1
|
Ren J, Zhao J, Yang S, An S, Cai C, Wang J, Gu M, Niu H, Li S, Hua W, Gao B. Transcoronary study of biomarkers in patients with heart failure: Insights into intracardiac production. ESC Heart Fail 2024. [PMID: 39728840 DOI: 10.1002/ehf2.15175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 09/01/2024] [Accepted: 11/08/2024] [Indexed: 12/28/2024] Open
Abstract
AIMS Biomarkers are pivotal in the management of heart failure (HF); however, their lack of cardiac specificity could limit clinical utility. This study aimed to investigate the transcoronary changes and intracardiac production of these biomarkers. METHODS Transcoronary gradients for B-type natriuretic peptide (BNP) and five novel biomarkers-galectin-3 (Gal-3), soluble suppression of tumourigenicity 2 (sST2), tissue inhibitor of metalloproteinase 1 (TIMP-1), growth differentiation factor 15 (GDF-15) and myeloperoxidase (MPO)-were determined using femoral artery (FA) and coronary sinus (CS) samples from 30 HF patients and 10 non-HF controls. Intracardiac biomarker production was assessed in an HF canine model using real-time quantitative PCR (qPCR) and western blot (WB) analysis. RESULTS Compared with the control group, levels of all detected biomarkers were significantly elevated in the HF group, while transcoronary gradients were only observed for BNP, Gal-3 and TIMP-1 levels in the HF group (BNP: FA: 841.5 ± 727.2 ng/mL vs. CS: 1132.0 ± 959.1 ng/mL, P = 0.005; Gal-3: FA: 9.5 ± 3.0 ng/mL vs. CS: 19.7 ± 16.4 ng/mL, P = 0.002; and TIMP-1: FA: 286.7 ± 68.9 ng/mL vs. CS: 377.3 ± 108.9 ng/mL, P = 0.001). Real-time qPCR and WB analysis revealed significant elevation of BNP, Gal-3 and TIMP-1 in the cardiac tissues of the HF group relative to other groups. CONCLUSIONS This study provided evidence of transcoronary changes in BNP, Gal-3 and TIMP-1 levels in HF patients, offering insights into their intracardiac production. These findings enhance the understanding of the biology of these biomarkers and may inform their clinical application.
Collapse
Affiliation(s)
- Jie Ren
- Department of Cardiac Surgery, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Junhan Zhao
- Arrhythmia Center, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shengwen Yang
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Shuoyan An
- Department of Cardiology, China-Japan Friendship Hospital, Beijing, China
| | - Chi Cai
- Arrhythmia Center, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jing Wang
- Arrhythmia Center, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Min Gu
- Arrhythmia Center, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hongxia Niu
- Arrhythmia Center, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shurong Li
- Department of Anesthesiology, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Wei Hua
- Arrhythmia Center, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Beiyao Gao
- Department of Rehabilitation Medicine, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
2
|
Meng L, Chen HM, Zhang JS, Wu YR, Xu YZ. Matricellular proteins: From cardiac homeostasis to immune regulation. Biomed Pharmacother 2024; 180:117463. [PMID: 39305814 DOI: 10.1016/j.biopha.2024.117463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/23/2024] [Accepted: 09/19/2024] [Indexed: 11/14/2024] Open
Abstract
Tissue repair after myocardial injury is a complex process involving changes in all aspects of the myocardial tissue, including the extracellular matrix (ECM). The ECM is composed of large structural proteins such as collagen and elastin and smaller proteins with major regulatory properties called matricellular proteins. Matricellular cell proteins exert their functions and elicit cellular responses by binding to structural proteins not limited to interactions with cell surface receptors, cytokines, or proteases. At the same time, matricellular proteins act as the "bridge" of information exchange between cells and ECM, maintaining the integrity of the cardiac structure and regulating the immune environment, which is a key factor in determining cardiac homeostasis. In this review, we present an overview of the identified matricellular proteins and summarize the current knowledge regarding their roles in maintaining cardiac homeostasis and regulating the immune system.
Collapse
Affiliation(s)
- Li Meng
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou First People's Hospital, Hangzhou 310053, China; Department of Cardiology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Zhejiang 310006, China
| | - Hui-Min Chen
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou First People's Hospital, Hangzhou 310053, China; Department of Cardiology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Zhejiang 310006, China
| | - Jia-Sheng Zhang
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou First People's Hospital, Hangzhou 310053, China; Department of Cardiology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Zhejiang 310006, China
| | - Yi-Rong Wu
- Department of Cardiology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Zhejiang 310006, China.
| | - Yi-Zhou Xu
- Department of Cardiology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Zhejiang 310006, China.
| |
Collapse
|
3
|
Matyar S, Açıkalın Akpınar A, Dişel NR, Avci A, Çağlayan ÇE, Yıldırım A, Akpınar O. Prognostic value of sst2 in long-term mortality in acute heart failure. Acta Cardiol 2024:1-11. [PMID: 39317343 DOI: 10.1080/00015385.2024.2406683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/16/2024] [Accepted: 09/08/2024] [Indexed: 09/26/2024]
Abstract
BACKGROUND The use of biochemical markers in ADHF is considered valuable both in the diagnosis and treatment of diseases and in follow-up. This study aimed to investigate the prognostic power of serum sST2 and NT-proBNP levels in predicting long-term mortality in patients with ADHF using serial measurement. METHODS A total of 122 patients with ADHF were included in this prospective study. Venous blood samples were taken from the patients at the time of first admission to the emergency department and 48 h after hospitalisation. Serial measurements were performed using the same blood samples to determine NT-proBNP and sST2 levels. RESULTS The 1st time sST2 value was found to be significantly higher in the deceased group than in the living group, and this increase was found to be statistically significant (p < 0.001). The cut-off value for the 1st time value of sST2 was > 56.79 ng/mL, with 91.2% sensitivity and 79.5% specificity (area under the curve (AUC): 0.902, 95% confidence interval (CI): 0.835-0.948, p < 0.001). The cut-off value for the 2nd time sST2 value was > 38.91 ng/mL, with 97.1% sensitivity and 81.8% specificity (AUC: 0.932, 95% CI: 0.872-0.970, p < 0.001). CONCLUSION In our study, sST2 gained value as a marker that should be included in panels with multiple markers. It seems more appropriate to recommend the serial measurement of sST2 in heart failure. LIMITATIONS OF OUR STUDY The sample size is relatively small and there is no standard in timing and numbers in serial measurements.
Collapse
Affiliation(s)
- Selcuk Matyar
- Central Laboratory, Department of Biochemistry, University of Health Sciences, Adana City Research and Training Hospital, Adana, Turkey
| | - Ayça Açıkalın Akpınar
- Department of Emergency Medicine, Çukurova University Faculty of Medicine, Adana, Turkey
| | - Nezihat Rana Dişel
- Department of Emergency Medicine, Çukurova University Faculty of Medicine, Adana, Turkey
| | - Akkan Avci
- Department of Emergency Medicine, University of Health Sciences, Adana City Research and Training Hospital, Adana, Turkey
| | - Çağlar Emre Çağlayan
- Department of Cardiology, Çukurova University Faculty of Medicine, Adana, Turkey
| | - Abdullah Yıldırım
- Department of Cardiology, University of Health Sciences, Adana City Research and Training Hospital, Adana, Turkey
| | - Onur Akpınar
- Department of Cardiology, Near East University Faculty of Medicine, Nicosia, Cyprus
| |
Collapse
|
4
|
Kim KS, Lee C, Kim HS, Gu SJ, Yoon HJ, Won SB, Lee H, Lee YS, Kim SS, Kane LP, Park EJ. TIM-3 on myeloid cells promotes pulmonary inflammation through increased production of galectin-3. Commun Biol 2024; 7:1090. [PMID: 39237613 PMCID: PMC11377825 DOI: 10.1038/s42003-024-06762-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 08/22/2024] [Indexed: 09/07/2024] Open
Abstract
T cell immunoglobulin and mucin-containing molecule 3 (TIM-3) exhibits unique, cell type- and context-dependent characteristics and functions. Here, we report that TIM-3 on myeloid cells plays essential roles in modulating lung inflammation. We found that myeloid cell-specific TIM-3 knock-in (FSF-TIM3/LysM-Cre+) mice have lower body weight and shorter lifespan than WT mice. Intriguingly, the lungs of FSF-TIM3/LysM-Cre+ mice display excessive inflammation and features of disease-associated pathology. We further revealed that galectin-3 levels are notably elevated in TIM-3-overexpressing lung-derived myeloid cells. Furthermore, both TIM-3 blockade and GB1107, a galectin-3 inhibitor, ameliorated lung inflammation in FSF-TIM3/LysM-Cre+/- mice. Using an LPS-induced lung inflammation model with myeloid cell-specific TIM-3 knock-out mice, we demonstrated the association of TIM-3 with both lung inflammation and galectin-3. Collectively, our findings suggest that myeloid TIM-3 is an important regulator in the lungs and that modulation of TIM-3 and galectin-3 could offer therapeutic benefits for inflammation-associated lung diseases.
Collapse
Affiliation(s)
- Ki Sun Kim
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang-si, Gyeonggi-do, 10408, Republic of Korea
| | - Chanju Lee
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang-si, Gyeonggi-do, 10408, Republic of Korea
- Immuno-oncology Branch, National Cancer Center, Goyang-si, Gyeonggi-do, 10408, Republic of Korea
| | - Hyung-Seok Kim
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang-si, Gyeonggi-do, 10408, Republic of Korea
| | - Su Jeong Gu
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang-si, Gyeonggi-do, 10408, Republic of Korea
| | - Hee Jung Yoon
- Immuno-oncology Branch, National Cancer Center, Goyang-si, Gyeonggi-do, 10408, Republic of Korea
| | - Su Bin Won
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang-si, Gyeonggi-do, 10408, Republic of Korea
- Immuno-oncology Branch, National Cancer Center, Goyang-si, Gyeonggi-do, 10408, Republic of Korea
| | - Ho Lee
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang-si, Gyeonggi-do, 10408, Republic of Korea
| | - Yong Sun Lee
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang-si, Gyeonggi-do, 10408, Republic of Korea
| | - Sang Soo Kim
- Radiological Science Branch, National Cancer Center, Goyang-si, Gyeonggi-do, 10408, Republic of Korea
| | - Lawrence P Kane
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Eun Jung Park
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang-si, Gyeonggi-do, 10408, Republic of Korea.
- Immuno-oncology Branch, National Cancer Center, Goyang-si, Gyeonggi-do, 10408, Republic of Korea.
| |
Collapse
|
5
|
Mahmoud MM, Hassan MM, Elsayed HES, Fares AE, Saber MM, Rashed LA, Abdelwahed OM. Protective effect of Galectin-3 inhibitor against cardiac remodelling in an isoprenaline-induced myocardial infarction in type 2 diabetes. Arch Physiol Biochem 2024:1-14. [PMID: 39101980 DOI: 10.1080/13813455.2024.2387710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/15/2024] [Accepted: 07/28/2024] [Indexed: 08/06/2024]
Abstract
Type 2 Diabetes mellitus (T2DM) has the potential to impair cardiac function and cause heart failure. We aimed to study the cardioprotective influence of Galactin-3 (Gal-3) inhibitor; modified citrus pectin (MCP) in isoprenaline induced myocardial infarction (MI) in T2DM rats. Forty rats were allocated into 4 groups; groups I and II served as control. T2DM was provoked in groups III and IV by serving them high fat diet followed by a single low dose of Streptozotocin (STZ), then group IV were administered MCP in drinking water for 6 weeks. Groups III and IV were then subcutaneously injected isoprenaline hydrochloride once daily on the last 2 successive days to induce MI. MCP restored echocardiographic parameters with significant decline in Gal-3 area % in cardiac tissue alongside protection against cardiac remodelling. our data showed that there is a protective potential for Gal-3 inhibitor (MCP) against cardiac injury in isoprenaline induced MI in T2DM.
Collapse
Affiliation(s)
| | - Mai Mohammed Hassan
- Department of Medical Physiology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | | | - Amal E Fares
- Department of Histology & Cell Biology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Mona M Saber
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Laila Ahmed Rashed
- Department of Medical Biochemistry, Faculty of Medicine, Cairo University, Cairo, Egypt
| | | |
Collapse
|
6
|
Saadi MT, Mohammed NUG, Abed BA, Farhan LO, Salman IN. Validity of galactin-3 in acromegaly: comparison with traditional markers. Ir J Med Sci 2024; 193:1837-1841. [PMID: 38520613 DOI: 10.1007/s11845-024-03674-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 03/15/2024] [Indexed: 03/25/2024]
Abstract
BACKGROUND Acromegaly occurs due to overproduction of growth hormone (GH) and insulin-like growth factor-1 (IGF-1). Galectin-3 (Gal-3) has recently emerged as a novel biomarker, related to IGF-1. This study aimed to assess Gal-3 in patients with acromegaly and compare its effectiveness with traditional biomarker tests. MATERIALS AND METHODS A randomized case control study conducted in a single center included 50 acromegaly patients and 40 apparently healthy subjects (HS) serve as control group matched both age and BMI. Laboratory test was measured by routine assay used in center. Gal-3, GH, and IGF-1 were measured by enzyme-linked immunosorbent assay (ELISA). RESULT There were 50 patients with an average age of 50.40 ± 12.229 (50% of males). Compared with HS, patients' serum GAL-3 levels have increased significantly. The serum GAL-3 exceeds 14.363 ng/ml, with a sensitivity of 100.0 and a specificity of 100.0. Furthermore, serum Gal-3 levels in combination with traditional tests (GH and IGF-1) by DeLoongs test had a significant difference in discriminating acromegaly more accurately than traditional tests. CONCLUSION In a summary, this study recommended clinicians measure serum Gal-3 as biomarkers for patients with acromegaly. In addition, the result above shed light on role of Gal-3 on acromegaly pathogenesis and might provide a therapeutic target of acromegaly patients.
Collapse
Affiliation(s)
- Maryam Thaer Saadi
- Department of Chemistry, College of Science for Women, University of Baghdad, Baghdad, Iraq
| | - Noor Ulhuda G Mohammed
- Department of Chemistry, College of Science for Women, University of Baghdad, Baghdad, Iraq.
| | | | - Layla Othman Farhan
- Department of Chemistry, College of Science for Women, University of Baghdad, Baghdad, Iraq
| | | |
Collapse
|
7
|
Chetran A, Bădescu MC, Şerban IL, Duca ŞT, Afrăsânie I, Cepoi MR, Dmour BA, Matei IT, Haba MŞC, Costache AD, Mitu O, Cianga CM, Tuchiluş C, Constantinescu D, Costache-Enache II. Insights into the Novel Cardiac Biomarker in Acute Heart Failure: Mybp-C. Life (Basel) 2024; 14:513. [PMID: 38672783 PMCID: PMC11051483 DOI: 10.3390/life14040513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/12/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
(1) Background: Given its high cardiac specificity and its capacity to directly assess the cardiac function, cardiac myosin-binding protein (MyBP-C) is a promising biomarker in patients with acute heart failure (AHF). The aim of our study was to investigate the clinical utility of this novel marker for diagnosis and short-term prognosis in subjects with AHF. (2) Methods: We measured plasma levels of MyBP-C at admission in 49 subjects (27 patients admitted with AHF and 22 controls). (3) Results: The plasma concentration of MyBP-C was significantly higher in patients with AHF compared to controls (54.88 vs. 0.01 ng/L, p < 0.001). For 30-day prognosis, MyBP-C showed significantly greater AUC (0.972, p < 0.001) than NT-proBNP (0.849, p = 0.001) and hs-TnI (0.714, p = 0.047). In a multivariate logistic regression analysis, an elevated level of MyBP-C was the best independent predictor of 30-day mortality (OR = 1.08, p = 0.039) or combined death/recurrent 30-days rehospitalization (OR = 1.12, p = 0.014). (4) Conclusions: Our data show that circulating MyBP-C is a sensitive and cardiac-specific biomarker with potential utility for the accurate diagnosis and prognosis of AHF.
Collapse
Affiliation(s)
- Adriana Chetran
- Department of Internal Medicine I, Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania; (A.C.); (M.-R.C.); (B.A.D.); (I.T.M.); (M.Ş.C.H.); (A.D.C.); (O.M.); (I.I.C.-E.)
- Cardiology Clinic, “St. Spiridon” County Emergency Hospital, 700111 Iasi, Romania
| | - Minerva Codruţa Bădescu
- Department of Internal Medicine I, Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania; (A.C.); (M.-R.C.); (B.A.D.); (I.T.M.); (M.Ş.C.H.); (A.D.C.); (O.M.); (I.I.C.-E.)
- III Internal Medicine Clinic, “St. Spiridon” County Emergency Hospital, 700111 Iasi, Romania
| | - Ionela Lăcrămioara Şerban
- Department of Morpho-Functional Science II-Physiology, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania;
| | - Ştefania Teodora Duca
- Department of Internal Medicine I, Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania; (A.C.); (M.-R.C.); (B.A.D.); (I.T.M.); (M.Ş.C.H.); (A.D.C.); (O.M.); (I.I.C.-E.)
- Cardiology Clinic, “St. Spiridon” County Emergency Hospital, 700111 Iasi, Romania
| | - Irina Afrăsânie
- Department of Internal Medicine I, Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania; (A.C.); (M.-R.C.); (B.A.D.); (I.T.M.); (M.Ş.C.H.); (A.D.C.); (O.M.); (I.I.C.-E.)
- Cardiology Clinic, “St. Spiridon” County Emergency Hospital, 700111 Iasi, Romania
| | - Maria-Ruxandra Cepoi
- Department of Internal Medicine I, Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania; (A.C.); (M.-R.C.); (B.A.D.); (I.T.M.); (M.Ş.C.H.); (A.D.C.); (O.M.); (I.I.C.-E.)
- Cardiology Clinic, “St. Spiridon” County Emergency Hospital, 700111 Iasi, Romania
| | - Bianca Ana Dmour
- Department of Internal Medicine I, Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania; (A.C.); (M.-R.C.); (B.A.D.); (I.T.M.); (M.Ş.C.H.); (A.D.C.); (O.M.); (I.I.C.-E.)
- III Internal Medicine Clinic, “St. Spiridon” County Emergency Hospital, 700111 Iasi, Romania
| | - Iulian Theodor Matei
- Department of Internal Medicine I, Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania; (A.C.); (M.-R.C.); (B.A.D.); (I.T.M.); (M.Ş.C.H.); (A.D.C.); (O.M.); (I.I.C.-E.)
- Cardiology Clinic, “St. Spiridon” County Emergency Hospital, 700111 Iasi, Romania
| | - Mihai Ştefan Cristian Haba
- Department of Internal Medicine I, Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania; (A.C.); (M.-R.C.); (B.A.D.); (I.T.M.); (M.Ş.C.H.); (A.D.C.); (O.M.); (I.I.C.-E.)
- Cardiology Clinic, “St. Spiridon” County Emergency Hospital, 700111 Iasi, Romania
| | - Alexandru Dan Costache
- Department of Internal Medicine I, Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania; (A.C.); (M.-R.C.); (B.A.D.); (I.T.M.); (M.Ş.C.H.); (A.D.C.); (O.M.); (I.I.C.-E.)
- Cardiovascular Rehabilitation Clinic, Clinical Rehabilitation Hospital, 700661 Iasi, Romania
| | - Ovidiu Mitu
- Department of Internal Medicine I, Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania; (A.C.); (M.-R.C.); (B.A.D.); (I.T.M.); (M.Ş.C.H.); (A.D.C.); (O.M.); (I.I.C.-E.)
- Cardiology Clinic, “St. Spiridon” County Emergency Hospital, 700111 Iasi, Romania
| | - Corina Maria Cianga
- Department of Immunology, Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania; (C.M.C.); (D.C.)
- Immunology Laboratory, “St. Spiridon” County Emergency Hospital, 700111 Iasi, Romania
| | - Cristina Tuchiluş
- Department of Microbiology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
- Microbiology Laboratory, “St. Spiridon” County Emergency Hospital, 700111 Iasi, Romania
| | - Daniela Constantinescu
- Department of Immunology, Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania; (C.M.C.); (D.C.)
- Immunology Laboratory, “St. Spiridon” County Emergency Hospital, 700111 Iasi, Romania
| | - Irina Iuliana Costache-Enache
- Department of Internal Medicine I, Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania; (A.C.); (M.-R.C.); (B.A.D.); (I.T.M.); (M.Ş.C.H.); (A.D.C.); (O.M.); (I.I.C.-E.)
- Cardiology Clinic, “St. Spiridon” County Emergency Hospital, 700111 Iasi, Romania
| |
Collapse
|
8
|
Ciampi CM, Sultana A, Ossola P, Farina A, Fragasso G, Spoladore R. Current experimental and early investigational agents for cardiac fibrosis: where are we at? Expert Opin Investig Drugs 2024; 33:389-404. [PMID: 38426439 DOI: 10.1080/13543784.2024.2326024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 02/28/2024] [Indexed: 03/02/2024]
Abstract
INTRODUCTION Myocardial fibrosis (MF) is induced by factors activating pro-fibrotic pathways such as acute and prolonged inflammation, myocardial ischemic events, hypertension, aging process, and genetically-linked cardiomyopathies. Dynamics and characteristics of myocardial fibrosis development are very different. The broad range of myocardial fibrosis presentations suggests the presence of multiple potential targets. AREA COVERED Heart failure treatment involves medications primarily aimed at counteracting neurohormonal activation. While these drugs have demonstrated efficacy against MF, not all specifically target inflammation or fibrosis progression with some exceptions such as RAAS inhibitors. Consequently, new therapies are being developed to address this issue. This article is aimed to describe anti-fibrotic drugs currently employed in clinical practice and emerging agents that target specific pathways, supported by evidence from both preclinical and clinical studies. EXPERT OPINION Despite various preclinical findings suggesting the potential utility of new drugs and molecules for treating cardiac fibrosis in animal models, there is a notable scarcity of clinical trials investigating these effects. However, the pathology of damage and repair in the heart muscle involves a complex network of interconnected inflammatory pathways and various types of immune cells. Our comprehension of the positive and negative roles played by specific immune cells and cytokines is an emerging area of research.
Collapse
Affiliation(s)
- Claudio M Ciampi
- Health Science Department, University of Milan Bicocca, Milano, Italy
| | - Andrea Sultana
- Health Science Department, University of Milan Bicocca, Milano, Italy
| | - Paolo Ossola
- Health Science Department, University of Milan Bicocca, Milano, Italy
| | - Andrea Farina
- Division of Cardiology, Alessandro Manzoni Hospital, ASST- Lecco, Italy
| | - Gabriele Fragasso
- Heart Failure Unit Head, Division of Cardiology, IRCCS Vita-Salute San Raffaele University Hospital, Milan, Italy
| | - Roberto Spoladore
- Division of Cardiology, Alessandro Manzoni Hospital, ASST- Lecco, Italy
| |
Collapse
|
9
|
Sebastian SA, Co EL, Mahtani A, Padda I, Anam M, Mathew SS, Shahzadi A, Niazi M, Pawar S, Johal G. Heart Failure: Recent Advances and Breakthroughs. Dis Mon 2024; 70:101634. [PMID: 37704531 DOI: 10.1016/j.disamonth.2023.101634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
Heart failure (HF) is a common clinical condition encountered in various healthcare settings with a vast socioeconomic impact. Recent advancements in pharmacotherapy have led to the evolution of novel therapeutic agents with a decrease in hospitalization and mortality rates in HF with reduced left ventricular ejection fraction (HFrEF). Lately, the introduction of artificial intelligence (AI) to construct decision-making models for the early detection of HF has played a vital role in optimizing cardiovascular disease outcomes. In this review, we examine the newer therapies and evidence behind goal-directed medical therapy (GDMT) for managing HF. We also explore the application of AI and machine learning (ML) in HF, including early diagnosis and risk stratification for HFrEF.
Collapse
Affiliation(s)
| | - Edzel Lorraine Co
- University of Santo Tomas Faculty of Medicine and Surgery, Manila, Philippines
| | - Arun Mahtani
- Richmond University Medical Center/Mount Sinai, Staten Island, New York, USA
| | - Inderbir Padda
- Richmond University Medical Center/Mount Sinai, Staten Island, New York, USA
| | - Mahvish Anam
- Deccan College of Medical Sciences, Hyderabad, India
| | | | | | - Maha Niazi
- Royal Alexandra Hospital, Edmonton, Canada
| | | | - Gurpreet Johal
- Department of Cardiology, University of Washington, Valley Medical Center, Seattle, Washington, USA
| |
Collapse
|
10
|
Banfi C, Gugliandolo P, Paolillo S, Mallia A, Gianazza E, Agostoni P. The alveolar-capillary unit in the physiopathological conditions of heart failure: identification of a potential marker. Eur J Prev Cardiol 2023; 30:ii2-ii8. [PMID: 37819226 DOI: 10.1093/eurjpc/zwad227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 07/03/2023] [Accepted: 07/07/2023] [Indexed: 10/13/2023]
Abstract
In this review, we describe the structure and function of the alveolar-capillary membrane and the identification of a novel potential marker of its integrity in the context of heart failure (HF). The alveolar-capillary membrane is indeed a crucial structure for the maintenance of the lung parenchyma gas exchange capacity, and the occurrence of pathological conditions determining lung fluids accumulation, such as HF, might significantly impair lung diffusion capacity altering the alveolar-capillary membrane protective functions. In the years, we found that the presence of immature forms of the surfactant protein-type B (proSP-B) in the circulation reflects alterations in the alveolar-capillary membrane integrity. We discussed our main achievements showing that proSP-B, due to its chemical properties, specifically binds to high-density lipoprotein, impairing their antioxidant activity, and likely contributing to the progression of the disease. Further, we found that immature proSP-B, not the mature protein, is related to lung abnormalities, more precisely than the lung function parameters. Thus, to the list of the potential proposed markers of HF, we add proSP-B, which represents a precise marker of alveolar-capillary membrane dysfunction in HF, correlates with prognosis, and represents a precocious marker of drug therapy.
Collapse
Affiliation(s)
- Cristina Banfi
- Centro Cardiologico Monzino, Functional Proteomics, Metabolomics, and Network Analysis, IRCCS, via Parea, 4, Milan 20138, Italy
| | | | - Stefania Paolillo
- Department of Advanced Biomedical Sciences, Federico II University of Naples, Naples 80131, Italy
| | - Alice Mallia
- Department of Biology and Biotechnology 'Lazzaro Spallanzani', University of Pavia, Pavia 27100, Italy
- Centro Cardiologico Monzino, Functional Proteomics, Metabolomics, and Network Analysis, IRCCS, via Parea, 4, Milan 20138, Italy
| | - Erica Gianazza
- Centro Cardiologico Monzino, Functional Proteomics, Metabolomics, and Network Analysis, IRCCS, via Parea, 4, Milan 20138, Italy
| | - Piergiuseppe Agostoni
- Centro Cardiologico Monzino, IRCCS, Milan 20138, Italy
- Cardiovascular Section, Department of Clinical Sciences and Community Health, University of Milan, Milan 20122, Italy
| |
Collapse
|
11
|
Bouffette S, Botez I, De Ceuninck F. Targeting galectin-3 in inflammatory and fibrotic diseases. Trends Pharmacol Sci 2023; 44:519-531. [PMID: 37391294 DOI: 10.1016/j.tips.2023.06.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 06/02/2023] [Accepted: 06/02/2023] [Indexed: 07/02/2023]
Abstract
Galectin (Gal)-3 is a β-galactoside-binding lectin emerging as a key player in cardiac, hepatic, renal, and pulmonary fibrosis and inflammation, respiratory infections caused by COVID-19, and neuroinflammatory disorders. Here, we review recent information highlighting Gal-3 as a relevant therapeutic target in these specific disease conditions. While a causal link was difficult to establish until now, we discuss how recent strategic breakthroughs allowed us to identify new-generation Gal-3 inhibitors with improved potency, selectivity, and bioavailability, and report their usefulness as valuable tools for proof-of-concept studies in various preclinical models of the aforementioned diseases, with emphasis on those actually in clinical stages. We also address critical views and suggestions intended to expand the therapeutic opportunities provided by this complex target.
Collapse
Affiliation(s)
- Selena Bouffette
- Servier, Neurology and Immuno-inflammation Therapeutic Area, Servier R&D Center, Gif-sur-Yvette, France; Université Paris-Saclay, Inserm, Inflammation Microbiome and Immunosurveillance, Orsay, France
| | - Iuliana Botez
- Servier, Drug Design Small Molecules Unit, Servier R&D Center, Gif-sur-Yvette, France
| | - Frédéric De Ceuninck
- Servier, Neurology and Immuno-inflammation Therapeutic Area, Servier R&D Center, Gif-sur-Yvette, France.
| |
Collapse
|
12
|
Al-U'datt DGF, Tranchant CC, Alu'datt M, Abusara S, Al-Dwairi A, AlQudah M, Al-Shboul O, Hiram R, Altuntas Y, Jaradat S, Alzoubi KH. Inhibition of transglutaminase 2 (TG2) ameliorates ventricular fibrosis in isoproterenol-induced heart failure in rats. Life Sci 2023; 321:121564. [PMID: 36931499 DOI: 10.1016/j.lfs.2023.121564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 03/06/2023] [Accepted: 03/06/2023] [Indexed: 03/17/2023]
Abstract
AIMS Transglutaminase (TG) inhibitors represent promising therapeutic interventions in cardiac fibrosis and related dysfunctions. However, it remains unknown how TG inhibition, TG2 in particular, affects the signaling systems that drive pathological fibrosis. This study aimed to examine the effect TG inhibition by cystamine on the progression of isoproterenol (ISO)-induced cardiac fibrosis and dysfunction in rats. MATERIALS AND METHODS Cardiac fibrosis was established by intraperitoneal injection of ISO to rats (ISO group), followed by 6 weeks of cystamine injection (ISO + Cys group). The control groups were administered normal saline alone or with cystamine. Hemodynamics, lipid profile, liver enzymes, urea, and creatinine were assessed in conjunction with heart failure markers (serum NT-proANP and cTnI). Left ventricular (LV) and atrial (LA) fibrosis, total collagen content, and mRNA expression of profibrotic markers including TG2 were quantified by Masson's trichrome staining, LC-MS/MS and quantitative PCR, respectively. KEY FINDINGS Cystamine administration to ISO rats significantly decreased diastolic and mean arterial pressures, total cholesterol, triglycerides, LDL, liver enzymes, urea, and creatinine levels, while increasing HDL. NT-proANP and cTnI serum levels remained unchanged. In LV tissues, significant reductions in ISO-induced fibrosis and elevated total collagen content were achieved after cystamine treatment, together with a reduction in TG2 concentration. Reduced mRNA expression of several profibrotic genes (COL1A1, FN1, MMP-2, CTGF, periostin, CX43) was also evidenced in LV tissues of ISO rats upon cystamine administration, whereas TGF-β1 expression was depressed in LA tissues. Cystamine decreased TG2 mRNA expression in the LV of control rats, while LV expression of TG2 was relatively low in ISO rats irrespective of cystamine treatment. SIGNIFICANCE TG2 inhibition by cystamine in vivo exerted cardioprotective effects against ISO-induced cardiac fibrosis in rats decreasing the LV abundance of several profibrotic markers and the content of TG2 and collagen, suggesting that TG2 pharmacological inhibition could be beneficial to alleviate cardiac fibrosis.
Collapse
Affiliation(s)
- Doa'a G F Al-U'datt
- Department of Physiology and Biochemistry, Faculty of Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan.
| | - Carole C Tranchant
- School of Food Science, Nutrition and Family Studies, Faculty of Health Sciences and Community Services, Université de Moncton, New Brunswick, Canada
| | - Muhammad Alu'datt
- Department of Nutrition and Food Technology, Faculty of Agriculture, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan
| | - Sara Abusara
- Department of Physiology and Biochemistry, Faculty of Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Ahmed Al-Dwairi
- Department of Physiology and Biochemistry, Faculty of Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Mohammad AlQudah
- Department of Physiology and Biochemistry, Faculty of Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan; Physiology Department, Arabian Gulf University, Manama, Bahrain
| | - Othman Al-Shboul
- Department of Physiology and Biochemistry, Faculty of Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Roddy Hiram
- Montreal Heart Institute and Department of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Yasemin Altuntas
- Montreal Heart Institute and Department of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Saied Jaradat
- Princess Haya Biotechnology Center, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Karem H Alzoubi
- Department of Pharmacy Practice and Pharmacotherapeutics, University of Sharjah, Sharjah, United Arab Emirates; Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| |
Collapse
|
13
|
Hayek SS, Tahhan AS, Ko YA, Alkhoder A, Zheng S, Bhimani R, Hartsfield J, Kim J, Wilson P, Shaw L, Wei C, Reiser J, Quyyumi AA. Soluble Urokinase Plasminogen Activator Receptor Levels and Outcomes in Patients with Heart Failure. J Card Fail 2023; 29:158-167. [PMID: 36122818 PMCID: PMC10246488 DOI: 10.1016/j.cardfail.2022.08.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 10/14/2022]
Abstract
BACKGROUND Soluble urokinase-type plasminogen activator receptor (suPAR) is a marker of immune activation and pathogenic factor for kidney disease shown to predict cardiovascular outcomes including heart failure (HF) in various populations. We characterized suPAR levels in patients with HF and compared its ability to discriminate risk to that of B-type natriuretic peptide (BNP). METHODS AND RESULTS We measured plasma suPAR and BNP levels in 3,437 patients undergoing coronary angiogram and followed for a median of 6.2 years. We performed survival analyses for the following outcomes: all-cause death, cardiovascular death, and hospitalization for HF. We then assessed suPAR's ability to discriminate risk for the aforementioned outcomes. We identified 1116 patients with HF (age 65±12, 67.2% male, 20.0% Black, 67% with reduced ejection fraction). The median suPAR level was higher in HF compared to those without HF (3370 [IQR 2610-4371] vs. 2880 [IQR 2270-3670] pg/mL, respectively, P<0.001). In patients with HF, suPAR levels (log-base 2) were associated with outcomes including all-cause death (adjusted hazard ratio aHR 2.30, 95%CI[1.90-2.77]), cardiovascular death (aHR 2.33 95%CI[1.81-2.99]) and HF hospitalization (aHR 1.96, 95%CI[1.06-1.25]) independently of clinical characteristics and BNP levels. The association persisted across subgroups and did not differ between patients with reduced or preserved ejection fraction, or those with ischemic or non-ischemic cardiomyopathy. Addition of suPAR to a model including BNP levels significantly improved the C-statistic for death (Δ0.027), cardiovascular death (Δ0.017) and hospitalization for HF (Δ0.017). CONCLUSIONS SuPAR levels are higher in HF compared to non-HF, are strongly predictive of outcomes, and combined with BNP, significantly improved risk prediction. LAY SUMMARY
Collapse
Affiliation(s)
- Salim S Hayek
- Division of Cardiology, University of Michigan, Ann Arbor, MI.
| | | | - Yi-An Ko
- Division of Cardiology, Emory University School of Medicine, Atlanta, GA
| | - Ayman Alkhoder
- Division of Cardiology, Emory University School of Medicine, Atlanta, GA
| | - Shuai Zheng
- Department of Biostatistics and Bioinformatics, Emory University, Atlanta, GA
| | - Ravila Bhimani
- Division of Cardiology, Emory University School of Medicine, Atlanta, GA
| | - Joy Hartsfield
- Division of Cardiology, Emory University School of Medicine, Atlanta, GA
| | - Jonathan Kim
- Division of Cardiology, Emory University School of Medicine, Atlanta, GA
| | - Peter Wilson
- Division of Cardiology, Emory University School of Medicine, Atlanta, GA
| | - Leslee Shaw
- Division of Cardiology, Emory University School of Medicine, Atlanta, GA
| | - Changli Wei
- Department of Medicine, Rush University, Chicago, IL
| | - Jochen Reiser
- Department of Medicine, Rush University, Chicago, IL
| | - Arshed A Quyyumi
- Division of Cardiology, Emory University School of Medicine, Atlanta, GA
| |
Collapse
|
14
|
Raco J, Peterson B, Muallem S. Assessment of Volume Status in Hospitalized Patients With Chronic Heart Failure. Cardiol Res 2023; 14:2-11. [PMID: 36896231 PMCID: PMC9990539 DOI: 10.14740/cr1434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 11/26/2022] [Indexed: 02/27/2023] Open
Abstract
Assessment of volume status in hospitalized patients with heart failure is a critically important diagnostic skill that clinicians utilize frequently. However, accurate assessment is challenging and there is often significant inter-provider disagreement. This review serves as an appraisal of current methods of volume assessment amongst different categories of evaluation including patient history, physical exam, laboratory analysis, imaging, and invasive procedures. Within each category, this review highlights methods that are particularly sensitive or specific, or those that carry impactful positive or negative likelihood ratios. Utilization of the information that this review provides will allow clinicians to determine volume status of hospitalized heart failure patients more accurately and more precisely in order to provide appropriate and effective therapies.
Collapse
Affiliation(s)
- Joseph Raco
- Department of Internal Medicine, Penn State Milton S. Hershey Medical Center, Hershey, PA 17033, USA
| | - Brandon Peterson
- Department of Cardiology, Penn State Milton S. Hershey Medical Center, Hershey, PA 17033, USA
| | - Samer Muallem
- Department of Cardiology, Penn State Milton S. Hershey Medical Center, Hershey, PA 17033, USA
| |
Collapse
|
15
|
Lyon AR, López-Fernández T, Couch LS, Asteggiano R, Aznar MC, Bergler-Klein J, Boriani G, Cardinale D, Cordoba R, Cosyns B, Cutter DJ, de Azambuja E, de Boer RA, Dent SF, Farmakis D, Gevaert SA, Gorog DA, Herrmann J, Lenihan D, Moslehi J, Moura B, Salinger SS, Stephens R, Suter TM, Szmit S, Tamargo J, Thavendiranathan P, Tocchetti CG, van der Meer P, van der Pal HJH. 2022 ESC Guidelines on cardio-oncology developed in collaboration with the European Hematology Association (EHA), the European Society for Therapeutic Radiology and Oncology (ESTRO) and the International Cardio-Oncology Society (IC-OS). Eur Heart J 2022; 43:4229-4361. [PMID: 36017568 DOI: 10.1093/eurheartj/ehac244] [Citation(s) in RCA: 1015] [Impact Index Per Article: 338.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
|
16
|
Practical Significance of Biomarkers in Axial Spondyloarthritis: Updates on Diagnosis, Disease Activity, and Prognosis. Int J Mol Sci 2022; 23:ijms231911561. [PMID: 36232862 PMCID: PMC9570274 DOI: 10.3390/ijms231911561] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/20/2022] [Accepted: 09/22/2022] [Indexed: 11/26/2022] Open
Abstract
Axial spondyloarthritis (axSpA) is a chronic inflammatory disease that can lead to ankylosis by secondary ossification of inflammatory lesions, with progressive disability and a significant impact on quality of life. It is also a risk factor for the occurrence of comorbidities, especially cardiovascular diseases (CVDs), mood disorders, osteoporosis, and malignancies. Early diagnosis and treatment are needed to prevent or decrease functional decline and to improve the patient's prognosis. In respect of axSpA, there is an unmet need for biomarkers that can help to diagnose the disease, define disease activity and prognosis, and establish personalized treatment approaches. The aim of this review was to summarize the available information regarding the most promising biomarkers for axSpA. We classified and identified six core categories of biomarkers: (i) systemic markers of inflammation; (ii) molecules involved in bone homeostasis; (iii) HLA-B27 and newer genetic biomarkers; (iv) antibody-based biomarkers; (v) microbiome biomarkers; and (vi) miscellaneous biomarkers. Unfortunately, despite efforts to validate new biomarkers, few of them are used in clinical practice; however, we believe that these studies provide useful data that could aid in better disease management.
Collapse
|
17
|
Bracun V, van Essen B, Voors AA, van Veldhuisen DJ, Dickstein K, Zannad F, Metra M, Anker S, Samani NJ, Ponikowski P, Filippatos G, Cleland JG, Lang CC, Ng LL, Shi C, de Wit S, Aboumsallem JP, Meijers WC, Klip IJT, van der Meer P, de Boer RA. Insulin-like growth factor binding protein 7 (IGFBP7), a link between heart failure and senescence. ESC Heart Fail 2022; 9:4167-4176. [PMID: 36088651 PMCID: PMC9773704 DOI: 10.1002/ehf2.14120] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/15/2022] [Indexed: 01/19/2023] Open
Abstract
AIMS Insulin like growth factor binding protein 7 (IGFBP7) is a marker of senescence secretome and a novel biomarker in patients with heart failure (HF). We evaluated the prognostic value of IGFBP7 in patients with heart failure and examined associations to uncover potential new pathophysiological pathways related to increased plasma IGFBP7 concentrations. METHODS AND RESULTS We have measured plasma IGFBP7 concentrations in 2250 subjects with new-onset or worsening heart failure (BIOSTAT-CHF cohort). Higher IGFBP7 plasma concentrations were found in older subjects, those with worse kidney function, history of atrial fibrillation, and diabetes mellitus type 2, and in subjects with higher number of HF hospitalizations. Higher IGFBP7 levels also correlate with the levels of several circulating biomarkers, including higher NT-proBNP, hsTnT, and urea levels. Cox regression analyses showed that higher plasma IGFBP7 concentrations were strongly associated with increased risk of all three main endpoints (hospitalization, all-cause mortality, and combined hospitalization and mortality) (HR 1.75, 95% CI 1.25-2.46; HR 1.71, 95% CI 1.39-2.11; and HR 1.44, 95% CI 1.23-1.70, respectively). IGFBP7 remained a significant predictor of these endpoints in patients with both reduced and preserved ejection fraction. Likelihood ratio test showed significant improvement of all three risk prediction models, after adding IGFBP7 (P < 0.001). A biomarker network analysis showed that IGFBP7 levels activate different pathways involved in the regulation of the immune system. Results were externally validated in BIOSTAT-CHF validation cohort. CONCLUSIONS IGFPB7 presents as an independent and robust prognostic biomarker in patients with HF, with both reduced and preserved ejection fraction. We validate the previously published data showing IGFBP7 has correlations with a number of echocardiographic markers. Lastly, IGFBP7 pathways are involved in different stages of immune system regulation, linking heart failure to senescence pathways.
Collapse
Affiliation(s)
- Valentina Bracun
- Department of CardiologyUniversity Medical Center GroningenGroningenThe Netherlands
| | - Bart van Essen
- Department of CardiologyUniversity Medical Center GroningenGroningenThe Netherlands
| | - Adriaan A. Voors
- Department of CardiologyUniversity Medical Center GroningenGroningenThe Netherlands
| | | | | | - Faiez Zannad
- Universite de Lorraine | InsermCentre d'Investigations CliniquesNancyFrance
| | - Marco Metra
- Department of Medical and Surgical Specialties | Radiological Sciences and Public Health | Institute of CardiologyUniversity of BresciaBresciaItaly
| | - Stefan Anker
- Department of Cardiology (CVK) and Berlin Institute of Health Center for Regenerative Therapies (BCRT) | German Centre for Cardiovascular Research (DZHK) partner site BerlinCharité UniversitätsmedizinBerlinGermany
| | - Nilesh J. Samani
- Department of Cardiovascular Sciences | University of Leicester | Glenfield Hospital | and NIHR Leicester Biomedical Research CentreGlenfield HospitalLeicesterUnited Kingdom
| | - Piotr Ponikowski
- Department of Heart DiseasesWroclaw Medical UniversityWrocławPoland
| | - Gerasimos Filippatos
- National and Kapodistrian University of Athens | School of MedicineAttikon University HospitalAthensGreece
| | - John G.F. Cleland
- Robertson Centre for Biostatistics | Institute of Health and WellbeingUniversity of Glasgow | Imperial CollegeLondonUnited Kingdom
| | - Chim C. Lang
- Division of Molecular and Clinical Medicine | Medical Research Institute | Ninewells Hospital & Medical SchoolUniversity of DundeeDundeeUnited Kingdom
| | - Leong L. Ng
- Department of Cardiovascular Sciences | University of Leicester | Glenfield Hospital | and NIHR Leicester Biomedical Research CentreGlenfield HospitalLeicesterUnited Kingdom
| | - Canxia Shi
- Department of CardiologyUniversity Medical Center GroningenGroningenThe Netherlands
| | - Sanne de Wit
- Department of CardiologyUniversity Medical Center GroningenGroningenThe Netherlands
| | | | - Wouter C. Meijers
- Department of CardiologyUniversity Medical Center GroningenGroningenThe Netherlands
| | - IJsbrand T. Klip
- Department of CardiologyUniversity Medical Center GroningenGroningenThe Netherlands
| | - Peter van der Meer
- Department of CardiologyUniversity Medical Center GroningenGroningenThe Netherlands
| | - Rudolf A. de Boer
- Department of CardiologyUniversity Medical Center GroningenGroningenThe Netherlands
| |
Collapse
|
18
|
Lyon AR, López-Fernández T, Couch LS, Asteggiano R, Aznar MC, Bergler-Klein J, Boriani G, Cardinale D, Cordoba R, Cosyns B, Cutter DJ, de Azambuja E, de Boer RA, Dent SF, Farmakis D, Gevaert SA, Gorog DA, Herrmann J, Lenihan D, Moslehi J, Moura B, Salinger SS, Stephens R, Suter TM, Szmit S, Tamargo J, Thavendiranathan P, Tocchetti CG, van der Meer P, van der Pal HJH. 2022 ESC Guidelines on cardio-oncology developed in collaboration with the European Hematology Association (EHA), the European Society for Therapeutic Radiology and Oncology (ESTRO) and the International Cardio-Oncology Society (IC-OS). Eur Heart J Cardiovasc Imaging 2022; 23:e333-e465. [PMID: 36017575 DOI: 10.1093/ehjci/jeac106] [Citation(s) in RCA: 116] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
19
|
Iannazzo F, Pellicano C, Colalillo A, Ramaccini C, Romaniello A, Gigante A, Rosato E. Interleukin-33 and soluble suppression of tumorigenicity 2 in scleroderma cardiac involvement. Clin Exp Med 2022:10.1007/s10238-022-00864-7. [PMID: 35877052 DOI: 10.1007/s10238-022-00864-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 07/11/2022] [Indexed: 11/28/2022]
Abstract
Interleukin (IL)-33 is part of the IL-1 family of cytokines and soluble suppression of tumorigenicity 2 (sST2) is part of the family of IL-1 receptors. In systemic sclerosis (SSc), IL-33 and sST2 are involved in cardiac manifestations such as diastolic dysfunction (DD), autonomic dysfunction (AD) and right ventricular-pulmonary arterial coupling assessed by tricuspid annular plane systolic excursion (TAPSE)/systolic pulmonary artery pressure (sPAP). Serum levels of IL33 and sST2 were assessed in 50 SSc patients and 14 healthy controls (HC). Clinical assessment, echocardiography and heart rate variability (HRV) analysis were performed in SSc patients. Serum levels of IL-33 and sST2 were significantly higher in SSc patients than HC. A linear positive correlation between modified Rodnan skin score and IL33 was observed. Serum values of sST2 were higher in SSc patients with DD than in patients without DD [15403 pg/ml (12,208-19,941) vs 8556 pg/ml (6820-11,036), p < 0.001]. sST2 showed a negative correlation with standard deviation of normal-to-normal RR intervals (SDNN) (r = - 0.281, p < 0.05) and positive correlation with low frequency/high frequency (LF/HF) (r = 0,349, p < 0.01). Negative linear correlation exists between sST2 and TAPSE/sPAP (r = - 0.398, p < 0.01). Serum levels of IL-33 and sST2 are higher in SSc patients than HC. Serum levels of sST2 are a potential marker of DD, AD and right ventricular-pulmonary arterial coupling.
Collapse
Affiliation(s)
- Francesco Iannazzo
- Department of Translational and Precision Medicine - Scleroderma Unit, Sapienza University of Rome, Viale dell'Università 37, 00185, Rome, Italy
| | - Chiara Pellicano
- Department of Translational and Precision Medicine - Scleroderma Unit, Sapienza University of Rome, Viale dell'Università 37, 00185, Rome, Italy
| | - Amalia Colalillo
- Department of Translational and Precision Medicine - Scleroderma Unit, Sapienza University of Rome, Viale dell'Università 37, 00185, Rome, Italy
| | - Cesarina Ramaccini
- Department of Translational and Precision Medicine - Scleroderma Unit, Sapienza University of Rome, Viale dell'Università 37, 00185, Rome, Italy
| | | | - Antonietta Gigante
- Department of Translational and Precision Medicine - Scleroderma Unit, Sapienza University of Rome, Viale dell'Università 37, 00185, Rome, Italy
| | - Edoardo Rosato
- Department of Translational and Precision Medicine - Scleroderma Unit, Sapienza University of Rome, Viale dell'Università 37, 00185, Rome, Italy.
| |
Collapse
|
20
|
González A, Richards AM, de Boer RA, Thum T, Arfsten H, Hülsmann M, Falcao-Pires I, Díez J, Foo RSY, Chan MY, Aimo A, Anene-Nzelu CG, Abdelhamid M, Adamopoulos S, Anker SD, Belenkov Y, Ben Gal T, Cohen-Solal A, Böhm M, Chioncel O, Delgado V, Emdin M, Jankowska EA, Gustafsson F, Hill L, Jaarsma T, Januzzi JL, Jhund PS, Lopatin Y, Lund LH, Metra M, Milicic D, Moura B, Mueller C, Mullens W, Núñez J, Piepoli MF, Rakisheva A, Ristić AD, Rossignol P, Savarese G, Tocchetti CG, Van Linthout S, Volterrani M, Seferovic P, Rosano G, Coats AJS, Bayés-Genís A. Cardiac remodelling - Part 1: From cells and tissues to circulating biomarkers. A review from the Study Group on Biomarkers of the Heart Failure Association of the European Society of Cardiology. Eur J Heart Fail 2022; 24:927-943. [PMID: 35334137 DOI: 10.1002/ejhf.2493] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/09/2022] [Accepted: 03/21/2022] [Indexed: 11/10/2022] Open
Abstract
Cardiac remodelling refers to changes in left ventricular structure and function over time, with a progressive deterioration that may lead to heart failure (HF) development (adverse remodelling) or vice versa a recovery (reverse remodelling) in response to HF treatment. Adverse remodelling predicts a worse outcome, whilst reverse remodelling predicts a better prognosis. The geometry, systolic and diastolic function and electric activity of the left ventricle are affected, as well as the left atrium and on the long term even right heart chambers. At a cellular and molecular level, remodelling involves all components of cardiac tissue: cardiomyocytes, fibroblasts, endothelial cells and leucocytes. The molecular, cellular and histological signatures of remodelling may differ according to the cause and severity of cardiac damage, and clearly to the global trend toward worsening or recovery. These processes cannot be routinely evaluated through endomyocardial biopsies, but may be reflected by circulating levels of several biomarkers. Different classes of biomarkers (e.g. proteins, non-coding RNAs, metabolites and/or epigenetic modifications) and several biomarkers of each class might inform on some aspects on HF development, progression and long-term outcomes, but most have failed to enter clinical practice. This may be due to the biological complexity of remodelling, so that no single biomarker could provide great insight on remodelling when assessed alone. Another possible reason is a still incomplete understanding of the role of biomarkers in the pathophysiology of cardiac remodelling. Such role will be investigated in the first part of this review paper on biomarkers of cardiac remodelling.
Collapse
Affiliation(s)
- Arantxa González
- Program of Cardiovascular Diseases, CIMA Universidad de Navarra, and IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
- CIBERCV, Carlos III Institute of Health, Madrid, Spain
| | - A Mark Richards
- Department of medicine, Yong Loo-Lin School of Medicine, National University of Singapore, Singapore
- Christchurch Heart Institute, University of Otago, Dunedin, New Zealand
| | - Rudolf A de Boer
- University Medical Center Groningen, University of Groningen, Department of Cardiology, Groningen, The Netherlands
| | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS) and Rebirth Center for Translational Regenerative Therapies, Hannover Medical School, Hannover, Germany
- Fraunhofer Institute of Toxicology and Experimental Medicine, Hannover, Germany
| | - Henrike Arfsten
- Clinical Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
- German Centre for Cardiovascular Research (DZHK), Berlin, Germany
| | - Martin Hülsmann
- Clinical Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Inês Falcao-Pires
- Department od Surgery and Physiology, Cardiovascular Research and Development Center, Faculty of Medicine of the University of Porto, Porto, Portugal
| | - Javier Díez
- Program of Cardiovascular Diseases, CIMA Universidad de Navarra, and IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
- CIBERCV, Carlos III Institute of Health, Madrid, Spain
- Departments of Cardiology and Cardiac Surgery, and Nephrology, Clínica Universidad de Navarra, Pamplona, Spain
| | - Roger S Y Foo
- Department of medicine, Yong Loo-Lin School of Medicine, National University of Singapore, Singapore
| | - Mark Y Chan
- Department of medicine, Yong Loo-Lin School of Medicine, National University of Singapore, Singapore
| | - Alberto Aimo
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
- Cardiology Division, Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| | - Chukwuemeka G Anene-Nzelu
- Department of medicine, Yong Loo-Lin School of Medicine, National University of Singapore, Singapore
- Montreal Heart Institute, Montreal, Canada
| | | | - Stamatis Adamopoulos
- 2nd Department of Cardiovascular Medicine, Onassis Cardiac Surgery Center, Athens, Greece
| | - Stefan D Anker
- Department of Cardiology (CVK), and Berlin Institute of Health Center for Regenerative Therapies (BCRT), German Centre for Cardiovascular Research (DZHK) partner site Berlin, Charité Universitätsmedizin, Berlin, Germany
- Institute of Heart Diseases, Wroclaw Medical University, Wroclaw, Poland
| | | | - Tuvia Ben Gal
- Cardiology Department, Rabin Medical Center, Beilinson, Israel
| | | | - Michael Böhm
- Universitätsklinikum des Saarlandes, Klinik für Innere Medizin III, Kardiologie, Angiologie und Internistische Intensivmedizin, Saarland University, Homburg/Saar, Germany
| | - Ovidiu Chioncel
- Emergency Institute for Cardiovascular Diseases 'Prof. C.C. Iliescu' Bucharest, University of Medicine Carol Davila, Bucharest, Romania
| | - Victoria Delgado
- Institut del Cor, Hospital Universitari Germans Trias i Pujol, Badalona, Barcelona, Spain
| | - Michele Emdin
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
- Cardiology Division, Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| | - Ewa A Jankowska
- Institute of Heart Diseases, Wroclaw Medical University, Wroclaw, Poland
| | - Finn Gustafsson
- Rigshospitalet-Copenhagen University Hospital, Heart Centre, Department of Cardiology, Copenhagen, Denmark
| | | | | | - James L Januzzi
- Massachusetts General Hospital and Baim Institute for Clinical Research, Boston, MA, USA
| | - Pardeep S Jhund
- BHF Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, Scotland
| | - Yuri Lopatin
- Volgograd State Medical University, Volgograd, Russia
| | - Lars H Lund
- Department of Medicine, Karolinska Institutet, and Department of Cardiology, Karolinska University Hospital, Stockholm, Sweden
| | - Marco Metra
- Cardiology, ASST Spedali Civili; Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - Davor Milicic
- University of Zagreb, School of Medicine, Zagreb, Croatia
| | - Brenda Moura
- Faculty of Medicine, University of Porto, Porto, Portugal
- Cardiology Department, Porto Armed Forces Hospital, Portugal
| | | | | | - Julio Núñez
- CIBERCV, Carlos III Institute of Health, Madrid, Spain
- Hospital Clínico Universitario de Valencia, INCLIVA, Universidad de Valencia, Valencia, Spain
| | - Massimo F Piepoli
- Cardiology Division, Castelsangiovanni Hospital, Castelsangiovanni, Italy
| | - Amina Rakisheva
- Scientific Research Institute of Cardiology and Internal Medicine, Almaty, Kazakhstan
| | - Arsen D Ristić
- Department of Cardiology, University Clinical Center of Serbia, Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Patrick Rossignol
- Université de Lorraine, Centre d'Investigations Cliniques- Plurithématique 1433, and Inserm U1116, CHRU Nancy, F-CRIN INI-CRCT, Nancy, France
| | - Gianluigi Savarese
- Department of Medicine, Karolinska Institutet, and Department of Cardiology, Karolinska University Hospital, Stockholm, Sweden
| | - Carlo G Tocchetti
- Cardio-Oncology Unit, Department of Translational Medical Sciences, Center for Basic and Clinical Immunology Research (CISI), Interdepartmental Center of Clinical and Translational Sciences (CIRCET), Interdepartmental Hypertension Research Center (CIRIAPA), Federico II University, Naples, Italy
| | - Sophie Van Linthout
- German Centre for Cardiovascular Research (DZHK), Berlin, Germany
- Berlin Institute of Health (BIH) at Charité - Universitätmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Berlin, Germany
| | | | - Petar Seferovic
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia
- Serbian Academy of Sciences and Arts, Belgrade, Serbia
| | - Giuseppe Rosano
- St. George's Hospitals, NHS Trust, University of London, London, UK
| | | | - Antoni Bayés-Genís
- CIBERCV, Carlos III Institute of Health, Madrid, Spain
- Institut del Cor, Hospital Universitari Germans Trias i Pujol, Badalona, Barcelona, Spain
- Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
21
|
Sitte V, Burkhardt B, Weber R, Kretschmar O, Hersberger M, Bergsträsser E, Christmann M. Advanced Imaging and New Cardiac Biomarkers in Long-term Follow-up After Childhood Cancer. J Pediatr Hematol Oncol 2022; 44:e374-e380. [PMID: 33828032 DOI: 10.1097/mph.0000000000002156] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 03/04/2021] [Indexed: 11/25/2022]
Abstract
OBJECTIVES Pathologic ejection fraction (EF), shortening fraction (FS), and standard heart failure biomarkers (high sensitive troponin T and N-terminal brain natriuretic peptide) during follow-up after childhood cancer have been associated with irreversible cardiac damage. We aimed to evaluate strain imaging values by echocardiography and new biomarkers for heart failure with preserved ejection fraction (HFpEF) as potential more sensitive parameters for cardiac deterioration in childhood cancer survivors (CCS). MATERIALS AND METHODS Prospective study with 50 CCS (median 16.2 y) at a median follow-up of 13 years. In addition to standard echo and laboratory parameters for heart failure, strain measurements and new biomarkers, including myocardial inflammation (interleukin 6), extracellular matrix (ECM) remodeling (C-telopeptide for type I collagen, intact N-terminal propeptide of type III procollagen), and other heart failure biomarkers (galectin 3, solutable ST2, growth differentiation factor 15), were obtained and compared with 50 healthy controls. RESULTS No significant differences in EF, FS, high sensitive troponin T, N-terminal brain natriuretic peptide, interleukin 6, solutable ST2, and galectin 3 were found between study and control groups. In contrast, strain imaging showed significant differences between both groups (global longitudinal strainGLS -16.1% vs. -20.4%, P<0.0001; global circumferential strain -14.3 vs. -21.4%, P<0.0001), detecting 66% (global longitudinal strain) and 76% (global circumferential strain) of patients with pathologic values in contrast to 6% (EF) and 16% (FS) for standard parameters. Markers for disturbances of ECM remodeling (C-telopeptide for type I collagen, intact N-terminal propeptide of type III procollagen, each P<0.0001) and growth differentiation factor 15 (P<0.0001) were significantly different between the groups. CONCLUSION Strain imaging and new cardiac biomarkers used in HFpEF focusing on ECM remodeling appear to be more sensitive in detecting early remodeling processes in CCS than standard echo and laboratory parameters.
Collapse
Affiliation(s)
| | | | - Roland Weber
- Department of Paediatric Cardiology, Heart Center
| | | | | | - Eva Bergsträsser
- Department of Paediatric Oncology, University Children's Hospital, Zurich, Switzerland
| | | |
Collapse
|
22
|
Cheng Z, Cai K, Xu C, Zhan Q, Xu X, Xu D, Zeng Q. Prognostic Value of Serum Galectin-3 in Chronic Heart Failure: A Meta-Analysis. Front Cardiovasc Med 2022; 9:783707. [PMID: 35252382 PMCID: PMC8894589 DOI: 10.3389/fcvm.2022.783707] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 01/21/2022] [Indexed: 11/13/2022] Open
Abstract
Objective To evaluate the association between serum galectin-3 and all-cause death (ACD) and cardiovascular death (CVD) in patients with chronic heart failure (CHF). Methods The PubMed and Embase databases and Clinical Trials Registry (www.clinicaltrials.gov) were searched for studies with data on serum galectin-3 and ACD and CVD in CHF patients. The hazard ratios (HRs) of ACD and CVD were calculated and presented with 95% CIs. HRs were pooled using fixed effects or random effects models when appropriate. Sensitivity analysis, meta-regression and subgroup analysis were applied to find the origin of heterogeneity. Visual inspection of Begg's funnel plot and Egger's test were performed to assess the possibility publication bias. Results Pooled data included the results from 6,440 patients from 12 studies in the meta-analysis. Higher serum galectin-3 was associated with a higher risk of ACD (HR, 1.38; 95% CI, 1.14–1.67) and CVD (HR, 1.13; 95% CI, 1.02–1.25) in CHF patients. In the subgroup analyses, higher serum galectin-3 was associated with an increased risk of ACD in all subgroups. The pooled HR of the shorter follow-up group (1.78; 95% CI, 1.50–2.11) was significantly higher than the pooled HR of the longer follow-up group (1.15; 95% CI, 1.05–1.25). Sensitivity analysis of eliminating one study in each turn indicated that Koukoui et al.'s study had the largest influence on the risk of all-cause death. All-cause death publication bias was not detected (Pr>|z| = 0.35 for Begg's test and P>|t| = 0.15 for Egger's test). Conclusions Serum galectin-3 has prognostic value of both all-cause death and cardiovascular death in CHF. Serum galectin-3 could be useful for risk classification in patients with CHF. Systematic Review Registration https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=193399.
Collapse
Affiliation(s)
- Zhendong Cheng
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Cardiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Kefeng Cai
- Department of Cardiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Chaoxian Xu
- Department of Cardiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Qiong Zhan
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangzhou, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| | - Xingbo Xu
- Department of Cardiology and Pneumology, University Medical Center of Göttingen, Georg-August-University, Göttingen, Germany
| | - Dingli Xu
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangzhou, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
- Dingli Xu
| | - Qingchun Zeng
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangzhou, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
- *Correspondence: Qingchun Zeng
| |
Collapse
|
23
|
Kott KA, Bishop M, Yang CHJ, Plasto TM, Cheng DC, Kaplan AI, Cullen L, Celermajer DS, Meikle PJ, Vernon ST, Figtree GA. Biomarker Development in Cardiology: Reviewing the Past to Inform the Future. Cells 2022; 11:588. [PMID: 35159397 PMCID: PMC8834296 DOI: 10.3390/cells11030588] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/27/2022] [Accepted: 02/05/2022] [Indexed: 12/29/2022] Open
Abstract
Cardiac biomarkers have become pivotal to the clinical practice of cardiology, but there remains much to discover that could benefit cardiology patients. We review the discovery of key protein biomarkers in the fields of acute coronary syndrome, heart failure, and atherosclerosis, giving an overview of the populations they were studied in and the statistics that were used to validate them. We review statistical approaches that are currently in use to assess new biomarkers and overview a framework for biomarker discovery and evaluation that could be incorporated into clinical trials to evaluate cardiovascular outcomes in the future.
Collapse
Affiliation(s)
- Katharine A. Kott
- Cardiovascular Discovery Group, Kolling Institute of Medical Research, University of Sydney, St Leonards 2065, Australia; (K.A.K.); (S.T.V.)
- Department of Cardiology, Royal North Shore Hospital, St Leonards 2065, Australia
- Sydney Medical School, University of Sydney, Camperdown 2050, Australia; (C.H.J.Y.); (T.M.P.); (D.C.C.); (A.I.K.); (D.S.C.)
| | - Michael Bishop
- School of Medicine and Public Health, University of Newcastle, Kensington 2033, Australia;
| | - Christina H. J. Yang
- Sydney Medical School, University of Sydney, Camperdown 2050, Australia; (C.H.J.Y.); (T.M.P.); (D.C.C.); (A.I.K.); (D.S.C.)
| | - Toby M. Plasto
- Sydney Medical School, University of Sydney, Camperdown 2050, Australia; (C.H.J.Y.); (T.M.P.); (D.C.C.); (A.I.K.); (D.S.C.)
| | - Daniel C. Cheng
- Sydney Medical School, University of Sydney, Camperdown 2050, Australia; (C.H.J.Y.); (T.M.P.); (D.C.C.); (A.I.K.); (D.S.C.)
| | - Adam I. Kaplan
- Sydney Medical School, University of Sydney, Camperdown 2050, Australia; (C.H.J.Y.); (T.M.P.); (D.C.C.); (A.I.K.); (D.S.C.)
| | - Louise Cullen
- Emergency and Trauma Centre, Royal Brisbane and Women’s Hospital, Herston 4029, Australia;
| | - David S. Celermajer
- Sydney Medical School, University of Sydney, Camperdown 2050, Australia; (C.H.J.Y.); (T.M.P.); (D.C.C.); (A.I.K.); (D.S.C.)
- Department of Cardiology, Royal Prince Alfred Hospital, Camperdown 2050, Australia
- The Heart Research Institute, Newtown 2042, Australia
| | - Peter J. Meikle
- Baker Heart and Diabetes Institute, Melbourne 3004, Australia;
| | - Stephen T. Vernon
- Cardiovascular Discovery Group, Kolling Institute of Medical Research, University of Sydney, St Leonards 2065, Australia; (K.A.K.); (S.T.V.)
- Department of Cardiology, Royal North Shore Hospital, St Leonards 2065, Australia
- Sydney Medical School, University of Sydney, Camperdown 2050, Australia; (C.H.J.Y.); (T.M.P.); (D.C.C.); (A.I.K.); (D.S.C.)
| | - Gemma A. Figtree
- Cardiovascular Discovery Group, Kolling Institute of Medical Research, University of Sydney, St Leonards 2065, Australia; (K.A.K.); (S.T.V.)
- Department of Cardiology, Royal North Shore Hospital, St Leonards 2065, Australia
- Sydney Medical School, University of Sydney, Camperdown 2050, Australia; (C.H.J.Y.); (T.M.P.); (D.C.C.); (A.I.K.); (D.S.C.)
| |
Collapse
|
24
|
Novel plasma biomarkers predicting biventricular involvement in arrhythmogenic right ventricular cardiomyopathy. Am Heart J 2022; 244:66-76. [PMID: 34756894 DOI: 10.1016/j.ahj.2021.10.187] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 10/20/2021] [Indexed: 11/21/2022]
Abstract
BACKGROUND Arrhythmogenic right ventricular cardiomyopathy (ARVC) is an inherited heart muscle disease characterized by fibrofatty replacement of the myocardium and ventricular arrhythmias. Biventricular involvement in ARVC may lead to heart failure. This study aimed to investigate the role of plasma biomarkers soluble (s)ST2, Galectin-3 (Gal-3) and GDF-15 in predicting biventricular involvement and adverse outcomes in ARVC. METHODS AND RESULTS ARVC patients from 2 independent cohorts, were studied. The Bejing (Chinese) cohort (n = 108) was the discovery cohort, whereas the Zurich (Swiss) cohort (n = 47) served as validation. All patients had a definite ARVC diagnosis at time of blood withdrawal. Biomarkers were independently correlated with NT-proBNP and left ventricular (LV)-function. ARVC patients with LV involvement had higher levels of sST2 and GDF-15 as compared to controls and patients with isolated right ventricle (RV) involvement. sST2 and GDF-15 were significantly correlated with late gadolinium enhancement in CMR and with adverse heart failure outcomes. Gal-3 was elevated in ARVC patients with and without LV involvement. The combined use of the three biomarkers (sST2, GDF-15 and NT-proBNP) showed the best performance in predicting LV involvement in both cohorts. Plasma drawn from the coronary arteries and coronary sinus indicated a transmyocardial elevation of sST2, but no transmyocardial gradient of GDF-15. After heart transplantation, both sST2 and GDF-15 returned to near-normal levels. CONCLUSION Our study showed that sST2 and GDF-15 may predict biventricular involvement in ARVC. The combined use of sST2, GDF-15 and NT-proBNP showed the best prediction of biventricular involvement in ARVC.
Collapse
|
25
|
Tan XY, Jing HY, Ma YR. Interleukin-33/ Suppression of Tumorigenicity 2 in Renal Fibrosis: Emerging Roles in Prognosis and Treatment. Front Physiol 2022; 12:792897. [PMID: 35046838 PMCID: PMC8761767 DOI: 10.3389/fphys.2021.792897] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 12/02/2021] [Indexed: 12/20/2022] Open
Abstract
Chronic kidney disease (CKD) is a major public health problem that affects more than 10% of the population worldwide and has a high mortality rate. Therefore, it is necessary to identify novel treatment strategies for CKD. Incidentally, renal fibrosis plays a central role in the progression of CKD to end-stage renal disease (ESRD). The activation of inflammatory pathways leads to the development of renal fibrosis. In fact, interleukin-33 (IL-33), a newly discovered member of the interleukin 1 (IL-1) cytokine family, is a crucial regulator of the inflammatory process. It exerts pro-inflammatory and pro-fibrotic effects via the suppression of tumorigenicity 2 (ST2) receptor, which, in turn, activates other inflammatory pathways. Although the role of this pathway in cardiac, pulmonary, and hepatic fibrotic diseases has been extensively studied, its precise role in renal fibrosis has not yet been completely elucidated. Recent studies have shown that a sustained activation of IL-33/ST2 pathway promotes the development of renal fibrosis. However, with prolonged research in this field, it is expected that the IL-33/ST2 pathway will be used as a diagnostic and prognostic tool for renal diseases. In addition, the IL-33/ST2 pathway seems to be a new target for the future treatment of CKD. Here, we review the mechanisms and potential applications of the IL-33/ST2 pathway in renal fibrosis; such that it can help clinicians and researchers to explore effective treatment options and develop novel medicines for CKD patients.
Collapse
Affiliation(s)
- Xiao-Yang Tan
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hao-Yue Jing
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yue-Rong Ma
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
26
|
Vértes V, Porpáczy A, Nógrádi Á, Tőkés-Füzesi M, Hajdu M, Czirják L, Komócsi A, Faludi R. Galectin-3 and sST2: associations to the echocardiographic markers of the myocardial mechanics in systemic sclerosis - a pilot study. Cardiovasc Ultrasound 2022; 20:1. [PMID: 35042522 PMCID: PMC8764793 DOI: 10.1186/s12947-022-00272-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 01/05/2022] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND Progressive cardiac fibrosis is the central aspect of the myocardial involvement in systemic sclerosis (SSc). We hypothesized that circulating biomarkers of the cardiac fibrosis may be useful in the early diagnosis of the cardiac manifestation in this disease. Thus, we investigated the potential correlations between the levels of galectin-3, soluble suppression of tumorigenicity-2 (sST2) and the echocardiographic markers of the myocardial mechanics in SSc patients. METHODS Forty patients (57.3 ± 13.7 years, 36 female) were investigated. In addition to the conventional echocardiography, tissue Doppler and speckle tracking-derived strain techniques were used to assess the function of both ventricles and atria. To estimate the correlations between galectin-3 and sST2 levels and the echocardiographic variables, partial correlation method was used with age as correcting factor. RESULTS In age adjusted analysis galectin-3 level showed significant correlation with left ventricular global longitudinal strain (r = 0.460, p = 0.005); grade of left ventricular diastolic dysfunction (r = 0.394, p = 0.013); septal e' (r = - 0.369, p = 0.021); septal E/e' (r = 0.380, p = 0.017) and with the grade of mitral regurgitation (r = 0.323, p = 0.048). No significant correlation was found between sST2 levels and the echocardiographic variables. CONCLUSIONS Galectin-3 levels, but not sST2 levels show significant correlation with the parameters of the left ventricular systolic and diastolic function. Galectin-3 may be a useful biomarker for the screening and early diagnosis of SSc patients with cardiac involvement.
Collapse
Affiliation(s)
- Vivien Vértes
- grid.9679.10000 0001 0663 9479 Heart Institute, Medical School, University of Pécs, Ifjúság út 13, H-7624 Pécs, Hungary
| | - Adél Porpáczy
- grid.9679.10000 0001 0663 9479 Heart Institute, Medical School, University of Pécs, Ifjúság út 13, H-7624 Pécs, Hungary
| | - Ágnes Nógrádi
- grid.9679.10000 0001 0663 9479 Heart Institute, Medical School, University of Pécs, Ifjúság út 13, H-7624 Pécs, Hungary
| | - Margit Tőkés-Füzesi
- grid.9679.10000 0001 0663 9479Department of Laboratory Medicine, Medical School, University of Pécs, Ifjúság út 13, H-7624 Pécs, Hungary
| | - Máté Hajdu
- grid.9679.10000 0001 0663 9479 Heart Institute, Medical School, University of Pécs, Ifjúság út 13, H-7624 Pécs, Hungary
| | - László Czirják
- grid.9679.10000 0001 0663 9479Department of Rheumatology and Immunology, Medical School, University of Pécs, Akác u. 1, H-7632 Pécs, Hungary
| | - András Komócsi
- grid.9679.10000 0001 0663 9479 Heart Institute, Medical School, University of Pécs, Ifjúság út 13, H-7624 Pécs, Hungary
| | - Réka Faludi
- Heart Institute, Medical School, University of Pécs, Ifjúság út 13, H-7624, Pécs, Hungary.
| |
Collapse
|
27
|
Kriechbaum SD, Vietheer JM, Wiedenroth CB, Rudolph F, Barde M, Wolter JS, Haas M, Fischer-Rasokat U, Weferling M, Rolf A, Hamm CW, Mayer E, Guth S, Keller T, Roller FC, Liebetrau C. Cardiac biomarkers as indicators of right ventricular dysfunction and recovery in chronic thromboembolic pulmonary hypertension patients after balloon pulmonary angioplasty therapy - a cardiac magnetic resonance imaging cohort study. Pulm Circ 2021; 11:20458940211056500. [PMID: 34917333 PMCID: PMC8669885 DOI: 10.1177/20458940211056500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 10/10/2021] [Indexed: 11/24/2022] Open
Abstract
Background In chronic thromboembolic pulmonary hypertension, right heart failure determines outcome. Balloon pulmonary angioplasty therapy allows right heart recovery, which can be monitored by cardiac magnetic resonance imaging. This study evaluates whether cardiac biomarkers (NT-proBNP, MR-proANP, sST2, and PAPP-A) are associated with cardiac magnetic resonance imaging findings prior to and after balloon pulmonary angioplasty therapy. Methods This observational cohort study enrolled 22 chronic thromboembolic pulmonary hypertension patients who underwent balloon pulmonary angioplasty therapy and completed a six-month follow-up including cardiac magnetic resonance imaging. Biomarker levels were compared with findings for right heart morphology and function derived from cardiac magnetic resonance imaging. Results Pulmonary hemodynamics improved after balloon pulmonary angioplasty therapy [pulmonary vascular resistance: 7.7 (6.0–9.0) vs. 4.7 (3.5–5.5) wood units, p < 0.001; mean pulmonary artery pressure 41 (38–47) vs. 32 (28–37) mmHg, p < 0.001]. Cardiac magnetic resonance imaging findings indicated right heart maladaptation at baseline and recovery after therapy [right ventricular end-diastolic volume 192 (141–229) ml vs. 143 (128–172) ml, p = 0.002; right ventricular end-systolic volume 131 (73–157) ml vs. 77 (61–99) ml (p < 0.001); right ventricular ejection fraction (RVEF) 34 (28–41) % vs. 52 (41–54) %; p < 0.001]. Biomarker level cut-offs [NT-proBNP 347 ng/L (area under the curve (AUC) 0.91), MR-proANP 230 pg/L (AUC 0.78), PAPP-A 14.5 mU/L (AUC 0.81), and sST2 48.0 ng/ml (AUC 0.88)] indicated a RVEF ≤ 35% at baseline. The dynamics of NT-proBNP (rs = −0.79; p < 0.001), MR-proANP (rs = –0.80; p < 0.001), and sST2 (rs = –0.49; p = 0.02) correlated inversely with the improvement in RVEF after therapy. A relative decrease of NT-proBNP < 53% (AUC 0.86) and MR-proANP < 24% (AUC 0.82) indicated a limited RVEF response. Conclusions In chronic thromboembolic pulmonary hypertension patients, cardiac magnetic resonance imaging findings illustrate right heart failure and recovery after balloon pulmonary angioplasty therapy. Cardiac biomarker levels correlate with right heart parameters at baseline and their dynamics after therapy.
Collapse
Affiliation(s)
- Steffen D Kriechbaum
- Department of Cardiology, Heart and Thorax Center, Campus Kerckhoff, University of Giessen, Bad Nauheim, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Frankfurt am Main, Germany
| | - Julia M Vietheer
- Department of Cardiology, Heart and Thorax Center, Campus Kerckhoff, University of Giessen, Bad Nauheim, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Frankfurt am Main, Germany
| | - Christoph B Wiedenroth
- Department of Thoracic Surgery, Heart and Thorax Center, Campus Kerckhoff, University of Giessen, Bad Nauheim, Germany
| | - Felix Rudolph
- Department of Cardiology, Heart and Thorax Center, Campus Kerckhoff, University of Giessen, Bad Nauheim, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Frankfurt am Main, Germany
| | - Marta Barde
- Department of Cardiology, Heart and Thorax Center, Campus Kerckhoff, University of Giessen, Bad Nauheim, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Frankfurt am Main, Germany
| | - Jan-Sebastian Wolter
- Department of Cardiology, Heart and Thorax Center, Campus Kerckhoff, University of Giessen, Bad Nauheim, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Frankfurt am Main, Germany
| | - Moritz Haas
- Department of Cardiology, Heart and Thorax Center, Campus Kerckhoff, University of Giessen, Bad Nauheim, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Frankfurt am Main, Germany
| | - Ulrich Fischer-Rasokat
- Department of Cardiology, Heart and Thorax Center, Campus Kerckhoff, University of Giessen, Bad Nauheim, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Frankfurt am Main, Germany
| | - Maren Weferling
- Department of Cardiology, Heart and Thorax Center, Campus Kerckhoff, University of Giessen, Bad Nauheim, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Frankfurt am Main, Germany
| | - Andreas Rolf
- Department of Cardiology, Heart and Thorax Center, Campus Kerckhoff, University of Giessen, Bad Nauheim, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Frankfurt am Main, Germany.,Division of Cardiology, Medical Clinic I, Justus Liebig University Giessen, Giessen, Germany
| | - Christian W Hamm
- Department of Cardiology, Heart and Thorax Center, Campus Kerckhoff, University of Giessen, Bad Nauheim, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Frankfurt am Main, Germany.,Division of Cardiology, Medical Clinic I, Justus Liebig University Giessen, Giessen, Germany
| | - Eckhard Mayer
- Department of Thoracic Surgery, Heart and Thorax Center, Campus Kerckhoff, University of Giessen, Bad Nauheim, Germany
| | - Stefan Guth
- Department of Thoracic Surgery, Heart and Thorax Center, Campus Kerckhoff, University of Giessen, Bad Nauheim, Germany
| | - Till Keller
- Department of Cardiology, Heart and Thorax Center, Campus Kerckhoff, University of Giessen, Bad Nauheim, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Frankfurt am Main, Germany.,Division of Cardiology, Medical Clinic I, Justus Liebig University Giessen, Giessen, Germany
| | - Fritz C Roller
- Department of Radiology, Justus Liebig University Giessen, Giessen, Germany
| | - Christoph Liebetrau
- Department of Cardiology, Heart and Thorax Center, Campus Kerckhoff, University of Giessen, Bad Nauheim, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Frankfurt am Main, Germany.,Cardioangiologisches Centrum Bethanien, Frankfurt am Main, Germany
| |
Collapse
|
28
|
Koniari I, Artopoulou E, Velissaris D, Ainslie M, Mplani V, Karavasili G, Kounis N, Tsigkas G. Biomarkers in the clinical management of patients with atrial fibrillation and heart failure. J Geriatr Cardiol 2021; 18:908-951. [PMID: 34908928 PMCID: PMC8648548 DOI: 10.11909/j.issn.1671-5411.2021.11.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Atrial fibrillation (AF) and heart failure (HF) are two cardiovascular diseases with an increasing prevalence worldwide. These conditions share common pathophysiologiesand frequently co-exit. In fact, the occurrence of either condition can 'cause' the development of the other, creating a new patient group that demands different management strategies to that if they occur in isolation. Regardless of the temproral association of the two conditions, their presence is linked with adverse cardiovascular outcomes, increased rate of hospitalizations, and increased economic burden on healthcare systems. The use of low-cost, easily accessible and applicable biomarkers may hasten the correct diagnosis and the effective treatment of AF and HF. Both AF and HF effect multiple physiological pathways and thus a great number of biomarkers can be measured that potentially give the clinician important diagnostic and prognostic information. These will then guide patient centred therapeutic management. The current biomarkers that offer potential for guiding therapy, focus on the physiological pathways of miRNA, myocardial stretch and injury, oxidative stress, inflammation, fibrosis, coagulation and renal impairment. Each of these has different utility in current clinincal practice.
Collapse
Affiliation(s)
- Ioanna Koniari
- Manchester Heart Institute, Manchester University Foundation Trust, Manchester, United Kingdom
| | - Eleni Artopoulou
- Department of Internal Medicine, University Hospital of Patras, Patras, Greece
| | | | - Mark Ainslie
- Manchester Heart Institute, Manchester University Foundation Trust, Manchester, United Kingdom
- Division of Cardiovascular Sciences, University of Manchester
| | - Virginia Mplani
- Department of Cardiology, University Hospital of Patras, Patras, Greece
| | - Georgia Karavasili
- Manchester Heart Institute, Manchester University Foundation Trust, Manchester, United Kingdom
| | - Nicholas Kounis
- Department of Cardiology, University Hospital of Patras, Patras, Greece
| | - Grigorios Tsigkas
- Department of Cardiology, University Hospital of Patras, Patras, Greece
| |
Collapse
|
29
|
Pozder Geb Gehlken C, Rogier van der Velde A, Meijers WC, Silljé HHW, Muntendam P, Dokter MM, van Gilst WH, Schols HA, de Boer RA. Pectins from various sources inhibit galectin-3-related cardiac fibrosis. Curr Res Transl Med 2021; 70:103321. [PMID: 34826684 DOI: 10.1016/j.retram.2021.103321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 10/26/2021] [Accepted: 11/01/2021] [Indexed: 11/03/2022]
Abstract
PURPOSE OF THE STUDY A major challenge in cardiology remains in finding a therapy for cardiac fibrosis. Inhibition of galectin-3 with pectins attenuates fibrosis in animal models of heart failure. The purpose of this study is to identify pectins with the strongest galectin-3 inhibitory capacity. We evaluated the in vitro inhibitory capacity, identified potent pectins, and tested if this potency could be validated in a mouse model of myocardial fibrosis. METHODS Various pectin fractions were screened in vitro. Modified rhubarb pectin (EMRP) was identified as the most potent inhibitor of galectin-3 and compared to the well-known modified citrus pectin (MCP). Our findings were validated in a mouse model of myocardial fibrosis, which was induced by angiotensin II (Ang II) infusion. RESULTS Ang II infusion was associated with a 4-5-fold increase in fibrosis signal in the tissue of the left ventricle, compared to the control group (0•22±0•10 to 1•08±0•53%; P < 0•001). After treatment with rhubarb pectin, fibrosis was reduced by 57% vs. Ang II alone while this reduction was 30% with the well-known MCP (P = NS, P < 0•05). Treatment was associated with a reduced cardiac inflammatory response and preserved cardiac function. CONCLUSION The galectin-3 inhibitor natural rhubarb pectin has a superior inhibitory capacity over established pectins, substantially attenuates cardiac fibrosis, and preserves cardiac function in vivo. Bioactive pectins are natural sources of galectin-3 inhibitors and may be helpful in the prevention of heart failure or other diseases characterized by fibrosis. FUNDING Dr. Meijers is supported by the Mandema-Stipendium of the Junior Scientific Masterclass 2020-10, University Medical Center Groningen and by the Netherlands Heart Foundation (Dekkerbeurs 2021)Dr. de Boer is supported by the Netherlands Heart Foundation (CVON SHE-PREDICTS-HF, grant 2017-21; CVON RED-CVD, grant 2017-11; CVON PREDICT2, grant 2018-30; and CVON DOUBLE DOSE, grant 2020B005), by a grant from the leDucq Foundation (Cure PhosphoLambaN induced Cardiomyopathy (Cure-PLaN), and by a grant from the European Research Council (ERC CoG 818715, SECRETE-HF).
Collapse
Affiliation(s)
- Carolin Pozder Geb Gehlken
- Department of Cardiology, University of Groningen, University Medical Center Groningen, 9700 RB, Groningen, the Netherlands
| | - A Rogier van der Velde
- Department of Cardiology, University of Groningen, University Medical Center Groningen, 9700 RB, Groningen, the Netherlands
| | - Wouter C Meijers
- Department of Cardiology, University of Groningen, University Medical Center Groningen, 9700 RB, Groningen, the Netherlands
| | - Herman H W Silljé
- Department of Cardiology, University of Groningen, University Medical Center Groningen, 9700 RB, Groningen, the Netherlands
| | | | - Martin M Dokter
- Department of Cardiology, University of Groningen, University Medical Center Groningen, 9700 RB, Groningen, the Netherlands
| | - Wiek H van Gilst
- Department of Cardiology, University of Groningen, University Medical Center Groningen, 9700 RB, Groningen, the Netherlands
| | - Henk A Schols
- Wageningen University, Laboratory of Food Chemistry, 6708 WG, Wageningen, the Netherlands
| | - Rudolf A de Boer
- Department of Cardiology, University of Groningen, University Medical Center Groningen, 9700 RB, Groningen, the Netherlands.
| |
Collapse
|
30
|
Cai H, Men H, Cao P, Zheng Y. Mechanism and prevention strategy of a bidirectional relationship between heart failure and cancer (Review). Exp Ther Med 2021; 22:1463. [PMID: 34737803 PMCID: PMC8561773 DOI: 10.3892/etm.2021.10898] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 09/16/2021] [Indexed: 12/11/2022] Open
Abstract
The relationship between cancer and heart failure has been extensively studied in the last decade. These studies have focused on describing heart injury caused by certain cancer treatments, including radiotherapy, chemotherapy and targeted therapy. Previous studies have demonstrated a higher incidence of cancer in patients with heart failure. Heart failure enhances an over-activation of the sympathetic nervous system and the renin-angiotensin-aldosterone system, and subsequently promotes cancer development. Other studies have found that heart failure and cancer both have a common pathological origin, flanked by chronic inflammation in certain organs. The present review aims to summarize and describe the recent discoveries, suggested mechanisms and relationships between heart failure and cancer. The current review provides more ideas on clinical prevention strategies according to the pathological mechanism involved.
Collapse
Affiliation(s)
- He Cai
- Cardiovascular Center, The First Hospital of Jilin University, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Hongbo Men
- Cardiovascular Center, The First Hospital of Jilin University, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Pengyu Cao
- Cardiovascular Center, The First Hospital of Jilin University, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Yang Zheng
- Cardiovascular Center, The First Hospital of Jilin University, Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
31
|
Li C, Zhao M, Xiao L, Wei H, Wen Z, Hu D, Yu B, Sun Y, Gao J, Shen X, Zhang Q, Cao H, Huang J, Huang W, Li K, Huang M, Ni L, Yu T, Ji L, Xu Y, Liu G, Konerman MC, Zheng L, Wen Wang D. Prognostic Value of Elevated Levels of Plasma N-Acetylneuraminic Acid in Patients With Heart Failure. Circ Heart Fail 2021; 14:e008459. [PMID: 34711067 DOI: 10.1161/circheartfailure.121.008459] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 08/25/2021] [Indexed: 01/13/2023]
Abstract
BACKGROUND Cardiac sialylation is involved in a variety of physiological processes in the heart. Altered sialylation has been implicated in heart failure (HF) mice. However, its role in patients with HF is unclear, and the potential effect of modulation of cardiac sialylation is worth exploring. METHODS We first assessed the association between plasma N-acetylneuraminic acid levels and the incidence of adverse cardiovascular events in patients with HF over a median follow-up period of 2 years. Next, immunoblot analysis and lectin histochemistry were performed in cardiac tissue to determine the expression levels of neuraminidases and the extent of cardiac desialylation. Finally, the therapeutic impact of a neuraminidase inhibitor was evaluated in animal models of HF. RESULTS Among 1699 patients with HF, 464 (27%) died of cardiovascular-related deaths or underwent heart transplantation. We found that the elevated plasma N-acetylneuraminic acid level was independently associated with a higher risk of incident cardiovascular death and heart transplantation (third tertile adjusted hazard ratio, 2.11 [95% CI, 1.67-2.66], P<0.001). In addition, in cardiac tissues from patients with HF, neuraminidase expression was upregulated, accompanied by desialylation. Treatment with oseltamivir, a neuraminidase inhibitor, in HF mice infused with isoproterenol and angiotensin II significantly inhibited desialylation and ameliorated cardiac dysfunction. CONCLUSIONS This study uncovered a significant association between elevated plasma N-acetylneuraminic acid level and an increased risk of a poor clinical outcome in patients with HF. Our data support the notion that desialylation represents an important contributor to the progression of HF, and neuraminidase inhibition may be a potential therapeutic strategy for HF.
Collapse
Affiliation(s)
- Chenze Li
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Institute of Myocardial Injury and Repair, Wuhan University, China (C.L.)
- Division of Cardiology, Department of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital (C.L., L.X., H.W., Z.W., D.H., B.Y., Y.S., X.S., J.H., K.L., M.H., L.N., T.Y., D.W.W.), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mingming Zhao
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, China (M.Z.)
- The Institute of Cardiovascular Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China (M.Z., J.G., Q.Z., H.C., L.J., Y.X., L.Z.)
| | - Lei Xiao
- Division of Cardiology, Department of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital (C.L., L.X., H.W., Z.W., D.H., B.Y., Y.S., X.S., J.H., K.L., M.H., L.N., T.Y., D.W.W.), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Haoran Wei
- Division of Cardiology, Department of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital (C.L., L.X., H.W., Z.W., D.H., B.Y., Y.S., X.S., J.H., K.L., M.H., L.N., T.Y., D.W.W.), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zheng Wen
- Division of Cardiology, Department of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital (C.L., L.X., H.W., Z.W., D.H., B.Y., Y.S., X.S., J.H., K.L., M.H., L.N., T.Y., D.W.W.), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dong Hu
- Division of Cardiology, Department of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital (C.L., L.X., H.W., Z.W., D.H., B.Y., Y.S., X.S., J.H., K.L., M.H., L.N., T.Y., D.W.W.), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bo Yu
- Division of Cardiology, Department of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital (C.L., L.X., H.W., Z.W., D.H., B.Y., Y.S., X.S., J.H., K.L., M.H., L.N., T.Y., D.W.W.), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yang Sun
- Division of Cardiology, Department of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital (C.L., L.X., H.W., Z.W., D.H., B.Y., Y.S., X.S., J.H., K.L., M.H., L.N., T.Y., D.W.W.), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jianing Gao
- The Institute of Cardiovascular Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China (M.Z., J.G., Q.Z., H.C., L.J., Y.X., L.Z.)
| | - Xiaoqing Shen
- Division of Cardiology, Department of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital (C.L., L.X., H.W., Z.W., D.H., B.Y., Y.S., X.S., J.H., K.L., M.H., L.N., T.Y., D.W.W.), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qi Zhang
- The Institute of Cardiovascular Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China (M.Z., J.G., Q.Z., H.C., L.J., Y.X., L.Z.)
| | - Huanhuan Cao
- The Institute of Cardiovascular Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China (M.Z., J.G., Q.Z., H.C., L.J., Y.X., L.Z.)
| | - Jin Huang
- Division of Cardiology, Department of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital (C.L., L.X., H.W., Z.W., D.H., B.Y., Y.S., X.S., J.H., K.L., M.H., L.N., T.Y., D.W.W.), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Huang
- Department of Cardiology, Central Theater General Hospital of the Chinese People's Liberation Army, Wuhan, China (W.H.)
| | - Ke Li
- Division of Cardiology, Department of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital (C.L., L.X., H.W., Z.W., D.H., B.Y., Y.S., X.S., J.H., K.L., M.H., L.N., T.Y., D.W.W.), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Man Huang
- Division of Cardiology, Department of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital (C.L., L.X., H.W., Z.W., D.H., B.Y., Y.S., X.S., J.H., K.L., M.H., L.N., T.Y., D.W.W.), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Ni
- Division of Cardiology, Department of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital (C.L., L.X., H.W., Z.W., D.H., B.Y., Y.S., X.S., J.H., K.L., M.H., L.N., T.Y., D.W.W.), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ting Yu
- Division of Cardiology, Department of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital (C.L., L.X., H.W., Z.W., D.H., B.Y., Y.S., X.S., J.H., K.L., M.H., L.N., T.Y., D.W.W.), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liang Ji
- The Institute of Cardiovascular Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China (M.Z., J.G., Q.Z., H.C., L.J., Y.X., L.Z.)
| | - Yangkai Xu
- The Institute of Cardiovascular Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China (M.Z., J.G., Q.Z., H.C., L.J., Y.X., L.Z.)
| | - Gang Liu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Lab of Environment and Health, School of Public Health (G.L.), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Matthew C Konerman
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Institute for Health Care Policy and Innovation, University of Michigan, Veterans Affairs Center for Clinical Management Research, Ann Arbor (M.C.K.)
| | - Lemin Zheng
- The Institute of Cardiovascular Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China (M.Z., J.G., Q.Z., H.C., L.J., Y.X., L.Z.)
- China National Clinical Research Center for Neurological Diseases, Tiantan Hospital, Advanced Innovation Center for Human Brain Protection, The Capital Medical University, Beijing (L.Z.)
| | - Dao Wen Wang
- Division of Cardiology, Department of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital (C.L., L.X., H.W., Z.W., D.H., B.Y., Y.S., X.S., J.H., K.L., M.H., L.N., T.Y., D.W.W.), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
32
|
Heidarpour M, Bashiri S, Vakhshoori M, Heshmat-Ghahdarijani K, Khanizadeh F, Ferdowsian S, Shafie D. The association between platelet-to-lymphocyte ratio with mortality among patients suffering from acute decompensated heart failure. BMC Cardiovasc Disord 2021; 21:454. [PMID: 34537010 PMCID: PMC8449504 DOI: 10.1186/s12872-021-02260-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 09/13/2021] [Indexed: 02/08/2023] Open
Abstract
Background Platelet-to-lymphocyte ratio (PLR) is an inflammation index suggested to have the prognostic capability in heart failure (HF). We sought to investigate the association of PLR with cardiovascular disease (CVD) mortality and creatinine (Cr) rise among Iranian individuals suffering from acute decompensated HF (ADHF). Methods This retrospective cohort study was in the context of the Persian Registry Of cardioVascular diseasE/Heart Failure (PROVE/HF) study. 405 individuals with ADHF admitted to the emergency department were recruited from April 2019 to March 2020. PLR was calculated by division of platelet to absolute lymphocyte counts and categorized based on quartiles. We utilized the Kaplan–Meier curve to show the difference in mortality based on PLR quartiles. Cr rise was defined as the increment of at least 0.3 mg/dl from baseline. Cox proportional hazard ratio (HR) was used to investigate the association of PLR with CVDs mortality. Results Mean age of participants was 65.9 ± 13.49 years (males: 67.7%). The mean follow-up duration was 4.26 ± 2.2 months. CVDs mortality or re-hospitalization was not significantly associated with PLR status. Multivariate analysis of PLR quartiles showed a minimally reduced likelihood of CVDs death in 2nd quartile versus the first one (HR 0.40, 95% confidence interval (CI) 0.16–1.01, P = 0.054). Cr rise had no remarkable relation with PLR status in neither model. Conclusion PLR could not be used as an independent prognostic factor among ADHF patients. Several studies are required clarifying the exact utility of this index.
Collapse
Affiliation(s)
- Maryam Heidarpour
- Isfahan Endocrine and Metabolism Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sepideh Bashiri
- Cardiac Rehabilitation Research Center, Isfahan Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mehrbod Vakhshoori
- Heart Failure Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Kiyan Heshmat-Ghahdarijani
- Heart Failure Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Shaghayegh Ferdowsian
- Heart Failure Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Davood Shafie
- Heart Failure Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
33
|
Meijers WC, Bayes-Genis A, Mebazaa A, Bauersachs J, Cleland JGF, Coats AJS, Januzzi JL, Maisel AS, McDonald K, Mueller T, Richards AM, Seferovic P, Mueller C, de Boer RA. Circulating heart failure biomarkers beyond natriuretic peptides: review from the Biomarker Study Group of the Heart Failure Association (HFA), European Society of Cardiology (ESC). Eur J Heart Fail 2021; 23:1610-1632. [PMID: 34498368 PMCID: PMC9292239 DOI: 10.1002/ejhf.2346] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 08/13/2021] [Accepted: 09/07/2021] [Indexed: 12/18/2022] Open
Abstract
New biomarkers are being evaluated for their ability to advance the management of patients with heart failure. Despite a large pool of interesting candidate biomarkers, besides natriuretic peptides virtually none have succeeded in being applied into the clinical setting. In this review, we examine the most promising emerging candidates for clinical assessment and management of patients with heart failure. We discuss high-sensitivity cardiac troponins (Tn), procalcitonin, novel kidney markers, soluble suppression of tumorigenicity 2 (sST2), galectin-3, growth differentiation factor-15 (GDF-15), cluster of differentiation 146 (CD146), neprilysin, adrenomedullin (ADM), and also discuss proteomics and genetic-based risk scores. We focused on guidance and assistance with daily clinical care decision-making. For each biomarker, analytical considerations are discussed, as well as performance regarding diagnosis and prognosis. Furthermore, we discuss potential implementation in clinical algorithms and in ongoing clinical trials.
Collapse
Affiliation(s)
- Wouter C Meijers
- Department of Cardiology, University Medical Center Groningen, Groningen, The Netherlands
| | - Antoni Bayes-Genis
- Heart Institute, Hospital Universitari Germans Trias i Pujol, Universitat Autònoma de Barcelona, CIBERCV, Barcelona, Spain
| | - Alexandre Mebazaa
- Inserm U942-MASCOT; Université de Paris; Department of Anesthesia and Critical Care, Hôpitaux Saint Louis & Lariboisière; FHU PROMICE, Paris, France.,Université de Paris, Paris, France.,Department of Anesthesia and Critical Care, Hôpitaux Saint Louis & Lariboisière, Paris, France.,FHU PROMICE, Paris, France
| | - Johann Bauersachs
- Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| | - John G F Cleland
- Robertson Centre for Biostatistics and Clinical Trials, University of Glasgow; National Heart & Lung Institute, Imperial College London, London, UK
| | - Andrew J S Coats
- Monash University, Melbourne, Australia.,University of Warwick, Coventry, UK
| | | | | | | | - Thomas Mueller
- Department of Clinical Pathology, Hospital of Bolzano, Bolzano, Italy
| | - A Mark Richards
- Christchurch Heart Institute, Christchurch, New Zealand.,Cardiovascular Research Institute, National University of Singapore, Singapore
| | - Petar Seferovic
- Faculty of Medicine, Belgrade University, Belgrade, Serbia.,Serbian Academy of Sciences and Arts, Belgarde, Serbia
| | | | - Rudolf A de Boer
- Department of Cardiology, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
34
|
Li X, Li L, Lei W, Chua HZ, Li Z, Huang X, Wang Q, Li N, Zhang H. Traditional Chinese medicine as a therapeutic option for cardiac fibrosis: Pharmacology and mechanisms. Biomed Pharmacother 2021; 142:111979. [PMID: 34358754 DOI: 10.1016/j.biopha.2021.111979] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 07/05/2021] [Accepted: 07/26/2021] [Indexed: 02/06/2023] Open
Abstract
Cardiovascular diseases are one of the leading causes of death worldwide and cardiac fibrosis is a common pathological process for cardiac remodeling in cardiovascular diseases. Cardiac fibrosis not only accelerates the deterioration progress of diseases but also becomes a pivotal contributor for futile treatment in clinical cardiovascular trials. Although cardiac fibrosis is common and prevalent, effective medicines to provide sufficient clinical intervention for cardiac fibrosis are still unavailable. Traditional Chinese medicine (TCM) is the natural essence experienced boiling, fry, and other processing methods, including active ingredients, extracts, and herbal formulas, which have been applied to treat human diseases for a long history. Recently, research has increasingly focused on the great potential of TCM for the prevention and treatment of cardiac fibrosis. Here, we aim to clarify the identified pro-fibrotic mechanisms and intensively summarize the application of TCM in improving cardiac fibrosis by working on these mechanisms. Through comprehensively analyzing, TCM mainly regulates the following pathways during ameliorating cardiac fibrosis: attenuation of inflammation and oxidative stress, inhibition of cardiac fibroblasts activation, reduction of extracellular matrix accumulation, modulation of the renin-angiotensin-aldosterone system, modulation of autophagy, regulation of metabolic-dependent mechanisms, and targeting microRNAs. We also discussed the deficiencies and the development direction of anti-fibrotic therapies on cardiac fibrosis. The data reviewed here demonstrates that TCM shows a robust effect on alleviating cardiac fibrosis, which provides us a rich source of new drugs or drug candidates. Besides, we also hope this review may give some enlightenment for treating cardiac fibrosis in clinical practice.
Collapse
Affiliation(s)
- Xiao Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Innovation Team of Research on Compound Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Lin Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Innovation Team of Research on Compound Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Wei Lei
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Innovation Team of Research on Compound Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Hui Zi Chua
- Evidence-Based Medicine Center, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Zining Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Innovation Team of Research on Compound Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Xianglong Huang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300381, China.
| | - Qilong Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Innovation Team of Research on Compound Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Nan Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Innovation Team of Research on Compound Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Han Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Innovation Team of Research on Compound Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
35
|
Wozolek A, Jaquet O, Donneau AF, Lancellotti P, Legoff C, Cavalier E, Radermecker MA, Lavigne JP, Durieux R, Roediger L, Senard M, Hubert MB, Brichant JF, Amabili P, Hans GA. Cardiac Biomarkers and Prediction of Early Outcome After Heart Valve Surgery: A Prospective Observational Study. J Cardiothorac Vasc Anesth 2021; 36:862-869. [PMID: 34301449 DOI: 10.1053/j.jvca.2021.06.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/08/2021] [Accepted: 06/22/2021] [Indexed: 11/11/2022]
Abstract
OBJECTIVES Circulating cardiac biomarkers may improve the prediction of long-term outcomes after cardiac surgery. The authors sought to assess if cardiac biomarkers also help better predict short-term morbidity. DESIGN Prospective observational study. SETTING Single academic hospital. PARTICIPANTS A total of 250 patients undergoing aortic or mitral valve surgery with or without associated coronary artery bypass grafts. INTERVENTION None MEASUREMENT AND MAIN RESULTS: Relationships between preoperative plasma concentrations of four cardiac biomarkers (sST2, Galectin-3, GDF-15, and NT-proBNP) and postoperative outcome were assessed using logistic regressions and Cox proportional hazards models. The primary outcome was a composite of 30-day mortality, an inotropic support longer than 48 hours and an initial length of stay in the intensive care >five days. Secondary outcome measures were postoperative acute kidney injury, inotropic support duration, lengths of intensive care unit and hospital stays, and 30-day and one-year mortality. No association was observed between any of the four cardiac biomarkers and the primary outcome. The preoperative levels of Galectin-3 (hazard ratio = 1.2; p < 0.001) and sST2 (hazard ratio = 1.01, p < 0.001) were significantly associated with one-year survival, and their addition to the EuroSCORE II significantly improved the prediction of one-year mortality (p < 0.001). Similarly, Galectin-3 was associated with postoperative acute kidney injury (odds ratio = 1.15, p = 0.001) and improved the prediction of this complication when added to the EuroSCORE II (p = 0.002). CONCLUSIONS These results suggested that the ability of cardiac biomarkers to predict short-term outcome after cardiac surgery, though of interest, appears limited. Conversely, cardiac biomarkers may have the potential to refine the prediction of long-term outcome. Admittedly, all positive results were obtained on secondary outcomes and must be regarded with caution.
Collapse
Affiliation(s)
- Aaron Wozolek
- Department of Anesthesia and Intensive Care Medicine, CHU of Liège, Liège, Belgium
| | - Oceane Jaquet
- Department of Anesthesia and Intensive Care Medicine, CHU of Liège, Liège, Belgium
| | | | | | - Caroline Legoff
- Department of Clinical Chemistry, University of Liège, CHU de Liège, Liège, Belgium
| | - Etienne Cavalier
- Department of Clinical Chemistry, University of Liège, CHU de Liège, Liège, Belgium
| | - Marc A Radermecker
- Department of Anesthesia and Intensive Care Medicine, CHU of Liège, Liège, Belgium; Department of Public Health, University of Liège, Liège, Belgium; Department of Cardiovascular and Thoracic Surgery, CHU of Liège, Liège, Belgium; Department of Cardiology, CHU of Liège, Liège, Belgium; Department of Clinical Chemistry, University of Liège, CHU de Liège, Liège, Belgium
| | - Jean-Paul Lavigne
- Department of Cardiovascular and Thoracic Surgery, CHU of Liège, Liège, Belgium
| | - Rodolphe Durieux
- Department of Cardiovascular and Thoracic Surgery, CHU of Liège, Liège, Belgium
| | - Laurence Roediger
- Department of Anesthesia and Intensive Care Medicine, CHU of Liège, Liège, Belgium
| | - Marc Senard
- Department of Anesthesia and Intensive Care Medicine, CHU of Liège, Liège, Belgium
| | - Marie Bernard Hubert
- Department of Anesthesia and Intensive Care Medicine, CHU of Liège, Liège, Belgium
| | | | - Philippe Amabili
- Department of Anesthesia and Intensive Care Medicine, CHU of Liège, Liège, Belgium
| | - Grégory A Hans
- Department of Anesthesia and Intensive Care Medicine, CHU of Liège, Liège, Belgium.
| |
Collapse
|
36
|
Combination Biomarkers for Risk Stratification in Patients With Chronic Heart Failure Biomarkers Prognostication in HF. J Card Fail 2021; 27:1321-1327. [PMID: 34153460 DOI: 10.1016/j.cardfail.2021.05.028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 05/31/2021] [Accepted: 05/31/2021] [Indexed: 11/20/2022]
Abstract
BACKGROUND Current guidelines recommend measuring natriuretic peptide biomarkers to establish prognosis in patients with chronic heart failure with reduced ejection fraction (HFrEF). We assessed whether a combination biomarkers approach improve prognostication in patients with stable HFrEF. METHODS AND RESULTS An observational cohort study recruited 202 patients with stable HFrEF at a single center, tertiary care hospital undergoing elective cardiac resynchronization therapy device placement from 2013 to 2015. Twenty-four biomarkers were analyzed individually and in combination using Cox proportion hazard regression model for major adverse cardiac events (ie, death, cardiac transplant, left ventricular assist device placement), and major adverse cardiac events plus HF hospitalizations. The single best biomarker for predicting major adverse cardiac events is peripheral mid-regional pro-adrenomedullin (C statistic = 0.771 ± 0.045) compared to current guideline recommended N-terminal pro b-type natriuretic peptide (C=0.668 ± 0.046). The best combined biomarkers for predicting major adverse cardiac events are blood urea nitrogen, coronary sinus C-reactive protein, peripheral mid-regional pro-atrial natriuretic peptide and peripheral soluble IL-1 receptor-like 1 (C = 0.767 ± 0.036). CONCLUSIONS In this observational cohort, the combined biomarkers (blood urea nitrogen, C-reactive protein, mid-regional pro-atrial natriuretic peptide and soluble IL-1 receptor-like 1) or the single biomarker (mid-regional pro-adrenomedullin) was superior to N-terminal pro B-type natriuretic peptide, the current guideline recommended biomarker in predicting cardiovascular outcomes in patients with HFrEF. Larger studies are needed to validate these findings and examine whether single or combined biomarkers improve HFrEF prognostication.
Collapse
|
37
|
Lu HY, Shih CM, Sung SH, Wu ATH, Cheng TM, Lin YC, Shih CC. Galectin-3 as a Biomarker for Stratifying Abdominal Aortic Aneurysm Size in a Taiwanese Population. Front Cardiovasc Med 2021; 8:663152. [PMID: 34136544 PMCID: PMC8200414 DOI: 10.3389/fcvm.2021.663152] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 05/05/2021] [Indexed: 11/29/2022] Open
Abstract
Abdominal aortic aneurysm (AAA) ruptures are unpredictable and lethal. A biomarker predicting AAA rupture risk could help identify patients with small, screen-detected AAAs. Galectin-3 (Gal-3), a β-galactosidase–binding lectin, is involved in inflammatory processes and may be associated with AAA incidence. We investigated whether Gal-3 can be used as a biomarker of AAA size. Plasma Gal-3 protein concentrations were examined in patients with AAA (n = 151) and control patients (n = 195) using Human ProcartaPlex multiplex and simplex kits. Circulating Gal-3 levels were significantly higher in patients with AAA than in control patients. The area under the receiver operating characteristic curve for Gal-3 was 0.91. Multivariate logistic regression analysis revealed a significant association between Gal-3 level and the presence of AAA. Circulating Gal-3 levels were significantly correlated with aortic diameter in a concentration-dependent manner. In conclusion, higher plasma Gal-3 concentrations may be a useful biomarker of AAA progression.
Collapse
Affiliation(s)
- Hsin-Ying Lu
- Division of Cardiovascular Surgery, Department of Surgery, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.,Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Taipei Heart Institute, Taipei Medical University, Taipei, Taiwan
| | - Chun-Ming Shih
- Taipei Heart Institute, Taipei Medical University, Taipei, Taiwan.,Division of Cardiology, Department of Internal Medicine, Taipei Medical University Hospital, Taipei, Taiwan.,Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Shih-Hsien Sung
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Alexander T H Wu
- The Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Tsai-Mu Cheng
- The Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Yen-Chung Lin
- Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Division of Nephrology, Department of Internal Medicine, Taipei Medical University Hospital, Taipei, Taiwan
| | - Chun-Che Shih
- Division of Cardiovascular Surgery, Department of Surgery, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.,Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Taipei Heart Institute, Taipei Medical University, Taipei, Taiwan.,Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
38
|
Wu X, Deng KQ, Li C, Yang Z, Hu H, Cai H, Zhang C, He T, Zheng F, Wang H, Zhang XA, Caillon A, Yuan Y, Wang X, Xu H, Lu Z. Cardiac Involvement in Recovered Patients From COVID-19: A Preliminary 6-Month Follow-Up Study. Front Cardiovasc Med 2021; 8:654405. [PMID: 34055936 PMCID: PMC8155269 DOI: 10.3389/fcvm.2021.654405] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 03/25/2021] [Indexed: 12/28/2022] Open
Abstract
Background: Accumulating evidence has revealed that coronavirus disease 2019 (COVID-19) patients may be complicated with myocardial injury during hospitalization. However, data regarding persistent cardiac involvement in patients who recovered from COVID-19 are limited. Our goal is to further explore the sustained impact of COVID-19 during follow-up, focusing on the cardiac involvement in the recovered patients. Methods: In this prospective observational follow-up study, we enrolled a total of 40 COVID-19 patients (20 with and 20 without cardiac injury during hospitalization) who were discharged from Zhongnan Hospital of Wuhan University for more than 6 months, and 27 patients (13 with and 14 without cardiac injury during hospitalization) were finally included in the analysis. Clinical information including self-reported symptoms, medications, laboratory findings, Short Form 36-item scores, 6-min walk test, clinical events, electrocardiogram assessment, echocardiography measurement, and cardiac magnetic resonance imaging was collected and analyzed. Results: Among 27 patients finally included, none of patients reported any obvious cardiopulmonary symptoms at the 6-month follow-up. There were no statistically significant differences in terms of the quality of life and exercise capacity between the patients with and without cardiac injury. No significant abnormalities were detected in electrocardiogram manifestations in both groups, except for nonspecific ST-T changes, premature beats, sinus tachycardia/bradycardia, PR interval prolongation, and bundle-branch block. All patients showed normal cardiac structure and function, without any statistical differences between patients with and without cardiac injury by echocardiography. Compared with patients without cardiac injury, patients with cardiac injury exhibited a significantly higher positive proportion in late gadolinium enhancement sequences [7/13 (53.8%) vs. 1/14 (7.1%), p = 0.013], accompanied by the elevation of circulating ST2 level [median (interquartile range) = 16.6 (12.1, 22.5) vs. 12.5 (9.5, 16.7); p = 0.044]. Patients with cardiac injury presented higher levels of aspartate aminotransferase, creatinine, high-sensitivity troponin I, lactate dehydrogenase, and N-terminal pro-B-type natriuretic peptide than those without cardiac injury, although these indexes were within the normal range for all recovered patients at the 6-month follow-up. Among patients with cardiac injury, patients with positive late gadolinium enhancement presented higher cardiac biomarker (high-sensitivity troponin I) and inflammatory factor (high-sensitivity C-reactive protein) on admission than the late gadolinium enhancement-negative subgroup. Conclusions: Our preliminary 6-month follow-up study with a limited number of patients revealed persistent cardiac involvement in 29.6% (8/27) of recovered patients from COVID-19 after discharge. Patients with cardiac injury during hospitalization were more prone to develop cardiac fibrosis during their recovery. Among patients with cardiac injury, those with relatively higher cardiac biomarkers and inflammatory factors on admission appeared more likely to have cardiac involvement in the convalescence phase.
Collapse
Affiliation(s)
- Xiaoyan Wu
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Ke-Qiong Deng
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Chenze Li
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zhaoxia Yang
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Huijuan Hu
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Huanhuan Cai
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Chao Zhang
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Tao He
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Fang Zheng
- Department of Clinical Laboratory, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Hairong Wang
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xin A Zhang
- University of Oklahoma Health Science Center, Oklahoma City, OK, United States
| | - Antoine Caillon
- Hypertension and Vascular Research Unit, Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, McGill University, Montreal, QC, Canada
| | - Yufeng Yuan
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xinghuan Wang
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Haibo Xu
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zhibing Lu
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
39
|
Fernandes F, Moreira CHV, Oliveira LC, Souza-Basqueira M, Ianni BM, Lorenzo CD, Ramires FJA, Nastari L, Cunha-Neto E, Ribeiro AL, Lopes RD, Keating SM, Sabino EC, Mady C. Galectin-3 Associated with Severe Forms and Long-term Mortality in Patients with Chagas Disease. Arq Bras Cardiol 2021; 116:248-256. [PMID: 33656072 PMCID: PMC7909980 DOI: 10.36660/abc.20190403] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 12/27/2019] [Indexed: 11/19/2022] Open
Abstract
Fundamento As características histopatológicas da doença de Chagas (DCC) são: presença de miocardite, destruição das fibras cardíacas e fibrose miocárdica. A Galectina-3 (Gal-3) é um biomarcador envolvido no mecanismo de fibrose e inflamação que pode ser útil para a estratificação de indivíduos com DCC por risco. Objetivos Nosso objetivo foi avaliar se níveis elevados de Gal-3 estão associados a formas graves de cardiomiopatia chagásica (CC) e são preditivos de mortalidade. Métodos Estudamos doadores de sangue (DS) positivos para anti-T. cruzi: não-CC-DS (187 DS sem CC com eletrocardiograma [ECG] e fração de ejeção do ventrículo esquerdo [FEVE] normais); CC-Não-Dis-DS (46 DS com CC e apresentando ECG anormal, mas FEVE normal); e 153 controles negativos correspondentes. Esta amostra foi composta por 97 pacientes com CC grave (CC-Dis). Usamos as correlações de Kruskall-Wallis e Spearman para testar a hipótese de associações, assumindo um p bicaudal <0,05 como significativo. Resultados O nível de Gal-3 foi de 12,3 ng/mL para não-CC-DS, 12,0 ng/mL para CC-Não-Dis-DS, 13,8 ng/mL para controles e 15,4 ng/mL para CC-Dis. FEVE <50 foi associada a níveis mais elevados de Gal-3 (p=0,0001). Em nosso modelo de regressão linear ajustado, encontramos associação entre os níveis de Gal-3 e os parâmetros do ecocardiograma em indivíduos positivos para T. cruzi. Nos pacientes CC-Dis, encontramos uma associação significativa de níveis mais elevados de Gal-3 (≥15,3 ng/mL) e morte ou transplante cardíaco em acompanhamento de cinco anos (Hazard ratio – HR 3,11; IC95% 1,21– 8,04; p=0,019). Conclusões Em pacientes com CC, níveis mais elevados de Gal-3 estiveram significativamente associados a formas graves da doença e maior taxa de mortalidade em longo prazo, o que significa que pode ser um meio efetivo para identificar pacientes de alto risco. (Arq Bras Cardiol. 2021; 116(2):248-256)
Collapse
Affiliation(s)
- Fábio Fernandes
- Universidade de São Paulo Faculdade de Medicina Hospital das Clínicas Instituto do Coração, São Paulo, SP- Brasil
| | | | | | | | - Barbara Maria Ianni
- Universidade de São Paulo Faculdade de Medicina Hospital das Clínicas Instituto do Coração, São Paulo, SP- Brasil
| | | | - Felix José Alvarez Ramires
- Universidade de São Paulo Faculdade de Medicina Hospital das Clínicas Instituto do Coração, São Paulo, SP- Brasil
| | - Luciano Nastari
- Universidade de São Paulo Faculdade de Medicina Hospital das Clínicas Instituto do Coração, São Paulo, SP- Brasil
| | - Edecio Cunha-Neto
- Universidade de São Paulo Faculdade de Medicina Hospital das Clínicas Instituto do Coração, São Paulo, SP- Brasil
| | - Antonio L Ribeiro
- Universidade Federal de Minas Gerais - Centro de Telessaúde - Hospital das Clínicas, Belo Horizonte, MG - Brasil
| | | | - Sheila M Keating
- Blood Systems Research Institute, San Francisco, Califórnia - EUA
| | | | - Charles Mady
- Universidade de São Paulo Faculdade de Medicina Hospital das Clínicas Instituto do Coração, São Paulo, SP- Brasil
| |
Collapse
|
40
|
Kim AJ, Ro H, Kim H, Chang JH, Lee HH, Chung W, Jung JY. Soluble ST2 and Galectin-3 as Predictors of Chronic Kidney Disease Progression and Outcomes. Am J Nephrol 2021; 52:119-130. [PMID: 33725696 DOI: 10.1159/000513663] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 12/04/2020] [Indexed: 11/19/2022]
Abstract
BACKGROUND Soluble suppression of tumorigenicity-2 (sST2) and galectin-3, novel biomarkers of heart failure and cardiovascular stress, predict cardiovascular events (CVEs) and mortality. However, their relationship with kidney function and adverse outcomes in CKD are uncertain. The purpose of this study was to determine the association between sST2 and galectin-3 with CKD progression and adverse clinical outcomes. METHODS We measured baseline sST2 and galectin-3 levels in the CKD patient cohort at our institution between October 2013 and December 2014. The primary outcome was CKD progression (kidney failure with replacement therapy or ≥50% reduction in estimated glomerular filtration rate from the baseline). The secondary outcome was the composite of CVEs and death. We used a Cox proportional hazards model to evaluate the associations between sST2 and galectin-3 levels, with kidney and clinical outcomes. RESULTS In total, 352 patients were enrolled in this study. At baseline, log sST2 and galectin-3 were directly associated with the serum creatinine (Cr) and urine protein-to-Cr ratio. Cox regression analysis showed that the baseline log sST2 level independently predicted CKD progression and composite outcome after adjustment for age, sex, smoking, diabetes mellitus, hypertension, cardiovascular disease, renin-angiotensin system blocker, calcium channel blocker, β-blocker, diuretics, antiplatelet agents, anemia, and hypoalbuminemia. The baseline log galectin-3 level was independently associated with CKD progression, but not with the composite outcome after adjustment for confounding variables. CONCLUSIONS Elevated levels of sST2 and galectin-3 are significantly associated with CKD progression, but only sST2 is associated with adverse clinical outcomes.
Collapse
Affiliation(s)
- Ae Jin Kim
- Division of Nephrology, Department of Internal Medicine, Gachon University Gil Medical Center, Incheon, Republic of Korea
- Department of Internal Medicine, Gachon University College of Medicine, Incheon, Republic of Korea
| | - Han Ro
- Division of Nephrology, Department of Internal Medicine, Gachon University Gil Medical Center, Incheon, Republic of Korea
- Department of Internal Medicine, Gachon University College of Medicine, Incheon, Republic of Korea
| | - Hyunsook Kim
- Department of Health Sciences and Technology, Gachon University, Incheon, Republic of Korea
| | - Jae Hyun Chang
- Division of Nephrology, Department of Internal Medicine, Gachon University Gil Medical Center, Incheon, Republic of Korea
- Department of Internal Medicine, Gachon University College of Medicine, Incheon, Republic of Korea
| | - Hyun Hee Lee
- Division of Nephrology, Department of Internal Medicine, Gachon University Gil Medical Center, Incheon, Republic of Korea
- Department of Internal Medicine, Gachon University College of Medicine, Incheon, Republic of Korea
| | - Wookyung Chung
- Division of Nephrology, Department of Internal Medicine, Gachon University Gil Medical Center, Incheon, Republic of Korea
- Department of Internal Medicine, Gachon University College of Medicine, Incheon, Republic of Korea
| | - Ji Yong Jung
- Division of Nephrology, Department of Internal Medicine, Gachon University Gil Medical Center, Incheon, Republic of Korea,
- Department of Internal Medicine, Gachon University College of Medicine, Incheon, Republic of Korea,
- Department of Health Sciences and Technology, Gachon University, Incheon, Republic of Korea,
| |
Collapse
|
41
|
El Iskandarani M, El Kurdi B, Murtaza G, Paul TK, Refaat MM. Prognostic role of albumin level in heart failure: A systematic review and meta-analysis. Medicine (Baltimore) 2021; 100:e24785. [PMID: 33725833 PMCID: PMC7969328 DOI: 10.1097/md.0000000000024785] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 01/26/2021] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Hypoalbuminemia (HA) is common in HF, however, its pathophysiology and clinical implications are poorly understood. While multiple studies have been published in the past decade investigating the role of serum albumin in HF, there is still no consensus on the prognostic value of this widely available measure. The objective of this study is to assess the prognostic role of albumin in heart failure (HF) patient. METHODS Unrestricted searches of MEDLINE, EMBASE, Cochrane databases were performed. The results were screened for relevance and eligibility criteria. Relevant data were extracted and analyzed using Comprehensive Meta-Analysis software. The Begg and Mazumdar rank correlation test was utilized to evaluate for publication bias. RESULTS A total of 48 studies examining 44,048 patients with HF were analyzed. HA was found in 32% (95% confidence interval [CI] 28.4%-37.4%) HF patients with marked heterogeneity (I2 = 98%). In 10 studies evaluating acute HF, in-hospital mortality was almost 4 times more likely in HA with an odds ratios (OR) of 3.77 (95% CI 1.96-7.23). HA was also associated with a significant increase in long-term mortality (OR: 1.5; 95% CI: 1.36-1.64) especially at 1-year post-discharge (OR: 2.44; 95% CI: 2.05-2.91; I2 = 11%). Pooled area under the curve (AUC 0.73; 95% CI 0.67-0.78) was comparable to serum brain natriuretic peptide (BNP) in predicting mortality in HF patients. CONCLUSION Our results suggest that HA is associated with significantly higher in-hospital mortality as well as long-term mortality with a predictive accuracy comparable to that reported for serum BNP. These findings suggest that serum albumin may be useful in determining high-risk patients.
Collapse
Affiliation(s)
| | | | - Ghulam Murtaza
- Cardiology Division, East Tennessee State University, Johnson City, Tennessee
| | - Timir K. Paul
- Cardiology Division, East Tennessee State University, Johnson City, Tennessee
| | - Marwan M. Refaat
- Cardiology Division, American University of Beirut Faculty of Medicine and Medical Center, Beirut, Lebanon
| |
Collapse
|
42
|
Kim AJ, Ro H, Kim H, Ko KP, Chang JH, Lee HH, Chung W, Jung JY. Elevated levels of soluble ST2 but not galectin-3 are associated with increased risk of mortality in hemodialysis patients. Kidney Res Clin Pract 2021; 40:109-119. [PMID: 33706479 PMCID: PMC8041640 DOI: 10.23876/j.krcp.20.133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 12/01/2020] [Indexed: 11/07/2022] Open
Abstract
Background The soluble forms of suppression of tumorigenicity-2 (ST2) and galectin-3 have been proposed as novel biomarkers for cardiac fibrosis and heart failure, as well as predictors of cardiovascular events and mortality. However, there are limited data on the association between soluble ST2 and galectin-3 and clinical outcomes in patients with kidney failure on replacement therapy. To determine this, we examined the associations between soluble ST2 and galectin-3 and all-cause mortality and cardiovascular events in patients on hemodialysis. Methods This study included maintenance hemodialysis patients (over 18 years old) who consented to preserve their serum in the Biobank at our institution between March 2014 and March 2015. We used Cox proportional hazards regression analysis to evaluate the associations between soluble ST2, galectin-3 levels, and clinical outcomes. The primary outcome was all-cause mortality, the secondary outcome was cardiovascular disease, and patients were followed for both outcomes until March 2018. Results A total of 296 patients were analyzed in this study. The mean age was 57 ± 13 years, and 53.0% were male. Serum concentration of soluble ST2 was significantly associated with higher mortality, after adjustment for confounding factors, but was not associated with cardiovascular disease. Serum galectin-3 level was not independently associated with either outcome after adjustment. Conclusion Elevated soluble ST2 is independently associated with an increased risk of mortality, but not with cardiovascular disease, in patients on hemodialysis. Elevated galectin-3 was not associated with mortality or cardiovascular disease.
Collapse
Affiliation(s)
- Ae Jin Kim
- Division of Nephrology, Department of Internal Medicine, Gachon University Gil Medical Center, Incheon, Republic of Korea.,Department of Internal Medicine, Gachon University College of Medicine, Incheon, Republic of Korea
| | - Han Ro
- Division of Nephrology, Department of Internal Medicine, Gachon University Gil Medical Center, Incheon, Republic of Korea.,Department of Internal Medicine, Gachon University College of Medicine, Incheon, Republic of Korea
| | - Hyunsook Kim
- Department of Health Sciences and Technology, Gachon University, Incheon, Republic of Korea
| | - Kwang-Pil Ko
- Department of Preventive Medicine, Gachon University College of Medicine, Incheon, Republic of Korea
| | - Jae Hyun Chang
- Division of Nephrology, Department of Internal Medicine, Gachon University Gil Medical Center, Incheon, Republic of Korea.,Department of Internal Medicine, Gachon University College of Medicine, Incheon, Republic of Korea
| | - Hyun Hee Lee
- Division of Nephrology, Department of Internal Medicine, Gachon University Gil Medical Center, Incheon, Republic of Korea.,Department of Internal Medicine, Gachon University College of Medicine, Incheon, Republic of Korea
| | - Wookyung Chung
- Division of Nephrology, Department of Internal Medicine, Gachon University Gil Medical Center, Incheon, Republic of Korea.,Department of Internal Medicine, Gachon University College of Medicine, Incheon, Republic of Korea
| | - Ji Yong Jung
- Division of Nephrology, Department of Internal Medicine, Gachon University Gil Medical Center, Incheon, Republic of Korea.,Department of Internal Medicine, Gachon University College of Medicine, Incheon, Republic of Korea.,Department of Health Sciences and Technology, Gachon University, Incheon, Republic of Korea
| |
Collapse
|
43
|
Coleman RD, Chartan CA, Mourani PM. Intensive care management of right ventricular failure and pulmonary hypertension crises. Pediatr Pulmonol 2021; 56:636-648. [PMID: 33561307 DOI: 10.1002/ppul.24776] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 04/03/2020] [Indexed: 01/22/2023]
Abstract
Pulmonary hypertension (PH), an often unrelenting disease that carries with it significant morbidity and mortality, affects not only the pulmonary vasculature but, in turn, the right ventricle as well. The survival of patients with PH is closely related to the right ventricular function. Therefore, having an understanding of how to manage right ventricular failure (RVF) and acute pulmonary hypertensive crises is imperative for clinicians who encounter these patients. This review addresses the management of these patients in detail, addressing: (a) the pathophysiology of RVF, (b) intensive care monitoring of these patients in the intensive care unit, (c) imaging of the right ventricle, (d) intubation and mechanical ventilation, (e) inotrope and vasopressor selection, (f) pulmonary vasodilator use, (g) interventional and surgical procedures for the acutely failing right ventricle, and (h) mechanical support for RVF.
Collapse
Affiliation(s)
- Ryan D Coleman
- Section of Critical Care Medicine, Department of Pediatrics, Baylor College of Medicine, Houston, Texas.,Section of Pulmonary Medicine, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Corey A Chartan
- Section of Critical Care Medicine, Department of Pediatrics, Baylor College of Medicine, Houston, Texas.,Section of Pulmonary Medicine, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Peter M Mourani
- Section of Critical Care Medicine and Pediatric Heart Lung Center, Department of Pediatrics, University of Colorado School of Medicine and Children's Hospital Colorado, Aurora, Colorado
| |
Collapse
|
44
|
Wang YR, Zheng QB, Wei GF, Meng LJ, Feng QL, Yuan WJ, Ou JL, Liu WL, Li Y. Elevated PCT at ICU discharge predicts poor prognosis in patients with severe traumatic brain injury: a retrospective cohort study. J Int Med Res 2021; 48:300060520922456. [PMID: 32368956 PMCID: PMC7218983 DOI: 10.1177/0300060520922456] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Purpose Disease severity and inflammatory response status are closely related to a
poor prognosis and must be assessed in patients with severe traumatic brain
injury (STBI) before intensive care unit (ICU) discharge. Whether elevated
serum procalcitonin (PCT) levels can predict a poor prognosis in STBI
patients before ICU discharge is unclear. Methods This retrospective observational cohort study enrolled 199 STBI patients who
were in the ICU for at least 48 hours and survived after discharge. Based on
serum PCT levels at discharge, patients were divided into the high-PCT group
(PCT ≥ 0.25 ng/mL) and the low-PCT group (PCT < 0.25 ng/mL). We assessed
the relationship between serum PCT levels and a poor prognosis. Results The high-PCT group had a higher rate of adverse outcomes compared with the
low-PCT group. Multivariate logistic regression analysis showed that the
Acute Physiology and Chronic Health Evaluation II (APACHE II) score,
Sequential Organ Failure Assessment (SOFA) score, white blood cell (WBC)
count, C-reactive protein (CRP) level, and PCT level at discharge were
significantly associated with adverse outcomes. Conclusions Elevated PCT levels at ICU discharge were associated with a poor prognosis in
STBI patients. The serum PCT level as a single indicator has limited value
for clinical decision-making.
Collapse
Affiliation(s)
- Yu-Rong Wang
- Department of Critical Care Medicine, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Qing-Bin Zheng
- Department of Critical Care Medicine, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Guang-Fa Wei
- Department of Critical Care Medicine, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Li-Jun Meng
- Department of Critical Care Medicine, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Qing-Ling Feng
- Department of Critical Care Medicine, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Wen-Jie Yuan
- Department of Critical Care Medicine, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Jin-Lei Ou
- Department of Critical Care Medicine, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Wei-Li Liu
- Department of Critical Care Medicine, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Yong Li
- Department of Critical Care Medicine, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| |
Collapse
|
45
|
Hijazi Z, Wallentin L, Lindbäck J, Alexander JH, Connolly SJ, Eikelboom JW, Ezekowitz MD, Granger CB, Lopes RD, Pol T, Yusuf S, Oldgren J, Siegbahn A. Screening of Multiple Biomarkers Associated With Ischemic Stroke in Atrial Fibrillation. J Am Heart Assoc 2020; 9:e018984. [PMID: 33292046 PMCID: PMC7955358 DOI: 10.1161/jaha.120.018984] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Background To explore the pathophysiological features of ischemic stroke in patients with atrial fibrillation (AF), we evaluated the association between 268 plasma proteins and subsequent ischemic stroke in 2 large AF cohorts receiving oral anticoagulation. Methods and Results A case-cohort sample of patients with AF from the ARISTOTLE (Apixaban for Reduction in Stroke and Other Thromboembolic Events in Atrial Fibrillation) trial, including 282 cases with ischemic stroke or systemic embolism and a random sample of 4124 without these events, during 1.9 years of follow-up was used for identification. Validation was provided by a similar case-cohort sample of patients with AF from the RE-LY (Randomized Evaluation of Long-Term Anticoagulation Therapy) trial, including 149 cases with ischemic stroke/systemic embolism and a random sample of 1062 without these events. In plasma obtained before randomization, 268 unique biomarkers were measured with OLINK proximity extension assay panels (CVD II, CVD III, and Inflammation) and conventional immunoassays. The association between biomarkers and outcomes was evaluated by random survival forest and adjusted Cox regression. According to random survival forest or Cox regression analyses, the biomarkers most strongly and consistently associated with ischemic stroke/systemic embolism were matrix metalloproteinase-9, NT-proBNP (N-terminal pro-B-type natriuretic peptide), osteopontin, sortilin, soluble suppression of tumorigenesis 2, and trefoil factor-3. The corresponding hazard ratios (95% CIs) for an interquartile difference were as follows: 1.18 (1.00-1.38), 1.55 (1.28-1.88), 1.28 (1.07-1.53), 1.19 (1.02-1.39), 1.23 (1.05-1.45), and 1.19 (0.97-1.45), respectively. Conclusions In patients with AF, of 268 unique biomarkers, the 6 biomarkers most strongly associated with subsequent ischemic stroke/systemic embolism represent fibrosis/remodeling (matrix metalloproteinase-9 and soluble suppression of tumorigenesis 2), cardiac dysfunction (NT-proBNP), vascular calcification (osteopontin), metabolism (sortilin), and mucosal integrity/ischemia (trefoil factor-3). Registration URL: https://www.clinicaltrials.gov. Unique Identifiers: NCT00412984 and NCT00262600.
Collapse
Affiliation(s)
- Ziad Hijazi
- Department of Medical Sciences Cardiology Uppsala University Uppsala Sweden.,Uppsala Clinical Research Center Uppsala University Uppsala Sweden
| | - Lars Wallentin
- Department of Medical Sciences Cardiology Uppsala University Uppsala Sweden.,Uppsala Clinical Research Center Uppsala University Uppsala Sweden
| | - Johan Lindbäck
- Uppsala Clinical Research Center Uppsala University Uppsala Sweden
| | | | | | | | - Michael D Ezekowitz
- Thomas Jefferson University Philadelphia PA.,Cardiovascular Medicine Lankenau Institute for Medical Research Wynnewood PA
| | | | | | - Tymon Pol
- Department of Medical Sciences Cardiology Uppsala University Uppsala Sweden
| | - Salim Yusuf
- Population Health Research Institute Hamilton ON Canada
| | - Jonas Oldgren
- Department of Medical Sciences Cardiology Uppsala University Uppsala Sweden.,Uppsala Clinical Research Center Uppsala University Uppsala Sweden
| | - Agneta Siegbahn
- Uppsala Clinical Research Center Uppsala University Uppsala Sweden.,Department of Medical Sciences Clinical Chemistry and Science for Life Laboratory Uppsala University Uppsala Sweden
| |
Collapse
|
46
|
Barutaut M, Fournier P, Peacock WF, Evaristi MF, Dambrin C, Caubère C, Koukoui F, Galinier M, Smih F, Rouet P. sST2 adds to the prognostic value of Gal-3 and BNP in chronic heart failure. Acta Cardiol 2020; 75:739-747. [PMID: 31560863 DOI: 10.1080/00015385.2019.1669847] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Background: The soluble form of the IL-33 receptor (sST2) and Galectin-3 (Gal-3) are fibrosis biomarkers with prognostic value in heart failure (HF). We investigated the prognostic capacity of sST2 when combined with Gal-3, and determined if the prognostic utility of sST2 is affected by mineralocorticoid receptor antagonist (MRA) therapy.Methods: sST-2 and Gal-3 were measured in 101 stable chronic HF (CHF) patients receiving MRA therapy and compared to 97 BNP and cardiovascular risk factor matched patients not treated with MRA. sST2 and Gal-3 levels were measured to determine the relationship with all-cause mortality at 6-year follow-up.Results: ROC curve cut-off points were defined as sST2 = 36.3 ng/mL, Gal-3 = 17.8 ng/mL, and BNP = 500 pg/mL, and had 6-year mortality hazard ratios (HR) of 7.3, 6.6 and 5.4, respectively. The combination of an elevated sST2 and Gal-3 had a HR = 4.4 [95% CI 1.9-8.9]. Combining sST2 and Gal-3 to a clinical model relevant for CHF prognosis allowed a significant reclassification of 1-year adverse outcome risk, even when BNP was included. Finally, prognostic prediction by sST2 was unaffected by MRA treatment.Conclusion: Simultaneous sST2 and Gal-3 elevation is associated with poorer prognosis compared to either alone, regardless of BNP levels, and the prognostic capacity of sST2 is independent of MRA therapy.
Collapse
Affiliation(s)
- Manon Barutaut
- UMR UT3 CNRS 5288, LA Maison de la MItochondrie (LAMMI), Axis Obesity and Heart Failure: Molecular and Clinical Investigations, INI-CRCT F-CRIN, GREAT Networks, Toulouse Cedex 4, France
| | - Pauline Fournier
- UMR UT3 CNRS 5288, LA Maison de la MItochondrie (LAMMI), Axis Obesity and Heart Failure: Molecular and Clinical Investigations, INI-CRCT F-CRIN, GREAT Networks, Toulouse Cedex 4, France
- Cardiology Department, University Hospital of Toulouse, Toulouse, France
| | - William F. Peacock
- Emergency Medicine at the Baylor College of Medicine in Houston, Houston, TX, USA
| | - Maria-Francesca Evaristi
- UMR UT3 CNRS 5288, LA Maison de la MItochondrie (LAMMI), Axis Obesity and Heart Failure: Molecular and Clinical Investigations, INI-CRCT F-CRIN, GREAT Networks, Toulouse Cedex 4, France
| | - Camille Dambrin
- UMR UT3 CNRS 5288, LA Maison de la MItochondrie (LAMMI), Axis Obesity and Heart Failure: Molecular and Clinical Investigations, INI-CRCT F-CRIN, GREAT Networks, Toulouse Cedex 4, France
- Cardiology Department, University Hospital of Toulouse, Toulouse, France
| | - Céline Caubère
- UMR UT3 CNRS 5288, LA Maison de la MItochondrie (LAMMI), Axis Obesity and Heart Failure: Molecular and Clinical Investigations, INI-CRCT F-CRIN, GREAT Networks, Toulouse Cedex 4, France
| | - François Koukoui
- UMR UT3 CNRS 5288, LA Maison de la MItochondrie (LAMMI), Axis Obesity and Heart Failure: Molecular and Clinical Investigations, INI-CRCT F-CRIN, GREAT Networks, Toulouse Cedex 4, France
| | - Michel Galinier
- UMR UT3 CNRS 5288, LA Maison de la MItochondrie (LAMMI), Axis Obesity and Heart Failure: Molecular and Clinical Investigations, INI-CRCT F-CRIN, GREAT Networks, Toulouse Cedex 4, France
- Cardiology Department, University Hospital of Toulouse, Toulouse, France
| | - Fatima Smih
- UMR UT3 CNRS 5288, LA Maison de la MItochondrie (LAMMI), Axis Obesity and Heart Failure: Molecular and Clinical Investigations, INI-CRCT F-CRIN, GREAT Networks, Toulouse Cedex 4, France
- Spartacus-Biomed, Clermont Le Fort, France
| | - Philippe Rouet
- UMR UT3 CNRS 5288, LA Maison de la MItochondrie (LAMMI), Axis Obesity and Heart Failure: Molecular and Clinical Investigations, INI-CRCT F-CRIN, GREAT Networks, Toulouse Cedex 4, France
| |
Collapse
|
47
|
Identification of Genetic Biomarkers for Diagnosis of Myocardial Infarction Compared with Angina Patients. Cardiovasc Ther 2020; 2020:8535314. [PMID: 33224271 PMCID: PMC7671815 DOI: 10.1155/2020/8535314] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 09/21/2020] [Accepted: 10/07/2020] [Indexed: 11/17/2022] Open
Abstract
Background Myocardial infarction (MI) is the most terrible appearance of cardiovascular disease. The incidence of heart failure, one of the complications of MI, has increased in the past few decades. Therefore, the identification of MI from angina patients and the determination of new diagnoses and therapies of MI are increasingly important. The present study was aimed at identifying differentially expressed genes and miRNAs as biomarkers for the clinical and prognosis factors of MI compared with angina using microarray data analysis. Methods Differentially expressed miRNAs and genes were manifested by GEO2R. The biological function of differentially expressed genes (DEGs) was examined by GO and KEGG. The construction of a protein-protein network was explored by STRING. cytoHubba was utilized to screen hub genes. Analysis of miRNA-gene pairs was executed by the miRWalk 3.0 database. The miRNA-target pairs overlapped with hub genes were seen as key genes. Logistic regressive analysis was performed by SPSS. Results A number of 779 DEGs were recorded. The biological function containing extracellular components, signaling pathways, and cell adhesion was enriched. Twenty-four hub genes and three differentially expressed miRNAs were noted. Eight key genes were demonstrated, and 6 out of these 8 key genes were significantly related to clinical and prognosis factors following MI. Conclusions CALCA, CDK6, MDM2, NRXN1, SOCS3, VEGFA, SMAD4, NCAM1, and hsa-miR-127-5p were thought to be potential diagnosis biomarkers for MI. Meanwhile, CALCA, CDK6, NRXN1, SMAD4, SOCS3, and NCAM1 were further identified to be potential diagnosis and therapy targets for MI.
Collapse
|
48
|
Galectin-3 Modulates Macrophage Activation and Contributes Smooth Muscle Cells Apoptosis in Abdominal Aortic Aneurysm Pathogenesis. Int J Mol Sci 2020; 21:ijms21218257. [PMID: 33158139 PMCID: PMC7663490 DOI: 10.3390/ijms21218257] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 10/30/2020] [Accepted: 11/02/2020] [Indexed: 12/01/2022] Open
Abstract
Galectin-3 (Gal-3) is a 26-kDa lectin that regulates many aspects of inflammatory cell behavior. We assessed the hypothesis that increased levels of Gal-3 contribute to abdominal aortic aneurysm (AAA) progression by enhancing monocyte chemoattraction through macrophage activation. We analyzed the plasma levels of Gal-3 in 76 patients with AAA (AAA group) and 97 controls (CTL group) as well as in angiotensin II (Ang-II)-infused ApoE knockout mice. Additionally, conditioned media (CM) were used to polarize THP-1 monocyte to M1 macrophages with or without Gal-3 inhibition through small interfering RNA targeted deletion to investigate whether Gal-3 inhibition could attenuate macrophage-induced inflammation and smooth muscle cell (SMC) apoptosis. Our results showed a markedly increased expression of Gal-3 in the plasma and aorta in the AAA patients and experimental mice compared with the CTL group. An in vitro study demonstrated that the M1 cells exhibited increased Gal-3 expression. Gal-3 inhibition markedly decreased the quantity of macrophage-induced inflammatory regulators, including IL-8, TNF-α, and IL-1β, as well as messenger RNA expression and MMP-9 activity. Moreover, Gal-3-deficient CM weakened SMC apoptosis through Fas activation. These findings prove that Gal-3 may contribute to AAA progression by the activation of inflammatory macrophages, thereby promoting SMC apoptosis.
Collapse
|
49
|
Pudil R, Mueller C, Čelutkienė J, Henriksen PA, Lenihan D, Dent S, Barac A, Stanway S, Moslehi J, Suter TM, Ky B, Štěrba M, Cardinale D, Cohen‐Solal A, Tocchetti CG, Farmakis D, Bergler‐Klein J, Anker MS, Von Haehling S, Belenkov Y, Iakobishvili Z, Maack C, Ciardiello F, Ruschitzka F, Coats AJ, Seferovic P, Lainscak M, Piepoli MF, Chioncel O, Bax J, Hulot J, Skouri H, Hägler‐Laube ES, Asteggiano R, Fernandez TL, Boer RA, Lyon AR. Role of serum biomarkers in cancer patients receiving cardiotoxic cancer therapies: a position statement from the
Cardio‐Oncology Study Group
of the
Heart Failure Association
and the
Cardio‐Oncology Council of the European Society of Cardiology. Eur J Heart Fail 2020; 22:1966-1983. [DOI: 10.1002/ejhf.2017] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 06/14/2020] [Accepted: 09/25/2020] [Indexed: 12/19/2022] Open
Affiliation(s)
- Radek Pudil
- 1st Department Medicine – Cardioangiology Charles University Prague, Medical Faculty and University Hospital Hradec Kralove Prague Czech Republic
| | - Christian Mueller
- Cardiovascular Research Institute Basel (CRIB) and Department of Cardiology University Hospital Basel, University of Basel Basel Switzerland
| | - Jelena Čelutkienė
- Clinic of Cardiac and Vascular Diseases Institute of Clinical Medicine, Faculty of Medicine, Vilnius University Vilnius Lithuania
- State Research Institute Centre For Innovative Medicine Vilnius Lithuania
| | | | - Dan Lenihan
- Cardio‐Oncology Center of Excellence Washington University in St Louis St Louis MO USA
| | - Susan Dent
- Duke Cancer Institute Duke University Durham NC USA
| | - Ana Barac
- MedStar Heart and Vascular Institute Georgetown University Washington DC USA
| | | | - Javid Moslehi
- Cardio‐Oncology Program, Department of Medicine Vanderbilt University Medical Center Nashville TN USA
| | - Thomas M. Suter
- Department of Cardiology Bern University Hospital, Inselspital, University of Bern Bern Switzerland
| | - Bonnie Ky
- University of Pennsylvania Philadelphia PA USA
| | - Martin Štěrba
- Department of Pharmacology Faculty of Medicine in Hradec Kralove, Charles University Hradec Kralove Czech Republic
| | - Daniela Cardinale
- Cardioncology Unit European Institute of Oncology, IRCCS Milan Italy
| | - Alain Cohen‐Solal
- UMR‐S 942, Paris University, Cardiology Department, Lariboisiere Hospital, AP‐HP Paris France
| | - Carlo Gabriele Tocchetti
- Department of Translational Medical Sciences and Interdepartmental Center for Clinical and Translational Research (CIRCET) ‘Federico II’ University Naples Italy
| | - Dimitrios Farmakis
- University of Cyprus Medical School Nicosia Cyprus
- Cardio‐Oncology Clinic, Heart Failure Unit, ‘Attikon’ University Hospital Athens Greece
- National and Kapodistrian University of Athens Medical School Athens Greece
| | | | - Markus S. Anker
- Division of Cardiology and Metabolism, Department of Cardiology Charité and Berlin Institute of Health Center for Regenerative Therapies (BCRT) and DZHK (German Centre for Cardiovascular Research), partner site Berlin and Department of Cardiology, Charité Campus Benjamin Franklin Berlin Germany
| | - Stephan Von Haehling
- Department of Cardiology and Pneumology University of Goettingen Medical Center Goettingen Germany
- German Center for Cardiovascular Research (DZHK), partner site Goettingen Goettingen Germany
| | | | - Zaza Iakobishvili
- Department of Community Cardiology Tel Aviv Jaffa District, Clalit Health Fund and Sackler Faculty of Medicine, Tel Aviv University Tel Aviv Israel
| | - Christoph Maack
- Comprehensive Heart Failure Center University Clinic Würzburg Würzburg Germany
| | - Fortunato Ciardiello
- Department of Precision Medicine ‘Luigi Vanvitelli’ University of Campania Naples Italy
| | - Frank Ruschitzka
- University Heart Center, Department of Cardiology University Hospital Zurich Zurich Switzerland
| | - Andrew J.S. Coats
- University of Warwick Warwick UK
- Pharmacology Centre of Clinical and Experimental Medicine, IRCCS San Raffaele Pisana Rome Italy
| | - Petar Seferovic
- Faculty of Medicine and Serbian Academy of Sciences and Arts University of Belgrade Belgrade Serbia
| | | | - Massimo F. