1
|
Zhang P, Jiang H, Liu X. Diversity inhibits foliar fungal diseases in grasslands: Potential mechanisms and temperature dependence. Ecol Lett 2024; 27:e14435. [PMID: 38735857 DOI: 10.1111/ele.14435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/18/2024] [Accepted: 04/22/2024] [Indexed: 05/14/2024]
Abstract
A long-standing debate exists among ecologists as to how diversity regulates infectious diseases (i.e., the nature of diversity-disease relationships); a dilution effect refers to when increasing host diversity inhibits infectious diseases (i.e., negative diversity-disease relationships). However, the generality, strength, and potential mechanisms underlying negative diversity-disease relationships in natural ecosystems remain unclear. To this end, we conducted a large-scale survey of 63 grassland sites across China to explore diversity-disease relationships. We found widespread negative diversity-disease relationships that were temperature-dependent; non-random diversity loss played a fundamental role in driving these patterns. Our study provides field evidence for the generality and temperature dependence of negative diversity-disease relationships in grasslands, becoming stronger in colder regions, while also highlighting the role of non-random diversity loss as a mechanism. These findings have important implications for community ecology, disease ecology, and epidemic control.
Collapse
Affiliation(s)
- Peng Zhang
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, P. R. China
| | - Hongying Jiang
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, P. R. China
| | - Xiang Liu
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, P. R. China
| |
Collapse
|
2
|
Abstract
Plant diseases are strongly influenced by host biodiversity, spatial structure, and abiotic conditions. All of these are undergoing rapid change, as the climate is warming, habitats are being lost, and nitrogen deposition is changing nutrient dynamics of ecosystems with ensuing consequences for biodiversity. Here, I review examples of plant-pathogen associations to demonstrate how our ability to understand, model and predict disease dynamics is becoming increasingly difficult, as both plant and pathogen populations and communities are undergoing extensive change. The extent of this change is influenced via both direct and combined effects of global change drivers, and especially the latter are still poorly understood. Change at one trophic level is expected to drive change also at the other, and hence feedback loops between plants and their pathogens are expected to drive changes in disease risk both through ecological as well as evolutionary mechanisms. Many of the examples discussed here demonstrate an increase in disease risk as a result of ongoing change, suggesting that unless we successfully mitigate global environmental change, plant disease is going to become an increasingly heavy burden on our societies with far-reaching consequences for food security and functioning of ecosystems.
Collapse
Affiliation(s)
- Anna-Liisa Laine
- Department of Evolutionary Biology and Environmental Studies, University of Zürich, 8057 Zürich, Switzerland; Research Centre for Ecological Change, Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, PO BOX 65 00014, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
3
|
Malfi RL, McFrederick QS, Lozano G, Irwin RE, Adler LS. Sunflower plantings reduce a common gut pathogen and increase queen production in common eastern bumblebee colonies. Proc Biol Sci 2023; 290:20230055. [PMID: 37015273 PMCID: PMC10072944 DOI: 10.1098/rspb.2023.0055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 03/10/2023] [Indexed: 04/06/2023] Open
Abstract
Community diversity can reduce the prevalence and spread of disease, but certain species may play a disproportionate role in diluting or amplifying pathogens. Flowers act as both sources of nutrition and sites of pathogen transmission, but the effects of specific plant species in shaping bee disease dynamics are not well understood. We evaluated whether plantings of sunflower (Helianthus annuus), whose pollen reduces infection by some pathogens when fed to bees in captivity, lowered pathogen levels and increased reproduction in free-foraging bumblebee colonies (Bombus impatiens). Sunflower abundance reduced the prevalence of a common gut pathogen, Crithidia bombi, and reduced infection intensity, with an order of magnitude lower infection intensity at high sunflower sites compared with sites with little to no sunflower. Sunflower abundance was also positively associated with greater queen production in colonies. Sunflower did not affect prevalence of other detected pathogens. This work demonstrates that a single plant species can drive disease dynamics in foraging B. impatiens, and that sunflower plantings can be used as a tool for mitigating a prevalent pathogen while also increasing reproduction of an agriculturally important bee species.
