1
|
Clifton B, Ghezzehei TA, Viers JH. Carbon stock quantification in a floodplain restoration chronosequence along a Mediterranean-montane riparian corridor. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:173829. [PMID: 38857806 DOI: 10.1016/j.scitotenv.2024.173829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 05/14/2024] [Accepted: 06/05/2024] [Indexed: 06/12/2024]
Abstract
Uncertainty in the global carbon (C) budget has been reduced for most stocks, though it remains incomplete by not considering aquatic and transitional zone carbon stocks. A key issue preventing such complete accounting is a lack of available C data within these aquatic and aquatic-terrestrial transitional ecosystems. Concurrently, quantifiable results produced by restoration practices that explicitly target C stock accumulation and sequestration remain inconsistent or undocumented. To support a more complete carbon budget and identify impacts on C stock accumulation from restoration treatment actions, we investigated C stock values in a Mediterranean-montane riparian floodplain system in California, USA. We quantified the C stock in aboveground biomass, large wood, and litter in addition to the C and total nitrogen in the upper soil profile (5 cm) across 23 unique restoration treatments and remnant old-growth forests. Treatments span 40 years of restoration actions along seven river kilometers of the Cosumnes River, and include process-based (limited intervention), assisted (horticultural planting and other intensive restoration activities), hybrid (a combination of process and assisted actions), and remnant (old-growth forests that were not created with restoration actions) sites. Total C values measured up to 1100 Mg ha-1 and averaged 129 Mg ha-1 with biomass contributing the most to individual plot measurements. From 2012 to 2020, biomass C stock measurements showed an average 32 Mg ha-1 increase across all treatments, though treatment specific values varied. While remnant forest plots held the highest average C values across all stocks (336 Mg ha-1), C values of different stocks varied across treatment type. Process-based restoration treatments held more average biomass C (120 Mg ha-1) than hybrid (23 Mg ha-1) or assisted restoration treatments (50 Mg ha-1), while assisted restoration treatments held more average total C in soil and litter (58 Mg ha-1) than hybrid (35 Mg ha-1) and process-based restoration treatments (37 Mg ha-1). Regardless of treatment type, time was a significant factor for all C stock values. These findings support a more inclusive global carbon budget and provide valuable insight into restoration treatment actions that support C stock accumulation.
Collapse
Affiliation(s)
- Britne Clifton
- Environmental Systems, UC Merced, 5200 Lake Rd Merced, CA 95343.
| | - Teamrat A Ghezzehei
- Environmental Systems, UC Merced, 5200 Lake Rd Merced, CA 95343; School of Natural Sciences, UC Merced, 5200 Lake Rd Merced, CA 95343
| | - Joshua H Viers
- Environmental Systems, UC Merced, 5200 Lake Rd Merced, CA 95343; School of Engineering, UC Merced, 5200 Lake Rd Merced, CA 95343
| |
Collapse
|
2
|
Lininger KB, Lave R. River restoration can increase carbon storage but is not yet a suitable basis for carbon credits. Bioscience 2024; 74:717-724. [PMID: 39444511 PMCID: PMC11494629 DOI: 10.1093/biosci/biae083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 07/15/2024] [Accepted: 07/24/2024] [Indexed: 10/25/2024] Open
Abstract
Increasing organic carbon storage in river corridors (channels and floodplains) is a potential cobenefit of some river restoration approaches, raising the possibility of using restoration to produce carbon credits and, therefore, increase restoration funding. However, the uncertainty already associated with existing carbon credits is compounded in river corridors, which are dynamic on daily, seasonal, annual, and longer timescales. We currently do not know how much river restoration approaches could increase carbon storage or how significant increased organic carbon storage from restoration would be compared with other forms of climate mitigation. We also do not know whether river corridor carbon credits could meet market needs for quickly established, stable, and simple credits. Therefore, we argue that biophysical and political economic uncertainties make river corridor restoration carbon credits currently unfeasible but that research on river restoration projects would demonstrate whether restoration carbon credits could be feasible in the future.
Collapse
Affiliation(s)
- Katherine B Lininger
- Department of Geography at the University of Colorado Boulder, Boulder, Colorado, United States
| | - Rebecca Lave
- Indiana University Bloomington, Bloomington, Indiana, United States
- American Association of Geographers
| |
Collapse
|
3
|
Salerno L, Giulio Tonolo F, Camporeale C. A global dataset of carbon pumping by the world's largest tropical rivers. Sci Data 2024; 11:382. [PMID: 38615135 PMCID: PMC11016106 DOI: 10.1038/s41597-024-03201-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 03/28/2024] [Indexed: 04/15/2024] Open
Abstract
The eco-morphodynamic activity of large tropical rivers interacts with riparian vegetation causing implications for the carbon cycle within inland waters. Through a multi-temporal analysis of satellite data spanning the years 2000-2019, we analyzed rivers exceeding 200 m in width across the tropical regions, revealing a Carbon Pump mechanism driving an annual mobilization of 12.45 million tons of organic carbon. The study identifies fluvial eco-morphological signatures as proxies for carbon mobilization, emphasizing the link between river migration and carbon dynamics. To enhance accessibility, our results are encapsulated in a visually compelling WebGIS application, offering a comprehensive understanding of the eco-geomorphological influences on the global carbon cycle within large tropical rivers. Our findings are instrumental in determining the carbon intensity of future hydropower dams, thereby contributing to informed decision-making in the realm of sustainable energy infrastructure. This study elucidates the intricate relationships that govern the nexus of tropical river dynamics, riparian ecosystems, and the global carbon cycle.
Collapse
Affiliation(s)
- Luca Salerno
- DIATI Department of Environment, Land and Infrastructure Engineering, Politecnico di Torino, Turin, 10129, Italy.
