1
|
Li XD, Chen Y, Zhang CL, Wang J, Song XJ, Zhang XR, Zhu ZH, Liu G. Assessing the climatic niche changes and global invasion risk of Solanum elaeagnifolium in relation to human activities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176723. [PMID: 39383952 DOI: 10.1016/j.scitotenv.2024.176723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/13/2024] [Accepted: 10/02/2024] [Indexed: 10/11/2024]
Abstract
As an invasive plant, Solanum elaeagnifolium has posed a serious threat to agriculture and natural ecosystems worldwide. In order to better manage and limit its spread, we established niche models by combining distribution information and climate data from the native and invasive ranges of S. elaeagnifolium to analyze its niche changes during its colonization. Additionally, we evaluated its global invasion risk. Our results showed that the distribution of S. elaeagnifolium is affected by temperature, precipitation, altitude, and human activities. Solanum elaeagnifolium exhibits different degrees of niche conservatism and niche shift in different invasion ranges. During the global invasion of S. elaeagnifolium, both the niche shift and conservatism were observed, however, niche shift was particularly significant due to the presence of unoccupied niches (niche unfilling). Solanum elaeagnifolium generally occupied a relatively stable niche. However, a notable expansion was observed primarily in Europe and China. In Australia and Africa, its niche largely remains a subset of its native niche. Compared to the niche observed in its native range, its realized niche in China and Europe has shifted toward lower temperature and higher precipitation levels. Conversely, in Africa, the niche has shifted toward lower precipitation levels, while in Australia, it has shifted toward higher temperature. Our model predicted that S. elaeagnifolium has high invasion potential in many countries and regions. The populations of S. elaeagnifolium in China and Africa have reached the adapted stage, while the populations in Australia and Europe are currently in the stabilization stage. In addition, our research suggests that the potential distribution of S. elaeagnifolium will expand further in the future as the climate warms. All in all, our study suggests that S. elaeagnifolium has high potential to invade globally. Due to its high invasive potential, global surveillance and preventive measures are necessary to address its spread.
Collapse
Affiliation(s)
- Xin-Di Li
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, People's Republic of China
| | - Yu Chen
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, People's Republic of China
| | - Chun-Ling Zhang
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, People's Republic of China
| | - Jia Wang
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, People's Republic of China
| | - Xing-Jiang Song
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, People's Republic of China
| | - Xian-Rui Zhang
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, People's Republic of China
| | - Zhi-Hong Zhu
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, People's Republic of China; Research Center for UAV Remote Sensing, Shaanxi Normal University, Xi'an 710119, People's Republic of China; Changqing Teaching & Research Base of Ecology, Shaanxi Normal University, Xi'an 710119, People's Republic of China
| | - Gang Liu
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, People's Republic of China; Research Center for UAV Remote Sensing, Shaanxi Normal University, Xi'an 710119, People's Republic of China; Changqing Teaching & Research Base of Ecology, Shaanxi Normal University, Xi'an 710119, People's Republic of China.
| |
Collapse
|
2
|
Yang W, Sun S, Wang N, Fan P, You C, Wang R, Zheng P, Wang H. Dynamics of the distribution of invasive alien plants (Asteraceae) in China under climate change. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166260. [PMID: 37579809 DOI: 10.1016/j.scitotenv.2023.166260] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/10/2023] [Accepted: 08/11/2023] [Indexed: 08/16/2023]
Abstract
Climate change and biological invasions pose significant threats to the conservation of biodiversity and the provision of ecosystem services. With the rapid development of international trade and economy, China has become one of the countries most seriously affected by invasive alien plants (IAPs), especially the Asteraceae IAPs. For this end, we selected occurrence data of 31 Asteraceae IAPs and 33 predictor variables to explore the distribution pattern under current climate using MaxEnt model. Based on future climate data, the changes in distribution dynamics of Asteraceae IAPs were predicted under two time periods (2041-2060 and 2081-2100) and three climate change scenarios (SSP126, SSP245 and SSP585). The results indicated that the potential distribution of IAPs was mainly in the southeast of China under current climate. Climatic variables, including precipitation of coldest quarter (BIO19), temperature annual range (BIO07) and annual precipitation (BIO12) were the main factors affecting the potential distribution. Besides, human footprint (HFP), population (POP) and soil moisture (SM) also had a great contribution for shaping the distribution pattern. With climate change, the potential distribution of IAPs would shift to the northwest and expand. It would also accelerate the expansion of most Asteraceae IAPs in China. The results of our study can help to understand the dynamics change of distributions of Asteraceae IAPs under climate change in advance so that early strategies can be developed to reduce the risk and influence of biological invasions.