Collapse
Affiliation(s)
- Rosemary L. Malfi
- Department of Biology, University of Massachusetts, Amherst, MA 01003, USA
| | | | - Giselle Lozano
- Department of Entomology, University of California, Riverside, CA 92521, USA
| | - Rebecca E. Irwin
- Department of Applied Ecology, North Carolina State University, Raleigh, NC 27695, USA
| | - Lynn S. Adler
- Department of Biology, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
4
|
Halliday FW, Czyżewski S, Laine AL. Intraspecific trait variation and changing life-history strategies explain host community disease risk along a temperature gradient. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220019. [PMID: 36744568 PMCID: PMC9900715 DOI: 10.1098/rstb.2022.0019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 01/02/2023] [Indexed: 02/07/2023] Open
Abstract
Predicting how climate change will affect disease risk is complicated by the fact that changing environmental conditions can affect disease through direct and indirect effects. Species with fast-paced life-history strategies often amplify disease, and changing climate can modify life-history composition of communities thereby altering disease risk. However, individuals within a species can also respond to changing conditions with intraspecific trait variation. To test the effect of temperature, as well as inter- and intraspecifc trait variation on community disease risk, we measured foliar disease and specific leaf area (SLA; a proxy for life-history strategy) on more than 2500 host (plant) individuals in 199 communities across a 1101 m elevational gradient in southeastern Switzerland. There was no direct effect of increasing temperature on disease. Instead, increasing temperature favoured species with higher SLA, fast-paced life-history strategies. This effect was balanced by intraspecific variation in SLA: on average, host individuals expressed lower SLA with increasing temperature, and this effect was stronger among species adapted to warmer temperatures and lower latitudes. These results demonstrate how impacts of changing temperature on disease may depend on how temperature combines and interacts with host community structure while indicating that evolutionary constraints can determine how these effects are manifested under global change. This article is part of the theme issue 'Infectious disease ecology and evolution in a changing world'.
Collapse
Affiliation(s)
- Fletcher W. Halliday
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, 8057 Zurich, Switzerland
| | - Szymon Czyżewski
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, 8057 Zurich, Switzerland
| | - Anna-Liisa Laine
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, 8057 Zurich, Switzerland
- Research Centre for Ecological Change, Organismal & Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, PO Box 65, Helsinki FI-00014, Finland
| |
Collapse
|
5
|
Liu X, Xiao Y, Lin Z, Wang X, Hu K, Liu M, Zhao Y, Qi Y, Zhou S. Spatial scale-dependent dilution effects of biodiversity on plant diseases in grasslands. Ecology 2023; 104:e3944. [PMID: 36477908 DOI: 10.1002/ecy.3944] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 11/03/2022] [Accepted: 11/07/2022] [Indexed: 12/12/2022]
Abstract
The rapid biodiversity losses of the Anthropocene have motivated ecologists to understand how biodiversity affects infectious diseases. Spatial scale is thought to moderate negative biodiversity-disease relationships (i.e., dilution effects) in zoonotic diseases, whereas evidence from plant communities for an effect of scale remains limited, especially at local scales where the mechanisms (e.g., encounter reduction) underlying dilution effects actually work. Here, we tested how spatial scale affects the direction and magnitude of biodiversity-disease relationships. We utilized a 10-year-old nitrogen addition experiment in a Tibetan alpine meadow, with 0, 5, 10, and 15 g/m2 nitrogen addition treatments. Within the treatment plots, we arranged a total of 216 quadrats (of either 0.125 × 0.125 m, 0.25 × 0.25 m or 0.5 × 0.5 m size) to test how the sample area affects the relationship between plant species richness and foliar fungal disease severity. We found that the dilution effects were stronger in the 0.125 × 0.125 m and 0.25 × 0.25 m quadrats, compared with 0.5 × 0.5 m quadrats. There was a significant interaction between species richness and nitrogen addition in the 0.125 × 0.125 m and 0.25 × 0.25 m quadrats, indicating that a dilution effect was more easily observed under higher levels of nitrogen addition. Based on multigroup structural equation models, we found that even accounting for the direct impact of nitrogen addition (i.e., "nitrogen-disease hypothesis"), the dilution effect still worked at the 0.125 × 0.125 m scale. Overall, these findings suggest that spatial scale directly determines the occurrence of dilution effects, and can partly explain the observed variation in biodiversity-disease relationships in grasslands. Next-generation frameworks for predicting infectious diseases under rapid biodiversity loss scenarios need to incorporate spatial information.