| | - Fabio Giulio Tonolo
- DAD Department of Architecture and Design, Politecnico di Torino, Turin, 10129, Italy
| | - Carlo Camporeale
- DIATI Department of Environment, Land and Infrastructure Engineering, Politecnico di Torino, Turin, 10129, Italy
| |
Collapse
|
4
|
Cui Y, Wen S, Stegen JC, Hu A, Wang J. Chemodiversity of riverine dissolved organic matter: Effects of local environments and watershed characteristics. WATER RESEARCH 2024; 250:121054. [PMID: 38183798 DOI: 10.1016/j.watres.2023.121054] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 12/19/2023] [Accepted: 12/21/2023] [Indexed: 01/08/2024]
Abstract
Riverine dissolved organic matter (DOM) is crucial to global carbon cycling and aquatic ecosystems. However, the geographical patterns and environmental drivers of DOM chemodiversity remain elusive especially in the waters and sediments of continental rivers. Here, we systematically analyzed DOM molecular diversity and composition in surface waters and sediments across 97 broadly distributed rivers using data from the Worldwide Hydrobiogeochemistry Observation Network for Dynamic River Systems (WHONDRS) consortium. We further examined the associations of molecular richness and composition with geographical, climatic, physicochemical variables, as well as the watershed characteristics. We found that molecular richness significantly decreased toward higher latitudes, but only in sediments (r = -0.24, p < 0.001). The environmental variables like precipitation and non-purgeable organic carbon showed strong associations with DOM molecular richness and composition. Interestingly, we identified that less-documented factors like watershed characteristics were also related to DOM molecular richness and composition. For instance, DOM molecular richness was positively correlated with the soil sand fraction for waters, while with the percentage of forest for sediments. Importantly, the effects of watershed characteristics on DOM molecular richness and composition were generally stronger in waters than sediments. This phenomenon was further supported by the fact that 11 out of 13 watershed characteristics (e.g., the percentages of impervious area and cropland) showed more positive than negative correlations with molecular abundance especially in waters. As the percentage of forest increased, there was a continuous accumulation of the compounds with higher molecular weight, aromaticity, and degree of unsaturation. In contrast, human activities accumulated the compounds with lower molecular weight and oxygenation, and higher bioavailability. Our findings imply that it may be possible to use a small set of broadly available data types to predict DOM molecular richness and composition across diverse river systems. Elucidation of mechanisms underlying these relationships will provide further enhancements to such predictions, especially when extrapolating to unsampled systems.
Collapse
Affiliation(s)
- Yifan Cui
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Shuailong Wen
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - James C Stegen
- Pacific Northwest National Laboratory, Richland, WA 99352, United States
| | - Ang Hu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Jianjun Wang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China.
| |
Collapse
|
5
|
Talluto L, del Campo R, Estévez E, Altermatt F, Datry T, Singer G. Towards (better) fluvial meta-ecosystem ecology: a research perspective. NPJ BIODIVERSITY 2024; 3:3. [PMID: 39050515 PMCID: PMC11263126 DOI: 10.1038/s44185-023-00036-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 12/22/2023] [Indexed: 07/27/2024]
Abstract
Rivers are an important component of the global carbon cycle and contribute to atmospheric carbon exchange disproportionately to their total surface area. Largely, this is because rivers efficiently mobilize, transport and metabolize terrigenous organic matter (OM). Notably, our knowledge about the magnitude of globally relevant carbon fluxes strongly contrasts with our lack of understanding of the underlying processes that transform OM. Ultimately, OM processing en route to the oceans results from a diverse assemblage of consumers interacting with an equally diverse pool of resources in a spatially complex network of heterogeneous riverine habitats. To understand this interaction between consumers and OM, we must therefore account for spatial configuration, connectivity, and landscape context at scales ranging from local ecosystems to entire networks. Building such a spatially explicit framework of fluvial OM processing across scales may also help us to better predict poorly understood anthropogenic impacts on fluvial carbon cycling, for instance human-induced fragmentation and changes to flow regimes, including intermittence. Moreover, this framework must also account for the current unprecedented human-driven loss of biodiversity. This loss is at least partly due to mechanisms operating across spatial scales, such as interference with migration and habitat homogenization, and comes with largely unknown functional consequences. We advocate here for a comprehensive framework for fluvial networks connecting two spatially aware but disparate lines of research on (i) riverine metacommunities and biodiversity, and (ii) the biogeochemistry of rivers and their contribution to the global carbon cycle. We argue for a research agenda focusing on the regional scale-that is, of the entire river network-to enable a deeper mechanistic understanding of naturally arising biodiversity-ecosystem functioning coupling as a major driver of biogeochemically relevant riverine carbon fluxes.
Collapse
Affiliation(s)
- Lauren Talluto
- Department of Ecology, University of Innsbruck, Technikerstrasse 25, 6020 Innsbruck, Austria
| | - Rubén del Campo
- Department of Ecology, University of Innsbruck, Technikerstrasse 25, 6020 Innsbruck, Austria
| | - Edurne Estévez
- Department of Ecology, University of Innsbruck, Technikerstrasse 25, 6020 Innsbruck, Austria
| | - Florian Altermatt
- Department of Aquatic Ecology, Eawag: Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, 8600 Dübendorf, Switzerland
- Department of Evolutionary Biology and Environmental Studies, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Thibault Datry
- National Research Institute for Agriculture, Food and Environment (INRAE), 5 Rue de la Doua, 69100 Villeurbanne, France
| | - Gabriel Singer
- Department of Ecology, University of Innsbruck, Technikerstrasse 25, 6020 Innsbruck, Austria
| |
Collapse
|
6
|
Ni M, Liu R, Luo W, Pu J, Zhang J, Wang X. Unexpected shifts of dissolved carbon biogeochemistry caused by anthropogenic disturbances in karst rivers. WATER RESEARCH 2023; 247:120744. [PMID: 39492354 DOI: 10.1016/j.watres.2023.120744] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/10/2023] [Accepted: 10/15/2023] [Indexed: 11/05/2024]
Abstract
Dissolved carbon (C) provides critical feedbacks to regional biogeochemical processes and global C cycling. Yet to date, the specific pathways of fluvial dissolved C turnover, particularly with human-induced shifts involved, are still poorly understood. Here, we examined dissolved inorganic (DIC) and organic C (DOC), as well as human disturbances i.e., river damming and land use in karst rivers. We show that anthropogenic activities caused unexpected shifts to dissolved C biogeochemistry. Specifically, we found that human disturbances accelerated aquatic metabolism, ultimately causing more river CO2 generation than fixation. The extended hydrological retention by damming greatly stimulated biological utilization of dissolved C. River DOC was sourced largely from farmland and forest, while land-use fragmentation increased DOC diversity. Artificial dams and land uses intensified the transformations between DIC and DOC within karst environments. Based on these findings, we provided a process-based conceptual model regarding the rapid cycle of active C in karst waters, revealing the associated trajectories of DIC and DOC biogeochemistry. This study suggests that reducing anthropogenic disturbances essentially decelerates organic C metabolism, and therefore promotes riverine CO2 sequestration in the context of global C neutrality.