Collapse
Affiliation(s)
- Wenjun Yang
- Institute of Ecology and Biodiversity, School of Life Sciences, Shandong University, Qingdao 266237, PR China; Shandong Provincial Engineering and Technology Research Center for Vegetation Ecology, Shandong University, Qingdao 266237, PR China; Qingdao Forest Ecology Research Station of National Forestry and Grassland Administration, Shandong University, Qingdao 266237, PR China; Qingdao Key Laboratory of Forest and Wetland Ecology, Shandong University, Qingdao 266237, PR China
| | - Shuxia Sun
- Institute of Ecology and Biodiversity, School of Life Sciences, Shandong University, Qingdao 266237, PR China; Shandong Provincial Engineering and Technology Research Center for Vegetation Ecology, Shandong University, Qingdao 266237, PR China; Qingdao Forest Ecology Research Station of National Forestry and Grassland Administration, Shandong University, Qingdao 266237, PR China; Qingdao Key Laboratory of Forest and Wetland Ecology, Shandong University, Qingdao 266237, PR China
| | - Naixian Wang
- Institute of Ecology and Biodiversity, School of Life Sciences, Shandong University, Qingdao 266237, PR China; Shandong Provincial Engineering and Technology Research Center for Vegetation Ecology, Shandong University, Qingdao 266237, PR China; Qingdao Forest Ecology Research Station of National Forestry and Grassland Administration, Shandong University, Qingdao 266237, PR China; Qingdao Key Laboratory of Forest and Wetland Ecology, Shandong University, Qingdao 266237, PR China
| | - Peixian Fan
- Qingdao Forest Ecology Research Station of National Forestry and Grassland Administration, Shandong University, Qingdao 266237, PR China; Qingdao Key Laboratory of Forest and Wetland Ecology, Shandong University, Qingdao 266237, PR China
| | - Chao You
- Qingdao Forest Ecology Research Station of National Forestry and Grassland Administration, Shandong University, Qingdao 266237, PR China; Qingdao Key Laboratory of Forest and Wetland Ecology, Shandong University, Qingdao 266237, PR China
| | - Renqing Wang
- Institute of Ecology and Biodiversity, School of Life Sciences, Shandong University, Qingdao 266237, PR China; Shandong Provincial Engineering and Technology Research Center for Vegetation Ecology, Shandong University, Qingdao 266237, PR China; Qingdao Forest Ecology Research Station of National Forestry and Grassland Administration, Shandong University, Qingdao 266237, PR China; Qingdao Key Laboratory of Forest and Wetland Ecology, Shandong University, Qingdao 266237, PR China
| | - Peiming Zheng
- Institute of Ecology and Biodiversity, School of Life Sciences, Shandong University, Qingdao 266237, PR China; Shandong Provincial Engineering and Technology Research Center for Vegetation Ecology, Shandong University, Qingdao 266237, PR China; Qingdao Forest Ecology Research Station of National Forestry and Grassland Administration, Shandong University, Qingdao 266237, PR China; Qingdao Key Laboratory of Forest and Wetland Ecology, Shandong University, Qingdao 266237, PR China.
| | - Hui Wang
- Institute of Ecology and Biodiversity, School of Life Sciences, Shandong University, Qingdao 266237, PR China; Shandong Provincial Engineering and Technology Research Center for Vegetation Ecology, Shandong University, Qingdao 266237, PR China; Qingdao Forest Ecology Research Station of National Forestry and Grassland Administration, Shandong University, Qingdao 266237, PR China; Qingdao Key Laboratory of Forest and Wetland Ecology, Shandong University, Qingdao 266237, PR China
| |
Collapse
|
3
|
Nie P, Feng J. Niche and Range Shifts of Aedes aegypti and Ae. albopictus Suggest That the Latecomer Shows a Greater Invasiveness. INSECTS 2023; 14:810. [PMID: 37887822 PMCID: PMC10607146 DOI: 10.3390/insects14100810] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/27/2023] [Accepted: 10/10/2023] [Indexed: 10/28/2023]
Abstract
The yellow fever (Aedes aegypti) and Asian tiger (Ae. albopictus) mosquitos are major vectors of global mosquito-borne pathogens. However, their niche and range shifts, the underlying mechanisms, and related relative invasion rates remain scarcely known. We examined the niche and range shifts between the native and invasive Ae. aegypti and Ae. albopictus populations through dynamic niche and range models and the largest occurrence record datasets to date. We detected substantial niche and range expansions in both species, probably because the introduced populations have more opportunities to acclimate to diverse environmental conditions than their native counterparts. Mitigating climate change could effectively control their future invasions, given that future climate changes could promote their invasiveness. Additionally, compared to the introduced Ae. aegypti, the more recent invader Ae. albopictus had greater niche and range expansion over its shorter invasion history. In terms of the range shifts, Ae. albopictus had an invasion rate approximately 13.3 times faster than that of Ae. aegypti, making it a more invasive vector of global mosquito-borne pathogens. Therefore, considering its higher invasion rate, much more attention should be paid to Ae. albopictus in devising our strategies against prevailing global mosquito-borne pathogens than Ae. aegypti. Since small niche shifts could result in their large range shifts, niche shifts might be a more important indicator for biological invasion assessments.
Collapse
Affiliation(s)
| | - Jianmeng Feng
- College of Agriculture and Biological Science, Dali University, Dali 671003, China
| |
Collapse
|
4
|
Wang C, Sheng Q, Zhao R, Zhu Z. Differences in the Suitable Distribution Area between Northern and Southern China Landscape Plants. PLANTS (BASEL, SWITZERLAND) 2023; 12:2710. [PMID: 37514324 PMCID: PMC10385631 DOI: 10.3390/plants12142710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/14/2023] [Accepted: 07/16/2023] [Indexed: 07/30/2023]
Abstract
Climate change, a global biodiversity threat, largely influences the geographical distribution patterns of species. China is abundant in woody landscape plants. However, studies on the differences in the adaptive changes of plants under climate change between northern and southern China are unavailable. Therefore, herein, the MaxEnt model was used to predict changes in the suitable distribution area (SDA) and dominant environmental variables of 29 tree species under two climate change scenarios, the shared socioeconomic pathways (SSPs) 126 and 585, based on 29 woody plant species and 20 environmental variables in northern and southern China to assess the differences in the adaptive changes of plants between the two under climate change. Temperature factors dominated the SDA distribution of both northern and southern plants. Southern plants are often dominated by one climatic factor, whereas northern plants are influenced by a combination of climatic factors. Northern plants are under greater pressure from SDA change than southern plants, and their SDA shrinkage tendency is significantly higher. However, no significant difference was observed between northern and southern plants in SDA expansion, mean SDA elevation, and latitudinal change in the SDA mass center. Future climate change will drive northern and southern plants to migrate to higher latitudes rather than to higher elevations. Therefore, future climate change has varying effects on plant SDAs within China. The climate change intensity will drive northern landscape plants to experience greater SDA-change-related pressure than southern landscape plants. Therefore, northern landscape plants must be heavily monitored and protected.