Collapse
Affiliation(s)
- Xiang Liu
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Yao Xiao
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Ziyuan Lin
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Xingxing Wang
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Kui Hu
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Mu Liu
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Yimin Zhao
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education, College of Forestry, Hainan University, Haikou, China
| | - Yanwen Qi
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education, College of Forestry, Hainan University, Haikou, China
| | - Shurong Zhou
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education, College of Forestry, Hainan University, Haikou, China
| |
Collapse
|
6
|
Chen L, Kong P, Hou L, Zhou Y, Zhou L. Host community composition, community assembly pattern, and disease transmission mode jointly determine the direction and strength of the diversity-disease relationship. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.1032931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Rapid global biodiversity loss and increasing emerging infectious diseases underscore the significance of identifying the diversity-disease relationship. Although experimental evidence supports the existence of dilution effects in several natural ecosystems, we still know very little about the conditions under which a dilution effect will occur. Using a multi-host Susceptible-Infected-Recovered model, we found when disease transmission was density-dependent, the diversity-disease relationship could exhibit an increasing, decreasing, or non-monotonic trend, which mainly depended on the patterns of community assembly. However, the combined effects of the host competence-abundance relationship and species extinction order may reverse or weaken this trend. In contrast, when disease transmission was frequency-dependent, the diversity-disease relationship only showed a decreasing trend, the host competence-abundance relationship and species extinction order did not alter this decreasing trend, but it could reduce the detectability of the dilution effect and affect disease prevalence. Overall, a combination of disease transmission mode, community assembly pattern, and host community composition determines the direction or strength of the diversity-disease relationship. Our work helps explain why previous studies came to different conclusions about the diversity-disease relationship and provides a deeper understanding of the pathogen transmission dynamics in actual communities.
Collapse
|
7
|
Cappelli SL, Domeignoz-Horta LA, Loaiza V, Laine AL. Plant biodiversity promotes sustainable agriculture directly and via belowground effects. TRENDS IN PLANT SCIENCE 2022; 27:674-687. [PMID: 35279365 DOI: 10.1016/j.tplants.2022.02.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 02/10/2022] [Accepted: 02/16/2022] [Indexed: 06/14/2023]
Abstract
While the positive relationship between plant biodiversity and ecosystem functioning (BEF) is well established, the extent to which this is mediated via belowground microbial processes is poorly understood. Growing evidence suggests that plant community structure influences soil microbial diversity, which in turn promotes functions desired for sustainable agriculture. Here, we outline the 'plant-directed' and soil microbe-mediated mechanisms expected to promote positive BEF. We identify how this knowledge can be utilized in plant diversification schemes to maximize ecosystem functioning in agroecosystems, which are typically species poor and sensitive to biotic and abiotic stressors. In the face of resource overexploitation and global change, bridging the gaps between biodiversity science and agricultural practices is crucial to meet food security in the Anthropocene.
Collapse
Affiliation(s)
- Seraina L Cappelli
- Research Centre for Ecological Change, Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland.
| | - Luiz A Domeignoz-Horta
- Department of Evolutionary Biology and Environmental Sciences, University of Zürich, Zürich, Switzerland
| | - Viviana Loaiza
- Department of Evolutionary Biology and Environmental Sciences, University of Zürich, Zürich, Switzerland
| | - Anna-Liisa Laine
- Research Centre for Ecological Change, Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland; Department of Evolutionary Biology and Environmental Sciences, University of Zürich, Zürich, Switzerland
| |
Collapse
|
8
|
朱 高. Research Progress on the Effects of Nitrogen Deposition on Plant Pathogens. INTERNATIONAL JOURNAL OF ECOLOGY 2022. [DOI: 10.12677/ije.2022.114064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
9
|
Rosenthal LM, Brooks WR, Rizzo DM. Species densities, assembly order, and competence jointly determine the diversity–disease relationship. Ecology 2021; 103:e3622. [DOI: 10.1002/ecy.3622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/12/2021] [Accepted: 12/09/2021] [Indexed: 11/12/2022]
Affiliation(s)
- Lisa M. Rosenthal
- Department of Plant Pathology University of California Davis California USA
- Graduate Group in Ecology University of California Davis California USA
| | | | - David M. Rizzo
- Department of Plant Pathology University of California Davis California USA
| |
Collapse
|
10
|
Rosenthal LM, Simler-Williamson AB, Rizzo DM. Community-level prevalence of a forest pathogen, not individual-level disease risk, declines with tree diversity. Ecol Lett 2021; 24:2477-2489. [PMID: 34510681 DOI: 10.1111/ele.13871] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/18/2021] [Accepted: 08/10/2021] [Indexed: 11/27/2022]
Abstract
Understanding why diversity sometimes limits disease is essential for managing outbreaks; however, mechanisms underlying this 'dilution effect' remain poorly understood. Negative diversity-disease relationships have previously been detected in plant communities impacted by an emerging forest disease, sudden oak death. We used this focal system to empirically evaluate whether these relationships were driven by dilution mechanisms that reduce transmission risk for individuals or from the fact that disease was averaged across the host community. We integrated laboratory competence measurements with plant community and symptom data from a large forest monitoring network. Richness increased disease risk for bay laurel trees, dismissing possible dilution mechanisms. Nonetheless, richness was negatively associated with community-level disease prevalence because the disease was aggregated among hosts that vary in disease susceptibility. Aggregating observations (which is surprisingly common in other dilution effect studies) can lead to misinterpretations of dilution mechanisms and bias towards a negative diversity-disease relationship.