Collapse
Affiliation(s)
- Maofei Ni
- College of Eco-Environmental Engineering, Guizhou Minzu University, Guiyang 550025, China
| | - Rui Liu
- College of Geography and Tourism, Chongqing Normal University, Chongqing 401331, China; The Key Laboratory of GIS Application Research, Chongqing Normal University, Chongqing 401331, China
| | - Weijun Luo
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| | - Junbing Pu
- College of Geography and Tourism, Chongqing Normal University, Chongqing 401331, China; Chongqing Key Laboratory of Wetland Science Research of the Upper Reaches of the Yangtze River, School of Geography and Tourism, Chongqing Normal University, Chongqing 401331, China
| | - Jing Zhang
- College of Geography and Tourism, Chongqing Normal University, Chongqing 401331, China; The Key Laboratory of GIS Application Research, Chongqing Normal University, Chongqing 401331, China.
| | - Xiaodan Wang
- College of Eco-Environmental Engineering, Guizhou Minzu University, Guiyang 550025, China
| |
Collapse
|
7
|
Kaufman MH, Torgeson J, Stegen JC. Metabolic multireactor: Practical considerations for using simple oxygen sensing optodes for high-throughput batch reactor metabolism experiments. PLoS One 2023; 18:e0284256. [PMID: 37432946 DOI: 10.1371/journal.pone.0284256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 06/22/2023] [Indexed: 07/13/2023] Open
Abstract
We present a system for carrying out small batch reactor oxygen consumption experiments on water and sediment samples for environmental questions. In general, it provides several advantages that can help researchers achieve impactful experiments at relatively low costs and high data quality. In particular, it allows for multiple reactors to be operated and their oxygen concentrations to be measured simultaneously, providing high throughput and high time-resolution data, which can be advantageous. Most existing literature on similar small batch-reactor metabolic studies is limited to either only a few samples, or only a few time points per sample, which can restrict the ability for researchers to learn from their experiments. The oxygen sensing system is based very directly on the work of Larsen, et al. [2011], and similar oxygen sensing technology is widely used in the literature. As such we do not delve deeply into the specifics of the fluorescent dye sensing mechanism. Instead, we focus on practical considerations. We describe the construction and operation of the calibration and experimental systems, and answer many of the questions likely to come up when other researchers choose to build and operate a similar system themselves (questions we ourselves had when we first built the system). In this way, we hope to provide an approachable and easy to use research article that can help other researchers construct and operate a similar system that can be tailored to ask their own research questions, with a minimum of confusion and missteps along the way.
Collapse
Affiliation(s)
- Matthew H Kaufman
- Pacific Northwest National Laboratory, Earth and Biological Sciences Division, Richland, WA, United States of America
| | - Joshua Torgeson
- Pacific Northwest National Laboratory, Energy and Environment Division, Richland, WA, United States of America
| | - James C Stegen
- Pacific Northwest National Laboratory, Earth and Biological Sciences Division, Richland, WA, United States of America
| |
Collapse
|
8
|
Qiu H, Zhang X, Yang A, Wickland KP, Stets EG, Chen M. Watershed carbon yield derived from gauge observations and river network connectivity in the United States. Sci Data 2023; 10:278. [PMID: 37179379 PMCID: PMC10182987 DOI: 10.1038/s41597-023-02162-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 04/18/2023] [Indexed: 05/15/2023] Open
Abstract
River networks play a critical role in the global carbon cycle. Although global/continental scale riverine carbon cycle studies demonstrate the significance of rivers and streams for linking land and coastal regions, the lack of spatially distributed riverine carbon load data represents a gap for quantifying riverine carbon net gain or net loss in different regions, understanding mechanisms and factors that influence the riverine carbon cycle, and testing simulations of aquatic carbon cycle models at fine scales. Here, we (1) derive the riverine load of particulate organic carbon (POC) and dissolved organic carbon (DOC) for over 1,000 hydrologic stations across the Conterminous United States (CONUS) and (2) use the river network connectivity information for over 80,000 catchment units within the National Hydrography Dataset Plus (NHDPlus) to estimate riverine POC and DOC net gain or net loss for watersheds controlled between upstream-downstream hydrologic stations. The new riverine carbon load and watershed net gain/loss represent a unique contribution to support future studies for better understanding and quantification of riverine carbon cycles.
Collapse
Affiliation(s)
- Han Qiu
- Department of Forest and Wildlife Ecology, University of Wisconsin, Madison, WI, 53706, USA.
| | - Xuesong Zhang
- USDA-ARS Hydrology and Remote Sensing Laboratory, Beltsville, MD, 20705-2350, USA.
| | - Anni Yang
- Department of Geography and Environmental sustainability, University of Oklahoma, Norman, 73019, USA
| | - Kimberly P Wickland
- Geosciences and Environmental Change Science Center, U.S. Geological Survey, Lakewood, CO, 80303, USA
| | | | - Min Chen
- Department of Forest and Wildlife Ecology, University of Wisconsin, Madison, WI, 53706, USA
| |
Collapse
|
9
|
Salerno L, Vezza P, Perona P, Camporeale C. Eco-morphodynamic carbon pumping by the largest rivers in the Neotropics. Sci Rep 2023; 13:5591. [PMID: 37019994 PMCID: PMC10076311 DOI: 10.1038/s41598-023-32511-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 03/28/2023] [Indexed: 04/07/2023] Open
Abstract
The eco-morphodynamic activity of large tropical rivers in South and Central America is analyzed to quantify the carbon flux from riparian vegetation to inland waters. We carried out a multi-temporal analysis of satellite data for all the largest rivers in the Neotropics (i.e, width > 200 m) in the period 2000-2019, at 30 m spatial resolution. We developed a quantification of a highly efficient Carbon Pump mechanism. River morphodynamics is shown to drive carbon export from the riparian zone and to promote net primary production by an integrated process through floodplain rejuvenation and colonization. This pumping mechanism alone is shown to account for 8.9 million tons/year of carbon mobilization in these tropical rivers. We identify signatures of the fluvial eco-morphological activity that provide proxies for the carbon mobilization capability associated with river activity. We discuss river migration-carbon mobilization nexus and effects on the carbon intensity of planned hydroelectric dams in the Neotropics. We recommend that future carbon-oriented water policies on these rivers include a similar analysis.
Collapse
Affiliation(s)
- Luca Salerno
- Department of Environment, Land and Infrastructure Engineering, Politecnico di Torino, Corso Duca degli Abruzzi, Turin, 10129, Italy.
| | - Paolo Vezza
- Department of Environment, Land and Infrastructure Engineering, Politecnico di Torino, Corso Duca degli Abruzzi, Turin, 10129, Italy
| | - Paolo Perona
- Platform of Hydraulic Constructions PL-LCH, Institute of Civil Engineering (IIC), School of Architecture, Civil and Environmental Engineering (ENAC), EPFL, Lausanne, Switzerland
| | - Carlo Camporeale
- Department of Environment, Land and Infrastructure Engineering, Politecnico di Torino, Corso Duca degli Abruzzi, Turin, 10129, Italy
| |
Collapse
|
10
|
Casas-Ruiz JP, Bodmer P, Bona KA, Butman D, Couturier M, Emilson EJS, Finlay K, Genet H, Hayes D, Karlsson J, Paré D, Peng C, Striegl R, Webb J, Wei X, Ziegler SE, Del Giorgio PA. Integrating terrestrial and aquatic ecosystems to constrain estimates of land-atmosphere carbon exchange. Nat Commun 2023; 14:1571. [PMID: 36944700 PMCID: PMC10030657 DOI: 10.1038/s41467-023-37232-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 03/01/2023] [Indexed: 03/23/2023] Open
Abstract
In this Perspective, we put forward an integrative framework to improve estimates of land-atmosphere carbon exchange based on the accumulation of carbon in the landscape as constrained by its lateral export through rivers. The framework uses the watershed as the fundamental spatial unit and integrates all terrestrial and aquatic ecosystems as well as their hydrologic carbon exchanges. Application of the framework should help bridge the existing gap between land and atmosphere-based approaches and offers a platform to increase communication and synergy among the terrestrial, aquatic, and atmospheric research communities that is paramount to advance landscape carbon budget assessments.