Collapse
Affiliation(s)
- Chen Wang
- College of Landscape Architecture, Nanjing Forestry University, Nanjing 210037, China
- Southern Modern Forestry Collaborative Innovation Center, Nanjing Forestry University, Nanjing 210037, China
| | - Qianqian Sheng
- College of Landscape Architecture, Nanjing Forestry University, Nanjing 210037, China
- Southern Modern Forestry Collaborative Innovation Center, Nanjing Forestry University, Nanjing 210037, China
| | - Runan Zhao
- College of Landscape Architecture, Nanjing Forestry University, Nanjing 210037, China
- Southern Modern Forestry Collaborative Innovation Center, Nanjing Forestry University, Nanjing 210037, China
| | - Zunling Zhu
- College of Landscape Architecture, Nanjing Forestry University, Nanjing 210037, China
- Southern Modern Forestry Collaborative Innovation Center, Nanjing Forestry University, Nanjing 210037, China
- College of Art and Design, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
5
|
Yang R, Cao R, Gong X, Feng J. Large shifts of niche and range in the golden apple snail (
Pomacea canaliculata
), an aquatic invasive species. Ecosphere 2023. [DOI: 10.1002/ecs2.4391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Affiliation(s)
- Rujing Yang
- Department of Life Science and Agronomy Dali University Dali China
| | - Runyao Cao
- Department of Life Science and Agronomy Dali University Dali China
| | - Xiang Gong
- Department of Life Science and Agronomy Dali University Dali China
| | - Jianmeng Feng
- Department of Life Science and Agronomy Dali University Dali China
| |
Collapse
|
6
|
Yang B, Cui M, Dai Z, Li J, Yu H, Fan X, Rutherford S, Du D. Non-Additive Effects of Environmental Factors on Growth and Physiology of Invasive Solidago canadensis and a Co-Occurring Native Species ( Artemisia argyi). PLANTS (BASEL, SWITZERLAND) 2022; 12:128. [PMID: 36616257 PMCID: PMC9823473 DOI: 10.3390/plants12010128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/04/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
Changes in environmental factors, such as temperature and UV, have significant impacts on the growth and development of both native and invasive plant species. However, few studies examine the combined effects of warming and enhanced UV on plant growth and performance in invasive species. Here, we investigated single and combined effects of warming and UV radiation on growth, leaf functional and photosynthesis traits, and nutrient content (i.e., total organic carbon, nitrogen and phosphorous) of invasive Solidago canadensis and its co-occurring native species, Artemisia argyi, when grown in culture racks in the greenhouse. The species were grown in monoculture and together in a mixed community, with and without warming, and with and without increased UV in a full factorial design. We found that growth in S. canadensis and A. argyi were inhibited and more affected by warming than UV-B radiation. Additionally, there were both antagonistic and synergistic interactions between warming and UV-B on growth and performance in both species. Overall, our results suggested that S. canadensis was more tolerant to elevated temperatures and high UV radiation compared to the native species. Therefore, substantial increases in temperature and UV-B may favour invasive S. canadensis over native A. argyi. Research focusing on the effects of a wider range of temperatures and UV levels is required to improve our understanding of the responses of these two species to greater environmental variability and the impacts of climate change.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Susan Rutherford
- Institute of Environment and Ecology, Academy of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Daolin Du
- Institute of Environment and Ecology, Academy of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
7
|
Shen Y, Tu Z, Zhang Y, Zhong W, Xia H, Hao Z, Zhang C, Li H. Predicting the impact of climate change on the distribution of two relict Liriodendron species by coupling the MaxEnt model and actual physiological indicators in relation to stress tolerance. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 322:116024. [PMID: 36055092 DOI: 10.1016/j.jenvman.2022.116024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/19/2022] [Accepted: 08/13/2022] [Indexed: 06/15/2023]
Abstract
Climate change has a crucial impact on the distributions of plants, especially relict species. Hence, predicting the potential impact of climate change on the distributions of relict plants is critical for their future conservation. Liriodendron plants are relict trees, and only two natural species have survived: L. chinense and L. tulipifera. However, the extent of the impact of future climate change on the distributions of these two Liriodendron species remains unclear. Therefore, we predicted the suitable habitat distributions of two Liriodendron species under present and future climate scenarios using MaxEnt modeling. The results showed that the area of suitable habitats for two Liriodendron species would significantly decrease. However, the two relict species presented different habitat shift patterns, with a local contraction of suitable habitat for L. chinense and a northward shift in suitable habitat for L. tulipifera, indicating that changes in environmental factors will affect the distributions of these species. Among the environmental factors assessed, May precipitation induced the largest impact on the L. chinense distribution, while L. tulipifera was significantly affected by precipitation in the driest quarter. Furthermore, to explore the relationship between habitat suitability and Liriodendron stress tolerance, we analyzed six physiological indicators of stress tolerance by sampling twelve provenances of L. chinense and five provenances of L. tulipifera. The composite index of six physiological indicators was significantly negatively correlated with the habitat suitability of the species. The stress tolerance of Liriodendron plants in highly suitable areas was lower than that in areas with moderate or low suitability. Overall, these findings improve our understanding of the ecological impacts of climate change, informing future conservation efforts for Liriodendron species.
