1
|
McCullough PA, Hulscher N. Risk stratification for future cardiac arrest after COVID-19 vaccination. World J Cardiol 2025; 17:103909. [DOI: 10.4330/wjc.v17.i2.103909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/14/2025] [Accepted: 02/06/2025] [Indexed: 02/25/2025] Open
Abstract
Unheralded cardiac arrest among previously healthy young people without antecedent illness, months or years after coronavirus disease 2019 (COVID-19) vaccination, highlights the urgent need for risk stratification. The most likely underlying pathophysiology is subclinical myopericarditis and reentrant ventricular tachycardia or spontaneous ventricular fibrillation that is commonly precipitated after a surge in catecholamines during exercise or the waking hours of terminal sleep. Small patches of inflammation and/or edema can be missed on cardiac imaging and autopsy, and the heart can appear grossly normal. This paper reviews evidence linking COVID-19 vaccines to cardiac arrest where unfortunately the majority of victims have had no antecedent clinical evaluation. We propose a comprehensive strategy for evaluating cardiovascular risk post-vaccination, incorporating detailed patient history, antibody testing, and cardiac diagnostics in the best attempt to detect abnormalities before sudden cardiac death. This approach aims to identify individuals at higher risk of cardiac events after COVID-19 vaccination and guide appropriate clinical management. It is prudent for each primary care physician to have a pre-established plan when addressing this issue in their practice.
Collapse
Affiliation(s)
- Peter A McCullough
- Department of Cardiology, McCullough Foundation, Dallas, TX 75206, United States
| | - Nicolas Hulscher
- Department of Epidemiology, McCullough Foundation, Dallas, TX 75206, United States
| |
Collapse
|
2
|
Beghini A, Sammartino AM, Papp Z, von Haehling S, Biegus J, Ponikowski P, Adamo M, Falco L, Lombardi CM, Pagnesi M, Savarese G, Metra M, Tomasoni D. 2024 update in heart failure. ESC Heart Fail 2025; 12:8-42. [PMID: 38806171 PMCID: PMC11769673 DOI: 10.1002/ehf2.14857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 05/30/2024] Open
Abstract
In the last years, major progress has occurred in heart failure (HF) management. The 2023 ESC focused update of the 2021 HF guidelines introduced new key recommendations based on the results of the last years of science. First, two drugs, sodium-glucose co-transporter-2 (SGLT2) inhibitors and finerenone, a novel nonsteroidal, selective mineralocorticoid receptor antagonist (MRA), are recommended for the prevention of HF in patients with diabetic chronic kidney disease (CKD). Second, SGLT2 inhibitors are now recommended for the treatment of HF across the entire left ventricular ejection fraction spectrum. The benefits of quadruple therapy in patients with HF with reduced ejection fraction (HFrEF) are well established. Its rapid and early up-titration along with a close follow-up with frequent clinical and laboratory re-assessment after an episode of acute HF (the so-called 'high-intensity care' strategy) was associated with better outcomes in the STRONG-HF trial. Patients experiencing an episode of worsening HF might require a fifth drug, vericiguat. In the STEP-HFpEF-DM and STEP-HFpEF trials, semaglutide 2.4 mg once weekly administered for 1 year decreased body weight and significantly improved quality of life and the 6 min walk distance in obese patients with HF with preserved ejection fraction (HFpEF) with or without a history of diabetes. Further data on safety and efficacy, including also hard endpoints, are needed to support the addition of acetazolamide or hydrochlorothiazide to a standard diuretic regimen in patients hospitalized due to acute HF. In the meantime, PUSH-AHF supported the use of natriuresis-guided diuretic therapy. Further options and most recent evidence for the treatment of HF, including specific drugs for cardiomyopathies (i.e., mavacamten in hypertrophic cardiomyopathy and tafamidis in transthyretin cardiac amyloidosis), device therapies, cardiac contractility modulation and percutaneous treatment of valvulopathies, with the recent finding from the TRILUMINATE Pivotal trial, are also reviewed in this article.