Collapse
Affiliation(s)
- Joan P Casas-Ruiz
- Research Group on Ecology of Inland Waters (GRECO), Institute of Aquatic Ecology, University of Girona, Girona, Spain.
| | - Pascal Bodmer
- Groupe de Recherche Interuniversitaire en Limnologie (GRIL), Département des sciences biologiques, Université du Québec à Montréal, Montréal, QC, Canada
| | - Kelly Ann Bona
- Environment and Climate Change Canada, Gatineau, QC, Canada
| | - David Butman
- Department of Civil and Environmental Engineering, University of Washington, Seattle, WA, USA
| | - Mathilde Couturier
- Groupe de Recherche Interuniversitaire en Limnologie (GRIL), Département des sciences biologiques, Université du Québec à Montréal, Montréal, QC, Canada
| | | | | | - Hélène Genet
- University of Alaska Fairbanks, Fairbanks, AK, USA
| | | | | | - David Paré
- Natural Resources Canada, Québec, QC, Canada
| | - Changhui Peng
- Groupe de Recherche Interuniversitaire en Limnologie (GRIL), Département des sciences biologiques, Université du Québec à Montréal, Montréal, QC, Canada
| | - Rob Striegl
- United States Geological Survey, Boulder, CO, USA
| | - Jackie Webb
- Centre for Regional and Rural Futures (CeRRF), Faculty of Science, Engineering and Built Environment, Deakin University, Griffith, NSW, Australia
| | | | - Susan E Ziegler
- Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Paul A Del Giorgio
- Groupe de Recherche Interuniversitaire en Limnologie (GRIL), Département des sciences biologiques, Université du Québec à Montréal, Montréal, QC, Canada
| |
Collapse
|
11
|
Pérez-Iglesias JM, Bach NC, Colombetti PL, Acuña P, Colman-Lerner JE, González SP, Brodeur JC, Almeida CA. Biomonitoring of Alterations in Fish That Inhabit Anthropic Aquatic Environments in a Basin from Semi-Arid Regions. TOXICS 2023; 11:73. [PMID: 36668799 PMCID: PMC9863756 DOI: 10.3390/toxics11010073] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/05/2023] [Accepted: 01/05/2023] [Indexed: 06/17/2023]
Abstract
Industrial, agricultural, and urban areas can be sources of pollution and a cause of habitat fragmentation. The Conlara River located in the northeast of San Luis Province suffers different environmental pressures along its course from urban to agro-industrial areas. The present study aims to assess the water quality of the Conlara basin by evaluating how metals and pesticide contamination as well as physicochemical parameters relate to physiological stress in Jenynsia multidentata. Samplings were carried out in four sites characterized by a growing gradient of anthropic impact from the springs to the final sections of the river, starting with tourism passing through urban areas and ending with large agricultural areas (from S1 to S4) during both the dry and wet seasons. A total of 27 parameters were determined (11 physicochemical, 9 heavy metals, and 7 pesticides) in surface waters. Biomarkers (CAT, TBARS, ChE, and MN) showed significant physiological and cytological alterations in J. multidentata depending on the hydrology season. The combination of physicochemical parameters, metals, and pesticide levels allowed typification and differentiation of the sites. Some metal (Cr, Mn, Pb, and Zn) and pesticide (α-BHC, chlorpyrifos, permethrin and cypermethrin, and endosulfan α) levels recorded exceeded the recommended Argentinian legislation values. A principal component analysis (PCA) allowed detection of differences between both seasons and across sites. Furthermore, the differences in distances showed by PCA between the sites were due to differences in the presence of physicochemical parameters, metals, and pesticides correlated with several biomarkers' responses depending on type of environmental stressor. Water quality evaluation along the Conlara River shows deterioration and different types of environmental stressors, identifying zones, and specific sources of pollution. Furthermore, the biomarkers suggest that the native species could be sensitive to anthropogenic environmental pressures.
Collapse
Affiliation(s)
- Juan Manuel Pérez-Iglesias
- Laboratorio de Química Analítica Ambiental (LAQUAA), Instituto de Química de San Luis (INQUISAL-CONICET), FQByF, UNSL, Ejército de Los Andes 950, San Luis D5700, Argentina
- Departamento de Ciencias Ambientales y Producción, Universidad Nacional de Los Comechingones, Héroes de Malvinas S/N, Merlo, San Luis D5881, Argentina
| | - Nadia Carla Bach
- Área de Biología, Facultad de Química, Bioquímica y Farmacia (FQByF), Universidad Nacional de San Luis (UNSL), Ejército de Los Andes 950, San Luis D5700, Argentina
| | - Patricia Laura Colombetti
- Laboratorio de Química Analítica Ambiental (LAQUAA), Instituto de Química de San Luis (INQUISAL-CONICET), FQByF, UNSL, Ejército de Los Andes 950, San Luis D5700, Argentina
- Departamento de Ciencias Ambientales y Producción, Universidad Nacional de Los Comechingones, Héroes de Malvinas S/N, Merlo, San Luis D5881, Argentina
- Área de Biología, Facultad de Química, Bioquímica y Farmacia (FQByF), Universidad Nacional de San Luis (UNSL), Ejército de Los Andes 950, San Luis D5700, Argentina
| | - Pablo Acuña
- Laboratorio de Química Analítica Ambiental (LAQUAA), Instituto de Química de San Luis (INQUISAL-CONICET), FQByF, UNSL, Ejército de Los Andes 950, San Luis D5700, Argentina
| | - Jorge Esteban Colman-Lerner
- Centro de Investigación y Desarrollo en Ciencias Aplicadas “Dr. Jorge J. Ronco” (CINDECA), La Plata B1900, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, (CONICET), La Plata B1900, Argentina
| | - Silvia Patricia González
- Laboratorio de Química Analítica Ambiental (LAQUAA), Instituto de Química de San Luis (INQUISAL-CONICET), FQByF, UNSL, Ejército de Los Andes 950, San Luis D5700, Argentina
| | - Julie Celine Brodeur
- Instituto de Recursos Biológicos, Centro de Investigaciones de Recursos Naturales (CIRN), Hurlingham B1686, Argentina
- Instituto Nacional de Tecnología Agropecuaria (INTA), Hurlingham B1686, Argentina
| | - Cesar Américo Almeida
- Laboratorio de Química Analítica Ambiental (LAQUAA), Instituto de Química de San Luis (INQUISAL-CONICET), FQByF, UNSL, Ejército de Los Andes 950, San Luis D5700, Argentina
| |
Collapse
|
12
|
Wohl E, Knox RL. A first-order approximation of floodplain soil organic carbon stocks in a river network: The South Platte River, Colorado, USA as a case study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 852:158507. [PMID: 36058321 DOI: 10.1016/j.scitotenv.2022.158507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/30/2022] [Accepted: 08/30/2022] [Indexed: 06/15/2023]
Abstract