Collapse
Affiliation(s)
- Yufang Shen
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China; College of Forestry, Nanjing Forestry University, Nanjing, 210037, China.
| | - Zhonghua Tu
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China; College of Forestry, Nanjing Forestry University, Nanjing, 210037, China.
| | - Yali Zhang
- College of Forestry, Nanjing Forestry University, Nanjing, 210037, China.
| | - Weiping Zhong
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China; College of Forestry, Nanjing Forestry University, Nanjing, 210037, China.
| | - Hui Xia
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China; College of Forestry, Nanjing Forestry University, Nanjing, 210037, China.
| | - Ziyuan Hao
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China; College of Forestry, Nanjing Forestry University, Nanjing, 210037, China.
| | - Chengge Zhang
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China; College of Forestry, Nanjing Forestry University, Nanjing, 210037, China.
| | - Huogen Li
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China; College of Forestry, Nanjing Forestry University, Nanjing, 210037, China.
| |
Collapse
|
8
|
Spatial Distribution and Climate Warming Impact on Abies kawakamii Forest on a Subtropical Island. PLANTS 2022; 11:plants11101346. [PMID: 35631770 PMCID: PMC9146738 DOI: 10.3390/plants11101346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 05/14/2022] [Accepted: 05/16/2022] [Indexed: 11/16/2022]
Abstract
Species distribution modeling (SDM) is currently the primary tool for predicting suitable habitats for species. In this study, we used Abies kawakamii, a species endemic to Taiwan. Being the only Abies species distributed in high mountains, it acts as an ecological indicator on the subtropical island. We analyzed a vegetation map derived from remote sensing and ground surveys using SDM. The actual distribution of A. kawakamii in Taiwan has a total area of 16,857 ha distributed at an altitude of 2700–3600 m, and it often forms a monodominant forest at 3100–3600 m with the higher altitude edge as a forest line. Exploring the potential distribution of A. kawakamii through MaxEnt showed that the suitable habitat was 73,151 ha under the current climate. Under the scenarios of temperature increases of 0.5, 1.0, 1.5, and 2.0 °C, suitable habitat for A. kawakamii will gradually decrease to 70.2%, 47.1%, 30.2%, and 10.0% of this area, respectively, indicating that A. kawakamii will greatly decline under these climate warming scenarios. Fire burning disturbance may be the most significant damage to A. kawakamii at present. Although A. kawakamii has been protected by conservation areas and its natural regeneration is in good condition, it rarely has the opportunity to migrate upwards during climate warming. We suggest that in the future, research on the natural regeneration and artificial restoration of A. kawakamii should be emphasized, especially in the forest line ecotone.
Collapse
|
9
|
Lakoba VT, Atwater DZ, Thomas VE, Strahm BD, Barney JN. A global invader’s niche dynamics with intercontinental introduction, novel habitats, and climate change. Glob Ecol Conserv 2021. [DOI: 10.1016/j.gecco.2021.e01848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
10
|
Yuan Y, Tang X, Liu M, Liu X, Tao J. Species Distribution Models of the Spartina alterniflora Loisel in Its Origin and Invasive Country Reveal an Ecological Niche Shift. FRONTIERS IN PLANT SCIENCE 2021; 12:738769. [PMID: 34712259 PMCID: PMC8546191 DOI: 10.3389/fpls.2021.738769] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 09/08/2021] [Indexed: 06/13/2023]
Abstract
Spartina alterniflora is a perennial herb native to the American Atlantic coast and is the dominant plant in coastal intertidal wetlands. Since its introduction to China in 1979, it has quickly spread along the coast and has caused various hazards. To control the further spread of S. alterniflora in China, we first reconstructed the history of the spread of S. alterniflora in its invasion and origin countries. We found that S. alterniflora spreads from the central coast to both sides of the coast in China, while it spreads from the west coast to the east coast in America. Furthermore, by comparing 19 environmental variables of S. alterniflora in its invasion and origin countries, it was found that S. alterniflora is more and more adaptable to the high temperature and dry environment in the invasion country. Finally, we predicted the suitable areas for this species in China and America using the maximum entropy (MaxEnt) model and ArcGIS. Overall, through analysis on the dynamic and trend of environmental characteristics during the invasion of S. alterniflora and predicting its suitable area in the invasion area, it guides preventing its reintroduction and preventing its further spread of the species has been found. It has reference significance for studying other similar alien plants and essential enlightening relevance to its invasion and spread in similar areas.
Collapse
Affiliation(s)
- Yingdan Yuan
- Jiangsu Key Laboratory of Crop Genetics and Physiology, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Xinggang Tang
- Co-innovation Center for Sustainable Forestry in Southern China, Jiangsu Province Key Laboratory of Soil and Water Conservation and Ecological Restoration, Nanjing Forestry University, Nanjing, China
| | - Mingyue Liu
- College of Mining Engineering, North China University of Science and Technology, Tangshan, China
| | - Xiaofei Liu
- Institute of International Rivers and Eco-Security, Yunnan University, Kunming, China
| | - Jun Tao
- Jiangsu Key Laboratory of Crop Genetics and Physiology, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| |
Collapse
|
11
|
Wang CJ, Wan JZ. Functional trait perspective on suitable habitat distribution of invasive plant species at a global scale. Perspect Ecol Conserv 2021. [DOI: 10.1016/j.pecon.2021.07.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
12
|
Wen W, Li Z, Shao J, Tang Y, Zhao Z, Yang J, Ding M, Zhu X, Zhou M. The Distribution and Sustainable Utilization of Buckwheat Resources under Climate Change in China. PLANTS 2021; 10:plants10102081. [PMID: 34685889 PMCID: PMC8538749 DOI: 10.3390/plants10102081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 09/02/2021] [Accepted: 09/03/2021] [Indexed: 11/16/2022]
Abstract
Buckwheat is a promising pseudo cereal and its cultivation history can be traced back to thousands of years ago in China. Nowadays, buckwheat is not only an ordinary crop but also a symbol of healthy life because of its rich nutritional and pharmacological properties. In this research, the current suitable areas of 19 wild buckwheat species were analyzed by the MaxEnt model, which proved that southwestern China was the diversity center of buckwheat. Their morphological characteristics and geographical distribution were analyzed for the first time. In addition, it was found that the change of buckwheat cultivation in three periods might be related to the green revolution of main crops and national policies. Meanwhile, the Sustainable Yield Index (SYI) value of buckwheat in China was the lowest from 1959 to 2016. Through the MaxEnt model, the potentially suitable areas of wild buckwheat would contract while cultivated buckwheat would expand under climate change. Accordingly, the diversity of wild buckwheat will decrease. Therefore, it is necessary to protect buckwheat resources as much as possible to strengthen the development and utilization of buckwheat resources. Moreover, the promotion of buckwheat diversity will be an important trade-off between food security, population growth, and land use under climate change.
