1
|
Brant RA, Edwards CE, Reid JL, Bassüner B, Delfeld B, Dell N, Mangan SA, de la Paz Bernasconi Torres V, Albrecht MA. Restoration age affects microbial-herbaceous plant interactions in an oak woodland. Ecol Evol 2024; 14:e11360. [PMID: 38706936 PMCID: PMC11066493 DOI: 10.1002/ece3.11360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 04/11/2024] [Accepted: 04/17/2024] [Indexed: 05/07/2024] Open
Abstract
In degraded ecosystems, soil microbial communities (SMCs) may influence the outcomes of ecological restoration. Restoration practices can affect SMCs, though it is unclear how variation in the onset of restoration activities in woodlands affects SMCs, how those SMCs influence the performance of hard-to-establish woodland forbs, and how different woodland forbs shape SMCs. In this study, we quantified soil properties and species abundances in an oak woodland restoration chronosequence (young, intermediate, and old restorations). We measured the growth of three woodland forb species when inoculated with live whole-soil from young, intermediate, or old restorations. We used DNA metabarcoding to characterize SMCs of each inoculum treatment and the soil after conditioning by each plant species. Our goals were to (1) understand how time since the onset of restoration affected soil abiotic properties, plant communities, and SMCs in a restoration chronosequence, (2) test growth responses of three forb species to whole-soil inoculum from restoration sites, and (3) characterize changes in SMCs before and after conditioning by each forb species. Younger restored woodlands had greater fire-sensitive tree species and lower concentrations of soil phosphorous than intermediate or older restored woodlands. Bacterial and fungal soil communities varied significantly among sites. Forbs exhibited the greatest growth in soil from the young restoration. Each forb species developed a unique soil microbial community. Our results highlight how restoration practices affect SMCs, which can in turn affect the growth of hard-to-establish forb species. Our results also highlight that the choice of forb species can alter SMCs, which could have long-term potential consequences for restoration success.
Collapse
Affiliation(s)
| | | | - John Leighton Reid
- Missouri Botanical GardenSt. LouisMissouriUSA
- Present address:
School of Plant and Environmental SciencesVirginia TechBlacksburgVirginiaUSA
| | | | | | - Noah Dell
- Missouri Botanical GardenSt. LouisMissouriUSA
| | - Scott A. Mangan
- Department of Biological SciencesArkansas State UniversityJonesboroArkansasUSA
| | | | | |
Collapse
|
2
|
Zedler PH, Herrick BM. Catastrophic flooding effects on a Wisconsin wet prairie remnant: A shift in the disturbance regime? PLoS One 2023; 18:e0294359. [PMID: 37992070 PMCID: PMC10664900 DOI: 10.1371/journal.pone.0294359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 10/30/2023] [Indexed: 11/24/2023] Open
Abstract
Climate change is likely to imperil native biodiversity through the increased frequency of extreme events. Here we address the short-term effects of an extreme flooding event on an unplowed prairie reserve, the Faville Prairie Wisconsin State Natural Area. This 25-ha property is a remnant of the formerly extensive Crawfish Prairie that lay on the east bank of the Crawfish River, Jefferson County, Wisconsin USA. The Faville remnant has historically been subject to late winter to spring flooding in its lower portions. In June of 2008, however, an extreme rainfall event caused flooding unprecedented in the 87-year history of streamflow, inundating the entire site. Data were available from 180 permanently marked plots sampled in 1978-79. We assessed the change by resampling these plots in 2010-2015. At the m2 scale, we found significant losses of species richness, a result of most species having fewer occurrences than in the earlier data. There was near extinction of several important prairie species and a relative increase in wetland tolerant species. Lower elevation plots, subject to the encroachment of woody plants and the invasion of Phalaris arundinacea for decades prior to the flood, had the lowest levels of species richness. However, some prairie species survived the flooding with little change, and recent anecdotal observations show that others are rebuilding their populations. Thus, if extreme floods are infrequent, the prairie should be able to recover to its former state. If, however, the hydrological regime shifts toward more frequent, growing-season floods, we predict further decline in those plant species that were the object of the preservation of this remnant. It is critical that fire management continue along with monitoring to track species' recovery or replacement, so that corrective measures can be identified and tested to sustain the native prairie species diversity.
Collapse
Affiliation(s)
- Paul H. Zedler
- Nelson Institute, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - Bradley M. Herrick
- University of Wisconsin–Madison Arboretum, Madison, Wisconsin, United States of America
| |
Collapse
|
3
|
Reji Chacko M, Altermatt F, Fopp F, Guisan A, Keggin T, Lyet A, Rey PL, Richards E, Valentini A, Waldock C, Pellissier L. Catchment-based sampling of river eDNA integrates terrestrial and aquatic biodiversity of alpine landscapes. Oecologia 2023; 202:699-713. [PMID: 37558733 PMCID: PMC10475001 DOI: 10.1007/s00442-023-05428-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 07/22/2023] [Indexed: 08/11/2023]
Abstract
Monitoring of terrestrial and aquatic species assemblages at large spatial scales based on environmental DNA (eDNA) has the potential to enable evidence-based environmental policymaking. The spatial coverage of eDNA-based studies varies substantially, and the ability of eDNA metabarcoding to capture regional biodiversity remains to be assessed; thus, questions about best practices in the sampling design of entire landscapes remain open. We tested the extent to which eDNA sampling can capture the diversity of a region with highly heterogeneous habitat patches across a wide elevation gradient for five days through multiple hydrological catchments of the Swiss Alps. Using peristaltic pumps, we filtered 60 L of water at five sites per catchment for a total volume of 1800 L. Using an eDNA metabarcoding approach focusing on vertebrates and plants, we detected 86 vertebrate taxa spanning 41 families and 263 plant taxa spanning 79 families across ten catchments. For mammals, fishes, amphibians and plants, the detected taxa covered some of the most common species in the region according to long-term records while including a few more rare taxa. We found marked turnover among samples from distinct elevational classes indicating that the biological signal in alpine rivers remains relatively localised and is not aggregated downstream. Accordingly, species compositions differed between catchments and correlated with catchment-level forest and grassland cover. Biomonitoring schemes based on capturing eDNA across rivers within biologically integrated catchments may pave the way toward a spatially comprehensive estimation of biodiversity.
Collapse
Affiliation(s)
- Merin Reji Chacko
- Unit of Land Change Science, Swiss Federal Research Institute WSL, Birmensdorf, Switzerland.
- Department of Environmental Systems Science, Institute of Terrestrial Ecosystems, ETH Zürich, Zurich, Switzerland.
| | - Florian Altermatt
- Department of Aquatic Ecology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Fabian Fopp
- Unit of Land Change Science, Swiss Federal Research Institute WSL, Birmensdorf, Switzerland
- Department of Environmental Systems Science, Institute of Terrestrial Ecosystems, ETH Zürich, Zurich, Switzerland
| | - Antoine Guisan
- Department of Ecology and Evolution, University of Lausanne, Geopolis, Lausanne, Switzerland
| | - Thomas Keggin
- Unit of Land Change Science, Swiss Federal Research Institute WSL, Birmensdorf, Switzerland
- Department of Environmental Systems Science, Institute of Terrestrial Ecosystems, ETH Zürich, Zurich, Switzerland
| | - Arnaud Lyet
- World Wildlife Fund, Wildlife Conservation Team, Washington, DC, USA
| | - Pierre-Louis Rey
- Institute of Earth Surface Dynamics, University of Lausanne, Geopolis, Lausanne, Switzerland
| | - Eilísh Richards
- Department of Environmental Systems Science, Institute of Terrestrial Ecosystems, ETH Zürich, Zurich, Switzerland
| | | | - Conor Waldock
- Unit of Land Change Science, Swiss Federal Research Institute WSL, Birmensdorf, Switzerland
- Department of Environmental Systems Science, Institute of Terrestrial Ecosystems, ETH Zürich, Zurich, Switzerland
| | - Loïc Pellissier
- Unit of Land Change Science, Swiss Federal Research Institute WSL, Birmensdorf, Switzerland
- Department of Environmental Systems Science, Institute of Terrestrial Ecosystems, ETH Zürich, Zurich, Switzerland
| |
Collapse
|
4
|
Crisfield VE, Ficken CD, Allen BE, Jog SK, Bried JT. The potential of trait data to increase the availability of bioindicators: A case study using plant conservatism values. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2023:e2866. [PMID: 37102427 DOI: 10.1002/eap.2866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 03/28/2023] [Accepted: 04/14/2023] [Indexed: 05/31/2023]
Abstract
Biological indicators are commonly used to evaluate ecosystem condition. However, their use is often constrained by the availability of information with which to assign species-specific indicator values, which reflect species' responses to the environmental conditions being evaluated by the indicator. As these responses are driven by underlying traits, and trait data for numerous species are available in publicly accessible databases, one possible approach to approximating missing bioindicator values is through traits. We used the Floristic Quality Assessment (FQA) framework and its component indicator of disturbance sensitivity, species-specific ecological conservatism scores (C-scores), as a study system to test the potential of this approach. We tested the consistency of relationships between trait values and expert-assigned C-scores and the trait-based predictability of C-scores across five regions. Furthermore, as a proof-of-concept exercise, we used a multi-trait model to try to reconstruct C-scores, and compared the model predictions to expert-assigned scores. Out of 20 traits tested, there was evidence of regional consistency for germination rate, growth rate, propagation type, dispersal unit, and leaf nitrogen. However, the individual traits showed low predictability (R2 = 0.1-0.2) for C-scores, and a multi-trait model produced substantial classification errors; in many cases, >50% of species were misclassified. The mismatches may largely be explained by the inability to generalize regionally varying C-scores from geographically neutral/naive trait data stored in databases, and the synthetic nature of C-scores. Based on these results, we recommend possible next steps for expanding the availability of species-based bioindication frameworks such as the FQA. These steps include increasing the availability of geographic and environmental data in trait databases, incorporating data about intraspecific trait variability into these databases, conducting hypothesis-driven investigations into trait-indicator relationships, and having regional experts review our results to determine if there are patterns in the species that were correctly or incorrectly classified.
Collapse
Affiliation(s)
- Varina E Crisfield
- Department of Biology, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Cari D Ficken
- Department of Geology, University at Buffalo, Buffalo, New York, USA
| | - Brandon E Allen
- Alberta Biodiversity Monitoring Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Suneeti K Jog
- Illinois Natural History Survey, Prairie Research Institute, University of Illinois at Urbana-Champaign, Champaign, Illinois, USA
| | - Jason T Bried
- Illinois Natural History Survey, Prairie Research Institute, University of Illinois at Urbana-Champaign, Champaign, Illinois, USA
| |
Collapse
|
5
|
Cultural Landscape as Both a Threat and an Opportunity to Preserve a High Conservation Value of Vascular Flora: A Case Study. DIVERSITY 2023. [DOI: 10.3390/d15020211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
This study aimed to show the influence of cultural landscape structure on species richnessand the conservation value of vascular flora.The analyses are based on 3201 original floristic lists (relevés) and 83,875 floristic data collected since 1994 within Gopło Millennium Park (Nadgoplański Park Tysiąclecia) in a rural area in central Poland. Descriptions of landscape composition in grid cells (0.5 km × 0.5 km) include land use structure, mean deviation of uneven proportions of various land use types, and Shannon index of diversity (H’). Vascular plant diversity was described using total species richness and contributions of groups of native and alien species. Assessment of floristic conservation value was based on qualitative and quantitative floristic index (Wfj and Wfi), mean coefficient of conservatism (C), and floristic quality index (FQI). Floristic analyses were conducted in relation to the whole study area and within grid cells, basing on numbers of species and number of floristic data. The results suggest that species richness in grid cells depends more strongly on diversity and evenness of contributions of land use types, irrespective of which land use types were present. Species richness is strongly dependent on land use structure. Larger contributions of arable fields and built-up areas are linked with a decrease in species richness of nonsynanthropic native plants and species of floristic conservation value. Regularity in this respect is very well illustrated by indices excluding the influence of species richness on floristic value (quantitative floristic index Wfi and mean coefficient of conservatism C). According to the algorithm of FQI, the most valuable floras are characterized by a large number of species with a high contribution of conservative ones. In the study area, this condition was met by floras of surface waters and wetlands.