Collapse
Affiliation(s)
- Lisa M Rosenthal
- Graduate Group in Ecology, University of California, Davis, California, USA.,Department of Plant Pathology, University of California, Davis, California, USA
| | | | - David M Rizzo
- Department of Plant Pathology, University of California, Davis, California, USA
| |
Collapse
|
11
|
Keesing F, Ostfeld RS. Dilution effects in disease ecology. Ecol Lett 2021; 24:2490-2505. [PMID: 34482609 PMCID: PMC9291114 DOI: 10.1111/ele.13875] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 08/19/2021] [Indexed: 01/03/2023]
Abstract
For decades, people have reduced the transmission of pathogens by adding low‐quality hosts to managed environments like agricultural fields. More recently, there has been interest in whether similar ‘dilution effects’ occur in natural disease systems, and whether these effects are eroded as diversity declines. For some pathogens of plants, humans and other animals, the highest‐quality hosts persist when diversity is lost, so that high‐quality hosts dominate low‐diversity communities, resulting in greater pathogen transmission. Meta‐analyses reveal that these natural dilution effects are common. However, studying them remains challenging due to limitations on the ability of researchers to manipulate many disease systems experimentally, difficulties of acquiring data on host quality and confusion about what should and should not be considered a dilution effect. Because dilution effects are widely used in managed disease systems and have been documented in a variety of natural disease systems, their existence should not be considered controversial. Important questions remain about how frequently they occur and under what conditions to expect them. There is also ongoing confusion about their relationships to both pathogen spillover and general biogeographical correlations between diversity and disease, which has resulted in an inconsistent and confusing literature. Progress will require rigorous and creative research.
Collapse
|
12
|
Susi H, Laine A. Agricultural land use disrupts biodiversity mediation of virus infections in wild plant populations. THE NEW PHYTOLOGIST 2021; 230:2447-2458. [PMID: 33341977 PMCID: PMC8248426 DOI: 10.1111/nph.17156] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 12/10/2020] [Indexed: 06/08/2023]
Abstract
Human alteration of natural habitats may change the processes governing species interactions in wild communities. Wild populations are increasingly impacted by agricultural intensification, yet it is unknown whether this alters biodiversity mediation of disease dynamics. We investigated the association between plant diversity (species richness, diversity) and infection risk (virus richness, prevalence) in populations of Plantago lanceolata in natural landscapes as well as those occurring at the edges of cultivated fields. Altogether, 27 P. lanceolata populations were surveyed for population characteristics and sampled for PCR detection of five recently characterized viruses. We find that plant species richness and diversity correlated negatively with virus infection prevalence. Virus species richness declined with increasing plant diversity and richness in natural populations while in agricultural edge populations species richness was moderately higher, and not associated with plant richness. This difference was not explained by changes in host richness between these two habitats, suggesting potential pathogen spill-over and increased transmission of viruses across the agro-ecological interface. Host population connectivity significantly decreased virus infection prevalence. We conclude that human use of landscapes may change the ecological laws by which natural communities are formed with far reaching implications for ecosystem functioning and disease.