Collapse
Affiliation(s)
- Alberto Beghini
- Institute of Cardiology, ASST Spedali Civili di Brescia, Department of Medical and Surgical Specialties, Radiological Sciences, and Public HealthUniversity of BresciaBresciaItaly
| | - Antonio Maria Sammartino
- Institute of Cardiology, ASST Spedali Civili di Brescia, Department of Medical and Surgical Specialties, Radiological Sciences, and Public HealthUniversity of BresciaBresciaItaly
| | - Zoltán Papp
- Division of Clinical Physiology, Department of Cardiology, Faculty of MedicineUniversity of DebrecenDebrecenHungary
| | - Stephan von Haehling
- Department of Cardiology and PneumologyUniversity Medical Center GöttingenGöttingenGermany
- German Centre for Cardiovascular Research (DZHK), partner site GöttingenGöttingenGermany
| | - Jan Biegus
- Institute of Heart DiseasesWrocław Medical UniversityWrocławPoland
| | - Piotr Ponikowski
- Institute of Heart DiseasesWrocław Medical UniversityWrocławPoland
| | - Marianna Adamo
- Institute of Cardiology, ASST Spedali Civili di Brescia, Department of Medical and Surgical Specialties, Radiological Sciences, and Public HealthUniversity of BresciaBresciaItaly
| | - Luigi Falco
- Heart Failure Unit, Department of CardiologyAORN dei Colli–Monaldi Hospital NaplesNaplesItaly
| | - Carlo Mario Lombardi
- Institute of Cardiology, ASST Spedali Civili di Brescia, Department of Medical and Surgical Specialties, Radiological Sciences, and Public HealthUniversity of BresciaBresciaItaly
| | - Matteo Pagnesi
- Institute of Cardiology, ASST Spedali Civili di Brescia, Department of Medical and Surgical Specialties, Radiological Sciences, and Public HealthUniversity of BresciaBresciaItaly
| | - Gianluigi Savarese
- Cardiology, Department of Medicine, SolnaKarolinska InstitutetStockholmSweden
- Heart and Vascular and Neuro ThemeKarolinska University HospitalStockholmSweden
| | - Marco Metra
- Institute of Cardiology, ASST Spedali Civili di Brescia, Department of Medical and Surgical Specialties, Radiological Sciences, and Public HealthUniversity of BresciaBresciaItaly
| | - Daniela Tomasoni
- Institute of Cardiology, ASST Spedali Civili di Brescia, Department of Medical and Surgical Specialties, Radiological Sciences, and Public HealthUniversity of BresciaBresciaItaly
- Cardiology, Department of Medicine, SolnaKarolinska InstitutetStockholmSweden
| |
Collapse
|
3
|
Bellavite P, Donzelli A, Isidoro C. The WHO Algorithm for Causality Assessment of Adverse Effects Following Immunization with Genetic-Based Anti-COVID-19 Vaccines: Pitfalls and Suggestions for Improvement. J Clin Med 2024; 13:7291. [PMID: 39685749 DOI: 10.3390/jcm13237291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/27/2024] [Accepted: 11/28/2024] [Indexed: 12/18/2024] Open
Abstract
Clarifying and differentiating the causes of diseases is an essential step in any clinical activity, but it takes on particular relevance and complexity in the case that arise following vaccinations. The WHO has proposed a protocol that uses a list of specific questions about vaccine-related adverse events and an algorithm for making a judgement. Here, we analyze and discuss the important limitations of this protocol when applied to the new genetic-based anti-COVID-19 vaccines, particularly once dealing with rare and unexpected pathological events. The main controversial aspects concern: (a) the prevailing consideration of other possible causes; (b) the biological plausibility and the choice of an appropriate time window to consider adverse effects possibly caused by vaccines; (c) the reference to scientific literature, which may be very limited and often controversial in early stages of introducing new vaccines because of the short period of observation; (d) the final classification of the algorithm into only three classes, which leaves ample space for the "indeterminate" category. Failure to address these issues may lead to distorted pharmacovigilance reports with significant consequences on the benefit/harm assessment. In anticipation of possible future pandemics managed with new vaccines, the WHO algorithm needs to be revised with appropriate protocols for monitoring and evaluation of adverse effects that take into account the novel mechanism of action and real-world epidemiological data.
Collapse
Affiliation(s)
| | - Alberto Donzelli
- Foundation Allineare Sanità e Salute, via Ricordi 4, 20131 Milano, Italy
| | - Ciro Isidoro
- Department of Health Sciences, Università del Piemonte Orientale, Via P. Solaroli 17, 28100 Novara, Italy
| |
Collapse
|
4
|
Jankowiak B, Wleklik M, Rosiek-Biegus M. The Impact of Vaccinations Against Respiratory Infections on the Prognosis in Heart Failure Patients. Vaccines (Basel) 2024; 12:1321. [PMID: 39771983 PMCID: PMC11679989 DOI: 10.3390/vaccines12121321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/22/2024] [Accepted: 11/23/2024] [Indexed: 01/11/2025] Open
Abstract
Heart failure (HF) affects 64 million people worldwide and is one of the most prevalent causes of hospitalization in adults. Infection is believed to be one of the potential triggers that may facilitate HF decompensation and the need for hospitalization. Therefore, it seems crucial to safeguard against such a situation. Vaccinations seem to be a very reasonable option. However, this remains an underutilized solution among HF patients. This review investigates the impact of available vaccinations, including influenza, COVID-19, pneumococcal, and RSV, on prognosis in specific HF populations only, as there are pathophysiological reasons to believe that this population of patients may benefit the most from the intervention. It will provide information about the safety profile of these vaccines and summarize the available evidence on their impact on hard clinical outcomes. In summary, this article will discuss the impact of preventive vaccinations against seasonal infections in the HF population.
Collapse
Affiliation(s)
- Berenika Jankowiak
- Institute of Heart Diseases, Wroclaw Medical University, 50-556 Wroclaw, Poland
| | - Marta Wleklik
- Division of Research Methodology, Department of Nursing, Faculty of Nursing and Midwifery, Wroclaw Medical University, 50-556 Wroclaw, Poland;
| | - Marta Rosiek-Biegus
- Institute of Internal Diseases, Wroclaw Medical University, 50-556 Wroclaw, Poland;
| |
Collapse
|
5
|
Rhodes P, Parry PI. Pharmaceutical product recall and educated hesitancy towards new drugs and novel vaccines. INTERNATIONAL JOURNAL OF RISK & SAFETY IN MEDICINE 2024; 35:317-333. [PMID: 39973420 DOI: 10.1177/09246479241292008] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Background: Of many pharmaceutical products launched for the benefit of humanity, a significant number have had to be recalled from the marketplace due to adverse events. A systematic review found market recalls for 462 pharmaceutical products between 1953 and 2013. In our current and remarkable period of medical history, excess mortality figures are high in many countries. Yet these statistics receive limited attention, often ignored or dismissed by mainstream news outlets. This excess mortality may include adverse effects caused by novel pharmaceutical agents that use gene-code technology.Objective: To examine key pharmaceutical product withdrawals and derive lessons that inform the current use of gene-based COVID-19 vaccines.Methods: Selective narrative review of historical pharmaceutical recalls and comparative issues with recent COVID-19 vaccines.Results: Parallels with past drug withdrawals and gene-based vaccines include distortion of clinical trial data, with critical adverse event data absent from high-impact journal publications. Delayed regulatory action on pharmacovigilance data to trigger market withdrawal occurred with Vioxx (rofecoxib) and is apparent with the gene-based COVID-19 vaccines.Conclusion: Public health requires access to raw clinical trial data, improved transparency from corporations and heightened, active pharmacovigilance worldwide.
Collapse
Affiliation(s)
- Peter Rhodes
- Gonville & Caius College, University of Cambridge, Cambridge, UK
- Anaesthesia and Intensive Care Medicine, Brisbane, QLD, Australia
| | - Peter I Parry
- Childrens Health Queensland Clinical Unit, Faculty of Medicine, University of Queensland, South Brisbane, QLD, Australia
- Department of Psychiatry, College of Medicine and Public Health, Flinders University, Bedford Park, SA, Australia
| |
Collapse
|
6
|
Florek K, Sokolski M. Myocarditis Associated with COVID-19 Vaccination. Vaccines (Basel) 2024; 12:1193. [PMID: 39460358 PMCID: PMC11512328 DOI: 10.3390/vaccines12101193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 10/15/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
Myocarditis after the COVID-19 vaccine is one of the important adverse events following immunization, observed mainly after mRNA-based vaccines. Importantly, post-vaccination myocarditis was less common than myocarditis after SARS-CoV-2 infection, as it was scored at 19.7 per 1,000,000 doses and 2.76 per 1000 infections. Predominantly, its course was benign and, compared with the myocarditis after COVID-19 infection, significantly fewer patients developed heart failure or died among patients with post-vaccination myocarditis. The group at highest risk of myocarditis related to COVID-19 vaccination were young males who received a second dose of an mRNA vaccine. It was observed that, among mRNA vaccines, specifically mRNA-1273 was associated with a higher risk of myocarditis. The mechanism underlying myocarditis after COVID-19 vaccination is still under investigation and certain processes are being considered. Currently, some follow-up assessments of patients who developed vaccine-induced myocarditis are available and suggest a favorable prognosis. The aim of this review is to discuss the most recent data on myocarditis after COVID-19 vaccination considering its epidemiology, clinical presentation, diagnosis, management, relative risk of myocarditis compared with SARS-CoV-2 infection, potential underlying mechanism, and follow-up data of patients who developed post-vaccination myocarditis.
Collapse
Affiliation(s)
- Kamila Florek
- Student Scientific Club of Transplantology and Advanced Therapies of Heart Failure, Institute of Heart Diseases, Faculty of Medicine, Wroclaw Medical University, 50-369 Wroclaw, Poland
| | - Mateusz Sokolski
- Institute of Heart Diseases, Faculty of Medicine, Wroclaw Medical University, 50-556 Wroclaw, Poland
- Centre for Heart Diseases, University Hospital, 50-556 Wroclaw, Poland
| |
Collapse
|
7
|
du Preez HN, Lin J, Maguire GEM, Aldous C, Kruger HG. COVID-19 vaccine adverse events: Evaluating the pathophysiology with an emphasis on sulfur metabolism and endotheliopathy. Eur J Clin Invest 2024; 54:e14296. [PMID: 39118373 DOI: 10.1111/eci.14296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 07/24/2024] [Indexed: 08/10/2024]
Abstract
In this narrative review, we assess the pathophysiology of severe adverse events that presented after vaccination with DNA and mRNA vaccines against COVID-19. The focus is on the perspective of an undersulfated and degraded glycocalyx, considering its impact on immunomodulation, inflammatory responses, coagulation and oxidative stress. The paper explores various factors that lead to glutathione and inorganic sulfate depletion and their subsequent effect on glycocalyx sulfation and other metabolites, including hormones. Components of COVID-19 vaccines, such as DNA and mRNA material, spike protein antigen and lipid nanoparticles, are involved in possible cytotoxic effects. The common thread connecting these adverse events is endotheliopathy or glycocalyx degradation, caused by depleted glutathione and inorganic sulfate levels, shear stress from circulating nanoparticles, aggregation and formation of protein coronas; leading to imbalanced immune responses and chronic release of pro-inflammatory cytokines, ultimately resulting in oxidative stress and systemic inflammatory response syndrome. By understanding the underlying pathophysiology of severe adverse events, better treatment options can be explored.
Collapse
Affiliation(s)
- Heidi N du Preez
- Catalysis and Peptide Research Unit, University of KwaZulu-Natal, Durban, South Africa
- College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Johnson Lin
- School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Glenn E M Maguire
- Catalysis and Peptide Research Unit, University of KwaZulu-Natal, Durban, South Africa
- School of Chemistry and Physics, University of KwaZulu-Natal, Durban, South Africa
| | - Colleen Aldous
- College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Hendrik G Kruger
- Catalysis and Peptide Research Unit, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
8
|
Hulscher N, McCullough PA, Marotta DE. Strategic deactivation of mRNA COVID-19 vaccines: New applications for siRNA therapy and RIBOTACs. J Gene Med 2024; 26:e3733. [PMID: 39183706 DOI: 10.1002/jgm.3733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 07/19/2024] [Accepted: 08/13/2024] [Indexed: 08/27/2024] Open
Abstract
The rapid development and authorization of messenger ribonucleic acid (mRNA) vaccines by Pfizer-BioNTech (BNT162b2) and Moderna (mRNA-1273) in 2020 marked a significant milestone in human mRNA product application, overcoming previous obstacles such as mRNA instability and immunogenicity. This paper reviews the strategic modifications incorporated into these vaccines to enhance mRNA stability and translation efficiency, such as the inclusion of nucleoside modifications and optimized mRNA design elements including the 5' cap and poly(A) tail. We highlight emerging concerns regarding the wide systemic biodistribution of these mRNA vaccines leading to prolonged inflammatory responses and other safety concerns. The regulatory framework guiding the biodistribution studies is pivotal in assessing the safety profiles of new mRNA formulations in use today. The stability of mRNA vaccines, their pervasive distribution, and the longevity of the encapsulated mRNA along with unlimited production of the damaging and potentially lethal spike (S) protein call for strategies to mitigate potential adverse effects. Here, we explore the potential of small interfering RNA (siRNA) and ribonuclease targeting chimeras (RIBOTACs) as promising solutions to target, inactivate, and degrade residual and persistent vaccine mRNA, thereby potentially preventing uncontrolled S protein production and reducing toxicity. The targeted nature of siRNA and RIBOTACs allows for precise intervention, offering a path to prevent and mitigate adverse events of mRNA-based therapies. This review calls for further research into siRNA and RIBOTAC applications as antidotes and detoxication products for mRNA vaccine technology.
Collapse
|
9
|
Hulscher N, Hodkinson R, Makis W, McCullough PA. Response to: Van Wyk et al. letter to the editor regarding 'Autopsy findings in cases of fatal COVID-19 vaccine-induced myocarditis'. ESC Heart Fail 2024; 11:2476-2478. [PMID: 38772619 PMCID: PMC11287309 DOI: 10.1002/ehf2.14861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 05/03/2024] [Indexed: 05/23/2024] Open
Affiliation(s)
- Nicolas Hulscher
- School of Public HealthUniversity of MichiganAnn ArborMichiganUSA
- McCullough FoundationDallasTexasUSA
| | | | - William Makis
- Alberta Health ServicesCross Cancer InstituteEdmontonAlbertaCanada
| | | |
Collapse
|
10
|
Van Wyk H, Zhu MQ, Stone DR, Singh AK, Bassiouni S. Letter to the editor regarding 'Autopsy findings in cases of fatal COVID-19 vaccine-induced myocarditis'. ESC Heart Fail 2024; 11:2467-2468. [PMID: 38661239 PMCID: PMC11287359 DOI: 10.1002/ehf2.14819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 04/02/2024] [Indexed: 04/26/2024] Open
Affiliation(s)
- Hannah Van Wyk
- Department of EpidemiologyUniversity of Michigan School of Public HealthAnn ArborMIUSA
| | - Mia Q. Zhu
- Department of EpidemiologyUniversity of Michigan School of Public HealthAnn ArborMIUSA
| | - Danielle R. Stone
- Department of EpidemiologyUniversity of Michigan School of Public HealthAnn ArborMIUSA
| | - Awnish Kumar Singh
- Department of EpidemiologyUniversity of Michigan School of Public HealthAnn ArborMIUSA
| | - Sarah Bassiouni
- Department of EpidemiologyUniversity of Michigan School of Public HealthAnn ArborMIUSA
| |
Collapse
|
11
|
Hulscher N, Hodkinson R, Makis W, McCullough PA. Response to: Szuster-Ciesielska, letter to the editor regarding 'Autopsy findings in cases of fatal COVID-19 vaccine-induced myocarditis'. ESC Heart Fail 2024; 11:2479-2480. [PMID: 38773951 PMCID: PMC11287320 DOI: 10.1002/ehf2.14862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 05/03/2024] [Indexed: 05/24/2024] Open
Affiliation(s)
- Nicolas Hulscher
- University of Michigan School of Public HealthAnn ArborMichiganUSA
- McCullough FoundationDallasTexasUSA
| | | | - William Makis
- Alberta Health ServicesCross Cancer InstituteEdmontonAlbertaCanada
| | | |
Collapse
|
12
|
de Sousa PMB, Silva EA, Campos MAG, Lages JS, Corrêa RDGCF, Silva GEB. Fatal Myocarditis following COVID-19 mRNA Immunization: A Case Report and Differential Diagnosis Review. Vaccines (Basel) 2024; 12:194. [PMID: 38400177 PMCID: PMC10891853 DOI: 10.3390/vaccines12020194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/05/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
Carditis in childhood is a rare disease with several etiologies. We report a case of infant death due to pericarditis and myocarditis after the mRNA vaccine against COVID-19 (COVIDmRNAV). A 7-year-old male child received the first dose of the COVIDmRNAV and presented with monoarthritis and a fever non-responsive to oral antibiotics. The laboratory investigation showed signs of infection (leukocytosis, high levels of c-reactive protein). His condition rapidly deteriorated, and the patient died. The autopsy identified pericardial fibrin deposits, hemorrhagic areas in the myocardium, and normal valves. A diffuse intermyocardial inflammatory infiltrate composed of T CD8+ lymphocytes and histiocytes was identified. An antistreptolysin O (ASO) dosage showed high titers. The presence of arthritis, elevated ASO, and carditis fulfills the criteria for rheumatic fever. However, valve disease and Aschoff's nodules, present in 90% of rheumatic carditis cases, were absent in this case. The temporal correlation with mRNA vaccination prompted its inclusion as one of the etiologies. In cases of myocardial damage related to COVID-19mRNAV, it appears to be related to the expression of exosomes and lipid nanoparticles, leading to a cytokine storm. The potential effects of the COVID-19mRNAV must be considered in the pathogenesis of this disease, whether as an etiology or a contributing factor to a previously initiated myocardial injury.
Collapse
Affiliation(s)
- Pedro Manuel Barros de Sousa
- University Hospital of the Federal University of Maranhão, Barão de Itapari Street 227, São Luís 65020-070, MA, Brazil; (P.M.B.d.S.)
| | - Elon Almeida Silva
- University Hospital of the Federal University of Maranhão, Barão de Itapari Street 227, São Luís 65020-070, MA, Brazil; (P.M.B.d.S.)
| | - Marcos Adriano Garcia Campos
- Clinical Hospital of Botucatu Medical School, São Paulo State University, Professor Mário Rubens Guimarães Montenegro Avenue, Botucatu 18618-687, SP, Brazil
| | - Joyce Santos Lages
- University Hospital of the Federal University of Maranhão, Barão de Itapari Street 227, São Luís 65020-070, MA, Brazil; (P.M.B.d.S.)
| | | | - Gyl Eanes Barros Silva
- University Hospital of the Federal University of Maranhão, Barão de Itapari Street 227, São Luís 65020-070, MA, Brazil; (P.M.B.d.S.)
- Department of Pathology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil
| |
Collapse
|
13
|
Mead MN, Seneff S, Wolfinger R, Rose J, Denhaerynck K, Kirsch S, McCullough PA. COVID-19 mRNA Vaccines: Lessons Learned from the Registrational Trials and Global Vaccination Campaign. Cureus 2024; 16:e52876. [PMID: 38274635 PMCID: PMC10810638 DOI: 10.7759/cureus.52876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/24/2024] [Indexed: 01/27/2024] Open
Abstract
Our understanding of COVID-19 vaccinations and their impact on health and mortality has evolved substantially since the first vaccine rollouts. Published reports from the original randomized phase 3 trials concluded that the COVID-19 mRNA vaccines could greatly reduce COVID-19 symptoms. In the interim, problems with the methods, execution, and reporting of these pivotal trials have emerged. Re-analysis of the Pfizer trial data identified statistically significant increases in serious adverse events (SAEs) in the vaccine group. Numerous SAEs were identified following the Emergency Use Authorization (EUA), including death, cancer, cardiac events, and various autoimmune, hematological, reproductive, and neurological disorders. Furthermore, these products never underwent adequate safety and toxicological testing in accordance with previously established scientific standards. Among the other major topics addressed in this narrative review are the published analyses of serious harms to humans, quality control issues and process-related impurities, mechanisms underlying adverse events (AEs), the immunologic basis for vaccine inefficacy, and concerning mortality trends based on the registrational trial data. The risk-benefit imbalance substantiated by the evidence to date contraindicates further booster injections and suggests that, at a minimum, the mRNA injections should be removed from the childhood immunization program until proper safety and toxicological studies are conducted. Federal agency approval of the COVID-19 mRNA vaccines on a blanket-coverage population-wide basis had no support from an honest assessment of all relevant registrational data and commensurate consideration of risks versus benefits. Given the extensive, well-documented SAEs and unacceptably high harm-to-reward ratio, we urge governments to endorse a global moratorium on the modified mRNA products until all relevant questions pertaining to causality, residual DNA, and aberrant protein production are answered.
Collapse
Affiliation(s)
- M Nathaniel Mead
- Biology and Nutritional Epidemiology, Independent Research, Copper Hill, USA
| | - Stephanie Seneff
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, USA
| | - Russ Wolfinger
- Biostatistics and Epidemiology, Independent Research, Research Triangle Park, USA
| | - Jessica Rose
- Immunology and Public Health Research, Independent Research, Ottawa, CAN
| | - Kris Denhaerynck
- Epidemiology and Biostatistics, Independent Research, Basel, CHE
| | - Steve Kirsch
- Data Science, Independent Research, Los Angeles, USA
| | - Peter A McCullough
- Cardiology, Epidemiology, and Public Health, McCullough Foundation, Dallas, USA
- Cardiology, Epidemiology, and Public Health, Truth for Health Foundation, Tucson, USA
| |
Collapse
|