Collapse
|
6
|
Sonnier G, Boughton EH, Whittington R. Long-term response of wetland plant communities to management intensity, grazing abandonment, and prescribed fire. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2023; 33:e2732. [PMID: 36054269 PMCID: PMC10078234 DOI: 10.1002/eap.2732] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 05/09/2022] [Accepted: 05/31/2022] [Indexed: 05/12/2023]
Abstract
Isolated, seasonal wetlands within agricultural landscapes are important ecosystems. However, they are currently experiencing direct and indirect effects of agricultural management surrounding them. Because wetlands provide important ecosystem services, it is crucial to determine how these factors affect ecological communities. Here, we studied the long-term effects of land-use intensification, cattle grazing, prescribed fires, and their interactions on wetland plant diversity, community dynamics, and functional diversity. To do this, we used vegetation and trait data from a 14-year-old experiment on 40 seasonal wetlands located within seminatural and intensively managed pastures in Florida. These wetlands were allocated different grazing and prescribed fire treatments (grazed vs. ungrazed, burned vs. unburned). Our results showed that wetlands within intensively managed pastures have lower native plant diversity, floristic quality, evenness, and higher nonnative species diversity and exhibited the most resource-acquisitive traits. Wetlands embedded in intensively managed pastures were also characterized by lower species turnover over time. We found that 14 years of cattle exclusion reduced species diversity in both pasture management intensities and had no effect on floristic quality. Fenced wetlands exhibited lower functional diversity and experienced a higher rate of community change, both due to an increase in tall, clonal, and palatable grasses. The effects of prescribed fires were often dependent on grazing treatment. For instance, prescribed fires increased functional diversity in fenced wetlands but not in grazed wetlands. Our study suggests that cattle exclusion and prescribed fires are not enough to restore wetlands in intensively managed pastures and further highlights the importance of not converting seminatural pastures to intensively managed pastures. Our study also suggests that grazing levels applied in seminatural pastures maintained high plant diversity and prevented tree and shrub encroachment and that in the absence of grazing, prescribed fire became crucial to maintaining higher species evenness.
Collapse
Affiliation(s)
| | | | - Ruth Whittington
- Archbold Biological StationVenusFloridaUSA
- Colorado Natural Heritage ProgramColorado State UniversityFort CollinsColoradoUSA
| |
Collapse
|
7
|
Exploring Biodiversity and Disturbances in the of Peri-Urban Forests of Thessaloniki, Greece. SUSTAINABILITY 2022. [DOI: 10.3390/su14148497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Forests host important plant biodiversity. Nevertheless, due to climate change and human disturbances, the floristic quality of forest ecosystems is degraded. Greek peri-urban forests biodiversity is threatened by anthropogenic activities such as forest fragmentation, pollution, garbage, etc. Measurement of biodiversity status and the floristic quality assessment can be used to estimate the degree of forest degradation caused by anthropogenic disturbances. In this study, we compared and evaluated six forest ecosystem types in the peri-urban forests of Thessaloniki, northern Greece, by using Shannon’s biodiversity index as well as and α and β diversity Sørensen indices. Furthermore, we recorded the prevailing anthropogenic disturbances and compared the plant families and the ruderal species appearing in each forest ecosystem. Finally, the average conservatism value (C value) of the plant species found in each ecosystem was determined in order to calculate the ecosystem floristic quality index. Analysis of the results showed that the floristic and ecological parameters tested greatly vary among ecosystems. Broadleaf forests of higher altitude hosted the greatest biodiversity, and the higher floristic quality index and plant conservation value. On the contrary, most disturbances and most ruderal species were recorded in ecosystems of lower altitude, adjacent to the city (Pinus brutia forest and Maqui vegetation), the least disturbed ecosystems were found in the steep slopes (Castanea sativa forest). Most ruderal species found belonged to the Asteraceae and Rosaceae families. Accessibility and attractiveness of stands were positively correlated with disturbances. Insufficient management, lack of protection measures, and littering removal contribute to the increase in the level of disturbance.