Collapse
Affiliation(s)
- Hanna Susi
- Research Centre for Ecological Change, Organismal and Evolutionary Biology Research ProgrammeUniversity of HelsinkiPO Box 65Helsinki00014Finland
| | - Anna‐Liisa Laine
- Research Centre for Ecological Change, Organismal and Evolutionary Biology Research ProgrammeUniversity of HelsinkiPO Box 65Helsinki00014Finland
- Department of Evolutionary Biology and Environmental StudiesUniversity of ZurichWinterthurerstrasse 190ZurichCH‐8057Switzerland
| |
Collapse
|
13
|
Halliday FW, Jalo M, Laine AL. The effect of host community functional traits on plant disease risk varies along an elevational gradient. eLife 2021; 10:67340. [PMID: 33983120 PMCID: PMC8208817 DOI: 10.7554/elife.67340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 05/10/2021] [Indexed: 01/17/2023] Open
Abstract
Quantifying the relative impact of environmental conditions and host community structure on disease is one of the greatest challenges of the 21st century, as both climate and biodiversity are changing at unprecedented rates. Both increasing temperature and shifting host communities toward more fast-paced life-history strategies are predicted to increase disease, yet their independent and interactive effects on disease in natural communities remain unknown. Here, we address this challenge by surveying foliar disease symptoms in 220, 0.5 m-diameter herbaceous plant communities along a 1100-m elevational gradient. We find that increasing temperature associated with lower elevation can increase disease by (1) relaxing constraints on parasite growth and reproduction, (2) determining which host species are present in a given location, and (3) strengthening the positive effect of host community pace-of-life on disease. These results provide the first field evidence, under natural conditions, that environmental gradients can alter how host community structure affects disease. Climate change is causing shifts in the ecology and biodiversity of different world regions at unprecedented rates. Global warming is also linked with changes in the risk for certain infectious diseases in humans, but also in animals and plants. There are several possible mechanisms for this. For one thing, changing weather patterns may affect how pathogens grow and reproduce. For another, the distribution ranges of animal and plant hosts of certain disease-causing pathogens are changing because of global warming. This means that the distributions of pathogens are also changing, and so is the severity of the diseases that they cause. Increasing temperatures may also influence the physiological traits that make host species suitable for pathogens. This is because the traits that allow species to survive or adapt to changes in their environment may also make them better at hosting and transmitting the pathogens that cause disease. For example, in plant communities, rising temperatures could favor species with faster growth rates, quicker reproduction and high dispersal, and these traits are often associated with more efficient spread of disease. Despite a lot of research into the effects of climate, it remains unclear how temperature, pathogen growth and reproduction, and host species’ traits and distributions combine and interact to alter infectious disease risk, especially in wild plant communities. To investigate this, Halliday, Jalo and Laine studied an area in southeast Switzerland where natural temperature and biodiversity change gradually through the region. The aim was to explore how relationships between plant biodiversity, pathogens and disease risk change with temperature, and to understand whether environmental or biological factors influence infectious disease risk more. Halliday, Jalo and Laine measured the levels of fungal diseases found in the leaves of plant communities spanning 1,100 meters of elevation, showing that higher temperatures increase disease risk both directly and indirectly. Directly, higher temperatures increased pathogen growth and reproduction, and indirectly, they influenced which plants were present and therefore able to act as disease hosts. The results also indicated that temperature can affect how the traits of plants drive the transmission rates of fungal pathogens. Important predictors of disease risk were traits relating to the growth rate of host plants, which tended to increase in areas with low elevation where the surface of the soil was warm. This study represents the first analysis, in wild plants, of how changing temperatures, the traits of shifting host species, and resident parasite populations interact to impact infectious disease risk. The insights Halliday, Jalo and Laine provided could aid in predicting how global climate change will influence infectious disease risk.
Collapse
Affiliation(s)
- Fletcher W Halliday
- Department of Evolutionary Biology and Environmental Studies, University of Zürich, Zurich, Switzerland
| | - Mikko Jalo
- Faculty of Biological and Environmental sciences, University of Helsinki, Helsinki, Finland
| | - Anna-Liisa Laine
- Department of Evolutionary Biology and Environmental Studies, University of Zürich, Zurich, Switzerland.,Faculty of Biological and Environmental sciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
14
|
Halliday FW, Rohr JR, Laine A. Biodiversity loss underlies the dilution effect of biodiversity. Ecol Lett 2020; 23:1611-1622. [PMID: 32808427 PMCID: PMC7693066 DOI: 10.1111/ele.13590] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/14/2020] [Accepted: 07/16/2020] [Indexed: 01/16/2023]
Abstract
The dilution effect predicts increasing biodiversity to reduce the risk of infection, but the generality of this effect remains unresolved. Because biodiversity loss generates predictable changes in host community competence, we hypothesised that biodiversity loss might drive the dilution effect. We tested this hypothesis by reanalysing four previously published meta-analyses that came to contradictory conclusions regarding generality of the dilution effect. In the context of biodiversity loss, our analyses revealed a unifying pattern: dilution effects were inconsistently observed for natural biodiversity gradients, but were commonly observed for biodiversity gradients generated by disturbances causing losses of biodiversity. Incorporating biodiversity loss into tests of generality of the dilution effect further indicated that scale-dependency may strengthen the dilution effect only when biodiversity gradients are driven by biodiversity loss. Together, these results help to resolve one of the most contentious issues in disease ecology: the generality of the dilution effect.
