1
|
Huang J, Hou X, Zhou N, Su N, Wei S, Yang Y, Sun T, Li G, Li W, Zhang B. Novel Protective Role for Gut Microbiota-derived Metabolite PAGln in Doxorubicin-induced Cardiotoxicity. Cardiovasc Drugs Ther 2025:10.1007/s10557-024-07665-y. [PMID: 39808382 DOI: 10.1007/s10557-024-07665-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/17/2024] [Indexed: 01/16/2025]
Abstract
PURPOSE Doxorubicin (Dox) is a classic anthracycline chemotherapy drug with cause cumulative and dose-dependent cardiotoxicity. This study aimed to investigate the potential role and molecular mechanism of phenylacetylglutamine (PAGln), a novel gut microbiota metabolite, in Dox-induced cardiotoxicity (DIC). METHODS DIC models were established in vivo and in vitro, and a series of experiments were performed to verify the cardioprotective effect of PAGln. RNA sequencing (RNA-seq) was employed to explore the mechanism of PAGln in DIC. Subsequently, the differentially expressed genes (DEGs) were subjected to comprehensive analysis using diverse public databases, and RT-PCR was used to confirm the expression levels of the candidate genes. Finally, molecular docking techniques were used for validation. RESULTS PAGln effectively prevented both in vivo and in vitro Dox-induced myocardial injury and cell apoptosis. RNA-seq results showed that 40 genes were up-regulated and 54 down-regulated in the Dox group compared to the Con group, displaying opposite changes in the Dox + PAGln group. Enrichment analysis highlighted several mechanisms by which PAGln alleviated Dox-induced cardiotoxicity, including the lipid metabolic process, calcium-mediated signaling, positive regulation of store-operated calcium channel activity, and hypertrophic cardiomyopathy. In vitro and in vivo experiments confirmed that PAGln treatment could reverse the changes in the expression levels of Klb, Ece2, Nmnat2, Casq1, Pak1, and Apob in Dox. Molecular docking results showed that these genes had good binding activity with PAGln. CONCLUSIONS PAGln shows potential in alleviating Dox-induced cardiotoxicity, with Ece2 identified as key regulatory molecules related to endothelial dysfunction.
Collapse
Affiliation(s)
- Jie Huang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha, 410013, Hunan, China
| | - Xingyuan Hou
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
- Institute of Clinical Pharmacy, Central South University, Changsha, 410011, Hunan, China
| | - Ni Zhou
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
- Institute of Clinical Pharmacy, Central South University, Changsha, 410011, Hunan, China
| | - Nan Su
- Department of Ophthalmology, the First People's Hospital of Lanzhou City, Lanzhou, 730050, Gansu, China
| | - Shanshan Wei
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
- Institute of Clinical Pharmacy, Central South University, Changsha, 410011, Hunan, China
| | - Yuanying Yang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
- Institute of Clinical Pharmacy, Central South University, Changsha, 410011, Hunan, China
| | - Taoli Sun
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China
| | - Guangdi Li
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha, 410013, Hunan, China
| | - Wenqun Li
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.
- Institute of Clinical Pharmacy, Central South University, Changsha, 410011, Hunan, China.
| | - Bikui Zhang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.
- Institute of Clinical Pharmacy, Central South University, Changsha, 410011, Hunan, China.
| |
Collapse
|
2
|
Yang S, Hao S, Ye H, Zhang X. Crosstalk between gut microbiota and cancer chemotherapy: current status and trends. Discov Oncol 2024; 15:833. [PMID: 39715958 DOI: 10.1007/s12672-024-01704-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 12/13/2024] [Indexed: 12/25/2024] Open
Abstract
BACKGROUND Chemotherapy is crucial in the management of tumors, but challenges such as chemoresistance and adverse reactions frequently lead to therapeutic delays or even premature cessation. A growing body of research underscores a profound connection between the gut microbiota (GM) and cancer chemotherapy (CC). This paper aims to pinpoint highly influential publications and monitor the current landscape and evolving trends within the realm of GM/CC research. METHODS On October 1st, 2024, a comprehensive search for GM/CC publications spanning the past 20 years from 2004 to 2023 was conducted utilizing the Web of Science Core Collection (WoSCC). The scope encompassed both articles and reviews, and the data was subsequently extracted. To gain insights into the evolution and dynamics of this research field, we employed bibliometric analysis tools such as the Bibliometrix R package, VOSviewer, and Microsoft Excel to visualize and analyze various dimensions, including prominent journals, leading authors, esteemed institutions, contributing countries/regions, highly cited papers, and frequently occurring keywords. RESULTS A total of 888 papers were obtained. The number of publications about GM/CC studies has increased gradually. China and the United States published the largest number of papers. The INSERM was in the leading position in publishers. The most productive authors were Zitvogel L from France. Cancers had the largest number of papers. Citation analysis explained the historical evolution and breakthroughs in GM/CC research. Highly cited papers and common keywords illustrated the status and trends of GM/CC research. Four clusters were identified, and the hot topics included the role of the GM in the efficacy and toxicity of CC, the targeting of the GM to improve the outcome of CC, the mechanism by which the GM affects CC, and the correlation of the GM with carcinogenesis and cancer therapy. Metabolism, GM-derived metabolites, tumor microenvironment, immunity, intestinal barrier, tumor microbiota and Fusobacterium nucleatum may become the new hotspots and trends of GM/CC research. CONCLUSION This study analyzed global publications and bibliometric characteristics of the links between GM and CC, identified highly cited papers in GM/CC, provided insight into the status, hotspots, and trends of global GM/CC research, and showed that the GM can be used to predict the efficacy and toxicity of CC and modifying the GM can improve the outcomes of chemotherapeutics, which may inform clinical researchers of future directions.
Collapse
Affiliation(s)
- Shanshan Yang
- Department of Traditional Chinese Medicine, Peking University First Hospital, Beijing, China
| | - Shaodong Hao
- Spleen-Stomach Department, Fangshan Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Hui Ye
- Department of Traditional Chinese Medicine, Peking University First Hospital, Beijing, China.
| | - Xuezhi Zhang
- Department of Traditional Chinese Medicine, Peking University First Hospital, Beijing, China.
| |
Collapse
|
3
|
Zhang JY, Li XY, Li DX, Zhang ZH, Hu LQ, Sun CX, Zhang XN, Wu M, Liu LT. Endoplasmic reticulum stress in intestinal microecology: A controller of antineoplastic drug-related cardiovascular toxicity. Biomed Pharmacother 2024; 181:117720. [PMID: 39631125 DOI: 10.1016/j.biopha.2024.117720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 11/20/2024] [Accepted: 11/25/2024] [Indexed: 12/07/2024] Open
Abstract
Endoplasmic reticulum (ER) stress is extensively studied as a pivotal role in the pathological processes associated with intestinal microecology. In antineoplastic drug treatments, ER stress is implicated in altering the permeability of the mechanical barrier, depleting the chemical barrier, causing dysbiosis, exacerbating immune responses and inflammation in the immune barrier. Enteric dysbiosis and intestinal dysfunction significantly affect the circulatory system in various heart disorders. In antineoplastic drug-related cardiovascular (CV) toxicity, ER stress constitutes a web of relationships in the host-microbiome symbiotic regulatory loop. Therefore, understanding the holobiont perspective will help de-escalate spatial and temporal restrictions. This review investigates the role of ER stress-mediated gut microecological alterations in antineoplastic treatment-induced CV toxicity.
Collapse
Affiliation(s)
- Jing-Yi Zhang
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China; Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xiao-Ya Li
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - De-Xiu Li
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Zi-Hao Zhang
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Lan-Qing Hu
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Chang-Xin Sun
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China; Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xiao-Nan Zhang
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China.
| | - Min Wu
- Guang'an Men Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China.
| | - Long-Tao Liu
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China.
| |
Collapse
|
4
|
Kalyanaraman B, Cheng G, Hardy M. The role of short-chain fatty acids in cancer prevention and cancer treatment. Arch Biochem Biophys 2024; 761:110172. [PMID: 39369836 DOI: 10.1016/j.abb.2024.110172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/25/2024] [Accepted: 10/03/2024] [Indexed: 10/08/2024]
Abstract
Short-chain fatty acids (SCFAs) are microbial metabolites in the gut that may play a role in cancer prevention and treatment. They affect the metabolism of both normal and cancer cells, regulating various cellular energetic processes. SCFAs also inhibit histone deacetylases, which are targets for cancer therapy. The three main SCFAs are acetate, propionate, and butyrate, which are transported into cells through specific transporters. SCFAs may enhance the efficacy of chemotherapeutic agents and modulate immune cell metabolism, potentially reprogramming the tumor microenvironment. Although SCFAs and SCFA-generating microbes enhance therapeutic efficacy of several forms of cancer therapy, published data also support the opposing viewpoint that SCFAs mitigate the efficacy of some cancer therapies. Therefore, the relationship between SCFAs and cancer is more complex, and this review discusses some of these aspects. Clearly, further research is needed to understand the role of SCFAs, their mechanisms, and applications in cancer prevention and treatment.
Collapse
Affiliation(s)
- Balaraman Kalyanaraman
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, United States.
| | - Gang Cheng
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, United States
| | - Micael Hardy
- Aix-Marseille Univ, CNRS, ICR, UMR 7273, Marseille, 13013, France
| |
Collapse
|
5
|
Wang S, Yuan Z, Gao X, Wu J, Ren Y, Yu X, Li J, Wei W. Global research trends on the links between gut microbiota and radiotherapy: a bibliometric analysis (2004-2023). Front Cell Infect Microbiol 2024; 14:1414196. [PMID: 39295732 PMCID: PMC11409093 DOI: 10.3389/fcimb.2024.1414196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 07/12/2024] [Indexed: 09/21/2024] Open
Abstract
Background There is a crosstalk between gut microbiota and radiotherapy. The aim of this study is to use bibliometric analysis to explore the research status and development trends of research on gut microbiota and radiotherapy. Methods A literature search regarding publications on gut microbiota and radiotherapy from 2004 to 2023 was retrieved. CiteSpace and VOSviewer were used to conduct the bibliometric analysis. The growth rate of publications, leading countries and institutions, preferred journals, top authors and co-cited authors, top co-cited references, keywords and citation were analyzed in this study. Results A total of 2821 papers were extracted. The number of papers has increased rapidly over the past decade, especially after 2017. The USA and China had the most publications and made great contributions to this field. The Chinese Academy of Sciences stood out as the institution with the highest number of publications, followed by the Chinese Academy of Medical Sciences & Peking Union Medical College. The most influential authors were Fan Saijun and Li Yuan. PLoS One had the most publications and the most total citations. Highly cited papers and high-frequency keywords illustrated the current status and trends. Furthermore, analysis of keyword with burst revealed that immunotherapy, acid, intestinal barrier, therapy, immunotherapy, fecal microbiota transplantation, etc, are at the forefront of research in this area. Conclusion This study provides an overview of research on gut microbiota and radiotherapy, highlighting influential contributors, impactful publications, and emerging trends. Our finding suggests avenues for further exploration to improve clinical outcomes.
Collapse
Affiliation(s)
- Shuyuan Wang
- School of Medicine, Nankai University, Tianjin, China
- Department of Radiotherapy, Chinese PLA General Hospital, Beijing, China
| | - Zhen Yuan
- School of Medicine, Nankai University, Tianjin, China
| | - Xiaohui Gao
- Department of Oncology, The Nuclear Industry 416 Hospital, Chengdu, China
| | - Jiaxing Wu
- School of Medicine, Nankai University, Tianjin, China
| | - Yifan Ren
- School of Medicine, Nankai University, Tianjin, China
- Department of Radiotherapy, Chinese PLA General Hospital, Beijing, China
| | - Xiufeng Yu
- Tuberculosis Hospital of Shaanxi Province, Xi'an, China
| | - Jianxiong Li
- Department of Radiotherapy, Chinese PLA General Hospital, Beijing, China
| | - Wei Wei
- Department of Radiotherapy, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
6
|
Yao H, Jiang W, Liao X, Wang D, Zhu H. Regulatory mechanisms of amino acids in ferroptosis. Life Sci 2024; 351:122803. [PMID: 38857653 DOI: 10.1016/j.lfs.2024.122803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/19/2024] [Accepted: 06/04/2024] [Indexed: 06/12/2024]
Abstract
Ferroptosis, an iron-dependent non-apoptotic regulated cell death process, is associated with the pathogenesis of various diseases. Amino acids, which are indispensable substrates of vital activities, significantly regulate ferroptosis. Amino acid metabolism is involved in maintaining iron and lipid homeostasis and redox balance. The regulatory effects of amino acids on ferroptosis are complex. An amino acid may exert contrasting effects on ferroptosis depending on the context. This review systematically and comprehensively summarized the distinct roles of amino acids in regulating ferroptosis and highlighted the emerging opportunities to develop clinical therapeutic strategies targeting amino acid-mediated ferroptosis.
Collapse
Affiliation(s)
- Heying Yao
- Institute of Medical Imaging and Artificial Intelligence, Jiangsu University, Zhenjiang 212001, China
| | - Wei Jiang
- Institute of Medical Imaging and Artificial Intelligence, Jiangsu University, Zhenjiang 212001, China
| | - Xiang Liao
- Institute of Medical Imaging and Artificial Intelligence, Jiangsu University, Zhenjiang 212001, China
| | - Dongqing Wang
- Institute of Medical Imaging and Artificial Intelligence, Jiangsu University, Zhenjiang 212001, China; Department of Medical Imaging, The Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China.
| | - Haitao Zhu
- Institute of Medical Imaging and Artificial Intelligence, Jiangsu University, Zhenjiang 212001, China; Department of Medical Imaging, The Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China.
| |
Collapse
|
7
|
Vitale R, Marzocco S, Popolo A. Role of Oxidative Stress and Inflammation in Doxorubicin-Induced Cardiotoxicity: A Brief Account. Int J Mol Sci 2024; 25:7477. [PMID: 39000584 PMCID: PMC11242665 DOI: 10.3390/ijms25137477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/01/2024] [Accepted: 07/06/2024] [Indexed: 07/16/2024] Open
Abstract
Cardiotoxicity is the main side effect of several chemotherapeutic drugs. Doxorubicin (Doxo) is one of the most used anthracyclines in the treatment of many tumors, but the development of acute and chronic cardiotoxicity limits its clinical usefulness. Different studies focused only on the effects of long-term Doxo administration, but recent data show that cardiomyocyte damage is an early event induced by Doxo after a single administration that can be followed by progressive functional decline, leading to overt heart failure. The knowledge of molecular mechanisms involved in the early stage of Doxo-induced cardiotoxicity is of paramount importance to treating and/or preventing it. This review aims to illustrate several mechanisms thought to underlie Doxo-induced cardiotoxicity, such as oxidative and nitrosative stress, inflammation, and mitochondrial dysfunction. Moreover, here we report data from both in vitro and in vivo studies indicating new therapeutic strategies to prevent Doxo-induced cardiotoxicity.