Collapse
|
8
|
Reinventory of the vascular plants of Mormon Island Crane Meadows after forty years of restoration, invasion, and climate change. Heliyon 2022; 8:e09640. [PMID: 35711997 PMCID: PMC9192816 DOI: 10.1016/j.heliyon.2022.e09640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/14/2022] [Accepted: 05/29/2022] [Indexed: 11/23/2022] Open
Abstract
The majority of tallgrass prairie has been lost from North America's Great Plains, but remaining tracts often support significant biodiversity. Despite permanent protections for some remnants, they continue to face anthropogenic threats including habitat fragmentation, invasive species, and climate change. Conservationists have sought to buffer remnants from threats using prairie restoration but limited research has assessed such practices at the landscape-level. We reexamine the flora of Mormon Island, the largest tract of lowland tallgrass prairie remaining in the Central Platte River Valley (CPRV) of Nebraska, USA, nearly 40-years after it was initially inventoried and following widespread restoration. We also conducted preliminary inventories of nearby Shoemaker Island and adjacent off-island habitats using an ecotope-based stratified random sampling approach. We examined change at Mormon Island between 1980-1981 and 2015–2020 and compared it to adjacent conservation lands using a number of vegetation indices. We documented 389 vascular plant species on Mormon Island, 405 on Shoemaker Island, and 337 on off-island habitats from 2015-2020, which represented an increase in native and exotic species richness on Mormon Island compared to 1980–1981 results. Floristic quality index (FQI) values increased at Mormon Island between 1980-1981 and 2015–2020. Paradoxically, the distribution of exotic-invasive species also expanded. Mormon Island from 2015-2020 was more similar to Shoemaker Island and off-island habitats from 2015-2020 than Mormon Island from 1980-1981. Widespread restoration introduced a number of high conservation value species native to Nebraska but novel to the CPRV, which improved FQIs despite increased exotic species invasion. These concurrent trends appear to have driven biological homogenization across the study area. Restoration did not fully buffer Mormon Island from exotic species invasion but it may have partially mitigated the impact considering the persistence of most native species across a 40-year period. We recommend using “local ecotype” seed for restorations to preserve distinctive local communities.
Collapse
|
9
|
Karr JR, Larson ER, Chu EW. Ecological integrity is both real and valuable. CONSERVATION SCIENCE AND PRACTICE 2021. [DOI: 10.1111/csp2.583] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
| | - Eric R. Larson
- Department of Natural Resources and Environmental Sciences University of Illinois Urbana Illinois USA
| | - Ellen W. Chu
- Ecologist and Editor Port Townsend Washington USA
| |
Collapse
|
10
|
Stern JL, Herman BD, Matthews JW. COEFFICIENTS OF CONSERVATISM FOR THE FLORA OF THE MIDDLE RIO GRANDE FLOODPLAIN. SOUTHWEST NAT 2021. [DOI: 10.1894/0038-4909-65.2.141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Jessica L. Stern
- Department of Natural Resources and Environmental Sciences, University of Illinois Urbana Champaign, 1102 South Goodwin Avenue, Urbana, IL 61801 (JLS, JWM)
| | - Brook D. Herman
- Environmental Laboratory, United States Army Engineer Research and Development Center, 3909 Halls Ferry Road, Vicksburg, MS 39180 (BDH)
| | - Jeffrey W. Matthews
- Department of Natural Resources and Environmental Sciences, University of Illinois Urbana Champaign, 1102 South Goodwin Avenue, Urbana, IL 61801 (JLS, JWM)
| |
Collapse
|
11
|
Walker SE, Robbins G, Helton AM, Lawrence BA. Road salt inputs alter biogeochemistry but not plant community composition in exurban forested wetlands. Ecosphere 2021. [DOI: 10.1002/ecs2.3814] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Affiliation(s)
- Samantha E. Walker
- Department of Natural Resources and the Environment University of Connecticut Storrs Connecticut USA
| | - Gary Robbins
- Department of Natural Resources and the Environment University of Connecticut Storrs Connecticut USA
| | - Ashley M. Helton
- Department of Natural Resources and the Environment University of Connecticut Storrs Connecticut USA
- Center for Environmental Science and Engineering University of Connecticut Storrs Connecticut USA
| | - Beth A. Lawrence
- Department of Natural Resources and the Environment University of Connecticut Storrs Connecticut USA
- Center for Environmental Science and Engineering University of Connecticut Storrs Connecticut USA
| |
Collapse
|
12
|
Stern JL, Herman BD, Matthews JW. Determining vegetation metric robustness to environmental and methodological variables. ENVIRONMENTAL MONITORING AND ASSESSMENT 2021; 193:647. [PMID: 34519882 DOI: 10.1007/s10661-021-09445-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 09/02/2021] [Indexed: 06/13/2023]