Collapse
Affiliation(s)
- Fletcher W. Halliday
- Department of Evolutionary Biology and Environmental StudiesUniversity of ZurichZurich8057Switzerland
| | - Jason R. Rohr
- Department of Biological SciencesEck Institute of Global HealthEnvironmental Change InitiativeUniversity of Notre DameNotre DameINUSA
| | - Anna‐Liisa Laine
- Department of Evolutionary Biology and Environmental StudiesUniversity of ZurichZurich8057Switzerland
- Organismal & Evolutionary Biology Research ProgramUniversity of HelsinkiPO Box 65HelsinkiFI‐00014Finland
| |
Collapse
|
15
|
Welsh ME, Cronin JP, Mitchell CE. Trait-based variation in host contribution to pathogen transmission across species and resource supplies. Ecology 2020; 101:e03164. [PMID: 33460129 DOI: 10.1002/ecy.3164] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 04/24/2020] [Accepted: 06/18/2020] [Indexed: 01/26/2023]
Abstract
Two key knowledge gaps currently limit the development of more predictive and general models of pathogen transmission: (1) the physiological basis of heterogeneity in host contribution to pathogen transmission (reservoir potential) remains poorly understood and (2) a general means of integrating the ecological dynamics of host communities has yet to emerge. If the traits responsible for differences in reservoir potential also modulate host community dynamics, these traits could be used to predict pathogen transmission as host communities change. In two greenhouse experiments, across 23 host species and two levels of resource supply, the reservoir potential of plant hosts increased significantly along the Leaf Economics Spectrum, a global axis of plant physiological trait covariation that features prominently in models of plant community ecology. This indicates that the traits of the Leaf Economics Spectrum underlie broad differences in reservoir potential across host species and resource supplies. Therefore, host traits could be used to integrate epidemiological models of pathogen transmission with ecological models of host community change.
Collapse
Affiliation(s)
- Miranda E Welsh
- Thompson Writing Program, Duke University, Durham, North Carolina, 27708, USA.,Environment, Ecology and Energy Program, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, USA
| | - James Patrick Cronin
- U.S. Geological Survey, Wetland and Aquatic Research Center, 700 Cajundome Boulevard, Lafayette, Louisiana, 70506, USA
| | - Charles E Mitchell
- Environment, Ecology and Energy Program, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, USA.,Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, USA
| |
Collapse
|
16
|
Halliday FW, Heckman RW, Wilfahrt PA, Mitchell CE. Eutrophication, biodiversity loss, and species invasions modify the relationship between host and parasite richness during host community assembly. GLOBAL CHANGE BIOLOGY 2020; 26:4854-4867. [PMID: 32427383 DOI: 10.1111/gcb.15165] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 04/02/2020] [Accepted: 05/12/2020] [Indexed: 06/11/2023]
Abstract
Host and parasite richness are generally positively correlated, but the stability of this relationship in response to global change remains poorly understood. Rapidly changing biotic and abiotic conditions can alter host community assembly, which in turn, can alter parasite transmission. Consequently, if the relationship between host and parasite richness is sensitive to parasite transmission, then changes in host composition under various global change scenarios could strengthen or weaken the relationship between host and parasite richness. To test the hypothesis that host community assembly can alter the relationship between host and parasite richness in response to global change, we experimentally crossed host diversity (biodiversity loss) and resource supply to hosts (eutrophication), then allowed communities to assemble. As previously shown, initial host diversity and resource supply determined the trajectory of host community assembly, altering post-assembly host species richness, richness-independent host phylogenetic diversity, and colonization by exotic host species. Overall, host richness predicted parasite richness, and as predicted, this effect was moderated by exotic abundance-communities dominated by exotic species exhibited a stronger positive relationship between post-assembly host and parasite richness. Ultimately, these results suggest that, by modulating parasite transmission, community assembly can modify the relationship between host and parasite richness. These results thus provide a novel mechanism to explain how global environmental change can generate contingencies in a fundamental ecological relationship-the positive relationship between host and parasite richness.