The lack of watershed-scale estimates of floodplain carbon stocks limits recognition of the important role of floodplains and river corridor restoration in efforts to enhance carbon sequestration. We use the South Platte River watershed of Colorado, USA as a case study to illustrate spatial patterns of, and controls on, floodplain carbon stocks at the watershed scale. This case study illustrates the disproportionate importance of floodplains for soil carbon stocks relative to adjacent uplands and provides an example of how spatially explicit data can be used to prioritize floodplain restoration with regard to carbon sequestration. We use the hydrogeomorphic floodplain tool GFPLAIN to delineate the extent of 100-year floodplains in the South Platte River watershed. We distinguish elevation bands for the steppe, montane, subalpine, and alpine zones. We also differentiate bead (floodplain width/channel width ≥ 5) and string (floodplain width/channel width < 5) reaches within the montane and subalpine zones. Drawing on prior, field-based measurements of organic carbon stock in downed, dead wood and soil in these floodplain types, we estimate total floodplain organic carbon stock based on median values of stock in different floodplain types and the spatial extent of these floodplain types. This estimate includes organic carbon stocks in lake and reservoir sediments in the watershed. Soil constitutes the greatest reservoir of floodplain carbon. The total estimated area of floodplain is 2916 km2, which is 4.3 % of the total watershed area of the South Platte River. Our preferred estimate is 42.7 Tg C stock (likely range of 39.1-42.7 Tg). This equates to 11.1 % of a previously estimated overall carbon stock (above and belowground biomass and soil organic carbon) in the entire watershed of 384 Tg C. Floodplains are thus disproportionately important, relative to their surface area, in storing organic carbon in this semiarid watershed. Field measurements of floodplain soil organic carbon stocks from across the globe indicate that this finding is not unique to this watershed, with implications for prioritizing floodplain management and restoration as a means of enhancing carbon sequestration.
Collapse
Affiliation(s)
- Ellen Wohl
- Department of Geosciences, Colorado State University, Fort Collins, CO 80523-1482, USA.
| | - Richard L Knox
- Department of Geosciences, Colorado State University, Fort Collins, CO 80523-1482, USA
| |
Collapse
|
13
|
Knox RL, Wohl EE, Morrison RR. Levees don't protect, they disconnect: A critical review of how artificial levees impact floodplain functions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 837:155773. [PMID: 35537517 DOI: 10.1016/j.scitotenv.2022.155773] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/26/2022] [Accepted: 05/04/2022] [Indexed: 06/14/2023]
Abstract
Despite the recognition of floodplain importance in the scientific community, floodplains are not afforded the same legal protection as river channels. In the United States alone, flood-related economic losses were much higher in the second half of the 20th century than the first half despite the expenditure of billions of dollars on flood defenses. Partially to blame are the low appraisal and understanding of human impacts to floodplain functions. Here, we explore the impacts of levees on floodplain functions and analyze case studies of floodplain restoration through levee removal. Floodplain functions include (1) fluxes of water, solutes, and particulate materials; (2) enhanced spatial heterogeneity of hydrology and biogeochemistry; (3) enhanced habitat abundance and diversity; (4) enhanced biomass and biodiversity; and (5) hazard mitigation. Case studies of floodplain restoration involving artificial levee adjustment are heavily concentrated in North America, Europe, and Japan, and those case studies assess floodplain functions within 30 years of restoration. In the United States, restoration through levee removal comprises less than 1% of artificial levee length and 1-2% of disconnected floodplains. In Europe, restoration effectiveness was severely limited by upstream flow regulation. Most case studies were impacted by stressors outside the study site and took place in lowland alluvial rivers. Reconfiguration was successful at achieving limited aims while reconnection set floodplains on a trajectory to more fully restore floodplain functions. Case studies illustrated the tension between restoration scale and study resolution in time and space as well as the role of site-specific characteristics in determining restoration outcomes. Numerous knowledge gaps surrounding the integrative relationships between floodplain functions must be addressed in future studies. The ubiquity of flow regulation demands that future floodplain restoration occur in a whole-of-basin manner. Monitoring of restoration must take place for longer periods of time and include multiple functions.
Collapse
Affiliation(s)
- Richard L Knox
- Department of Geosciences, Colorado State University, Fort Collins, CO, USA.
| | - Ellen E Wohl
- Department of Geosciences, Colorado State University, Fort Collins, CO, USA
| | - Ryan R Morrison
- Department of Civil and Environmental Engineering, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
14
|
Biophysical Heterogeneity, Hydrologic Connectivity, and Productivity of a Montane Floodplain Forest. Ecosystems 2022. [DOI: 10.1007/s10021-022-00769-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
15
|
Danczak RE, Goldman AE, Chu RK, Toyoda JG, Garayburu-Caruso VA, Tolić N, Graham EB, Morad JW, Renteria L, Wells JR, Herzog SP, Ward AS, Stegen JC. Ecological theory applied to environmental metabolomes reveals compositional divergence despite conserved molecular properties. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 788:147409. [PMID: 34022577 DOI: 10.1016/j.scitotenv.2021.147409] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 04/21/2021] [Accepted: 04/24/2021] [Indexed: 06/12/2023]
Abstract
Stream and river systems transport and process substantial amounts of dissolved organic matter (DOM) from terrestrial and aquatic sources to the ocean, with global biogeochemical implications. However, the underlying mechanisms affecting the spatiotemporal organization of DOM composition are under-investigated. To understand the principles governing DOM composition, we leverage the recently proposed synthesis of metacommunity ecology and metabolomics, termed 'meta-metabolome ecology.' Applying this novel approach to a freshwater ecosystem, we demonstrated that despite similar molecular properties across metabolomes, metabolite identity significantly diverged due to environmental filtering and variations in putative biochemical transformations. We refer to this phenomenon as 'thermodynamic redundancy,' which is analogous to the ecological concept of functional redundancy. We suggest that under thermodynamic redundancy, divergent metabolomes can support equivalent biogeochemical function just as divergent ecological communities can support equivalent ecosystem function. As these analyses are performed in additional ecosystems, potentially generalizable concepts, like thermodynamic redundancy, can be revealed and provide insight into DOM dynamics.