Abstract
Land managers need reliable metrics for assessing the quality of restorations and natural areas and prioritizing management and conservation efforts. However, it can be difficult to select metrics that are robust to sampling methods and natural environmental differences among sites, while still providing relevant information regarding ecosystem changes or stressors. We collected herbaceous-layer vegetation data in wetlands and grasslands in four regions of the USA (the Midwest, subtropical Florida, arid southwest, and coastal New England) to determine if commonly used vegetation metrics (species richness, mean coefficient of conservatism [mean C], Floristic Quality Index [FQI], abundance-weighted mean C, and percent non-native species cover) were robust to environmental and methodological variables (region, site, observer, season, and year), and to determine adequate sample sizes for each metric. We constructed linear mixed effects models to determine the influence of these environmental and methodological variables on vegetation metrics and used metric accumulation curves to determine the effect of sample size on metric values. Species richness and FQI varied among regions, and year and observer effects were also highly supported in our models. Mean C was the metric most robust to sampling variables and stabilized at less sampling effort compared to other metrics. Assessment of mean C requires sampling a small number of quadrats (e.g. 20), but assessment of species richness or FQI requires more intensive sampling, particularly in species-rich sites. Based on our analysis, we recommend caution be used when comparing metric values among sites sampled in different regions, different years, or by different observers.
Collapse
Affiliation(s)
- Jessica L Stern
- Department of Natural Resources and Environmental Sciences, University of Illinois At Urbana-Champaign, 1102 S. Goodwin Ave, Urbana, IL, 61801, USA.
| | - Brook D Herman
- Environmental Laboratory, US Army Engineer Research and Development Center, 3909 Halls Ferry Road, Vicksburg, MS, 39180, USA
| | - Jeffrey W Matthews
- Department of Natural Resources and Environmental Sciences, University of Illinois At Urbana-Champaign, 1102 S. Goodwin Ave, Urbana, IL, 61801, USA
| |
Collapse
|
13
|
McKown JG, Moore GE, Payne AR, White NA, Gibson JL. Successional dynamics of a 35 year old freshwater mitigation wetland in southeastern New Hampshire. PLoS One 2021; 16:e0251748. [PMID: 33999932 PMCID: PMC8128273 DOI: 10.1371/journal.pone.0251748] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/30/2021] [Indexed: 11/19/2022] Open
Abstract
The long-term ecological success of compensatory freshwater wetland projects has come into question based on follow-up monitoring studies over the past few decades. Given that wetland restoration may require many years to decades to converge to desired outcomes, long-term monitoring of successional patterns may increase our ability to fully evaluate success of wetland mitigation projects or guide adaptive management when needed. In Portsmouth, New Hampshire a 4 ha wetland was constructed in an abandoned gravel quarry as off-site compensatory mitigation for impacts to a scrub-shrub swamp associated with property expansion. Building upon prior evaluations from 1992 and 2002, we conducted a floral survey in 2020 to compare results with prior surveys to document vegetation successional trends over time. In addition, we monitored the avian community throughout the growing season as a measure of habitat quality. The plant community mirrored documented successional trends of freshwater wetland restoration projects as native hydrophytes dominated species composition. Plant species composition stabilized as the rate of turnover, the measurement of succession, declined by nearly half after 17 years. Researchers should consider long-term monitoring of specific sites to better understand successional patterns of created wetlands as we documented long time frames required for the development of scrub-shrub swamps, red maple swamps, and sedge meadows. High species richness was attributed to beaver activity, topographic heterogeneity from Carex stricta tussocks, and the seed bank from the application of peat from the original wetland. Habitat heterogeneity of open water, herbaceous cover, and woody vegetation supports a diverse avian community including 11 wetland dependent species. Although the mitigation project has not created the full area of lost scrub-shrub swamp after 35 years, it has developed a structurally complex habitat and diverse avian community that effectively provides the functions and values of the impacted system.