Collapse
Affiliation(s)
- Fletcher W Halliday
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
- Department of Biology, University of North Carolina, Chapel Hill, NC, USA
| | - Robert W Heckman
- Department of Biology, University of North Carolina, Chapel Hill, NC, USA
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA
| | - Peter A Wilfahrt
- Environment, Ecology and Energy Program, University of North Carolina, Chapel Hill, NC, USA
- Department of Disturbance Ecology, University of Bayreuth, Bayreuth, Germany
| | - Charles E Mitchell
- Department of Biology, University of North Carolina, Chapel Hill, NC, USA
- Environment, Ecology and Energy Program, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
17
|
Lu Y, Liu X, Chen F, Zhou S. Shifts in plant community composition weaken the negative effect of nitrogen addition on community-level arbuscular mycorrhizal fungi colonization. Proc Biol Sci 2020; 287:20200483. [PMID: 32453987 PMCID: PMC7287364 DOI: 10.1098/rspb.2020.0483] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 05/01/2020] [Indexed: 11/12/2022] Open
Abstract
Nitrogen addition affects plant-arbuscular mycorrhizal fungi (AMF) association greatly. However, although the direct effect of nitrogen addition on AMF colonization has received investigation, its indirect effect through shifts in plant community composition has never been quantified. Based on a 7-year nitrogen addition experiment in an alpine meadow of Qinghai-Tibet Plateau, we investigated the effects of nitrogen addition on plant community, AMF diversity and colonization, and disentangled the direct and indirect effects of nitrogen addition on community AMF colonization. At plant species level, nitrogen addition significantly decreased root colonization rate and altered AMF community composition, but with no significant effect on AMF richness. At plant community level, plant species richness and AMF colonization rate decreased with nitrogen addition. Plant species increasing in abundance after nitrogen addition were those with higher AMF colonization rates in natural conditions, resulting in an increased indirect effect induced by alternation in plant community composition with nitrogen addition, whereas the direct effect was negative and decreased with nitrogen addition. Overall, we illustrate the effect of nitrogen addition and plant species in influencing the AMF diversity, demonstrate how shifts in plant community composition (indirect effect) weaken the negative direct effect of nitrogen addition on community-level AMF colonization rate, and emphasize the importance of plant community-mediated mechanisms in regulating ecosystem functions.
Collapse
Affiliation(s)
| | | | | | - Shurong Zhou
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Coastal Ecosystems Research Station of the Yangtze River Estuary, Institute of Biodiversity Science, School of Life Sciences, Fudan University, 2005 Songhu Road, Shanghai 200438, People's Republic of China
| |
Collapse
|
18
|
Cappelli SL, Pichon NA, Kempel A, Allan E. Sick plants in grassland communities: a growth-defense trade-off is the main driver of fungal pathogen abundance. Ecol Lett 2020; 23:1349-1359. [PMID: 32455502 DOI: 10.1111/ele.13537] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/29/2020] [Accepted: 04/30/2020] [Indexed: 01/21/2023]
Abstract
Aboveground fungal pathogens can substantially reduce biomass production in grasslands. However, we lack a mechanistic understanding of the drivers of fungal pathogen infection and impact. Using a grassland global change and biodiversity experiment we show that the trade-off between plant growth and defense is the main determinant of infection incidence. In contrast, nitrogen addition only indirectly increased incidence via shifting plant communities towards faster growing species. Plant diversity did not decrease incidence, likely because spillover of generalist pathogens or dominance of susceptible plants counteracted negative diversity effects. A fungicide treatment increased plant biomass production and high levels of infection incidence were associated with reduced biomass. However, pathogen impact was context dependent and infection incidence reduced biomass more strongly in diverse communities. Our results show that a growth-defense trade-off is the key driver of pathogen incidence, but pathogen impact is determined by several mechanisms and may depend on pathogen community composition.
Collapse
Affiliation(s)
- Seraina L Cappelli
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, Bern, 3013, Switzerland
| | - Noémie A Pichon
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, Bern, 3013, Switzerland
| | - Anne Kempel
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, Bern, 3013, Switzerland
| | - Eric Allan
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, Bern, 3013, Switzerland
| |
Collapse
|
19
|
Johnson PTJ, Calhoun DM, Riepe T, McDevitt-Galles T, Koprivnikar J. Community disassembly and disease: realistic-but not randomized-biodiversity losses enhance parasite transmission. Proc Biol Sci 2020; 286:20190260. [PMID: 31039724 DOI: 10.1098/rspb.2019.0260] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Debates over the relationship between biodiversity and disease dynamics underscore the need for a more mechanistic understanding of how changes in host community composition influence parasite transmission. Focusing on interactions between larval amphibians and trematode parasites, we experimentally contrasted the effects of host richness and species composition to identify the individual and joint contributions of both parameters on the infection levels of three trematode species. By combining experimental approaches with field surveys from 147 ponds, we further evaluated how richness effects differed between randomized and realistic patterns of species loss (i.e. community disassembly). Our results indicated that community-level changes in infection levels were owing to host species composition, rather than richness. However, when composition patterns mirrored empirical observations along a natural assembly gradient, each added host species reduced infection success by 12-55%. No such effects occurred when assemblages were randomized. Mechanistically, these patterns were due to non-random host species assembly/disassembly: while highly competent species predominated in low diversity systems, less susceptible hosts became progressively more common as richness increased. These findings highlight the potential for combining information on host traits and assembly patterns to forecast diversity-mediated changes in multi-host disease systems.