Collapse
Affiliation(s)
- Wen Wen
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, China; (W.W.); (Z.L.)
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China;
- Institute of Environmental Sciences (CML), Leiden University, Box 9518, 2300 RA Leiden, The Netherlands
| | - Zhiqiang Li
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, China; (W.W.); (Z.L.)
| | - Jirong Shao
- Xichen Intelligent Agricultural Technology Co., Ltd., Chengdu 611130, China;
- College of Life Sciences, Sichuan Agricultural University, Ya’an 625014, China
| | - Yu Tang
- Department of Tourism, Sichuan Tourism University, Chengdu 610100, China;
| | - Zhijun Zhao
- Institute of Archaeology, Chinese Academy of Social Sciences, Beijing 100010, China; (Z.Z.); (J.Y.)
| | - Jingang Yang
- Institute of Archaeology, Chinese Academy of Social Sciences, Beijing 100010, China; (Z.Z.); (J.Y.)
| | - Mengqi Ding
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China;
- Department of Crop Science, College of Agriculture & Life Sciences, Chungnam National University, Yuseong-gu, Daejeon 305-754, Korea
| | - Xuemei Zhu
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, China; (W.W.); (Z.L.)
- Correspondence: (X.Z.); (M.Z.)
| | - Meiliang Zhou
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China;
- Correspondence: (X.Z.); (M.Z.)
| |
Collapse
|
13
|
Response of Biodiversity, Ecosystems, and Ecosystem Services to Climate Change in China: A Review. ECOLOGIES 2021. [DOI: 10.3390/ecologies2040018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Climate change is having a significant impact on the global ecosystem and is likely to become increasingly important as this phenomenon intensifies. Numerous studies in climate change impacts on biodiversity, ecosystems, and ecosystem services in China have been published in recent decades. However, a comprehensive review of the topic is needed to provide an improved understanding of the history and driving mechanisms of environmental changes within the region. Here we review the evidence for changes in climate and the peer-reviewed literature that assesses climate change impacts on biodiversity, ecosystem, and ecosystem services at a China scale. Our main conclusions are as follows. (1) Most of the evidence shows that climate change (the increasing extreme events) is affecting the change of productivity, species interactions, and biological invasions, especially in the agro-pastoral transition zone and fragile ecological area in Northern China. (2) The individuals and populations respond to climate change through changes in behavior, functions, and geographic scope. (3) The impact of climate change on most types of services (provisioning, regulating, supporting, and cultural) in China is mainly negative and brings threats and challenges to human well-being and natural resource management, therefore, requiring costly societal adjustments. In general, although great progress has been made, the management strategies still need to be further improved. Integrating climate change into ecosystem services assessment and natural resource management is still a major challenge. Moving forward, it is necessary to evaluate and research the effectiveness of typical demonstration cases, which will contribute to better scientific management of natural resources in China and the world.
Collapse
|
14
|
Changjun G, Yanli T, Linshan L, Bo W, Yili Z, Haibin Y, Xilong W, Zhuoga Y, Binghua Z, Bohao C. Predicting the potential global distribution of Ageratina adenophora under current and future climate change scenarios. Ecol Evol 2021; 11:12092-12113. [PMID: 34522363 PMCID: PMC8427655 DOI: 10.1002/ece3.7974] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 06/08/2021] [Accepted: 07/15/2021] [Indexed: 11/09/2022] Open
Abstract
AIM Invasive alien species (IAS) threaten ecosystems and humans worldwide, and future climate change may accelerate the expansion of IAS. Predicting the suitable areas of IAS can prevent their further expansion. Ageratina adenophora is an invasive weed over 30 countries in tropical and subtropical regions. However, the potential suitable areas of A. adenophora remain unclear along with its response to climate change. This study explored and mapped the current and future potential suitable areas of Ageratina adenophora. LOCATION Global. TAXA Asteraceae A. adenophora (Spreng.) R.M.King & H.Rob. Commonly known as Crofton weed. METHODS Based on A. adenophora occurrence data and climate data, we predicted its suitable areas of this weed under current and future (four RCPs in 2050 and 2070) by MaxEnt model. We used ArcGIS 10.4 to explore the potential suitable area distribution characteristics of this weed and the "ecospat" package in R to analyze its altitudinal distribution changes. RESULTS The area under the curve (AUC) value (>0.9) and true skill statistics (TSS) value (>0.8) indicated excelled model performance. Among environment factors, mean temperature of coldest quarter contributed most to the model. Globally, the suitable areas for A. adenophora invasion decreased under climate change scenarios, although regional increases were observed, including in six biodiversity hotspot regions. The potential suitable areas of A. adenophora under climate change would expand in regions with higher elevation (3,000-3,500 m). MAIN CONCLUSIONS Mean temperature of coldest quarter was the most important variable influencing the potential suitable area of A. Adenophora. Under the background of a warming climate, the potential suitable area of A. adenophora will shrink globally but increase in six biodiversity hotspot regions. The potential suitable area of A. adenophora would expand at higher elevation (3,000-3,500 m) under climate change. Mountain ecosystems are of special concern as they are rich in biodiversity and sensitive to climate change, and increasing human activities provide more opportunities for IAS invasion.
Collapse
Affiliation(s)
- Gu Changjun
- Key Laboratory of Land Surface Pattern and SimulationInstitute of Geographic Sciences and Natural Resources ResearchCASBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Tu Yanli
- Tibet Plateau Institute of BiologyLhasaChina
| | - Liu Linshan
- Key Laboratory of Land Surface Pattern and SimulationInstitute of Geographic Sciences and Natural Resources ResearchCASBeijingChina
| | - Wei Bo
- Key Laboratory of Land Surface Pattern and SimulationInstitute of Geographic Sciences and Natural Resources ResearchCASBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Zhang Yili
- Key Laboratory of Land Surface Pattern and SimulationInstitute of Geographic Sciences and Natural Resources ResearchCASBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yu Haibin
- School of Life SciencesGuangzhou UniversityGuangzhouChina
| | - Wang Xilong
- Tibet Plateau Institute of BiologyLhasaChina
| | | | - Zhang Binghua
- Key Laboratory of Land Surface Pattern and SimulationInstitute of Geographic Sciences and Natural Resources ResearchCASBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Cui Bohao
- Key Laboratory of Land Surface Pattern and SimulationInstitute of Geographic Sciences and Natural Resources ResearchCASBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| |
Collapse
|
15
|
Singh M, Arunachalam R, Kumar L. Modeling potential hotspots of invasive Prosopis juliflora (Swartz) DC in India. ECOL INFORM 2021. [DOI: 10.1016/j.ecoinf.2021.101386] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
16
|
Zhou Q, Wang L, Jiang Z, Wu J, Cui X, Li X, Liu Z, Musa A, Ma Q, Yu H, Wang Y. Effects of climatic and social factors on dispersal strategies of alien species across China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 749:141443. [PMID: 32829271 DOI: 10.1016/j.scitotenv.2020.141443] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 07/29/2020] [Accepted: 07/31/2020] [Indexed: 06/11/2023]
Abstract
Determination of dispersal strategies of alien species and its relationship with social and climatic factors are essential to understand the mechanisms of species invasion and adaption. Based on morphological trait, dispersal mode, and dispersal agent of diaspore of 562 alien species across China, we determined: (i) the proportions of five dispersal strategies (i.e., autochory, anemochory, hydrochory, zoochory, and anthropochory), (ii) the relationships between the dispersal strategies and socio-climatic factors in 34 administrative regions across China, and (iii) the correlations between different dispersal strategies. Anthropochory, zoochory, and anemochory account for nearly 90.0% of all the dispersal strategies of alien species. Mean frost days (MFD), mean annual humidity (MAH), and gross domestic product (GDP) were the main climatic and social factors that were correlated to different dispersal strategies. Zoochory was positively related to MFD, but negatively related to the autochory and anthropochory. MAH negatively influenced the anemochory, while GDP positively influenced the hydrochory. We classified the six dispersal strategies into two groups based on the correlations among dispersal strategies, group I included autochory and anthropochory, and group II included anemochory, hydrochory, and zoochory. Within a group, dispersal strategies were positively correlated, while between groups, dispersal strategies were negatively correlated. Positive correlation between different strategies might be co-owned while negative correlation between different strategies might not be co-owned by one alien species. Understanding the characteristics of the dispersal strategies of alien species is important for policy makers when controlling the dispersal of malignant invasive alien species, predicting the distribution, and decreasing or cutting off the dispersal pathways of invasive alien species.
Collapse
Affiliation(s)
- Quanlai Zhou
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; Institute of Applied Ecology, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016, China
| | - Lixin Wang
- Department of Earth Sciences, Indiana University-Purdue University Indianapolis (IUPUI), Indianapolis, IN 46202, USA
| | - Zhiyang Jiang
- Institute of Applied Ecology, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016, China
| | - Jing Wu
- Station of Forest and Grassland Pest Control and Quarantine of Liaoning Province, Shenyang 110804, China
| | - Xue Cui
- Taizhou University, Zhejiang Province, Taizhou 384000, China
| | - Xuehua Li
- Institute of Applied Ecology, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016, China
| | - Zhimin Liu
- Institute of Applied Ecology, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016, China
| | - Ala Musa
- Institute of Applied Ecology, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016, China
| | - Qu Ma
- Institute of Applied Ecology, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016, China
| | - Haibin Yu
- Institute of Applied Ecology, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016, China
| | - Yongcui Wang
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; Institute of Applied Ecology, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016, China.
| |
Collapse
|
17
|
|
18
|
Rather TA, Kumar S, Khan JA. Multi-scale habitat modelling and predicting change in the distribution of tiger and leopard using random forest algorithm. Sci Rep 2020; 10:11473. [PMID: 32651414 PMCID: PMC7351791 DOI: 10.1038/s41598-020-68167-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 05/29/2020] [Indexed: 11/23/2022] Open
Abstract
Tigers and leopards have experienced considerable declines in their population due to habitat loss and fragmentation across their historical ranges. Multi-scale habitat suitability models (HSM) can inform forest managers to aim their conservation efforts at increasing the suitable habitat for tigers by providing information regarding the scale-dependent habitat-species relationships. However the current gap of knowledge about ecological relationships driving species distribution reduces the applicability of traditional and classical statistical approaches such as generalized linear models (GLMs), or occupancy surveys to produce accurate predictive maps. This study investigates the multi-scale habitat relationships of tigers and leopards and the impacts of future climate change on their distribution using a machine-learning algorithm random forest (RF). The recent advancements in the machine-learning algorithms provide a powerful tool for building accurate predictive models of species distribution and their habitat relationships even when little ecological knowledge is available about the species. We collected species occurrence data using camera traps and indirect evidence of animal presences (scats) in the field over 2 years of rigorous sampling and used a machine-learning algorithm random forest (RF) to predict the habitat suitability maps of tiger and leopard under current and future climatic scenarios. We developed niche overlap models based on the recently developed statistical approaches to assess the patterns of niche similarity between tigers and leopards. Tiger and leopard utilized habitat resources at the broadest spatial scales (28,000 m). Our model predicted a 23% loss in the suitable habitat of tigers under the RCP 8.5 Scenario (2050). Our study of multi-scale habitat suitability modeling provides valuable information on the species habitat relationships in disturbed and human-dominated landscapes concerning two large felid species of conservation importance. These areas may act as refugee habitats for large carnivores in the future and thus should be the focus of conservation importance. This study may also provide a methodological framework for similar multi-scale and multi-species monitoring programs using robust and more accurate machine learning algorithms such as random forest.
Collapse
Affiliation(s)
- Tahir A Rather
- Department of Wildlife Sciences, Aligarh Muslim University, Uttar Pradesh, Aligarh, 202002, India.
- The Corbett Foundation, 81-88, Atlanta Building, Nariman Point, Mumbai, Maharashtra, 400021, India.
| | - Sharad Kumar
- Department of Wildlife Sciences, Aligarh Muslim University, Uttar Pradesh, Aligarh, 202002, India
- The Corbett Foundation, 81-88, Atlanta Building, Nariman Point, Mumbai, Maharashtra, 400021, India
| | - Jamal A Khan
- Department of Wildlife Sciences, Aligarh Muslim University, Uttar Pradesh, Aligarh, 202002, India
| |
Collapse
|
19
|
Wang R, Jiang C, Guo X, Chen D, You C, Zhang Y, Wang M, Li Q. Potential distribution of Spodoptera frugiperda (J.E. Smith) in China and the major factors influencing distribution. Glob Ecol Conserv 2020. [DOI: 10.1016/j.gecco.2019.e00865] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
|
20
|
Guan BC, Guo HJ, Chen SS, Li DM, Liu X, Gong X, Ge G. Shifting ranges of eleven invasive alien plants in China in the face of climate change. ECOL INFORM 2020. [DOI: 10.1016/j.ecoinf.2019.101024] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
21
|
Rodríguez-Merino A, Fernández-Zamudio R, García-Murillo P, Muñoz J. Climatic Niche Shift during Azolla filiculoides Invasion and Its Potential Distribution under Future Scenarios. PLANTS (BASEL, SWITZERLAND) 2019; 8:E424. [PMID: 31635228 PMCID: PMC6843849 DOI: 10.3390/plants8100424] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 10/10/2019] [Accepted: 10/16/2019] [Indexed: 06/10/2023]
Abstract
In order to prevent future biological invasions, it is crucial to know non-native species distributions. We evaluated the potential global distribution of Azolla filiculoides, a free-floating macrophyte native to the Americas by using species distribution models and niche equivalency tests to analyze the degree of niche overlap between the native and invaded ranges of the species. The models were projected under two future emission scenarios, three global circulation models and two time periods. Our results indicate a possible niche shift between the distribution ranges of the species, indicating that A. filiculoides can adapt to novel environmental conditions derived from climatic differences during the invasion process. Our models also show that the future potential distribution of A. filiculoides will decrease globally, although the species could colonize new vulnerable regions where it is currently absent. We highlight that species occurrence records in the invaded area are necessary to generate accurate models, which will, in turn, improve our ability to predict potential invasion risk areas.
Collapse
Affiliation(s)
- Argantonio Rodríguez-Merino
- Department of Plant Biology and Ecology, Faculty of Pharmacy, University of Seville, Profesor García González 2, 41012 Seville, Spain.
| | | | - Pablo García-Murillo
- Department of Plant Biology and Ecology, Faculty of Pharmacy, University of Seville, Profesor García González 2, 41012 Seville, Spain.
| | - Jesús Muñoz
- Real Jardín Botánico (RJB-CSIC), Plaza de Murillo 2, 28014 Madrid, Spain.
| |
Collapse
|
22
|
Ahmad R, Khuroo AA, Charles B, Hamid M, Rashid I, Aravind NA. Global distribution modelling, invasion risk assessment and niche dynamics of Leucanthemum vulgare (Ox-eye Daisy) under climate change. Sci Rep 2019; 9:11395. [PMID: 31388050 PMCID: PMC6684661 DOI: 10.1038/s41598-019-47859-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Accepted: 07/25/2019] [Indexed: 11/08/2022] Open
Abstract
In an era of climate change, biological invasions by alien species represent one of the main anthropogenic drivers of global environmental change. The present study, using an ensemble modelling approach, has mapped current and future global distribution of the invasive Leucanthemum vulgare (Ox-eye Daisy) and predicted the invasion hotspots under climate change. The current potential distribution of Ox-eye Daisy coincides well with the actual distribution records, thereby indicating robustness of our model. The model predicted a global increase in the suitable habitat for the potential invasion of this species under climate change. Oceania was shown to be the high-risk region to the potential invasion of this species under both current and future climate change scenarios. The results revealed niche conservatism for Australia and Northern America, but contrastingly a niche shift for Africa, Asia, Oceania and Southern America. The global distribution modelling and risk assessment of Ox-eye Daisy has immediate implications in mitigating its invasion impacts under climate change, as well as predicting the global invasion hotspots and developing region-specific invasion management strategies. Interestingly, the contrasting patterns of niche dynamics shown by this invasive plant species provide novel insights towards disentangling the different operative mechanisms underlying the process of biological invasions at the global scale.
Collapse
Affiliation(s)
- Rameez Ahmad
- Centre for Biodiversity & Taxonomy, Department of Botany, University of Kashmir, Srinagar, 190006, J & K, India
| | - Anzar A Khuroo
- Centre for Biodiversity & Taxonomy, Department of Botany, University of Kashmir, Srinagar, 190006, J & K, India.
| | - Bipin Charles
- Ashoka Trust for Research in Ecology and the Environment (ATREE), Royal Enclave, Srirampura, Jakkur PO, Bengaluru, 560064, India
| | - Maroof Hamid
- Centre for Biodiversity & Taxonomy, Department of Botany, University of Kashmir, Srinagar, 190006, J & K, India
| | - Irfan Rashid
- Biological Invasions Laboratory, Department of Botany, University of Kashmir, Srinagar, 190006, J & K, India
| | - N A Aravind
- Ashoka Trust for Research in Ecology and the Environment (ATREE), Royal Enclave, Srirampura, Jakkur PO, Bengaluru, 560064, India
| |
Collapse
|
23
|
Dreyer JBB, Higuchi P, Silva AC. Ligustrum lucidum W. T. Aiton (broad-leaf privet) demonstrates climatic niche shifts during global-scale invasion. Sci Rep 2019; 9:3813. [PMID: 30846781 PMCID: PMC6406017 DOI: 10.1038/s41598-019-40531-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 02/19/2019] [Indexed: 11/25/2022] Open
Abstract
Biological invasions are a major threat to global biodiversity. Ligustrum lucidum, native to temperate Asia, is one of the most invasive plant species in the world. Climate is an important ecological factor influencing species distribution. Therefore, we investigated the climatic niche of L. lucidum in various regions of the world to determine whether it uses different climatic conditions in its invasive ranges than in its native range. The geographical coordinates of its occurrence were extracted from the Global Biodiversity Information Facility and Southern African Plant Invaders Atlas databases. Climatic variables and altitude data were obtained from WorldClim. We evaluated niche overlap and performed niche similarity tests, and estimated niche shift parameters. L. lucidum occurs mostly in warm temperate climates. Niche overlap between native and invaded areas was low. Niche similarity tests indicated that the species could expand its occurrence into regions with climates similar to and different from that of its native range. We concluded that L. lucidum uses different realized climatic niches in its invasive ranges than in its native range. Warmer and wetter climatic conditions may not necessarily constrain this species from establishing populations outside of its native range.
Collapse
Affiliation(s)
- Jaqueline Beatriz Brixner Dreyer
- Laboratory of Dendrology and Phytosociology, Santa Catarina State University, Agroveterinary Center, Forestry Department, Av Luiz de Camões, 2090, Conta Dinheiro, 88.520-000, Lages, SC, Brazil
| | - Pedro Higuchi
- Laboratory of Dendrology and Phytosociology, Santa Catarina State University, Agroveterinary Center, Forestry Department, Av Luiz de Camões, 2090, Conta Dinheiro, 88.520-000, Lages, SC, Brazil.
| | - Ana Carolina Silva
- Laboratory of Dendrology and Phytosociology, Santa Catarina State University, Agroveterinary Center, Forestry Department, Av Luiz de Camões, 2090, Conta Dinheiro, 88.520-000, Lages, SC, Brazil
| |
Collapse
|
24
|
Effects of occurrence record number, environmental variable number, and spatial scales on MaxEnt distribution modelling for invasive plants. Biologia (Bratisl) 2019. [DOI: 10.2478/s11756-019-00215-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
25
|
Wan JZ, Wang CJ, Tan JF, Yu FH. Climatic niche divergence and habitat suitability of eight alien invasive weeds in China under climate change. Ecol Evol 2017; 7:1541-1552. [PMID: 28261463 PMCID: PMC5330889 DOI: 10.1002/ece3.2684] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 11/21/2016] [Accepted: 11/24/2016] [Indexed: 01/29/2023] Open
Abstract
Testing climatic niche divergence and modeling habitat suitability under conditions of climate change are important for developing strategies to limit the introduction and expansion of alien invasive weeds (AIWs) and providing important ecological and evolutionary insights. We assessed climatic niches in both native and invasive ranges as well as habitat suitability under climate change for eight representative Chinese AIWs from the American continent. We used climatic variables associated with occurrence records and developed ecological niche models with Maxent. Interestingly, the climatic niches of all eight AIWs diverged significantly between the native and invasive ranges (the American continent and China). Furthermore, the AIWs showed larger climatic niche breadths in the invasive ranges than in the native ranges. Our results suggest that climatic niche shifts between native and invasive ranges occurred. Thus, the occurrence records of both native and invasive regions must be considered when modeling and predicting the spatial distributions of AIWs under current and future climate scenarios. Owing to high habitat suitability, AIWs were more likely to expand into regions of low latitude, and future climate change was predicted to result in a shift in the AIWs in Qinghai and Tibet (regions of higher altitude) as well as Heilongjiang, Jilin, Liaoning, Inner Mongolia, and Gansu (regions of higher latitude). Our results suggest that we need measures to prevent and control AIW expansion at the country-wide level.
Collapse
Affiliation(s)
- Ji-Zhong Wan
- School of Nature Conservation Beijing Forestry University Beijing China
| | - Chun-Jing Wang
- School of Nature Conservation Beijing Forestry University Beijing China
| | - Jing-Fang Tan
- School of Nature Conservation Beijing Forestry University Beijing China
| | - Fei-Hai Yu
- School of Nature Conservation Beijing Forestry University Beijing China
| |
Collapse
|