Collapse
Affiliation(s)
| | - Amy E Goldman
- Pacific Northwest National Laboratory, Washington, USA
| | - Rosalie K Chu
- Environmental Molecular Sciences Laboratory, Washington, USA
| | - Jason G Toyoda
- Environmental Molecular Sciences Laboratory, Washington, USA
| | | | - Nikola Tolić
- Environmental Molecular Sciences Laboratory, Washington, USA
| | | | | | | | - Jacqueline R Wells
- Pacific Northwest National Laboratory, Washington, USA; Oregon State University, Oregon, USA
| | - Skuyler P Herzog
- O'Neil School of Public Environmental Affairs, Indiana University, Indiana, USA
| | - Adam S Ward
- O'Neil School of Public Environmental Affairs, Indiana University, Indiana, USA
| | | |
Collapse
|
16
|
Nosrati K, Collins AL, Fiener P. Using catchment characteristics to model seasonality of dissolved organic carbon fluxes in semi-arid mountainous headwaters. ENVIRONMENTAL MONITORING AND ASSESSMENT 2020; 192:674. [PMID: 33011837 DOI: 10.1007/s10661-020-08626-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 09/20/2020] [Indexed: 06/11/2023]
Abstract
Prediction of dissolved organic carbon (DOC) based on catchment characteristics is a useful tool for efficient and effective water management, but in the case of arid and semi-arid regions, such predictive capacity is scarce. Accordingly, the main objective of this study was to evaluate the significance of principal components for predicting DOC concentrations and fluxes in nine headwater catchments of the Hiv catchment located in the Southern Alborz Mountains in the west of Tehran, Iran. To achieve this aim, data were assembled on 24 headwater catchment characteristics comprising soil properties, physiography, seasonal rainfall, and flow attributes, as well as estimates of DOC concentrations and fluxes across four seasons. The results revealed a major positive correlation between DOC and soil organic matter parameters related to soil biological processes. Using general linear modelling, an organic matter component related to soil biology, a seasonal component related to the dummy effect of sampling seasons, and a soil physical component related to soil texture were found to be the best predictors for DOC responses in the study area.
Collapse
Affiliation(s)
- Kazem Nosrati
- Department of Physical Geography, Faculty of Earth Sciences, Shahid Beheshti University, Tehran, 1983969411, Iran.
| | - Adrian L Collins
- Sustainable Agriculture Sciences Department, Rothamsted Research, North Wyke, Okehampton, EX20 2SB, UK
| | - Peter Fiener
- Water and Soil Resources Research, Institut für Geographie, Universität Augsburg, Augsburg, Germany
| |
Collapse
|
17
|
das Neves Lopes M, Decarli CJ, Pinheiro-Silva L, Lima TC, Leite NK, Petrucio MM. Urbanization increases carbon concentration and pCO 2 in subtropical streams. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:18371-18381. [PMID: 32185739 DOI: 10.1007/s11356-020-08175-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 02/20/2020] [Indexed: 06/10/2023]
Abstract
Urbanization growth may alter the hydrologic conditions and processes driving carbon concentrations in aquatic systems through local changes in land use. Here, we explore dissolved carbon concentrations (DIC and DOC) along urbanization gradient in Santa Catarina Island to evaluate potential increase of CO2 in streams. Additionally, we assessed chemical, physical, and biotic variables to evaluate direct and indirect effects of urbanization in watersheds. We defined 3 specific urbanization levels: high (> 15% urbanized area), medium (15-5% urbanized area), and low (< 5% urbanized area) urbanization. The results showed that local changes due to growth of urban areas into watersheds altered the carbon concentrations in streams. DOC and DIC showed high concentrations in higher urbanization levels. The watersheds with an urban building area above 5% showed pCO2 predominantly above the equilibrium with the atmosphere. These findings reveal that local modifications in land use may contribute to changes in global climate by altering the regional carbon balance in streams.
Collapse
Affiliation(s)
| | | | - Lorena Pinheiro-Silva
- UFSC, Federal University of Santa Catarina, Ecology and Zoology, Florianópolis, Brazil
| | - Thiago Cesar Lima
- UFSC, Federal University of Santa Catarina, Ecology and Zoology, Florianópolis, Brazil
| | - Nei Kavaguichi Leite
- UFSC, Federal University of Santa Catarina, Ecology and Zoology, Florianópolis, Brazil
| | | |
Collapse
|
18
|
Jankowski KJ, Schindler DE. Watershed geomorphology modifies the sensitivity of aquatic ecosystem metabolism to temperature. Sci Rep 2019; 9:17619. [PMID: 31772340 PMCID: PMC6879538 DOI: 10.1038/s41598-019-53703-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 10/31/2019] [Indexed: 11/08/2022] Open
Abstract
The regulation of aquatic carbon cycles by temperature is a significant uncertainty in our understanding of how watersheds will respond to climate change. Aquatic ecosystems transport substantial quantities of carbon to the atmosphere and ocean, yet we have limited understanding of how temperature modifies aquatic ecosystem metabolic processes and contributions to carbon cycles at watershed to global scales. We propose that geomorphology controls the distribution and quality of organic material that forms the metabolic base of aquatic ecosystems, thereby controlling the response of aquatic ecosystem metabolism to temperature across landscapes. Across 23 streams and four years during summer baseflow, we estimated variation in the temperature sensitivity of ecosystem respiration (R) among streams draining watersheds with different geomorphic characteristics across a boreal river basin. We found that geomorphic features imposed strong controls on temperature sensitivity; R in streams draining flat watersheds was up to six times more temperature sensitive than streams draining steeper watersheds. Further, our results show that this association between watershed geomorphology and temperature sensitivity of R was linked to the carbon quality of substrates that changed systematically across the geomorphic gradient. This suggests that geomorphology will control how carbon is transported, stored, and incorporated into river food webs as the climate warms.
Collapse
Affiliation(s)
- K J Jankowski
- School of Aquatic & Fishery Sciences, University of Washington, Seattle, WA, USA.
- US Geological Survey, Upper Midwest Environmental Sciences Center, La Crosse, WI, USA.
| | - D E Schindler
- School of Aquatic & Fishery Sciences, University of Washington, Seattle, WA, USA
| |
Collapse
|
19
|
Peipoch M, Miller SR, Antao TR, Valett HM. Niche partitioning of microbial communities in riverine floodplains. Sci Rep 2019; 9:16384. [PMID: 31705005 PMCID: PMC6841707 DOI: 10.1038/s41598-019-52865-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 10/17/2019] [Indexed: 11/18/2022] Open
Abstract
Riverine floodplains exhibit high floral and faunal diversity as a consequence of their biophysical complexity. Extension of such niche partitioning processes to microbial communities is far less resolved or supported. Here, we evaluated the responses of aquatic biofilms diversity to environmental gradients across ten riverine floodplains with differing degrees of flow alteration and habitat diversity to assess whether complex floodplains support biofilm communities with greater biodiversity and species interactions. No significant evidence was found to support a central role for habitat diversity in promoting microbial diversity across 116 samples derived from 62 aquatic habitats, as neither α (H': 2.8-4.1) nor β (Sørensen: 0.3-0.39) diversity were positively related to floodplain complexity across the ten floodplains. In contrast, our results documented the sensitivity of biofilm communities to regional templates manifested as gradients of carbon, nitrogen, and phosphorous availability. Large-scale conditions reflecting nitrogen limitation increased the relative abundance of N-fixing cyanobacteria (up to 0.34 as fraction of total reads), constrained the total number of interactions among bacterial taxa, and reinforced negative over positive interactions, generating unique microbial communities and networks that reflect large-scale species sorting in response to regional geochemical gradients.