Collapse
Affiliation(s)
- Pieter T J Johnson
- 1 Ecology and Evolutionary Biology, University of Colorado , Boulder, CO , USA
| | - Dana M Calhoun
- 1 Ecology and Evolutionary Biology, University of Colorado , Boulder, CO , USA
| | - Tawni Riepe
- 1 Ecology and Evolutionary Biology, University of Colorado , Boulder, CO , USA
| | | | - Janet Koprivnikar
- 2 Department of Chemistry and Biology, Ryerson University , Toronto, Ontario , Canada
| |
Collapse
|
20
|
Rohr JR, Civitello DJ, Halliday FW, Hudson PJ, Lafferty KD, Wood CL, Mordecai EA. Towards common ground in the biodiversity-disease debate. Nat Ecol Evol 2019; 4:24-33. [PMID: 31819238 PMCID: PMC7224049 DOI: 10.1038/s41559-019-1060-6] [Citation(s) in RCA: 128] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 11/13/2019] [Indexed: 01/16/2023]
Abstract
The disease ecology community has struggled to come to consensus on whether biodiversity reduces or increases infectious disease risk, a question that directly affects policy decisions for biodiversity conservation and public health. Here, we summarize the primary points of contention regarding biodiversity–disease relationships and suggest that vector-borne, generalist wildlife and zoonotic pathogens are the types of parasites most likely to be affected by changes to biodiversity. One synthesis on this topic revealed a positive correlation between biodiversity and human disease burden across countries, but as biodiversity changed over time within these countries, this correlation became weaker and more variable. Another synthesis—a meta-analysis of generally smaller-scale experimental and field studies—revealed a negative correlation between biodiversity and infectious diseases (a dilution effect) in various host taxa. These results raise the question of whether biodiversity–disease relationships are more negative at smaller spatial scales. If so, biodiversity conservation at the appropriate scales might prevent wildlife and zoonotic diseases from increasing in prevalence or becoming problematic (general proactive approaches). Further, protecting natural areas from human incursion should reduce zoonotic disease spillover. By contrast, for some infectious diseases, managing particular species or habitats and targeted biomedical approaches (targeted reactive approaches) might outperform biodiversity conservation as a tool for disease control. Importantly, biodiversity conservation and management need to be considered alongside other disease management options. These suggested guiding principles should provide common ground that can enhance scientific and policy clarity for those interested in simultaneously improving wildlife and human health. There has been intense debate as to whether biodiversity increases or reduces the risk of infectious disease. This Review is the result of researchers from both sides of the debate attempting to reach a consensus.
Collapse
Affiliation(s)
- Jason R Rohr
- Department of Biological Sciences, Eck Institute of Global Health, Environmental Change Initiative, University of Notre Dame, Notre Dame, IN, USA.
| | | | - Fletcher W Halliday
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Peter J Hudson
- Center for Infectious Disease Dynamics, Biology Department, The Pennsylvania State University, University Park, PA, USA
| | - Kevin D Lafferty
- Western Ecological Research Center, US Geological Survey, c/o Marine Science Institute, University of California, Santa Barbara, CA, USA
| | - Chelsea L Wood
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA, USA
| | | |
Collapse
|
21
|
Liu X, Lu Y, Zhang Z, Zhou S. Foliar fungal diseases respond differently to nitrogen and phosphorus additions in Tibetan alpine meadows. Ecol Res 2019. [DOI: 10.1111/1440-1703.12064] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xiang Liu
- State Key Laboratory of Plateau Ecology and Agriculture Qinghai University Xining PR China
- Ministry of Education Key Laboratory of Western China's Environmental Systems Lanzhou University Lanzhou PR China
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering School of Life Sciences, Fudan University Shanghai PR China
| | - Yawen Lu
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering School of Life Sciences, Fudan University Shanghai PR China
| | - Zhenhua Zhang
- Key Laboratory of Adaptation and Evolution of Plateau Biota Northwest Institute of Plateau Biology, Chinese Academy of Sciences Xining PR China
| | - Shurong Zhou
- State Key Laboratory of Plateau Ecology and Agriculture Qinghai University Xining PR China
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering School of Life Sciences, Fudan University Shanghai PR China
| |
Collapse
|