GENET 2018. [DOI: 10.1007/s10592-018-1091-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
17
|
Smouse PE, Banks SC, Peakall R. Converting quadratic entropy to diversity: Both animals and alleles are diverse, but some are more diverse than others. PLoS One 2017; 12:e0185499. [PMID: 29088229 PMCID: PMC5663342 DOI: 10.1371/journal.pone.0185499] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 09/13/2017] [Indexed: 12/14/2022] Open
Abstract
The use of diversity metrics has a long history in population ecology, while population genetic work has been dominated by variance-derived metrics instead, a technical gap that has slowed cross-communication between the fields. Interestingly, Rao’s Quadratic Entropy (RQE), comparing elements for ‘degrees of divergence’, was originally developed for population ecology, but has recently been deployed for evolutionary studies. We here translate RQE into a continuous diversity analogue, and then construct a multiply nested diversity partition for alleles, individuals, populations, and species, each component of which exhibits the behavior of proper diversity metrics, and then translate these components into [0,1]—scaled form. We also deploy non-parametric statistical tests of the among-stratum components and novel tests of the homogeneity of within-stratum diversity components at any hierarchical level. We then illustrate this new analysis with eight nSSR loci and a pair of close Australian marsupial (Antechinus) congeners, using both ‘different is different’ and ‘degree of difference’ distance metrics. The total diversity in the collection is larger than that within either species, but most of the within-species diversity is resident within single populations. The combined A. agilis collection exhibits more diversity than does the combined A. stuartii collection, possibly attributable to localized differences in either local ecological disturbance regimes or differential levels of population isolation. Beyond exhibiting different allelic compositions, the two congeners are becoming more divergent for the arrays of allele sizes they possess.
Collapse
Affiliation(s)
- Peter E. Smouse
- Department of Ecology, Evolution & Natural Resources, Rutgers University, New Brunswick, New Jersey, United States of America
| | - Sam C. Banks
- The Fenner School of Environment and Society, The Australian National University, Acton, ACT, Australia
- * E-mail:
| | - Rod Peakall
- Research School of Biology, The Australian National University, Acton, ACT, Australia
| |
Collapse
|
18
|
Banks SC, Davies ID, Cary GJ. When can refuges mediate the genetic effects of fire regimes? A simulation study of the effects of topography and weather on neutral and adaptive genetic diversity in fire‐prone landscapes. Mol Ecol 2017; 26:4935-4954. [DOI: 10.1111/mec.14250] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 07/17/2017] [Indexed: 11/29/2022]
Affiliation(s)
- Sam C. Banks
- The Fenner School of Environment and Society Australian National University Acton ACT Australia
| | - Ian D. Davies
- The Fenner School of Environment and Society Australian National University Acton ACT Australia
| | - Geoffrey J. Cary
- The Fenner School of Environment and Society Australian National University Acton ACT Australia
| |
Collapse
|
19
|
Lyndon-Gee F, Sumner J, Hu Y, Ciofi C, Jessop TS. Abundance and genetic diversity responses of a lizard (Eulamprus heatwolei) to logging disturbance. AUST J ZOOL 2017. [DOI: 10.1071/zo17051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Rotational logging practices are used with the goal of reducing forest disturbance impacts on biodiversity. However, it is poorly understood whether such forest management practices conserve the demographic and genetic composition of animal populations across logged landscapes. Here we investigated whether rotational logging practices alter patterns of landscape-scale population abundance and genetic diversity of a forest-dwelling lizard (Eulamprus heatwolei) in south-eastern Australia. We sampled lizards (n = 407) at up to 48 sites across a chronosequence of logging disturbance intervals (<10 to >60 years after logging) to assess site-specific population changes and genetic diversity parameters. Lizard abundances exhibited a significant curvilinear response to time since logging, with decreased numbers following logging (<10 years), increased abundance as the forest regenerated (10–20 years), before decreasing again in older regenerated forest sites (>30 years). Lizard genetic diversity parameters were not significantly influenced by logging disturbance. These results suggest that logging practices, whilst inducing short-term changes to population abundance, had no measurable effects on the landscape-scale genetic diversity of E. heatwolei. These results are important as they demonstrate the value of monitoring for evaluating forest management efficacy, and the use of different population-level markers to make stronger inference about the potential impacts of logging activities.
Collapse
|
20
|
Schierenbeck KA. Population-level genetic variation and climate change in a biodiversity hotspot. ANNALS OF BOTANY 2017; 119:215-228. [PMID: 28069633 PMCID: PMC5321061 DOI: 10.1093/aob/mcw214] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 07/19/2016] [Accepted: 09/19/2016] [Indexed: 05/06/2023]
Abstract
INTRODUCTION Estimated future climate scenarios can be used to predict where hotspots of endemism may occur over the next century, but life history, ecological and genetic traits will be important in informing the varying responses within myriad taxa. Essential to predicting the consequences of climate change to individual species will be an understanding of the factors that drive genetic structure within and among populations. Here, I review the factors that influence the genetic structure of plant species in California, but are applicable elsewhere; existing levels of genetic variation, life history and ecological characteristics will affect the ability of an individual taxon to persist in the presence of anthropogenic change. FACTORS INFLUENCING THE DISTRIBUTION OF GENETIC VARIATION Persistence in the face of climate change is likely determined by life history characteristics: dispersal ability, generation time, reproductive ability, degree of habitat specialization, plant-insect interactions, existing genetic diversity and availability of habitat or migration corridors. Existing levels of genetic diversity in plant populations vary based on a number of evolutionary scenarios that include endemism, expansion since the last glacial maximum, breeding system and current range sizes. REGIONAL PRIORITIES AND EXAMPLES A number of well-documented examples are provided from the California Floristic Province. Some predictions can be made for the responses of plant taxa to rapid environmental changes based on geographic position, evolutionary history, existing genetic variation, and ecological amplitude. CONCLUSIONS, SOLUTIONS AND RECOMMENDATIONS The prediction of how species will respond to climate change will require a synthesis drawing from population genetics, geography, palaeontology and ecology. The important integration of the historical factors that have shaped the distribution and existing genetic structure of California's plant taxa will enable us to predict and prioritize the conservation of species and areas most likely to be impacted by rapid climate change, human disturbance and invasive species.
Collapse
Affiliation(s)
- Kristina A Schierenbeck
- California State University, Chico Department of Biological Sciences, Chico, CA 95929-0515, USA
| |
Collapse
|
21
|
Smith AL, Landguth EL, Bull CM, Banks SC, Gardner MG, Driscoll DA. Dispersal responses override density effects on genetic diversity during post-disturbance succession. Proc Biol Sci 2016; 283:20152934. [PMID: 27009225 DOI: 10.1098/rspb.2015.2934] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 02/26/2016] [Indexed: 11/12/2022] Open
Abstract
Dispersal fundamentally influences spatial population dynamics but little is known about dispersal variation in landscapes where spatial heterogeneity is generated predominantly by disturbance and succession. We tested the hypothesis that habitat succession following fire inhibits dispersal, leading to declines over time in genetic diversity in the early successional gecko Nephrurus stellatus We combined a landscape genetics field study with a spatially explicit simulation experiment to determine whether successional patterns in genetic diversity were driven by habitat-mediated dispersal or demographic effects (declines in population density leading to genetic drift). Initial increases in genetic structure following fire were likely driven by direct mortality and rapid population expansion. Subsequent habitat succession increased resistance to gene flow and decreased dispersal and genetic diversity inN. stellatus Simulated changes in population density alone did not reproduce these results. Habitat-mediated reductions in dispersal, combined with changes in population density, were essential to drive the field-observed patterns. Our study provides a framework for combining demographic, movement and genetic data with simulations to discover the relative influence of demography and dispersal on patterns of landscape genetic structure. Our results suggest that succession can inhibit connectivity among individuals, opening new avenues for understanding how disturbance regimes influence spatial population dynamics.
Collapse
Affiliation(s)
- Annabel L Smith
- Fenner School of Environment and Society, Australian National University, Fenner Building 141, Linnaeus Way, Canberra, Australian Capital Territory 2601, Australia
| | - Erin L Landguth
- Division of Biological Sciences, University of Montana, 32 Campus Drive, Missoula, MT 59812, USA
| | - C Michael Bull
- School of Biological Sciences, Flinders University, GPO Box 2100, Adelaide, South Australia 5001, Australia
| | - Sam C Banks
- Fenner School of Environment and Society, Australian National University, Fenner Building 141, Linnaeus Way, Canberra, Australian Capital Territory 2601, Australia
| | - Michael G Gardner
- School of Biological Sciences, Flinders University, GPO Box 2100, Adelaide, South Australia 5001, Australia Evolutionary Biology Unit, South Australian Museum, North Terrace, Adelaide, South Australia 5000, Australia
| | - Don A Driscoll
- Fenner School of Environment and Society, Australian National University, Fenner Building 141, Linnaeus Way, Canberra, Australian Capital Territory 2601, Australia School of Life and Environmental Sciences, Deakin University Geelong, 221 Burwood Highway, Burwood, Victoria 3125, Australia
| |
Collapse
|
22
|
Ragsdale AK, Frederick BM, Dukes DW, Liebl AL, Ashton KG, McCoy ED, Mushinsky HR, Schrey AW. Fire Increases Genetic Diversity of Populations of Six-Lined Racerunner. J Hered 2016; 107:654-659. [DOI: 10.1093/jhered/esw067] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 09/15/2016] [Indexed: 11/14/2022] Open
|
23
|
Schrey AW, Ragsdale AK, McCoy ED, Mushinsky HR. Repeated Habitat Disturbances by Fire Decrease Local Effective Population Size. J Hered 2016; 107:336-41. [PMID: 26976940 DOI: 10.1093/jhered/esw016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 03/09/2016] [Indexed: 01/12/2023] Open
Abstract
Effective population size is a fundamental parameter in population genetics, and factors that alter effective population size will shape the genetic characteristics of populations. Habitat disturbance may have a large effect on genetic characteristics of populations by influencing immigration and gene flow, particularly in fragmented habitats. We used the Florida Sand Skink (Plestiodon reynoldsi) to investigate the effect of fire-based habitat disturbances on the effective population size in the highly threatened, severely fragmented, and fire dependent Florida scrub habitat. We screened 7 microsatellite loci in 604 individuals collected from 12 locations at Archbold Biological Station. Archbold Biological Station has an active fire management plan and detailed records of fires dating to 1967. Our objective was to determine how the timing, number, and intervals between fires affect effective population size, focusing on multiple fires in the same location. Effective population size was higher in areas that had not been burned for more than 10 years and decreased with number of fires and shorter time between fires. A similar pattern was observed in abundance: increasing abundance with time-since-fire and decreasing abundance with number of fires. The ratio of effective population size to census size was higher at sites with more recent fires and tended to decrease with time-since-last-fire. These results suggest that habitat disturbances, such as fire, may have a large effect in the genetic characteristics of local populations and that Florida Sand Skinks are well adapted to the natural fire dynamics required to maintain Florida scrub.
Collapse
Affiliation(s)
- Aaron W Schrey
- From the Department of Biology, Armstrong State University, Science Center, 11935 Abercorn Street, Savannah, GA 31419 (Schrey and Ragsdale); and Department of Integrative Biology, University of South Florida, Tampa, FL (Schrey, McCoy, and Mushinsky).
| | - Alexandria K Ragsdale
- From the Department of Biology, Armstrong State University, Science Center, 11935 Abercorn Street, Savannah, GA 31419 (Schrey and Ragsdale); and Department of Integrative Biology, University of South Florida, Tampa, FL (Schrey, McCoy, and Mushinsky)
| | - Earl D McCoy
- From the Department of Biology, Armstrong State University, Science Center, 11935 Abercorn Street, Savannah, GA 31419 (Schrey and Ragsdale); and Department of Integrative Biology, University of South Florida, Tampa, FL (Schrey, McCoy, and Mushinsky)
| | - Henry R Mushinsky
- From the Department of Biology, Armstrong State University, Science Center, 11935 Abercorn Street, Savannah, GA 31419 (Schrey and Ragsdale); and Department of Integrative Biology, University of South Florida, Tampa, FL (Schrey, McCoy, and Mushinsky)
| |
Collapse
|