Collapse
Affiliation(s)
| | | | - Ada Popolo
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy; (R.V.); (S.M.)
| |
Collapse
|
8
|
Xie S, Sun Y, Zhao X, Xiao Y, Zhou F, Lin L, Wang W, Lin B, Wang Z, Fang Z, Wang L, Zhang Y. An update of the molecular mechanisms underlying anthracycline induced cardiotoxicity. Front Pharmacol 2024; 15:1406247. [PMID: 38989148 PMCID: PMC11234178 DOI: 10.3389/fphar.2024.1406247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/10/2024] [Indexed: 07/12/2024] Open
Abstract
Anthracycline drugs mainly include doxorubicin, epirubicin, pirarubicin, and aclamycin, which are widely used to treat a variety of malignant tumors, such as breast cancer, gastrointestinal tumors, lymphoma, etc. With the accumulation of anthracycline drugs in the body, they can induce serious heart damage, limiting their clinical application. The mechanism by which anthracycline drugs cause cardiotoxicity is not yet clear. This review provides an overview of the different types of cardiac damage induced by anthracycline-class drugs and delves into the molecular mechanisms behind these injuries. Cardiac damage primarily involves alterations in myocardial cell function and pathological cell death, encompassing mitochondrial dysfunction, topoisomerase inhibition, disruptions in iron ion metabolism, myofibril degradation, and oxidative stress. Mechanisms of uptake and transport in anthracycline-induced cardiotoxicity are emphasized, as well as the role and breakthroughs of iPSC in cardiotoxicity studies. Selected novel cardioprotective therapies and mechanisms are updated. Mechanisms and protective strategies associated with anthracycline cardiotoxicity in animal experiments are examined, and the definition of drug damage in humans and animal models is discussed. Understanding these molecular mechanisms is of paramount importance in mitigating anthracycline-induced cardiac toxicity and guiding the development of safer approaches in cancer treatment.
Collapse
Affiliation(s)
- Sicong Xie
- Department of Rehabilitation Medicine, School of Acupuncture-Moxibustion and Tuina and School of Health Preservation and Rehabilitation, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yuwei Sun
- Department of Rehabilitation Medicine, School of Acupuncture-Moxibustion and Tuina and School of Health Preservation and Rehabilitation, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xuan Zhao
- Department of General Surgery, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Yiqun Xiao
- Department of Rehabilitation Medicine, School of Acupuncture-Moxibustion and Tuina and School of Health Preservation and Rehabilitation, Nanjing University of Chinese Medicine, Nanjing, China
| | - Fei Zhou
- Department of Rehabilitation Medicine, School of Acupuncture-Moxibustion and Tuina and School of Health Preservation and Rehabilitation, Nanjing University of Chinese Medicine, Nanjing, China
| | - Liang Lin
- Department of Rehabilitation Medicine, School of Acupuncture-Moxibustion and Tuina and School of Health Preservation and Rehabilitation, Nanjing University of Chinese Medicine, Nanjing, China
| | - Wei Wang
- College of Electronic and Optical Engineering and College of Flexible Electronics, Future Technology, Nanjing University of Posts and Telecommunications, Nanjing, China
| | - Bin Lin
- Key Laboratory of Intelligent Pharmacy and Individualized Therapy of Huzhou, Department of Pharmacy, Changxing People's Hospital, Huzhou, China
| | - Zun Wang
- Department of Rehabilitation Medicine, School of Acupuncture-Moxibustion and Tuina and School of Health Preservation and Rehabilitation, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zixuan Fang
- Department of Rehabilitation Medicine, School of Acupuncture-Moxibustion and Tuina and School of Health Preservation and Rehabilitation, Nanjing University of Chinese Medicine, Nanjing, China
| | - Lei Wang
- Department of Rehabilitation Medicine, School of Acupuncture-Moxibustion and Tuina and School of Health Preservation and Rehabilitation, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yang Zhang
- Department of Rehabilitation Medicine, School of Acupuncture-Moxibustion and Tuina and School of Health Preservation and Rehabilitation, Nanjing University of Chinese Medicine, Nanjing, China
- Key Laboratory of Intelligent Pharmacy and Individualized Therapy of Huzhou, Department of Pharmacy, Changxing People's Hospital, Huzhou, China
| |
Collapse
|
9
|
Huang C, Li X, Li H, Chen R, Li Z, Li D, Xu X, Zhang G, Qin L, Li B, Chu XM. Role of gut microbiota in doxorubicin-induced cardiotoxicity: from pathogenesis to related interventions. J Transl Med 2024; 22:433. [PMID: 38720361 PMCID: PMC11077873 DOI: 10.1186/s12967-024-05232-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 04/23/2024] [Indexed: 05/12/2024] Open
Abstract
Doxorubicin (DOX) is a broad-spectrum and highly efficient anticancer agent, but its clinical implication is limited by lethal cardiotoxicity. Growing evidences have shown that alterations in intestinal microbial composition and function, namely dysbiosis, are closely linked to the progression of DOX-induced cardiotoxicity (DIC) through regulating the gut-microbiota-heart (GMH) axis. The role of gut microbiota and its metabolites in DIC, however, is largely unelucidated. Our review will focus on the potential mechanism between gut microbiota dysbiosis and DIC, so as to provide novel insights into the pathophysiology of DIC. Furthermore, we summarize the underlying interventions of microbial-targeted therapeutics in DIC, encompassing dietary interventions, fecal microbiota transplantation (FMT), probiotics, antibiotics, and natural phytochemicals. Given the emergence of microbial investigation in DIC, finally we aim to point out a novel direction for future research and clinical intervention of DIC, which may be helpful for the DIC patients.
Collapse
Affiliation(s)
- Chao Huang
- Department of Cardiology, The Affiliated Hospital of Qingdao University, No. 59 Haier Road, Qingdao, Shandong, 266100, China
| | - Xiaoxia Li
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, No. 308 Ningxia Road, Qingdao, Shandong, 266000, China
| | - Hanqing Li
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, 266000, China
| | - Ruolan Chen
- Department of Cardiology, The Affiliated Hospital of Qingdao University, No. 59 Haier Road, Qingdao, Shandong, 266100, China
| | - Zhaoqing Li
- Department of Cardiology, The Affiliated Hospital of Qingdao University, No. 59 Haier Road, Qingdao, Shandong, 266100, China
| | - Daisong Li
- Department of Cardiology, The Affiliated Hospital of Qingdao University, No. 59 Haier Road, Qingdao, Shandong, 266100, China
| | - Xiaojian Xu
- Department of Cardiology, The Affiliated Hospital of Qingdao University, No. 59 Haier Road, Qingdao, Shandong, 266100, China
| | - Guoliang Zhang
- Department of Cardiology, The Affiliated Hospital of Qingdao University, No. 59 Haier Road, Qingdao, Shandong, 266100, China
| | - Luning Qin
- Department of Cardiology, The Affiliated Hospital of Qingdao University, No. 59 Haier Road, Qingdao, Shandong, 266100, China
| | - Bing Li
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, No. 308 Ningxia Road, Qingdao, Shandong, 266000, China.
- Department of Dermatology, The Affiliated Haici Hospital of Qingdao University, Qingdao, 266033, China.
| | - Xian-Ming Chu
- Department of Cardiology, The Affiliated Hospital of Qingdao University, No. 59 Haier Road, Qingdao, Shandong, 266100, China.
- The Affiliated Cardiovascular Hospital of Qingdao University, No. 5 Zhiquan Road, Qingdao, 266071, China.
| |
Collapse
|
10
|
Gao R, Yang K, Le S, Chen H, Sun X, Dong Z, Gao P, Wang X, Shi J, Qu Y, Wei X, Hu K, Wang J, Jin L, Li Y, Ge J, Sun A. Aldehyde dehydrogenase 2 serves as a key cardiometabolic adaptation regulator in response to plateau hypoxia in mice. Transl Res 2024; 267:25-38. [PMID: 38181846 DOI: 10.1016/j.trsl.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 12/08/2023] [Accepted: 12/22/2023] [Indexed: 01/07/2024]
Abstract
High-altitude heart disease (HAHD) is a complex pathophysiological condition related to systemic hypobaric hypoxia in response to transitioning to high altitude. Hypoxia can cause myocardial metabolic dysregulation, leading to an increased risk of heart failure and sudden cardiac death. Aldehyde dehydrogenase 2 (ALDH2) could regulate myocardial energy metabolism and plays a protective role in various cardiovascular diseases. This study aims to determine the effects of plateau hypoxia (PH) on cardiac metabolism and function, investigate the associated role of ALDH2, and explore potential therapeutic targets. We discovered that PH significantly reduced survival rate and cardiac function. These effects were exacerbated by ALDH2 deficiency. PH also caused a shift in the myocardial fuel source from fatty acids to glucose; ALDH2 deficiency impaired this adaptive metabolic shift. Untargeted/targeted metabolomics and transmission electron microscopy revealed that ALDH2 deficiency promoted myocardial fatty-acid deposition, leading to enhanced fatty-acid transport, lipotoxicity and mitochondrial dysfunction. Furthermore, results showed that ALDH2 attenuated PH-induced impairment of adaptive metabolic programs through 4-HNE/CPT1 signaling, and the CPT1 inhibitor etomoxir significantly ameliorated ALDH2 deficiency-induced cardiac impairment and improved survival in PH mice. Together, our data reveal ALDH2 acts as a key cardiometabolic adaptation regulator in response to PH. CPT1 inhibitor, etomoxir, may attenuate ALDH2 deficiency-induced effects and improved cardiac function in response to PH.
Collapse
Affiliation(s)
- Rifeng Gao
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China; Department of Cardiac Surgery, The Second Affiliated Hospital, Zhejiang University, Hangzhou, China; Department of Cardiology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Kun Yang
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Shiguan Le
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, and Human Phenome Institute, Fudan University, Shanghai, China
| | - Hanchuan Chen
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiaolei Sun
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhen Dong
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Pingjin Gao
- Department of Cardiovascular Medicine, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, China
| | - Xilu Wang
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jiaran Shi
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Yanan Qu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiang Wei
- Department of Cardiology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Kai Hu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China; Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, China; Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China; Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Jiucun Wang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, and Human Phenome Institute, Fudan University, Shanghai, China
| | - Li Jin
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, and Human Phenome Institute, Fudan University, Shanghai, China
| | - Yi Li
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, and Human Phenome Institute, Fudan University, Shanghai, China.
| | - Junbo Ge
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China; Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, China; Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China; Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Aijun Sun
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China; Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, China; Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China; Department of Cardiovascular Medicine, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, China; Institutes of Biomedical Sciences, Fudan University, Shanghai, China.
| |
Collapse
|
11
|
Hastings MH, Castro C, Freeman R, Abdul Kadir A, Lerchenmüller C, Li H, Rhee J, Roh JD, Roh K, Singh AP, Wu C, Xia P, Zhou Q, Xiao J, Rosenzweig A. Intrinsic and Extrinsic Contributors to the Cardiac Benefits of Exercise. JACC Basic Transl Sci 2024; 9:535-552. [PMID: 38680954 PMCID: PMC11055208 DOI: 10.1016/j.jacbts.2023.07.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 07/06/2023] [Accepted: 07/20/2023] [Indexed: 05/01/2024]
Abstract
Among its many cardiovascular benefits, exercise training improves heart function and protects the heart against age-related decline, pathological stress, and injury. Here, we focus on cardiac benefits with an emphasis on more recent updates to our understanding. While the cardiomyocyte continues to play a central role as both a target and effector of exercise's benefits, there is a growing recognition of the important roles of other, noncardiomyocyte lineages and pathways, including some that lie outside the heart itself. We review what is known about mediators of exercise's benefits-both those intrinsic to the heart (at the level of cardiomyocytes, fibroblasts, or vascular cells) and those that are systemic (including metabolism, inflammation, the microbiome, and aging)-highlighting what is known about the molecular mechanisms responsible.
Collapse
Affiliation(s)
- Margaret H. Hastings
- Institute for Heart and Brain Health, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - Claire Castro
- Cardiovascular Research Center, Division of Cardiology, Corrigan Minehan Heart Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Rebecca Freeman
- Cardiovascular Research Center, Division of Cardiology, Corrigan Minehan Heart Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Azrul Abdul Kadir
- Cardiovascular Research Center, Division of Cardiology, Corrigan Minehan Heart Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Carolin Lerchenmüller
- Department of Cardiology, University Hospital Heidelberg, German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Haobo Li
- Cardiovascular Research Center, Division of Cardiology, Corrigan Minehan Heart Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - James Rhee
- Cardiovascular Research Center, Division of Cardiology, Corrigan Minehan Heart Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Anesthesiology and Critical Care, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Jason D. Roh
- Cardiovascular Research Center, Division of Cardiology, Corrigan Minehan Heart Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Kangsan Roh
- Cardiovascular Research Center, Division of Cardiology, Corrigan Minehan Heart Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Anesthesiology and Critical Care, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Anand P. Singh
- Institute for Heart and Brain Health, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - Chao Wu
- Institute for Heart and Brain Health, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - Peng Xia
- Cardiovascular Research Center, Division of Cardiology, Corrigan Minehan Heart Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Qiulian Zhou
- Institute for Heart and Brain Health, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - Junjie Xiao
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Science, Shanghai University, Shanghai, China
| | - Anthony Rosenzweig
- Institute for Heart and Brain Health, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| |
Collapse
|
12
|
Wang W, Cui B, Nie Y, Sun L, Zhang F. Radiation injury and gut microbiota-based treatment. Protein Cell 2024; 15:83-97. [PMID: 37470727 PMCID: PMC10833463 DOI: 10.1093/procel/pwad044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 07/10/2023] [Indexed: 07/21/2023] Open
Abstract
The exposure to either medical sources or accidental radiation can cause varying degrees of radiation injury (RI). RI is a common disease involving multiple human body parts and organs, yet effective treatments are currently limited. Accumulating evidence suggests gut microbiota are closely associated with the development and prevention of various RI. This article summarizes 10 common types of RI and their possible mechanisms. It also highlights the changes and potential microbiota-based treatments for RI, including probiotics, metabolites, and microbiota transplantation. Additionally, a 5P-Framework is proposed to provide a comprehensive strategy for managing RI.
Collapse
Affiliation(s)
- Weihong Wang
- Department of Microbiota Medicine and Medical Center for Digestive Diseases, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, China
- Department of Microbiotherapy, Sir Run Run Hospital, Nanjing Medical University, Nanjing 211166, China
| | - Bota Cui
- Department of Microbiota Medicine and Medical Center for Digestive Diseases, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, China
- Department of Microbiotherapy, Sir Run Run Hospital, Nanjing Medical University, Nanjing 211166, China
| | - Yongzhan Nie
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an 710032, China
- National Clinical Research Center for Digestive Diseases, Xi’an 710032, China
| | - Lijuan Sun
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi’an 710069, China
| | - Faming Zhang
- Department of Microbiota Medicine and Medical Center for Digestive Diseases, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, China
- Department of Microbiotherapy, Sir Run Run Hospital, Nanjing Medical University, Nanjing 211166, China
- National Clinical Research Center for Digestive Diseases, Xi’an 710032, China
| |
Collapse
|
13
|
Tao Z, Wang Y. The health benefits of dietary short-chain fatty acids in metabolic diseases. Crit Rev Food Sci Nutr 2024:1-14. [PMID: 38189336 DOI: 10.1080/10408398.2023.2297811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Short-chain fatty acids (SCFAs) are a subset of fatty acids that play crucial roles in maintaining normal physiology and developing metabolic diseases, such as obesity, diabetes, cardiovascular disease, and liver disease. Even though dairy products and vegetable oils are the direct dietary sources of SCFAs, their quantities are highly restricted. SCFAs are produced indirectly through microbial fermentation of fibers. The biological roles of SCFAs in human health and metabolic diseases are mainly due to their receptors, GPR41 and GPR43, FFAR2 and FFAR3. Additionally, it has been demonstrated that SCFAs modulate DNMTs and HDAC activities, inhibit NF-κB-STAT signaling, and regulate G(i/o)βγ-PLC-PKC-PTEN signaling and PPARγ-UCP2-AMPK autophagic signaling, thus mitigating metabolic diseases. Recent studies have uncovered that SCFAs play crucial roles in epigenetic modifications of DNAs, RNAs, and post-translational modifications of proteins, which are critical regulators of metabolic health and diseases. At the same time, dietary recommendations for the purpose of SCFAs have been proposed. The objective of the review is to summarize the most recent research on the role of dietary SCFAs in metabolic diseases, especially the signal transduction of SCFAs in metabolic diseases and their functional efficacy in different backgrounds and models of metabolic diseases, at the same time, to provide dietary and nutritional recommendations for using SCFAs as food ingredients to prevent metabolic diseases.
Collapse
Affiliation(s)
- Zhipeng Tao
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
- Department of Nutrition Sciences, Texas Woman's University, Denton, Texas, USA
| | - Yao Wang
- Diabetes Center, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
14
|
El-Aarag B, Shalaan ES, Ahmed AAS, El Sayed IET, Ibrahim WM. Cryptolepine Analog Exhibits Antitumor Activity against Ehrlich Ascites Carcinoma Cells in Mice via Targeting Cell Growth, Oxidative Stress, and PTEN/Akt/mTOR Signaling Pathway. Anticancer Agents Med Chem 2024; 24:436-442. [PMID: 38305388 DOI: 10.2174/0118715206274318231128072821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/12/2023] [Accepted: 10/18/2023] [Indexed: 02/03/2024]
Abstract
BACKGROUND The efficacy of chemotherapy continues to be limited due to associated toxicity and chemoresistance. Thus, synthesizing and investigating novel agents for cancer treatment that could potentially eliminate such limitations is imperative. OBJECTIVE The current study aims to explore the anticancer potency of cryptolepine (CPE) analog on Ehrlich ascites carcinoma cells (EACs) in mice. METHODS The effect of a CPE analog on EAC cell viability and ascites volume, as well as malonaldehyde, total antioxidant capacity, and catalase, were estimated. The concentration of caspase-8 and mTOR in EACs was also measured, and the expression levels of PTEN and Akt were determined. RESULTS Results revealed that CPE analog exerts a cytotoxic effect on EAC cell viability and reduces the ascites volume. Moreover, this analog induces oxidative stress in EACs by increasing the level of malonaldehyde and decreasing the level of total antioxidant capacity and catalase activity. It also induces apoptosis by elevating the concentration of caspase-8 in EACs. Furthermore, it decreases the concentration of mTOR in EACs. Moreover, it upregulates the expression of PTEN and downregulates the expression of Akt in EACs. CONCLUSION Our findings showed the anticancer activity of CPE analog against EACs in mice mediated by regulation of the PTEN/Akt/mTOR signaling pathway.
Collapse
Affiliation(s)
- Bishoy El-Aarag
- Biochemistry Division, Department of Chemistry, Faculty of Science, Menoufia University, Shebin El-Koom, 32512, Egypt
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA, 92618, USA
- Division of Chemistry and Biotechnology, Graduate School of Natural Science and Technology, Okayama University, Okayama, 7008530, Japan
| | - Eman S Shalaan
- Biochemistry Division, Department of Chemistry, Faculty of Science, Menoufia University, Shebin El-Koom, 32512, Egypt
| | - Abdullah A S Ahmed
- Department of Chemistry, Faculty of Science, Menoufia University, Shebin El-Koom, Egypt
| | | | - Wafaa M Ibrahim
- Department of Medical Biochemistry, Faculty of Medicine, Tanta University, Tanta, Egypt
| |
Collapse
|
15
|
Meng C, Wang X, Fan L, Fan Y, Yan Z, Wang Y, Li Y, Zhang J, Lv S. A new perspective in the prevention and treatment of antitumor therapy-related cardiotoxicity: Intestinal microecology. Biomed Pharmacother 2024; 170:115588. [PMID: 38039758 DOI: 10.1016/j.biopha.2023.115588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/17/2023] [Accepted: 09/25/2023] [Indexed: 12/03/2023] Open
Abstract
The continuous development of antitumor therapy has significantly reduced the mortality of patients with malignancies. However, the antitumor-related cardiotoxicity has become the leading cause of long-term mortality in patients with malignancies. Besides, the pathogenesis of antitumor-related cardiotoxicity is still unclear, and practical means of prevention and treatment are lacking in clinical practice. Therefore, the major challenge is how to combat the cardiotoxicity of antitumor therapy effectively. More and more studies have shown that antitumor therapy kills tumor cells while causing damage to sensitive tissues such as the intestinal mucosa, leading to the increased permeability of the intestine and the dysbiosis of intestinal microecology. In addition, the dysbiosis of intestinal microecology contributes to the development and progression of cardiovascular diseases through multiple pathways. Thus, the dysbiosis of intestinal microecology may be a potential mechanism and target for antitumor-related cardiotoxicity. We summarized the characteristics of intestinal microecology disorders induced by antitumor therapy and the association between intestinal microecological dysbiosis and CVD. And on this basis, we hypothesized the potential mechanisms of intestinal microecology mediating the occurrence of antitumor-related cardiotoxicity. Then we reviewed the previous studies targeting intestinal microecology against antitumor-associated cardiotoxicity, aiming to provide a reference for future studies on the occurrence and prevention of antitumor-related cardiotoxicity by intestinal microecology.
Collapse
Affiliation(s)
- Chenchen Meng
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine (National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion), Tianjin, China
| | - Xiaoming Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine (National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion), Tianjin, China
| | - Lu Fan
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine (National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion), Tianjin, China
| | - Yajie Fan
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine (National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion), Tianjin, China
| | - Zhipeng Yan
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine (National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion), Tianjin, China
| | - Yunjiao Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine (National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion), Tianjin, China
| | - Yanyang Li
- Department of integrated Chinese and Western medicine, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.
| | - Junping Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine (National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion), Tianjin, China.
| | - Shichao Lv
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine (National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion), Tianjin, China.
| |
Collapse
|
16
|
Khuanjing T, Maneechote C, Ongnok B, Prathumsap N, Arinno A, Chunchai T, Arunsak B, Chattipakorn SC, Chattipakorn N. Acetylcholinesterase inhibition protects against trastuzumab-induced cardiotoxicity through reducing multiple programmed cell death pathways. Mol Med 2023; 29:123. [PMID: 37691124 PMCID: PMC10494358 DOI: 10.1186/s10020-023-00686-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 06/12/2023] [Indexed: 09/12/2023] Open
Abstract
BACKGROUND Trastuzumab (Trz)-induced cardiotoxicity (TIC) is one of the most common adverse effects of targeted anticancer agents. Although oxidative stress, inflammation, mitochondrial dysfunction, apoptosis, and ferroptosis have been identified as potential mechanisms underlying TIC, the roles of pyroptosis and necroptosis under TIC have never been investigated. It has been shown that inhibition of acetylcholinesterase function by using donepezil exerts protective effects in various heart diseases. However, it remains unknown whether donepezil exerts anti-cardiotoxic effects in rats with TIC. We hypothesized that donepezil reduces mitochondrial dysfunction, inflammation, oxidative stress, and cardiomyocyte death, leading to improved left ventricular (LV) function in rats with TIC. METHODS Male Wistar rats were randomly assigned to be Control or Trz groups (Trz 4 mg/kg/day, 7 days, I.P.). Rats in Trz groups were assigned to be co-treated with either drinking water (Trz group) or donepezil 5 mg/kg/day (Trz + DPZ group) via oral gavage for 7 days. Cardiac function, heart rate variability (HRV), and biochemical parameters were evaluated. RESULTS Trz-treated rats had impaired LV function, HRV, mitochondrial function, and increased inflammation and oxidative stress, leading to apoptosis, ferroptosis, and pyroptosis. Donepezil co-treatment effectively decreased those adverse effects of TIC, resulting in improved LV function. An in vitro study revealed that the cytoprotective effects of donepezil were abolished by a muscarinic acetylcholine receptor (mAChR) antagonist. CONCLUSIONS Donepezil exerted cardioprotection against TIC via attenuating mitochondrial dysfunction, oxidative stress, inflammation, and cardiomyocyte death, leading to improved LV function through mAChR activation. This suggests that donepezil could be a novel intervention strategy in TIC.
Collapse
Affiliation(s)
- Thawatchai Khuanjing
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Chayodom Maneechote
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Benjamin Ongnok
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Nanthip Prathumsap
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Apiwan Arinno
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Titikorn Chunchai
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Busarin Arunsak
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Siriporn C Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
- Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Nipon Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
17
|
Duan H, Wang L, Huangfu M, Li H. The impact of microbiota-derived short-chain fatty acids on macrophage activities in disease: Mechanisms and therapeutic potentials. Biomed Pharmacother 2023; 165:115276. [PMID: 37542852 DOI: 10.1016/j.biopha.2023.115276] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/28/2023] [Accepted: 07/31/2023] [Indexed: 08/07/2023] Open
Abstract
Short-chain fatty acids (SCFAs) derived from the fermentation of carbohydrates by gut microbiota play a crucial role in regulating host physiology. Among them, acetate, propionate, and butyrate are key players in various biological processes. Recent research has revealed their significant functions in immune and inflammatory responses. For instance, butyrate reduces the development of interferon-gamma (IFN-γ) generating cells while promoting the development of regulatory T (Treg) cells. Propionate inhibits the initiation of a Th2 immune response by dendritic cells (DCs). Notably, SCFAs have an inhibitory impact on the polarization of M2 macrophages, emphasizing their immunomodulatory properties and potential for therapeutics. In animal models of asthma, both butyrate and propionate suppress the M2 polarization pathway, thus reducing allergic airway inflammation. Moreover, dysbiosis of gut microbiota leading to altered SCFA production has been implicated in prostate cancer progression. SCFAs trigger autophagy in cancer cells and promote M2 polarization in macrophages, accelerating tumor advancement. Manipulating microbiota- producing SCFAs holds promise for cancer treatment. Additionally, SCFAs enhance the expression of hypoxia-inducible factor 1 (HIF-1) by blocking histone deacetylase, resulting in increased production of antibacterial effectors and improved macrophage-mediated elimination of microorganisms. This highlights the antimicrobial potential of SCFAs and their role in host defense mechanisms. This comprehensive review provides an in-depth analysis of the latest research on the functional aspects and underlying mechanisms of SCFAs in relation to macrophage activities in a wide range of diseases, including infectious diseases and cancers. By elucidating the intricate interplay between SCFAs and macrophage functions, this review aims to contribute to the understanding of their therapeutic potential and pave the way for future interventions targeting SCFAs in disease management.
Collapse
Affiliation(s)
- Hongliang Duan
- Department of Thyroid Surgery, the Second Hospital of Jilin University, Changchun 130000, China
| | - LiJuan Wang
- Department of Endocrinology, the Second Hospital of Jilin University, Changchun 130000, China.
| | - Mingmei Huangfu
- Department of Thyroid Surgery, the Second Hospital of Jilin University, Changchun 130000, China
| | - Hanyang Li
- Department of Endocrinology, the Second Hospital of Jilin University, Changchun 130000, China
| |
Collapse
|
18
|
Cazzaniga M, Zonzini GB, Di Pierro F, Palazzi CM, Cardinali M, Bertuccioli A. Influence of the microbiota on the effectiveness and toxicity of oncological therapies, with a focus on chemotherapy. Pathol Oncol Res 2023; 29:1611300. [PMID: 37593337 PMCID: PMC10427764 DOI: 10.3389/pore.2023.1611300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 07/18/2023] [Indexed: 08/19/2023]
Abstract
Recent studies have highlighted a possible correlation between microbiota composition and the pathogenesis of various oncological diseases. Also, many bacterial groups are now directly or indirectly associated with the capability of stimulating or inhibiting carcinogenic pathways. However, little is known about the importance and impact of microbiota patterns related to the efficacy and toxicity of cancer treatments. We have recently begun to understand how oncological therapies and the microbiota are closely interconnected and could influence each other. Chemotherapy effectiveness, for example, appears to be strongly influenced by the presence of some microorganisms capable of modulating the pharmacokinetics and pharmacodynamics of the compounds used, thus varying the real response and therefore the efficacy of the oncological treatment. Similarly, chemotherapeutic agents can modulate the microbiota with variations that could facilitate or avoid the onset of important side effects. This finding has or could have considerable relevance as it is possible that our ability to modulate and modify the microbial structure before, during, and after treatment could influence all the clinical parameters related to pharmacological treatments and, eventually, the prognosis of the disease.
Collapse
Affiliation(s)
| | | | - Francesco Di Pierro
- Scientific & Research Department, Velleja Research, Milano, Italy
- Department of Medicine and Surgery, University of Insurbia, Varese, Italy
| | | | - Marco Cardinali
- Department of Internal Medicine, Infermi Hospital, Azienda Unità Sanitaria Locale Romagna, Rimini, Italy
| | | |
Collapse
|
19
|
Liu T, Sun Z, Yang Z, Qiao X. Microbiota-derived short-chain fatty acids and modulation of host-derived peptides formation: Focused on host defense peptides. Biomed Pharmacother 2023; 162:114586. [PMID: 36989711 DOI: 10.1016/j.biopha.2023.114586] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/12/2023] [Accepted: 03/21/2023] [Indexed: 03/29/2023] Open
Abstract
The byproducts of bacterial fermentation known as short-chain fatty acids (SCFAs) are chemically comprised of a carboxylic acid component and a short hydrocarbon chain. Recent investigations have demonstrated that SCFAs can affect intestinal immunity by inducing endogenous host defense peptides (HDPs) and their beneficial effects on barrier integrity, gut health, energy supply, and inflammation. HDPs, which include defensins, cathelicidins, and C-type lectins, perform a significant function in innate immunity in gastrointestinal mucosal membranes. SCFAs have been demonstrated to stimulate HDP synthesis by intestinal epithelial cells via interactions with G protein-coupled receptor 43 (GPR43), activation of the Jun N-terminal kinase (JNK) and Mitogen-activated protein kinase kinase (MEK)/extracellular signal-regulated kinase (ERK) pathways, and the cell growth pathways. Furthermore, SCFA butyrate has been demonstrated to enhance the number of HDPs released from macrophages. SCFAs promote monocyte-to-macrophage development and stimulate HDP synthesis in macrophages by inhibiting histone deacetylase (HDAC). Understanding the etiology of many common disorders might be facilitated by studies into the function of microbial metabolites, such as SCFAs, in the molecular regulatory processes of immune responses (e.g., HDP production). This review will focus on the current knowledge of the role and mechanism of microbiota-derived SCFAs in influencing the synthesis of host-derived peptides, particularly HDPs.
Collapse
|
20
|
Bo L, Wang Y, Li Y, Wurpel JND, Huang Z, Chen ZS. The Battlefield of Chemotherapy in Pediatric Cancers. Cancers (Basel) 2023; 15:cancers15071963. [PMID: 37046624 PMCID: PMC10093214 DOI: 10.3390/cancers15071963] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/12/2023] [Accepted: 03/21/2023] [Indexed: 03/29/2023] Open
Abstract
The survival rate for pediatric cancers has remarkably improved in recent years. Conventional chemotherapy plays a crucial role in treating pediatric cancers, especially in low- and middle-income countries where access to advanced treatments may be limited. The Food and Drug Administration (FDA) approved chemotherapy drugs that can be used in children have expanded, but patients still face numerous side effects from the treatment. In addition, multidrug resistance (MDR) continues to pose a major challenge in improving the survival rates for a significant number of patients. This review focuses on the severe side effects of pediatric chemotherapy, including doxorubicin-induced cardiotoxicity (DIC) and vincristine-induced peripheral neuropathy (VIPN). We also delve into the mechanisms of MDR in chemotherapy to the improve survival and reduce the toxicity of treatment. Additionally, the review focuses on various drug transporters found in common types of pediatric tumors, which could offer different therapeutic options.
Collapse
Affiliation(s)
- Letao Bo
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, NY 11439, USA
| | - Youyou Wang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, NY 11439, USA
| | - Yidong Li
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, NY 11439, USA
| | - John N. D. Wurpel
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, NY 11439, USA
| | - Zoufang Huang
- Ganzhou Key Laboratory of Hematology, Department of Hematology, The First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
- Correspondence: (Z.H.); (Z.-S.C.); Tel.: +86-138-797-27439 (Z.H.); +1-718-990-1432 (Z.-S.C.); Fax: +1-718-990-1877 (Z.-S.C.)
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, NY 11439, USA
- Institute for Biotechnology, St. John’s University, Queens, NY 11439, USA
- Correspondence: (Z.H.); (Z.-S.C.); Tel.: +86-138-797-27439 (Z.H.); +1-718-990-1432 (Z.-S.C.); Fax: +1-718-990-1877 (Z.-S.C.)
| |
Collapse
|
21
|
Gao RF, Yang K, Qu YN, Wei X, Shi JR, Lv CY, Zhao YC, Sun XL, Xu YJ, Yang YQ. m 6A demethylase ALKBH5 attenuates doxorubicin-induced cardiotoxicity via posttranscriptional stabilization of Rasal3. iScience 2023; 26:106215. [PMID: 36876119 PMCID: PMC9982307 DOI: 10.1016/j.isci.2023.106215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/23/2022] [Accepted: 02/13/2023] [Indexed: 02/18/2023] Open
Abstract
The clinical application of anthracyclines such as doxorubicin (DOX) is limited due to their cardiotoxicity. N6-methyladenosine (m6A) plays an essential role in numerous biological processes. However, the roles of m6A and m6A demethylase ALKBH5 in DOX-induced cardiotoxicity (DIC) remain unclear. In this research, DIC models were constructed using Alkbh5-knockout (KO), Alkbh5-knockin (KI), and Alkbh5-myocardial-specific knockout (ALKBH5flox/flox, αMyHC-Cre) mice. Cardiac function and DOX-mediated signal transduction were investigated. As a result, both Alkbh5 whole-body KO and myocardial-specific KO mice had increased mortality, decreased cardiac function, and aggravated DIC injury with severe myocardial mitochondrial damage. Conversely, ALKBH5 overexpression alleviated DOX-mediated mitochondrial injury, increased survival, and improved myocardial function. Mechanistically, ALKBH5 regulated the expression of Rasal3 in an m6A-dependent manner through posttranscriptional mRNA regulation and reduced Rasal3 mRNA stability, thus activating RAS3, inhibiting apoptosis through the RAS/RAF/ERK signaling pathway, and alleviating DIC injury. These findings indicate the potential therapeutic effect of ALKBH5 on DIC.
Collapse
Affiliation(s)
- Ri-Feng Gao
- Department of Cardiology, Shanghai Fifth People’s Hospital, Fudan University, Shanghai 200240, China
| | - Kun Yang
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200232, China
| | - Ya-Nan Qu
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200232, China
| | - Xiang Wei
- Department of Cardiology, Shanghai Fifth People’s Hospital, Fudan University, Shanghai 200240, China
| | - Jia-Ran Shi
- Department of Cardiology, the First Affiliated Hospital, Zhejiang University, Hangzhou 310003, China
| | - Chun-Yu Lv
- Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen 200240, China
| | - Yong-Chao Zhao
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200232, China
| | - Xiao-Lei Sun
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200232, China
| | - Ying-Jia Xu
- Department of Cardiology, Shanghai Fifth People’s Hospital, Fudan University, Shanghai 200240, China
| | - Yi-Qing Yang
- Department of Cardiology, Shanghai Fifth People’s Hospital, Fudan University, Shanghai 200240, China
- Department of Cardiovascular Research Laboratory, Shanghai Fifth People’s Hospital, Fudan University, Shanghai 518036, China
- Department of Central Laboratory, Shanghai Fifth People’s Hospital, Fudan University, Shanghai 200240, China
- Corresponding author
| |
Collapse
|
22
|
Shi S, Chen Y, Luo Z, Nie G, Dai Y. Role of oxidative stress and inflammation-related signaling pathways in doxorubicin-induced cardiomyopathy. Cell Commun Signal 2023; 21:61. [PMID: 36918950 PMCID: PMC10012797 DOI: 10.1186/s12964-023-01077-5] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 02/12/2023] [Indexed: 03/16/2023] Open
Abstract
Doxorubicin (DOX) is a powerful and commonly used chemotherapeutic drug, used alone or in combination in a variety of cancers, while it has been found to cause serious cardiac side effects in clinical application. More and more researchers are trying to explore the molecular mechanisms of DOX-induced cardiomyopathy (DIC), in which oxidative stress and inflammation are considered to play a significant role. This review summarizes signaling pathways related to oxidative stress and inflammation in DIC and compounds that exert cardioprotective effects by acting on relevant signaling pathways, including the role of Nrf2/Keap1/ARE, Sirt1/p66Shc, Sirt1/PPAR/PGC-1α signaling pathways and NOS, NOX, Fe2+ signaling in oxidative stress, as well as the role of NLRP3/caspase-1/GSDMD, HMGB1/TLR4/MAPKs/NF-κB, mTOR/TFEB/NF-κB pathways in DOX-induced inflammation. Hence, we attempt to explain the mechanisms of DIC in terms of oxidative stress and inflammation, and to provide a theoretical basis or new idea for further drug research on reducing DIC. Video Abstract.
Collapse
Affiliation(s)
- Saixian Shi
- Department of Pharmacy, Affiliated Hospital of Southwest Medical University, No. 25 Taiping Street, Luzhou, 646000, Sichuan Province, China.,School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan Province, China
| | - Ye Chen
- Department of Pharmacy, Affiliated Hospital of Southwest Medical University, No. 25 Taiping Street, Luzhou, 646000, Sichuan Province, China.,School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan Province, China
| | - Zhijian Luo
- Department of Ultrasound, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan Province, China
| | - Guojun Nie
- The First Outpatient Department of People's Liberation Army Western Theater General Hospital, Chengdu, 610000, Sichuan Province, China
| | - Yan Dai
- Department of Pharmacy, Affiliated Hospital of Southwest Medical University, No. 25 Taiping Street, Luzhou, 646000, Sichuan Province, China.
| |
Collapse
|
23
|
Berberine Alleviates Doxorubicin-Induced Myocardial Injury and Fibrosis by Eliminating Oxidative Stress and Mitochondrial Damage via Promoting Nrf-2 Pathway Activation. Int J Mol Sci 2023; 24:ijms24043257. [PMID: 36834687 PMCID: PMC9966753 DOI: 10.3390/ijms24043257] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 01/30/2023] [Accepted: 02/03/2023] [Indexed: 02/11/2023] Open
Abstract
Doxorubicin (DOX)-related cardiotoxicity has been recognized as a serious complication of cancer chemotherapy. Effective targeted strategies for myocardial protection in addition to DOX treatment are urgently needed. The purpose of this paper was to determine the therapeutic effect of berberine (Ber) on DOX-triggered cardiomyopathy and explore the underlying mechanism. Our data showed that Ber markedly prevented cardiac diastolic dysfunction and fibrosis, reduced cardiac malondialdehyde (MDA) level and increased antioxidant superoxide dismutase (SOD) activity in DOX-treated rats. Moreover, Ber effectively rescued the DOX-induced production of reactive oxygen species (ROS) and MDA, mitochondrial morphological damage and membrane potential loss in neonatal rat cardiac myocytes and fibroblasts. This effect was mediated by increases in the nuclear accumulation of nuclear erythroid factor 2-related factor 2 (Nrf2) and levels of heme oxygenase-1 (HO-1) and mitochondrial transcription factor A (TFAM). We also found that Ber suppressed the differentiation of cardiac fibroblasts (CFs) into myofibroblasts, as indicated by decreased expression of α-smooth muscle actin (α-SMA), collagen I and collagen III in DOX-treated CFs. Pretreatment with Ber inhibited ROS and MDA production and increased SOD activity and the mitochondrial membrane potential in DOX-challenged CFs. Further investigation indicated that the Nrf2 inhibitor trigonelline reversed the protective effect of Ber on both cardiomyocytes and CFs after DOX stimulation. Taken together, these findings demonstrated that Ber effectively alleviated DOX-induced oxidative stress and mitochondrial damage by activating the Nrf2-mediated pathway, thereby leading to the prevention of myocardial injury and fibrosis. The current study suggests that Ber is a potential therapeutic agent for DOX-induced cardiotoxicity that exerts its effects by activating Nrf2.
Collapse
|
24
|
Yu W, Jiang Y, Xu H, Zhou Y. The Interaction of Gut Microbiota and Heart Failure with Preserved Ejection Fraction: From Mechanism to Potential Therapies. Biomedicines 2023; 11:biomedicines11020442. [PMID: 36830978 PMCID: PMC9953339 DOI: 10.3390/biomedicines11020442] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/24/2023] [Accepted: 01/28/2023] [Indexed: 02/05/2023] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) is a disease for which there is no definite and effective treatment, and the number of patients is more than 50% of heart failure (HF) patients. Gut microbiota (GMB) is a general term for a group of microbiota living in humans' intestinal tracts, which has been proved to be related to cardiovascular diseases, including HFpEF. In HFpEF patients, the composition of GMB is significantly changed, and there has been a tendency toward dysbacteriosis. Metabolites of GMB, such as trimethylamine N-oxide (TMAO), short-chain fatty acids (SCFAs) and bile acids (BAs) mediate various pathophysiological mechanisms of HFpEF. GMB is a crucial influential factor in inflammation, which is considered to be one of the main causes of HFpEF. The role of GMB in its important comorbidity-metabolic syndrome-also mediates HFpEF. Moreover, HF would aggravate intestinal barrier impairment and microbial translocation, further promoting the disease progression. In view of these mechanisms, drugs targeting GMB may be one of the effective ways to treat HFpEF. This review focuses on the interaction of GMB and HFpEF and analyzes potential therapies.
Collapse
Affiliation(s)
- Wei Yu
- Department of Cardiology, Dushu Lake Hospital Affiliated to Soochow University, Medical Center of Soochow University, Suzhou Dushu Lake Hospital, Suzhou 215000, China
- Institute for Hypertension, Soochow University, Suzhou 215000, China
| | - Yufeng Jiang
- Department of Cardiology, Dushu Lake Hospital Affiliated to Soochow University, Medical Center of Soochow University, Suzhou Dushu Lake Hospital, Suzhou 215000, China
- Institute for Hypertension, Soochow University, Suzhou 215000, China
| | - Hui Xu
- Department of Cardiology, Dushu Lake Hospital Affiliated to Soochow University, Medical Center of Soochow University, Suzhou Dushu Lake Hospital, Suzhou 215000, China
- Institute for Hypertension, Soochow University, Suzhou 215000, China
| | - Yafeng Zhou
- Department of Cardiology, Dushu Lake Hospital Affiliated to Soochow University, Medical Center of Soochow University, Suzhou Dushu Lake Hospital, Suzhou 215000, China
- Institute for Hypertension, Soochow University, Suzhou 215000, China
- Correspondence: ; Tel./Fax: 86-512-65955057
| |
Collapse
|
25
|
Arinno A, Maneechote C, Khuanjing T, Prathumsap N, Chunchai T, Arunsak B, Nawara W, Kerdphoo S, Shinlapawittayatorn K, Chattipakorn SC, Chattipakorn N. Melatonin and metformin ameliorated trastuzumab-induced cardiotoxicity through the modulation of mitochondrial function and dynamics without reducing its anticancer efficacy. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166618. [PMID: 36494039 DOI: 10.1016/j.bbadis.2022.166618] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
Trastuzumab has an impressive level of efficacy as regards antineoplasticity, however it can cause serious cardiotoxic side effects manifested by impaired cardiac contractile function. Although several pharmacological interventions, including melatonin and metformin, have been reported to protect against various cardiovascular diseases, their potential roles in trastuzumab-induced cardiotoxicity remain elusive. We hypothesized that either melatonin or metformin co-treatment effectively attenuates trastuzumab-mediated cardiotoxicity through attenuating the impaired mitochondrial function and mitochondrial dynamics. Male Wistar rats were divided into control (normal saline, n = 8) and trastuzumab group (4 mg/kg/day for 7 days, n = 24). Rats in the trastuzumab group were subdivided into 3 interventional groups (n = 8/group), and normal saline, or melatonin (10 mg/kg/day), or metformin (250 mg/kg/day) were orally administered for 7 consecutive days. Cardiac parameters were determined, and biochemical investigations were carried out on blood and heart tissues. Trastuzumab induced left ventricular (LV) dysfunction by increasing oxidative stress, inflammation, and apoptosis. It also impaired cardiac mitochondrial function, dynamics, and autophagy. Treatment with either melatonin or metformin equally attenuated trastuzumab-induced cardiac injury, indicated by a marked reduction in inflammation, oxidative damage, cardiac mitochondrial injury, mitochondrial dynamic imbalance, autophagy dysregulation, and apoptosis, leading to improved LV function, as demonstrated by increased LV ejection fraction. Melatonin and metformin conferred equal levels of cardioprotection against trastuzumab-induced cardiotoxicity, which may provide novel and promising approaches for management of cardiotoxicity induced by trastuzumab.
Collapse
Affiliation(s)
- Apiwan Arinno
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Chayodom Maneechote
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Thawatchai Khuanjing
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Nanthip Prathumsap
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Titikorn Chunchai
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Busarin Arunsak
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Wichwara Nawara
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Sasiwan Kerdphoo
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Krekwit Shinlapawittayatorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Siriporn C Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand; Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Nipon Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand.
| |
Collapse
|
26
|
Short-Chain Fatty Acids in Gut-Heart Axis: Their Role in the Pathology of Heart Failure. J Pers Med 2022; 12:jpm12111805. [PMID: 36579524 PMCID: PMC9695649 DOI: 10.3390/jpm12111805] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022] Open
Abstract
Heart failure (HF) is a syndrome with global clinical and socioeconomic burden worldwide owing to its poor prognosis. Accumulating evidence has implicated the possible contribution of gut microbiota-derived metabolites, short-chain fatty acids (SCFAs), on the pathology of a variety of diseases. The changes of SCFA concentration were reported to be observed in various cardiovascular diseases including HF in experimental animals and humans. HF causes hypoperfusion and/or congestion in the gut, which may lead to lowered production of SCFAs, possibly through the pathological changes of the gut microenvironment including microbiota composition. Recent studies suggest that SCFAs may play a significant role in the pathology of HF, possibly through an agonistic effect on G-protein-coupled receptors, histone deacetylases (HDACs) inhibition, restoration of mitochondrial function, amelioration of cardiac inflammatory response, its utilization as an energy source, and remote effect attributable to a protective effect on the other organs. Collectively, in the pathology of HF, SCFAs might play a significant role as a key mediator in the gut-heart axis. However, these possible mechanisms have not been entirely clarified and need further investigation.
Collapse
|
27
|
Li MY, Peng LM, Chen XP. Pharmacogenomics in drug-induced cardiotoxicity: Current status and the future. Front Cardiovasc Med 2022; 9:966261. [PMID: 36312261 PMCID: PMC9606405 DOI: 10.3389/fcvm.2022.966261] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 09/05/2022] [Indexed: 11/15/2022] Open
Abstract
Drug-induced cardiotoxicity (DICT) is an important concern of drug safety in both drug development and clinical application. The clinical manifestations of DICT include cardiomyopathy, arrhythmia, myocardial ischemia, heart failure, and a series of cardiac structural and functional changes. The occurrence of DICT has negative impacts on the life quality of the patients, brings additional social and economic burden. It is important to identify the potential factors and explore the mechanisms of DICT. Traditional cardiovascular risk factors can only partially explain the risk of DICT. Pharmacogenomic studies show accumulated evidence of genetics in DICT and suggest the potential to guide precision therapy to reduce risk of cardiotoxicity. The comprehensive application of technologies such as third-generation sequencing, human induced pluripotent stem (iPS) cells and genome editing has promoted the in-depth understanding of the functional role of susceptible genes in DICT. This paper reviewed drugs that cause DICT, the clinical manifestations and laboratory tests, as well as the related content of genetic variations associated with the risk of DICT, and further discussed the implication of new technologies in pharmacogenomics of DICT.
Collapse
Affiliation(s)
- Mo-Yun Li
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China,Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China
| | - Li-Ming Peng
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China,Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China,Department of Cardiology, Xiangya Hospital, Central South University, Changsha, China,*Correspondence: Li-Ming Peng
| | - Xiao-Ping Chen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China,Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China,Xiao-Ping Chen
| |
Collapse
|
28
|
The Role of Mitochondrial Quality Control in Anthracycline-Induced Cardiotoxicity: From Bench to Bedside. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3659278. [PMID: 36187332 PMCID: PMC9519345 DOI: 10.1155/2022/3659278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 09/06/2022] [Indexed: 11/18/2022]
Abstract
Cardiotoxicity is the major side effect of anthracyclines (doxorubicin, daunorubicin, epirubicin, and idarubicin), though being the most commonly used chemotherapy drugs and the mainstay of therapy in solid and hematological neoplasms. Advances in the field of cardio-oncology have expanded our understanding of the molecular mechanisms underlying anthracycline-induced cardiotoxicity (AIC). AIC has a complex pathogenesis that includes a variety of aspects such as oxidative stress, autophagy, and inflammation. Emerging evidence has strongly suggested that the loss of mitochondrial quality control (MQC) plays an important role in the progression of AIC. Mitochondria are vital organelles in the cardiomyocytes that serve as the key regulators of reactive oxygen species (ROS) production, energy metabolism, cell death, and calcium buffering. However, as mitochondria are susceptible to damage, the MQC system, including mitochondrial dynamics (fusion/fission), mitophagy, mitochondrial biogenesis, and mitochondrial protein quality control, appears to be crucial in maintaining mitochondrial homeostasis. In this review, we summarize current evidence on the role of MQC in the pathogenesis of AIC and highlight the therapeutic potential of restoring the cardiomyocyte MQC system in the prevention and intervention of AIC.
Collapse
|
29
|
Moro N, Dokshokova L, Perumal Vanaja I, Prando V, Cnudde SJA, Di Bona A, Bariani R, Schirone L, Bauce B, Angelini A, Sciarretta S, Ghigo A, Mongillo M, Zaglia T. Neurotoxic Effect of Doxorubicin Treatment on Cardiac Sympathetic Neurons. Int J Mol Sci 2022; 23:ijms231911098. [PMID: 36232393 PMCID: PMC9569551 DOI: 10.3390/ijms231911098] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/14/2022] [Accepted: 09/17/2022] [Indexed: 11/26/2022] Open
Abstract
Doxorubicin (DOXO) remains amongst the most commonly used anti-cancer agents for the treatment of solid tumors, lymphomas, and leukemias. However, its clinical use is hampered by cardiotoxicity, characterized by heart failure and arrhythmias, which may require chemotherapy interruption, with devastating consequences on patient survival and quality of life. Although the adverse cardiac effects of DOXO are consolidated, the underlying mechanisms are still incompletely understood. It was previously shown that DOXO leads to proteotoxic cardiomyocyte (CM) death and myocardial fibrosis, both mechanisms leading to mechanical and electrical dysfunction. While several works focused on CMs as the culprits of DOXO-induced arrhythmias and heart failure, recent studies suggest that DOXO may also affect cardiac sympathetic neurons (cSNs), which would thus represent additional cells targeted in DOXO-cardiotoxicity. Confocal immunofluorescence and morphometric analyses revealed alterations in SN innervation density and topology in hearts from DOXO-treated mice, which was consistent with the reduced cardiotropic effect of adrenergic neurons in vivo. Ex vivo analyses suggested that DOXO-induced denervation may be linked to reduced neurotrophic input, which we have shown to rely on nerve growth factor, released from innervated CMs. Notably, similar alterations were observed in explanted hearts from DOXO-treated patients. Our data demonstrate that chemotherapy cardiotoxicity includes alterations in cardiac innervation, unveiling a previously unrecognized effect of DOXO on cardiac autonomic regulation, which is involved in both cardiac physiology and pathology, including heart failure and arrhythmias.
Collapse
Affiliation(s)
- Nicola Moro
- Department of Biomedical Sciences, University of Padova, via Ugo Bassi 58/B, 35131 Padova, Italy
| | - Lolita Dokshokova
- Department of Biomedical Sciences, University of Padova, via Ugo Bassi 58/B, 35131 Padova, Italy
| | - Induja Perumal Vanaja
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, via Giustiniani 2, 35128 Padova, Italy
| | - Valentina Prando
- Department of Biomedical Sciences, University of Padova, via Ugo Bassi 58/B, 35131 Padova, Italy
| | - Sophie Julie A Cnudde
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy
| | - Anna Di Bona
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, via Giustiniani 2, 35128 Padova, Italy
| | - Riccardo Bariani
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, via Giustiniani 2, 35128 Padova, Italy
| | - Leonardo Schirone
- Department of Medical and Surgical Sciences and Biotechnologies, Sapienza, University of Rome, 04100 Latina, Italy
| | - Barbara Bauce
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, via Giustiniani 2, 35128 Padova, Italy
| | - Annalisa Angelini
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, via Giustiniani 2, 35128 Padova, Italy
| | - Sebastiano Sciarretta
- Department of Medical and Surgical Sciences and Biotechnologies, Sapienza, University of Rome, 04100 Latina, Italy
| | - Alessandra Ghigo
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy
| | - Marco Mongillo
- Department of Biomedical Sciences, University of Padova, via Ugo Bassi 58/B, 35131 Padova, Italy
- Correspondence: (M.M.); (T.Z.); Tel.: +39-0497923229 (M.M.); +39-0497923294 (T.Z.); Fax: +39-0497923250 (M.M.); +39-0497923250 (T.Z.)
| | - Tania Zaglia
- Department of Biomedical Sciences, University of Padova, via Ugo Bassi 58/B, 35131 Padova, Italy
- Correspondence: (M.M.); (T.Z.); Tel.: +39-0497923229 (M.M.); +39-0497923294 (T.Z.); Fax: +39-0497923250 (M.M.); +39-0497923250 (T.Z.)
| |
Collapse
|
30
|
de Wit S, Glen C, de Boer RA, Lang NN. Mechanisms shared between cancer, heart failure, and targeted anti-cancer therapies. Cardiovasc Res 2022; 118:3451-3466. [PMID: 36004495 PMCID: PMC9897696 DOI: 10.1093/cvr/cvac132] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/12/2022] [Accepted: 07/26/2022] [Indexed: 02/07/2023] Open
Abstract
Heart failure (HF) and cancer are the leading causes of death worldwide and accumulating evidence demonstrates that HF and cancer affect one another in a bidirectional way. Patients with HF are at increased risk for developing cancer, and HF is associated with accelerated tumour growth. The presence of malignancy may induce systemic metabolic, inflammatory, and microbial alterations resulting in impaired cardiac function. In addition to pathophysiologic mechanisms that are shared between cancer and HF, overlaps also exist between pathways required for normal cardiac physiology and for tumour growth. Therefore, these overlaps may also explain the increased risk for cardiotoxicity and HF as a result of targeted anti-cancer therapies. This review provides an overview of mechanisms involved in the bidirectional connection between HF and cancer, specifically focusing upon current 'hot-topics' in these shared mechanisms. It subsequently describes targeted anti-cancer therapies with cardiotoxic potential as a result of overlap between their anti-cancer targets and pathways required for normal cardiac function.
Collapse
Affiliation(s)
- Sanne de Wit
- Department of Cardiology, University Medical Centre Groningen, University of Groningen, PO Box 30.001, Hanzeplein 1, 9700 RB, Groningen, The Netherlands
| | - Claire Glen
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, 126 University Place, Glasgow G12 8TA, United Kingdom
| | - Rudolf A de Boer
- Department of Cardiology, University Medical Centre Groningen, University of Groningen, PO Box 30.001, Hanzeplein 1, 9700 RB, Groningen, The Netherlands
| | | |
Collapse
|
31
|
Tripartite motif 25 ameliorates doxorubicin-induced cardiotoxicity by degrading p85α. Cell Death Dis 2022; 13:643. [PMID: 35871160 PMCID: PMC9308790 DOI: 10.1038/s41419-022-05100-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 07/08/2022] [Accepted: 07/13/2022] [Indexed: 02/06/2023]
Abstract
Doxorubicin (DOX)-based chemotherapy is widely used to treat malignant tumors; however, the cardiotoxicity induced by DOX restricts its clinical usage. A therapeutic dose of DOX can activate ubiquitin-proteasome system. However, whether and how ubiquitin-proteasome system brings out DOX-induced cardiotoxicity remains to be investigated. Here we conducted a proteomics analysis of a DOX-induced cardiotoxicity model to screen the potentially ubiquitination-related molecules. Dysregulated TRIM25 was found to contribute to the cardiotoxicity. In vivo and in vitro cardiotoxicity experiments revealed that TRIM25 ameliorated DOX-induced cardiotoxicity. Electron microscopy and endoplasmic reticulum stress markers revealed that TRIM25 mitigated endoplasmic reticulum stress and apoptosis in DOX-induced cardiomyocytes. Mechanistically, the Co-immunoprecipitation assays and CHX pulse-chase experiment determined that TRIM25 affected p85α stability and promoted its ubiquitination and degradation. This leads to increase of nuclear translocation of XBP-1s, which mitigates endoplasmic reticulum stress. These findings reveal that TRIM25 may have a therapeutic role for DOX-induced cardiotoxicity.
Collapse
|
32
|
Yu Y, Guo D, Zhao L. MiR-199 Aggravates Doxorubicin-Induced Cardiotoxicity by Targeting TAF9b. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:4364779. [PMID: 35873641 PMCID: PMC9307339 DOI: 10.1155/2022/4364779] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/04/2022] [Accepted: 05/06/2022] [Indexed: 11/18/2022]
Abstract
The clinical application of doxorubicin (DOX) is limited because of its cardiotoxicity. However, the pathogenic mechanism of DOX and the role of miRNA in DOX-induced cardiotoxicity remain to be further studied. This study aimed to investigate the role of miR-199 in DOX-mediated cardiotoxicity. A mouse model of myocardial cell injury induced by DOX was established. Quantitative real-time polymerase chain reaction (qRT-PCR) was used to detect the expression changes of miR-199 and TATA-binding protein associated factor 9B (TAF9b) in DOX-induced cardiac injury. Cell apoptosis was detected by TUNEL staining and flow cytometry. The expression levels of apoptosis-related proteins, namely, Bax and Bcl-2, were detected by qPCR. The expression of Beclin-1 and LC3b was detected by western blotting. The binding effect of miR-199 with TAF9b was verified by dual-luciferase reporter gene assay. In this study, overexpression of miR-199 could promote cardiotoxicity. Inhibition of miR-199 could alleviate DOX-mediated myocardial injury. Further studies showed that miR-199 targeted TAF9b. Moreover, miR-199 promoted apoptosis of myocardial cells and aggravated autophagy. Furthermore, we demonstrated that TAF9B knockdown reversed the myocardial protective effect of miR-199 inhibitors. Therefore, miR-199 promoted DOX-mediated cardiotoxicity by targeting TAF9b, thereby aggravating apoptosis and regulating autophagy.
Collapse
Affiliation(s)
- Yangsheng Yu
- Department of Cardiology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong, China
| | - Degang Guo
- Emergency Department, Third People's Hospital of Liaocheng City, Liaocheng 252000, China
| | - Lin Zhao
- Department of Cardiology, Sunshine Union Hospital of Weifang, Weifang 261000, Shandong, China
| |
Collapse
|
33
|
Varela-Trinidad GU, Domínguez-Díaz C, Solórzano-Castanedo K, Íñiguez-Gutiérrez L, Hernández-Flores TDJ, Fafutis-Morris M. Probiotics: Protecting Our Health from the Gut. Microorganisms 2022; 10:1428. [PMID: 35889147 PMCID: PMC9316266 DOI: 10.3390/microorganisms10071428] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/12/2022] [Accepted: 07/13/2022] [Indexed: 02/07/2023] Open
Abstract
The gut microbiota (GM) comprises billions of microorganisms in the human gastrointestinal tract. This microbial community exerts numerous physiological functions. Prominent among these functions is the effect on host immunity through the uptake of nutrients that strengthen intestinal cells and cells involved in the immune response. The physiological functions of the GM are not limited to the gut, but bidirectional interactions between the gut microbiota and various extraintestinal organs have been identified. These interactions have been termed interorganic axes by several authors, among which the gut-brain, gut-skin, gut-lung, gut-heart, and gut-metabolism axes stand out. It has been shown that an organism is healthy or in homeostasis when the GM is in balance. However, altered GM or dysbiosis represents a critical factor in the pathogenesis of many local and systemic diseases. Therefore, probiotics intervene in this context, which, according to various published studies, allows balance to be maintained in the GM, leading to an individual's good health.
Collapse
Affiliation(s)
- Gael Urait Varela-Trinidad
- Doctorado en Ciencias Biomédicas, Con Orientaciones en Inmunología y Neurociencias, Universidad de Guadalajara, Sierra Mojada 950, Guadalajara 44340, Mexico; (G.U.V.-T.); (C.D.-D.)
- Centro de Investigación en Inmunología y Dermatología (CIINDE), Calzada del Federalismo Nte 3102, Zapopan 45190, Mexico
| | - Carolina Domínguez-Díaz
- Doctorado en Ciencias Biomédicas, Con Orientaciones en Inmunología y Neurociencias, Universidad de Guadalajara, Sierra Mojada 950, Guadalajara 44340, Mexico; (G.U.V.-T.); (C.D.-D.)
- Centro de Investigación en Inmunología y Dermatología (CIINDE), Calzada del Federalismo Nte 3102, Zapopan 45190, Mexico
| | - Karla Solórzano-Castanedo
- Doctorado en Ciencias de la Nutrición Traslacional, Universidad de Guadalajara, Sierra Mojada 950, Guadalajara 44340, Mexico;
| | - Liliana Íñiguez-Gutiérrez
- Instituto de Investigación de Inmunodeficiencias y VIH, Hospital Civil de Guadalajara, Coronel Calderón 777, Guadalajara 44280, Mexico; (L.Í.-G.); (T.d.J.H.-F.)
| | - Teresita de Jesús Hernández-Flores
- Instituto de Investigación de Inmunodeficiencias y VIH, Hospital Civil de Guadalajara, Coronel Calderón 777, Guadalajara 44280, Mexico; (L.Í.-G.); (T.d.J.H.-F.)
- Departamento de Disciplinas Filosóficas Metodológicas e Intrumentales, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Sierra Mojada 950, Guadalajara 44340, Mexico
| | - Mary Fafutis-Morris
- Centro de Investigación en Inmunología y Dermatología (CIINDE), Calzada del Federalismo Nte 3102, Zapopan 45190, Mexico
- Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Sierra Mojada 950, Guadalajara 44340, Mexico
| |
Collapse
|
34
|
Qu PR, Jiang ZL, Song PP, Liu LC, Xiang M, Wang J. Saponins and their derivatives: Potential candidates to alleviate anthracycline-induced cardiotoxicity and multidrug resistance. Pharmacol Res 2022; 182:106352. [PMID: 35835369 DOI: 10.1016/j.phrs.2022.106352] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/05/2022] [Accepted: 07/08/2022] [Indexed: 10/17/2022]
Abstract
Anthracyclines (ANTs) continue to play an irreplaceable role in oncology treatment. However, the clinical application of ANTs has been limited. In the first place, ANTs can cause dose-dependent cardiotoxicity such as arrhythmia, cardiomyopathy, and congestive heart failure. In the second place, the development of multidrug resistance (MDR) leads to their chemotherapeutic failure. Oncology cardiologists are urgently searching for agents that can both protect the heart and reverse MDR without compromising the antitumor effects of ANTs. Based on in vivo and in vitro data, we found that natural compounds, including saponins, may be active agents for other both natural and chemical compounds in the inhibition of anthracycline-induced cardiotoxicity (AIC) and the reversal of MDR. In this review, we summarize the work of previous researchers, describe the mechanisms of AIC and MDR, and focus on revealing the pharmacological effects and potential molecular targets of saponins and their derivatives in the inhibition of AIC and the reversal of MDR, aiming to encourage future research and clinical trials.
Collapse
Affiliation(s)
- Pei-Rong Qu
- Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing 100053, China
| | - Zhi-Lin Jiang
- Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing 100053, China
| | - Ping-Ping Song
- Institute of Chinese Materia Medica, China Academy of Chinese Medicine Sciences, Beijing 100013, China
| | - Lan-Chun Liu
- Beijing University of traditional Chinese Medicine, Beijing 100029, China
| | - Mi Xiang
- Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing 100053, China
| | - Jie Wang
- Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing 100053, China
| |
Collapse
|
35
|
Meng C, Fan L, Wang X, Wang Y, Li Y, Pang S, Lv S, Zhang J. Preparation and Evaluation of Animal Models of Cardiotoxicity in Antineoplastic Therapy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3820591. [PMID: 35847594 PMCID: PMC9277159 DOI: 10.1155/2022/3820591] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 06/03/2022] [Indexed: 11/17/2022]
Abstract
The continuous development of antineoplastic therapy has significantly reduced the mortality of patients with malignant tumors, but its induced cardiotoxicity has become the primary cause of long-term death in patients with malignant tumors. However, the pathogenesis of cardiotoxicity of antineoplastic therapy is currently unknown, and practical means of prevention and treatment are lacking in clinical practice. Therefore, how to effectively prevent and treat cardiotoxicity while treating tumors is a major challenge. Animal models are important tools for studying cardiotoxicity in antitumor therapy and are of great importance in elucidating pathophysiological mechanisms and developing and evaluating modality drugs. In this paper, we summarize the existing animal models in antitumor therapeutic cardiotoxicity studies and evaluate the models by observing the macroscopic signs, echocardiography, and pathological morphology of the animals, aiming to provide a reference for subsequent experimental development and clinical application.
Collapse
Affiliation(s)
- Chenchen Meng
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300193, China
| | - Lu Fan
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300193, China
| | - Xiaoming Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300193, China
| | - Yunjiao Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300193, China
| | - Yanyang Li
- Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| | - Shuchao Pang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300193, China
| | - Shichao Lv
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300193, China
- Tianjin Key Laboratory of Traditional Research of TCM Prescription and Syndrome, Tianjin 300193, China
| | - Junping Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300193, China
| |
Collapse
|
36
|
Li X, Li R, You N, Zhao X, Li J, Jiang W. Butyric Acid Ameliorates Myocardial Fibrosis by Regulating M1/M2 Polarization of Macrophages and Promoting Recovery of Mitochondrial Function. Front Nutr 2022; 9:875473. [PMID: 35662928 PMCID: PMC9159497 DOI: 10.3389/fnut.2022.875473] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 04/20/2022] [Indexed: 12/11/2022] Open
Abstract
Background We aimed to investigate the effect and mechanism of butyric acid on rat myocardial fibrosis (MF). Methods 16S rRNA sequencing was used to analyze the gut microbiota characteristics of the Sham group and MF group. HPLC was applied to measure butyric acid in the feces and serum. In vitro, rat macrophages RMa-bm were stimulated with LPS and IL-4, respectively, and then butyrate was added to study the influences of butyrate on M1/M2 polarization and mitochondrial function of rat macrophages. The rat macrophages and rat myocardial fibroblasts were co-cultured to explore the effect of butyrate on rat myocardial fibroblasts. In addition, MF rats were fed with butyric acid diet. Results Compared with the Sham group, collagen deposition in the MF group was increased, and fibrosis was serious. The abundance of Desulfovibrionaceae and Helicobacteraceae in the MF group was increased compared with the Sham group. Gut epithelial cells were destroyed in the MF group compared with the Sham group. Compared with the Sham group, LPS content in the MF group was increased and butyric acid was decreased. Butyrate inhibited M1 and promoted M2. Furthermore, butyrate may promote mitochondrial function recovery by regulating M1/M2 polarization of macrophages. After adding butyrate, cell proliferation ability was decreased, and aging and apoptosis were increased, which indicated that butyrate inhibited rat myocardial fibroblasts activity. Moreover, butyric acid could protect mitochondria and improve the symptoms of rats with MF. Conclusions Butyric acid ameliorated MF by regulating M1/M2 polarization of macrophages and promoting recovery of mitochondrial function.
Collapse
|
37
|
Promoting mitochondrial fusion in doxorubicin-induced cardiotoxicity: a novel therapeutic target for cardioprotection. Clin Sci (Lond) 2022; 136:841-860. [PMID: 35543245 DOI: 10.1042/cs20220074] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 05/06/2022] [Accepted: 05/10/2022] [Indexed: 12/06/2022]
Abstract
Changes in mitochondrial dynamics have been recognized as being one of the mechanisms related to cardiotoxicity following a high cumulative dose of doxorubicin (DOX). A mitochondrial division inhibitor (Mdivi-1) and fusion promoter (M1) have been shown to be cardioprotective in a variety of cardiovascular settings, however their anti-cardiotoxic efficacy against DOX therapy remains unclear. We therefore investigated whether treatment with Mdivi-1 and M1 protect the heart against DOX-induced cardiotoxicity via mitochondria-targeted pathways. Male Wistar rats (n=40) received DOX (3 mg/kg, 6 doses, n=32) or 3% DMSO in the normal saline solution (NSS) (n=8) as a control. DOX-injected rats were given one of four treatments beginning with the first DOX injection via intraperitoneal injection: 1) 3% DMSO in NSS (n=8), 2) Mdivi-1 (1.2 mg/kg/day, n=8), 3) M1 (2 mg/kg/day, n=8), and 4) Mdivi-1+M1 (n=8) for 30 days. Cardiac function, mitochondrial function, oxidative stress, myocardial injury, and protein expression associated with inflammation, autophagy, mitophagy, apoptosis and mitochondrial dynamics were determined. DOX caused a significant deterioration in mitochondrial function and dynamic regulation, and an increase in markers of oxidative stress, inflammation, myocardial injury, apoptosis, autophagy, and mitophagy, resulting in impaired cardiac function. Co-treatment of DOX with Mdivi-1, M1, or a combination of the two mitigated these detrimental effects of DOX. These findings imply that either inhibiting fission or promoting fusion of mitochondria protects the heart from DOX-induced myocardial damage. Modulation of mitochondrial dynamics could be a novel therapeutic target in alleviating DOX-induced cytotoxic effects without compromising its anti-cancer efficacy.
Collapse
|
38
|
Morelli MB, Bongiovanni C, Da Pra S, Miano C, Sacchi F, Lauriola M, D’Uva G. Cardiotoxicity of Anticancer Drugs: Molecular Mechanisms and Strategies for Cardioprotection. Front Cardiovasc Med 2022; 9:847012. [PMID: 35497981 PMCID: PMC9051244 DOI: 10.3389/fcvm.2022.847012] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 03/03/2022] [Indexed: 12/13/2022] Open
Abstract
Chemotherapy and targeted therapies have significantly improved the prognosis of oncology patients. However, these antineoplastic treatments may also induce adverse cardiovascular effects, which may lead to acute or delayed onset of cardiac dysfunction. These common cardiovascular complications, commonly referred to as cardiotoxicity, not only may require the modification, suspension, or withdrawal of life-saving antineoplastic therapies, with the risk of reducing their efficacy, but can also strongly impact the quality of life and overall survival, regardless of the oncological prognosis. The onset of cardiotoxicity may depend on the class, dose, route, and duration of administration of anticancer drugs, as well as on individual risk factors. Importantly, the cardiotoxic side effects may be reversible, if cardiac function is restored upon discontinuation of the therapy, or irreversible, characterized by injury and loss of cardiac muscle cells. Subclinical myocardial dysfunction induced by anticancer therapies may also subsequently evolve in symptomatic congestive heart failure. Hence, there is an urgent need for cardioprotective therapies to reduce the clinical and subclinical cardiotoxicity onset and progression and to limit the acute or chronic manifestation of cardiac damages. In this review, we summarize the knowledge regarding the cellular and molecular mechanisms contributing to the onset of cardiotoxicity associated with common classes of chemotherapy and targeted therapy drugs. Furthermore, we describe and discuss current and potential strategies to cope with the cardiotoxic side effects as well as cardioprotective preventive approaches that may be useful to flank anticancer therapies.
Collapse
Affiliation(s)
| | - Chiara Bongiovanni
- National Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems (INBB), Bologna, Italy
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Silvia Da Pra
- National Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems (INBB), Bologna, Italy
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Carmen Miano
- National Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems (INBB), Bologna, Italy
| | - Francesca Sacchi
- National Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems (INBB), Bologna, Italy
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Mattia Lauriola
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Gabriele D’Uva
- National Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems (INBB), Bologna, Italy
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
- *Correspondence: Gabriele D’Uva,
| |
Collapse
|
39
|
Meng XL, Yu MM, Liu YC, Gao YL, Chen XS, Shou ST, Chai YF. Rutin Inhibits Cardiac Apoptosis and Prevents Sepsis-Induced Cardiomyopathy. Front Physiol 2022; 13:834077. [PMID: 35492613 PMCID: PMC9050354 DOI: 10.3389/fphys.2022.834077] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 03/28/2022] [Indexed: 12/27/2022] Open
Abstract
Rutin is a flavanol-type polyphenol that consists of flavanol quercetin and the disaccharide rutinose, which has been reported to exert various biological effects such as antioxidant and anti-inflammatory activities. It is not clear whether rutin has a protective effect on sepsis-induced cardiomyopathy (SIC). In this study, we used male C57BL/6 mice and cecal ligation and puncture (CLP) surgery to establish the model of SIC. Rutin was precautionarily treated (50, 100, 200 mg/kg per day, 7 days) before CLP. The results showed that rutin pretreatment (100, 200 mg/kg per day, 7 days) reduced the mortality of murine sepsis. We chose the 100 mg/kg dose for further studies. Mice were pretreatment with rutin (100 mg/kg per day, 7 days) before subjected to CLP, and myocardial tissue and blood samples were collected 24 h after CLP. Serum levels of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and cTNT decreased, while interleukin-10 (IL-10) increased with rutin pretreatment. The cardiomyocytes apoptosis and mitochondrial dysfunction were also alleviated with rutin pretreatment. In conclusion, this study confirmed the efficacy of rutin-enriched diet in the prophylaxis of cardiac apoptosis and cardiac injury induced by CLP in mouse model. It provides a potential new approach on SIC prophylaxis in sepsis.
Collapse
Affiliation(s)
| | | | - Yan-Cun Liu
- *Correspondence: Yan-Cun Liu, ; Yan-Fen Chai,
| | | | | | | | | |
Collapse
|
40
|
Impact of the Gastrointestinal Tract Microbiota on Cardiovascular Health and Pathophysiology. J Cardiovasc Pharmacol 2022; 80:13-30. [PMID: 35384898 DOI: 10.1097/fjc.0000000000001273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 03/25/2022] [Indexed: 11/25/2022]
Abstract
ABSTRACT The microbiota of the gastrointestinal tract (GIT) is an extremely diverse community of microorganisms, and their collective genomes (microbiome) provide a vast arsenal of biological activities, in particular enzymatic ones, which are far from being fully elucidated. The study of the microbiota (and the microbiome) is receiving great interest from the biomedical community as it carries the potential to improve risk-prediction models, refine primary and secondary prevention efforts, and also design more appropriate and personalized therapies, including pharmacological ones. A growing body of evidence, though sometimes impaired by the limited number of subjects involved in the studies, suggests that GIT dysbiosis, i.e. the altered microbial composition, has an important role in causing and/or worsening cardiovascular disease (CVD). Bacterial translocation as well as the alteration of levels of microbe-derived metabolites can thus be important to monitor and modulate, because they may lead to initiation and progression of CVD, as well as to its establishment as chronic state. We hereby aim to provide readers with details on available resources and experimental approaches that are used in this fascinating field of biomedical research, and on some novelties on the impact of GIT microbiota on CVD.
Collapse
|
41
|
Short-Chain Carbon Sources. JACC Basic Transl Sci 2022; 7:730-742. [PMID: 35958686 PMCID: PMC9357564 DOI: 10.1016/j.jacbts.2021.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/27/2021] [Accepted: 12/28/2021] [Indexed: 11/24/2022]
Abstract
Heart failure (HF) remains the leading cause of morbidity and mortality in the developed world, highlighting the urgent need for novel, effective therapeutics. Recent studies support the proposition that improved myocardial energetics as a result of ketone body (KB) oxidation may account for the intriguing beneficial effects of sodium-glucose cotransporter-2 inhibitors in patients with HF. Similar small molecules, short-chain fatty acids (SCFAs) are now realized to be preferentially oxidized over KBs in failing hearts, contradicting the notion of KBs as a rescue "superfuel." In addition to KBs and SCFAs being alternative fuels, both exert a wide array of nonmetabolic functions, including molecular signaling and epigenetics and as effectors of inflammation and immunity, blood pressure regulation, and oxidative stress. In this review, the authors present a perspective supported by new evidence that the metabolic and unique nonmetabolic activities of KBs and SCFAs hold promise for treatment of patients with HF with reduced ejection fraction and those with HF with preserved ejection fraction.
Collapse
|
42
|
Huang J, Wei S, Jiang C, Xiao Z, Liu J, Peng W, Zhang B, Li W. Involvement of Abnormal Gut Microbiota Composition and Function in Doxorubicin-Induced Cardiotoxicity. Front Cell Infect Microbiol 2022; 12:808837. [PMID: 35281446 PMCID: PMC8913537 DOI: 10.3389/fcimb.2022.808837] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 02/01/2022] [Indexed: 11/18/2022] Open
Abstract
Objectives Doxorubicin (Dox), a chemotherapeutic anthracycline agent for the treatment of a variety of malignancies, has a limitation in clinical application for dose-dependent cardiotoxicity. The purpose of this study was to explore the relationship between the composition/function of the gut microbiota and Dox-induced cardiotoxicity (DIC). Methods C57BL/6J mice were injected intraperitoneally with 15 mg/kg of Dox, with or without antibiotics (Abs) administration. The M-mode echocardiograms were performed to assess cardiac function. The histopathological analysis was conducted by H&E staining and TUNEL kit assay. The serum levels of creatine kinase (CK), CK-MB (CK-MB), lactic dehydrogenase (LDH), and cardiac troponin T (cTnT) were analyzed by an automatic biochemical analyzer. 16S rRNA gene and metagenomic sequencing of fecal samples were used to explore the gut microbiota composition and function. Key Findings Dox caused left ventricular (LV) dilation and reduced LV contractility. The levels of cardiomyocyte apoptosis and myocardial enzymes were elevated in Dox-treated mice compared with the control (Con) group. 16S rRNA gene sequencing results revealed significant differences in microbial composition between the two groups. In the Dox group, the relative abundances of Allobaculum, Muribaculum, and Lachnoclostridium were significantly decreased, whereas Faecalibaculum, Dubosiella, and Lachnospiraceae were significantly increased compared with the Con group at the genus level. Functional enrichment with Cluster of orthologous groups of proteins (COG) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses showed that the Dox mice displayed different clusters of cellular processes and metabolism from the Con mice. The different species and their functions between the two groups were associated with the clinical factors of cardiac enzymes. Moreover, depletion of the gut microbiota could alleviate Dox-induced myocardial injury and cardiomyocyte apoptosis. Conclusions The study here shows that composition imbalance and functional changes of the gut microbiota can be one of the etiological mechanisms underlying DIC. The gut microbiota may serve as new targets for the treatment of cardiotoxicity and cardiovascular diseases.
Collapse
Affiliation(s)
- Jie Huang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Shanshan Wei
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Chuanhao Jiang
- Department of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Zijun Xiao
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Jian Liu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Weijun Peng
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Bikui Zhang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
- *Correspondence: Bikui Zhang, ; Wenqun Li,
| | - Wenqun Li
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
- *Correspondence: Bikui Zhang, ; Wenqun Li,
| |
Collapse
|
43
|
Wang X, Ji Y, Jin D, Qi J, Hou X, Zhao W, Zhou S, Zhang C, Luo Y, An P, Luo J. Natural Polysaccharide β-Glucan Protects against Doxorubicin-Induced Cardiotoxicity by Suppressing Oxidative Stress. Nutrients 2022; 14:906. [PMID: 35215555 PMCID: PMC8878312 DOI: 10.3390/nu14040906] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/10/2022] [Accepted: 02/18/2022] [Indexed: 11/17/2022] Open
Abstract
Doxorubicin (DOXO) can be used to treat a variety of human tumors, but its clinical application is limited due to severe cardiotoxic side effect. Here, we explore the role of β-glucan in DOXO-induced cardiotoxicity in mice and study its underlying mechanism. When co-administered with DOXO, β-glucan was observed to prevent left ventricular dilation and fibrosis. In fact, DOXO reduces the activity of mitochondrial respiratory chain complex and enhances oxidative stress, which in turn impairs heart function. DOXO decreases the ATP production capacity of the heart and increases the ROS content, while β-glucan can restore the heart capacity and reduce oxidative stress. β-glucan also increases the activity of antioxidant enzymes GSH-PX and SOD, and reduces the level of MDA in the serum. In addition, the mRNAs of cardiac dysfunction marker genes ANP, BNP and Myh7 were significantly increased after DOXO induction, however, they did not increase when combined with β-glucan administration. In conclusion, our results indicate that β-glucan can improve the antioxidant capacity of the heart, thereby serving as a potential therapeutic strategy to prevent DOXO-induced cardiotoxicity.
Collapse
Affiliation(s)
- Xuan Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China;
| | - Yuting Ji
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (Y.J.); (J.Q.); (X.H.); (W.Z.); (S.Z.)
| | - Dekui Jin
- Department of General Practice, The Third Medical Center of Chinese PLA General Hospital, Beijing 100039, China;
| | - Jingyi Qi
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (Y.J.); (J.Q.); (X.H.); (W.Z.); (S.Z.)
| | - Xuening Hou
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (Y.J.); (J.Q.); (X.H.); (W.Z.); (S.Z.)
| | - Wenting Zhao
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (Y.J.); (J.Q.); (X.H.); (W.Z.); (S.Z.)
| | - Shuaishuai Zhou
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (Y.J.); (J.Q.); (X.H.); (W.Z.); (S.Z.)
| | - Chengying Zhang
- Department of General Practice, The Third Medical Center of Chinese PLA General Hospital, Beijing 100039, China;
| | - Yongting Luo
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (Y.J.); (J.Q.); (X.H.); (W.Z.); (S.Z.)
| | - Peng An
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (Y.J.); (J.Q.); (X.H.); (W.Z.); (S.Z.)
| | - Junjie Luo
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (Y.J.); (J.Q.); (X.H.); (W.Z.); (S.Z.)
| |
Collapse
|
44
|
RRM2 Alleviates Doxorubicin-Induced Cardiotoxicity through the AKT/mTOR Signaling Pathway. Biomolecules 2022; 12:biom12020299. [PMID: 35204799 PMCID: PMC8869767 DOI: 10.3390/biom12020299] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 02/06/2022] [Accepted: 02/07/2022] [Indexed: 02/04/2023] Open
Abstract
Doxorubicin (DOX) is an effective chemotherapeutic agent that plays an unparalleled role in cancer treatment. However, its serious dose-dependent cardiotoxicity, which eventually contributes to irreversible heart failure, has greatly limited the widespread clinical application of DOX. A previous study has demonstrated that the ribonucleotide reductase M2 subunit (RRM2) exerts salutary effects on promoting proliferation and inhibiting apoptosis and autophagy. However, the specific function of RRM2 in DOX-induced cardiotoxicity is yet to be determined. This study aimed to elucidate the role and potential mechanism of RRM2 on DOX-induced cardiotoxicity by investigating neonatal primary cardiomyocytes and mice treated with DOX. Subsequently, the results indicated that RRM2 expression was significantly reduced in mice hearts and primary cardiomyocytes. Apoptosis and autophagy-related proteins, such as cleaved-Caspase3 (C-Caspase3), LC3B, and beclin1, were distinctly upregulated. Additionally, RRM2 deficiency led to increased autophagy and apoptosis in cells. RRM2 overexpression, on the contrary, alleviated DOX-induced cardiotoxicity in vivo and in vitro. Consistently, DIDOX, an inhibitor of RRM2, attenuated the protective effect of RRM2. Mechanistically, we found that AKT/mTOR inhibitors could reverse the function of RRM2 overexpression on DOX-induced autophagy and apoptosis, which means that RRM2 could have regulated DOX-induced cardiotoxicity through the AKT/mTOR signaling pathway. In conclusion, our experiment established that RRM2 could be a potential treatment in reversing DOX-induced cardiac dysfunction.
Collapse
|
45
|
Wu BB, Leung KT, Poon ENY. Mitochondrial-Targeted Therapy for Doxorubicin-Induced Cardiotoxicity. Int J Mol Sci 2022; 23:1912. [PMID: 35163838 PMCID: PMC8837080 DOI: 10.3390/ijms23031912] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/27/2022] [Accepted: 02/01/2022] [Indexed: 01/27/2023] Open
Abstract
Anthracyclines, such as doxorubicin, are effective chemotherapeutic agents for the treatment of cancer, but their clinical use is associated with severe and potentially life-threatening cardiotoxicity. Despite decades of research, treatment options remain limited. The mitochondria is commonly considered to be the main target of doxorubicin and mitochondrial dysfunction is the hallmark of doxorubicin-induced cardiotoxicity. Here, we review the pathogenic mechanisms of doxorubicin-induced cardiotoxicity and present an update on cardioprotective strategies for this disorder. Specifically, we focus on strategies that can protect the mitochondria and cover different therapeutic modalities encompassing small molecules, post-transcriptional regulators, and mitochondrial transfer. We also discuss the shortcomings of existing models of doxorubicin-induced cardiotoxicity and explore advances in the use of human pluripotent stem cell derived cardiomyocytes as a platform to facilitate the identification of novel treatments against this disorder.
Collapse
Affiliation(s)
- Bin Bin Wu
- Centre for Cardiovascular Genomics and Medicine, Lui Che Woo Institute of Innovative Medicine, The Chinese University of Hong Kong (CUHK), Hong Kong SAR, China;
- Hong Kong Hub of Paediatric Excellence (HK HOPE), The Chinese University of Hong Kong (CUHK), Hong Kong SAR, China;
| | - Kam Tong Leung
- Hong Kong Hub of Paediatric Excellence (HK HOPE), The Chinese University of Hong Kong (CUHK), Hong Kong SAR, China;
- Department of Paediatrics, The Chinese University of Hong Kong (CUHK), Hong Kong SAR, China
| | - Ellen Ngar-Yun Poon
- Centre for Cardiovascular Genomics and Medicine, Lui Che Woo Institute of Innovative Medicine, The Chinese University of Hong Kong (CUHK), Hong Kong SAR, China;
- Hong Kong Hub of Paediatric Excellence (HK HOPE), The Chinese University of Hong Kong (CUHK), Hong Kong SAR, China;
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong (CUHK), Hong Kong SAR, China
- School of Biomedical Sciences, The Chinese University of Hong Kong (CUHK), Hong Kong SAR, China
| |
Collapse
|
46
|
Kong CY, Guo Z, Song P, Zhang X, Yuan YP, Teng T, Yan L, Tang QZ. Underlying the Mechanisms of Doxorubicin-Induced Acute Cardiotoxicity: Oxidative Stress and Cell Death. Int J Biol Sci 2022; 18:760-770. [PMID: 35002523 PMCID: PMC8741835 DOI: 10.7150/ijbs.65258] [Citation(s) in RCA: 137] [Impact Index Per Article: 45.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 11/17/2021] [Indexed: 02/06/2023] Open
Abstract
Cancer is a destructive disease that causes high levels of morbidity and mortality. Doxorubicin (DOX) is a highly efficient antineoplastic chemotherapeutic drug, but its use places survivors at risk for cardiotoxicity. Many studies have demonstrated that multiple factors are involved in DOX-induced acute cardiotoxicity. Among them, oxidative stress and cell death predominate. In this review, we provide a comprehensive overview of the mechanisms underlying the source and effect of free radicals and dependent cell death pathways induced by DOX. Hence, we attempt to explain the cellular mechanisms of oxidative stress and cell death that elicit acute cardiotoxicity and provide new insights for researchers to discover potential therapeutic strategies to prevent or reverse doxorubicin-induced cardiotoxicity.
Collapse
Affiliation(s)
- Chun-Yan Kong
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, RP China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, RP China
| | - Zhen Guo
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, RP China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, RP China
| | - Peng Song
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, RP China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, RP China
| | - Xin Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, RP China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, RP China
| | - Yu-Pei Yuan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, RP China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, RP China
| | - Teng Teng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, RP China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, RP China
| | - Ling Yan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, RP China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, RP China
| | - Qi-Zhu Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, RP China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, RP China
| |
Collapse
|
47
|
Evaluation of the Effect of Crocin on Doxorubicin-Induced Cardiotoxicity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1328:143-153. [PMID: 34981476 DOI: 10.1007/978-3-030-73234-9_10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Despite newer advances in cancer treatment, chemotherapy is still one of the most widely used treatment strategies in this field. However, this treatment strategy faces major challenges. Doxorubicin (Dox) is an effective chemotherapeutic agent used to treat various cancers. However, several studies have shown that the use of Dox in therapeutic concentrations is associated with serious side effects, such as cardiac toxicity. The use of natural products in combination with chemotherapeutic agents to reduce side effects is a novel approach, and several studies have shown promising results. In this regard, we examined the effect of Crocin on doxorubicin-induced cardiotoxicity in rat and H9c2 cell line. The in vitro model on H9C2 cells and the in vivo models on rats were treated with doxorubicin. Cell viability, DNA damage, and apoptosis were measured in H9C2 cell line in the presence and absence of Crocin. Oxidative stress and various inflammatory parameters, as well as cardiac function tests, also were assessed in doxorubicin-induced cardiotoxicity animal model in the presence and absence of Crocin. Our results showed that Crocin can significantly decrease apoptosis in H9C2 cell line through a reduction in ROS production and DNA damages. Moreover, evaluation of the effect of Crocin on doxorubicin-induced cardiotoxicity animal model showed that Crocin also can significantly reduce oxidative stress and inflammatory parameters in the serum of the animals. Assessment of cardiac function revealed that Crocin has a significant protective effect against doxorubicin-induced cardiotoxicity in the animal model. Our data indicate that Crocin significantly attenuated doxorubicin-induced cardiotoxicity. Hence, Crocin could be potentially used as an adjuvant treatment in combination with Dox to reduce cardiotoxicity.
Collapse
|
48
|
Chen Y, Liu Y, Wang Y, Chen X, Wang C, Chen X, Yuan X, Liu L, Yang J, Zhou X. Prevotellaceae produces butyrate to alleviate PD-1/PD-L1 inhibitor-related cardiotoxicity via PPARα-CYP4X1 axis in colonic macrophages. J Exp Clin Cancer Res 2022; 41:1. [PMID: 34980222 PMCID: PMC8722009 DOI: 10.1186/s13046-021-02201-4] [Citation(s) in RCA: 101] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 11/26/2021] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Immune checkpoint inhibitor-related cardiotoxicity is one of the most lethal adverse effects, and thus, the identification of underlying mechanisms for developing strategies to overcome it has clinical importance. This study aimed to investigate whether microbiota-host interactions contribute to PD-1/PD-L1 inhibitor-related cardiotoxicity. METHODS A mouse model of immune checkpoint inhibitor-related cardiotoxicity was constructed by PD-1/PD-L1 inhibitor BMS-1 (5 and 10 mg/kg), and cardiomyocyte apoptosis and cardiotoxicity were determined by hematoxylin and eosin, Masson's trichome and TUNEL assays. 16S rRNA sequencing was used to define the gut microbiota composition. Gut microbiota metabolites short-chain fatty acids (SCFAs) were determined by HPLC. The serum levels of myocardial enzymes (creatine kinase, aspartate transaminase, creatine kinase-MB and lactate dehydrogenase) and the production of M1 factors (TNF-α and IL-1β) were measured by ELISA. The colonic macrophage phenotype was measured by mmunofluorescence and qPCR. The expression of Claudin-1, Occludin, ZO-1 and p-p65 was measured by western blot. The gene expression of peroxisome proliferator-activated receptor α (PPARα) and cytochrome P450 (CYP) 4X1 was determined using qPCR. Statistical analyses were performed using Student's t-test for two-group comparisons, and one-way ANOVA followed by Student-Newman-Keul test for multiple-group comparisons. RESULTS We observed intestinal barrier injury and gut microbiota dysbiosis characterized by Prevotellaceae and Rikenellaceae genus depletion and Escherichia-Shigella and Ruminococcaceae genus enrichment, accompanied by low butyrate production and M1-like polarization of colonic macrophages in BMS-1 (5 and 10 mg/kg)-induced cardiotoxicity. Fecal microbiota transplantation mirrored the effect of BMS-1 on cardiomyocyte apoptosis and cardiotoxicity, while macrophage depletion and neutralization of TNF-α and IL-1β greatly attenuated BMS-1-induced cardiotoxicity. Importantly, Prevotella loescheii recolonization and butyrate supplementation alleviated PD-1/PD-L1 inhibitor-related cardiotoxicity. Mechanistically, gut microbiota dysbiosis promoted M1-like polarization of colonic macrophages and the production of proinflammatory factors TNF-α and IL-1β through downregulation of PPARα-CYP4X1 axis. CONCLUSIONS Intestinal barrier dysfunction amplifies PD-1/PD-L1 inhibitor-related cardiotoxicity by upregulating proinflammatory factors TNF-α and IL-1β in colonic macrophages via downregulation of butyrate-PPARα-CYP4X1 axis. Thus, targeting gut microbiota to polarize colonic macrophages away from the M1-like phenotype could provide a potential therapeutic strategy for PD-1/PD-L1 inhibitor-related cardiotoxicity.
Collapse
Affiliation(s)
- Yaxin Chen
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yanzhuo Liu
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yang Wang
- Department of Pharmacology and Hubei Province Key Laboratory of Allergy and Immune-related Diseases, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Xuewei Chen
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Chenlong Wang
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Xuehan Chen
- Department of Pharmacology and Hubei Province Key Laboratory of Allergy and Immune-related Diseases, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Xi Yuan
- Department of Pharmacology and Hubei Province Key Laboratory of Allergy and Immune-related Diseases, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Lilong Liu
- Department of Pharmacology and Hubei Province Key Laboratory of Allergy and Immune-related Diseases, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Jing Yang
- Department of Pharmacology and Hubei Province Key Laboratory of Allergy and Immune-related Diseases, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China.
| | - Xiaoyang Zhou
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
49
|
Refaie MM, El-Hussieny M, Abdel-Hakeem EA, Fawzy MA, Mahmoud Abd El Rahman ES, Shehata S. Phosphodiesterase inhibitor, Vinpocetine, guards against doxorubicin induced cardiotoxicity via modulation of HIF/VEGF and cGMP/cAMP/SIRT signaling pathways. Hum Exp Toxicol 2022; 41:096032712211362. [PMID: 36270296 DOI: 10.1177/09603271221136209] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Purpose: Doxorubicin (DOX) is a widely used chemotherapeutic agent complicated with cardiotoxic adverse effects. Up till now, there are no researches discussing the role of vinpocetine (VIN) in DOX cardiotoxicity. Thus, the aim of our work was to study this effect and explore the different involved mechanisms. Methods: 50 male Wistar albino rats were subjected to DOX toxicity via administration of single i.p. Dose (15 mg/kg) on the 4th day with or without co-administration of VIN (10, 20, 30 mg/kg/day) orally for 5 days. Results: Our data revealed that VIN succeeded in protecting the heart against DOX induced damage as manifested by significant decrease of cardiac enzymes, hypoxia inducible factor alpha (HIF-1α), vascular endothelial growth factor-A (VEGF-A), tissue malondialdehyde (MDA), tumor necrosis factor alpha (TNF-α) and caspase3 levels. Furthermore, VIN given group showed marked improvement of the histopathological changes of cardiac injury, total antioxidant capacity (TAC), elevation of reduced glutathione (GSH), cyclic guanosine monophosphate (cGMP), cyclic adenosine monophosphate (cAMP) and sirtuin-1 (SIRT-1). Conclusion: We concluded that VIN could ameliorate DOX induced cardiac damage and this effect may be attributed to modulation of HIF/VEGF signaling pathway, up-regulation of cGMP/cAMP/SIRT pathway, inhibition of phosphodiesterase enzyme, besides its anti-apoptotic, anti-inflammatory, and anti-oxidant properties.
Collapse
Affiliation(s)
- Marwa M.M. Refaie
- Department of Pharmacology, Faculty of Medicine, Minia University, Egypt
| | - Maram El-Hussieny
- Department of Pathology, Faculty of Medicine, Minia University, Egypt
| | | | - Michael A Fawzy
- Department of Biochemistry, Faculty of Pharmacy, Minia University, Egypt
| | | | - Sayed Shehata
- Department of Cardiology, Faculty of Medicine, Minia University, Egypt
| |
Collapse
|
50
|
Metabolomics in liver injury induced by dietary cadmium exposure and protective effect of calcium supplementation. Anal Biochem 2022; 641:114556. [PMID: 35063435 DOI: 10.1016/j.ab.2022.114556] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 11/19/2022]
|