Collapse
Affiliation(s)
- J. Grant McKown
- Department of Biological Sciences and Jackson Estuarine Laboratory, School of Marine Science and Ocean Engineering, University of New Hampshire, Durham, New Hampshire, United States of America
| | - Gregg E. Moore
- Department of Biological Sciences and Jackson Estuarine Laboratory, School of Marine Science and Ocean Engineering, University of New Hampshire, Durham, New Hampshire, United States of America
| | - Andrew R. Payne
- Department of Biodiversity, Earth, & Environmental Sciences, Academy of Natural Sciences of Drexel University, Philadelphia, Pennsylvania, United States of America
| | - Natalie A. White
- Department of Natural Resources, University of New Hampshire, Durham, New Hampshire, United States of America
| | - Jennifer L. Gibson
- Department of Biological Sciences and Jackson Estuarine Laboratory, School of Marine Science and Ocean Engineering, University of New Hampshire, Durham, New Hampshire, United States of America
| |
Collapse
|
14
|
Alba C, Levy R, Hufft R. Combining botanical collections and ecological data to better describe plant community diversity. PLoS One 2021; 16:e0244982. [PMID: 33411770 PMCID: PMC7790410 DOI: 10.1371/journal.pone.0244982] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 12/18/2020] [Indexed: 11/25/2022] Open
Abstract
In this age of rapid biodiversity loss, we must continue to refine our approaches to describing variation in life on Earth. Combining knowledge and research tools from multiple disciplines is one way to better describe complex natural systems. Understanding plant community diversity requires documenting both pattern and process. We must first know which species exist, and where (i.e., taxonomic and biogeographic patterns), before we can determine why they exist there (i.e., ecological and evolutionary processes). Floristic botanists often use collections-based approaches to elucidate biodiversity patterns, while plant ecologists use hypothesis-driven statistical approaches to describe underlying processes. Because of these different disciplinary histories and research goals, floristic botanists and plant ecologists often remain siloed in their work. Here, using a case study from an urban greenway in Colorado, USA, we illustrate that the collections-based, opportunistic sampling of floristic botanists is highly complementary to the transect- or plot-based sampling of plant ecologists. We found that floristic sampling captured a community species pool four times larger than that captured using ecological transects, with rarefaction and non-parametric species estimation indicating that it would be prohibitive to capture the "true" community species pool if constrained to sampling within transects. We further illustrate that the discrepancy in species pool size between approaches led to a different interpretation of the greenway's ecological condition in some cases (e.g., transects missed uncommon cultivated species escaping from nearby gardens) but not others (e.g., plant species distributions among functional groups were similar between species pools). Finally, we show that while using transects to estimate plant relative abundances necessarily trades off with a fuller assessment of the species pool, it is an indispensable indicator of ecosystem health, as evidenced by three non-native grasses contributing to 50% of plant cover along the highly modified urban greenway. We suggest that actively fostering collaborations between floristic botanists and ecologists can create new insights into the maintenance of species diversity at the community scale.
Collapse
Affiliation(s)
- Christina Alba
- Research & Conservation Department, Denver Botanic Gardens, Denver, Colorado, United States of America
| | - Richard Levy
- Research & Conservation Department, Denver Botanic Gardens, Denver, Colorado, United States of America
| | - Rebecca Hufft
- Research & Conservation Department, Denver Botanic Gardens, Denver, Colorado, United States of America
| |
Collapse
|
15
|
Glennemeier K, Packard S, Spyreas G. Dramatic long-term restoration of an oak woodland due to multiple, sustained management treatments. PLoS One 2020; 15:e0241061. [PMID: 33095813 PMCID: PMC7584219 DOI: 10.1371/journal.pone.0241061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 10/07/2020] [Indexed: 12/02/2022] Open
Abstract
We measured 34 years of plant community change in a degraded oak woodland undergoing ecological management. Management included regular prescribed fire, control of white-tailed deer populations, repeated sowing of a diverse seed mix, and removal of invasive plants. We tracked change with several conservation metrics. Time series analysis showed no significant changes over time in either plant species richness or the Shannon-Weiner diversity index. Floristic Quality Assessment measures—the Floristic Quality Index (FQI), Cover-weighted FQI, and the Mean Coefficient of Conservatism (Mean C)—all increased dramatically over time, such that their values now surpass those of the highest quality representative of this habitat in the region. Cover-weighted FQI had the added benefit of being quick to respond (negatively and positively) to short-term management changes during the study. This sensitivity highlights its utility for adaptive management, enabling timely, data-driven changes to ongoing management regimes. Plant community composition showed striking changes during the study period, as species of high conservation value replaced weedier species. As a group, conservative woodland species are notoriously slow to recover from degradation, making this flora’s recovery particularly notable. A mid-study cessation of management immediately stalled the woodland’s recovery according to Floristic Quality metrics, but the restoration quickly returned to its positive trajectory with the resumption of management treatments. These results illustrate that impressive plant biodiversity restoration can be achieved, even in highly degraded contemporary oak ecosystems, if ecological management is comprehensive and if it is sustained over time.
Collapse
Affiliation(s)
- Karen Glennemeier
- Habitat Research LLC, Wilmette, Illinois, United States of America
- * E-mail:
| | - Stephen Packard
- North Branch Restoration Project, Northbrook, Illinois, United States of America
| | - Greg Spyreas
- Illinois Natural History Survey, University of Illinois, Champaign, Illinois, United States of America
| |
Collapse
|
16
|
Zou HX, Anastasio AE, Pfister CA. Early succession on slag compared to urban soil: A slower recovery. PLoS One 2019; 14:e0224214. [PMID: 31856201 PMCID: PMC6922358 DOI: 10.1371/journal.pone.0224214] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 10/08/2019] [Indexed: 11/18/2022] Open
Abstract
Slag, waste from the steel-making process, contains large amounts of calcium, magnesium, iron and other heavy metals. Because of its composition, high pH and low water retention ability, slag is considered inhospitable to plants. Nevertheless, the spontaneously generated plant communities on slag are surprisingly diverse, but the assembly and structure of such communities are poorly studied. Previous studies suggest reduced rates of succession due to low growth rate and slow accumulation of topsoil. To investigate whether slag communities display similar patterns, we used two former industrial sites on the South Side of Chicago, IL, both with high pH (8-9.2) sand content (80%) and calcium concentration (> 9000 ppm). We removed all vegetation from both slag and non-slag plots to test whether recovery differed over one growing season (4 months). To directly assess plant growth, selected focal species were planted on both sites and harvested. We show that recovery from removal differed at slag and non-slag sites: the recruitment process on slag, measured by percent vegetative cover and number of species in plots, was significantly slower at 6-8 weeks of the manipulation and beyond, suggesting a potential stage-dependent effect of slag on plant growth. Certain slag plots recorded less cover than non-slag plots by >30% at maximum difference. Functional trait analysis found that graminoid and early successional species preferentially colonized slag. Overall, slag plots recovered more slowly from disturbance, suggesting a slow succession process that would hinder natural recovery. However, slag also has the potential to serve as plant refugia, hosting flora of analogous habitats native to the area: one of our industrial sites hosts nearly 80% native species with two species of highest Floristic Quality Index (10). Restoration efforts should be informed by the slow process of natural recovery, while post-industrial sites in urban areas serve as potential native plant refugia.
Collapse
Affiliation(s)
- Heng-Xing Zou
- Department of Ecology and Evolution, The University of Chicago, Chicago, Illinois, United States of America
| | - Alison E. Anastasio
- Program on the Global Environment, The University of Chicago, Chicago, Illinois, United States of America
- * E-mail:
| | - Catherine A. Pfister
- Department of Ecology and Evolution, The University of Chicago, Chicago, Illinois, United States of America
| |
Collapse
|