Collapse
Affiliation(s)
- Marc Peipoch
- Stroud Water Research Center, Avondale, PA, USA.
| | - Scott R Miller
- Division of Biological Sciences, University of Montana, Missoula, MT, USA
| | - Tiago R Antao
- Division of Biological Sciences, University of Montana, Missoula, MT, USA
| | - H Maurice Valett
- Division of Biological Sciences, University of Montana, Missoula, MT, USA
| |
Collapse
|
20
|
González HE, Nimptsch J, Giesecke R, Silva N. Organic matter distribution, composition and its possible fate in the Chilean North-Patagonian estuarine system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 657:1419-1431. [PMID: 30677908 DOI: 10.1016/j.scitotenv.2018.11.445] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 11/26/2018] [Accepted: 11/29/2018] [Indexed: 06/09/2023]
Abstract
The distribution, composition, and transport of both dissolved and particulate organic carbon (DOC and POC) were studied across a terrestrial - marine transition system in the Chilean North-Patagonia (41°S). At the land-fjord boundary we reported: (i) high concentrations of both silicic acid (up to 100 μM) and integrated chlorophyll a (62 mg m-2), (ii) dominance of nanophytoplankton (63%), humic-, terrigenous-derived, and protein-like DOC (19 and 36%, respectively), and (iii) a shallow photic zone (12 m depth). In contrast, the estuarine-ocean boundary was characterized by (i) high concentrations of nitrate and phosphate (20 and 2 μM respectively) and low chlorophyll a concentration (11 mg m-2), (ii) dominance of microphytoplankton (59%) and tyrosine-like C3 autochthonous DOC (34%), and (iii) a deep photic zone (29 m depth). Allochthonous DOC input at the fjord head and the ocean accounted for 60% and 10% of total DOC, respectively. The input of humic-like substances was enhanced by intense forestry and agriculture activity around the Puelo River watershed, contributing from 50% to 14% of total DOC along the fjord - ocean transect. In contrast, autochthonous tyrosine-like substances increased from 25% to 41% of total DOC, highlighting the role of bacterial metabolism in regulating DOM composition. The high correlation (R2 = 0.7) between the UVC-humic:UVA-humic ratio and salinity suggest that processes associated to freshwater input impinged on the DOC chemical characteristics and origins. Overall, our observations support the view that climate warming (freshwater input) and anthropogenic practices (aquaculture) boost the mobilization of terrestrial carbon pools and their intrusion into coastal ocean areas, a process that should be given more attention in climate prediction models.
Collapse
Affiliation(s)
- Humberto E González
- Universidad Austral de Chile, Instituto de Ciencias Marinas y Limnológicas, Valdivia, Chile; Centro FONDAP de Investigación de Ecosistemas Marinos de Altas Latitudes (IDEAL), Universidad Austral de Chile, Valdivia, Chile.
| | - Jorge Nimptsch
- Universidad Austral de Chile, Instituto de Ciencias Marinas y Limnológicas, Valdivia, Chile
| | - Ricardo Giesecke
- Universidad Austral de Chile, Instituto de Ciencias Marinas y Limnológicas, Valdivia, Chile; Centro FONDAP de Investigación de Ecosistemas Marinos de Altas Latitudes (IDEAL), Universidad Austral de Chile, Valdivia, Chile
| | - Nelson Silva
- Escuela de Ciencias del Mar, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| |
Collapse
|
21
|
Graham EB, Stegen JC, Huang M, Chen X, Scheibe TD. Subsurface biogeochemistry is a missing link between ecology and hydrology in dam-impacted river corridors. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 657:435-445. [PMID: 30550907 DOI: 10.1016/j.scitotenv.2018.11.414] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 11/27/2018] [Accepted: 11/27/2018] [Indexed: 06/09/2023]
Abstract
Global investment in hydropower is rapidly increasing, fueled by a need to manage water availability and by incentives promoting renewable energy sources. This expansion poses unrecognized risks to the world's vulnerable freshwater ecosystems. While many hydropower impacts have been investigated, dam-induced alterations to subsurface processes influence river corridor ecosystem health in ways that remain poorly understood. We advocate for a better understanding of dam impacts on subsurface biogeochemical activity, its connection to hydrology, and follow-on trophic cascades within the broader river corridor. We delineate an integrated view of hydropower impacts in which dam-induced changes to surface water flow regimes generate changes in surface-subsurface hydrologic exchange flows (HEFs) that subsequently (1) regulate resource availability for benthic microorganisms at the base of aquatic food webs and (2) impose kinetic constraints on biogeochemical reactions and organismal growth across a range of trophic levels. These HEF-driven effects on river corridor food webs, as mediated by subsurface biogeochemistry, are a key knowledge gap in our assessment of hydropower sustainability and putatively combine with other, more well-known dam impacts to result in significant changes to river corridor health. We suggest targeted laboratory and field-based studies to link hydrobiogeochemical models used to predict heat transport, biogeochemical rates, and hydrologic flow with ecological models that incorporate biomass changes in specific categories of organisms. Doing so will enable predictions of feedbacks among hydrology, temperature, biogeochemical rates, organismal abundances, and resource transfer across trophic levels. This understanding of dam impacts on subsurface hydrobiogeochemistry and its connection to the broader aquatic food web is fundamental to enabling mechanism-based decision making for sustainable hydropower operations.
Collapse
Affiliation(s)
- Emily B Graham
- Pacific Northwest National Laboratory, Richland, WA, USA.
| | - James C Stegen
- Pacific Northwest National Laboratory, Richland, WA, USA
| | - Maoyi Huang
- Pacific Northwest National Laboratory, Richland, WA, USA
| | - Xingyuan Chen
- Pacific Northwest National Laboratory, Richland, WA, USA
| | | |
Collapse
|
22
|
Fritz KM, Pond GJ, Johnson BR, Barton CD. Coarse particulate organic matter dynamics in ephemeral tributaries of a Central Appalachian stream network. Ecosphere 2019; 10:e02654. [PMID: 32802570 PMCID: PMC7425740 DOI: 10.1002/ecs2.2654] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Headwater ephemeral tributaries are interfaces between uplands and downstream waters. Terrestrial coarse particulate organic matter (CPOM) is important in fueling aquatic ecosystems; however, the extent to which ephemeral tributaries are functionally connected to downstream waters through fluvial transport of CPOM has been little studied. Hydrology and deposition of leaf and wood, and surrogate transport (Ginkgo biloba leaves and wood dowels) were measured over month-long intervals through the winter and spring seasons (6 months) in 10 ephemeral tributaries (1.3–5.4 ha) in eastern Kentucky. Leaf deposition and surrogate transport varied over time, reflecting the seasonality of litterfall and runoff. Leaf deposition was higher in December than February and May but did not differ from January, March, and April. Mean percent of surrogate leaf transport from the ephemeral tributaries was highest in April (3.6% per day) and lowest in February (2.5%) and May (2%). Wood deposition and transport had similar patterns. No CPOM measures were related to flow frequency. Ephemeral tributaries were estimated to annually contribute 110.6 kg AFDM·km−1·yr−1 of leaves to the downstream mainstem. Ephemeral tributaries are functionally connected to downstream waters through CPOM storage and subsequent release that is timed when CPOM is often limited in downstream waters.
Collapse
Affiliation(s)
- Ken M Fritz
- Office of Research and Development, National Exposure Research Laboratory, U.S. Environmental Protection Agency, Cincinnati, Ohio 45268 USA
| | - Gregory J Pond
- Office of Monitoring and Assessment, U.S. Environmental Protection Agency, Region III, Wheeling, West Virginia 26003 USA
| | - Brent R Johnson
- Office of Research and Development, National Exposure Research Laboratory, U.S. Environmental Protection Agency, Cincinnati, Ohio 45268 USA
| | - Chris D Barton
- Department of Forestry and Natural Resources, University of Kentucky, Lexington, Kentucky 40546 USA
| |
Collapse
|
23
|
Glendell M, Jones R, Dungait JAJ, Meusburger K, Schwendel AC, Barclay R, Barker S, Haley S, Quine TA, Meersmans J. Tracing of particulate organic C sources across the terrestrial-aquatic continuum, a case study at the catchment scale (Carminowe Creek, southwest England). THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 616-617:1077-1088. [PMID: 29107375 DOI: 10.1016/j.scitotenv.2017.10.211] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 10/06/2017] [Accepted: 10/20/2017] [Indexed: 06/07/2023]
Abstract
Soils deliver crucial ecosystem services, such as climate regulation through carbon (C) storage and food security, both of which are threatened by climate and land use change. While soils are important stores of terrestrial C, anthropogenic impact on the lateral fluxes of C from land to water remains poorly quantified and not well represented in Earth system models. In this study, we tested a novel framework for tracing and quantifying lateral C fluxes from the terrestrial to the aquatic environment at a catchment scale. The combined use of conservative plant-derived geochemical biomarkers n-alkanes and bulk stable δ13C and δ15N isotopes of soils and sediments allowed us to distinguish between particulate organic C sources from different land uses (i.e. arable and temporary grassland vs. permanent grassland vs. riparian woodland vs. river bed sediments) (p<0.001), showing an enhanced ability to distinguish between land use sources as compared to using just n-alkanes alone. The terrestrial-aquatic proxy (TAR) ratio derived from n-alkane signatures indicated an increased input of terrestrial-derived organic matter (OM) to lake sediments over the past 60years, with an increasing contribution of woody vegetation shown by the C27/C31 ratio. This may be related to agricultural intensification, leading to enhanced soil erosion, but also an increase in riparian woodland that may disconnect OM inputs from arable land uses in the upper parts of the study catchment. Spatial variability of geochemical proxies showed a close coupling between OM provenance and riparian land use, supporting the new conceptualization of river corridors (active river channel and riparian zone) as critical zones linking the terrestrial and aquatic C fluxes. Further testing of this novel tracing technique shows promise in terms of quantification of lateral C fluxes as well as targeting of effective land management measures to reduce soil erosion and promote OM conservation in river catchments.
Collapse
Affiliation(s)
- M Glendell
- The James Hutton Institute, Craigiebuckler, Aberdeen AB15 8QH, UK.
| | - R Jones
- University of Exeter, Geography-College of Life and Environmental Sciences, Exeter EX4 4RJ, UK
| | - J A J Dungait
- Sustainable Agriculture Science, Rothamsted Research, North Wyke, Okehampton, Devon, EX20 2SB, UK
| | - K Meusburger
- Environmental Geosciences, University of Basel, Bernoullistrasse 30, 4056 Basel, Switzerland
| | - A C Schwendel
- School of Humanities, Religion & Philosophy, York St John University, Lord Mayor's Walk, York YO31 7EX, UK
| | - R Barclay
- University of Exeter, Geography-College of Life and Environmental Sciences, Exeter EX4 4RJ, UK
| | - S Barker
- Environment and Sustainability Institute, University of Exeter, Penryn Campus, Penryn, Cornwall TR10 9FE, UK
| | - S Haley
- University of Exeter, Geography-College of Life and Environmental Sciences, Exeter EX4 4RJ, UK
| | - T A Quine
- University of Exeter, Geography-College of Life and Environmental Sciences, Exeter EX4 4RJ, UK
| | - J Meersmans
- School of Water, Energy and Environment, Cranfield University, Bedford MK43 0AL, UK
| |
Collapse
|
24
|
Gravel bars are sites of increased CO 2 outgassing in stream corridors. Sci Rep 2017; 7:14401. [PMID: 29089508 PMCID: PMC5663935 DOI: 10.1038/s41598-017-14439-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 10/10/2017] [Indexed: 11/08/2022] Open
Abstract
Streams are significant sources of CO2 to the atmosphere. Estimates of CO2 evasion fluxes (f CO2) from streams typically relate to the free flowing water but exclude geomorphological structures within the stream corridor. We found that gravel bars (GBs) are important sources of CO2 to the atmosphere, with on average more than twice as high f CO2 as those from the streamwater, affecting f CO2 at the level of entire headwater networks. Vertical temperature gradients resulting from the interplay between advective heat transfer and mixing with groundwater within GBs explained the observed variation in f CO2 from the GBs reasonably well. We propose that increased temperatures and their gradients within GBs exposed to solar radiation stimulate heterotrophic metabolism therein and facilitate the venting of CO2 from external sources (e.g. downwelling streamwater, groundwater) within GBs. Our study shows that GB f CO2 increased f CO2 from stream corridors by [median, (95% confidence interval)] 16.69%, (15.85-18.49%); 30.44%, (30.40-34.68%) and 2.92%, (2.90-3.0%), for 3rd, 4th and 5th order streams, respectively. These findings shed new light on regional estimates of f CO2 from streams, and are relevant given that streamwater thermal regimes change owing to global warming and human alteration of stream corridors.
Collapse
|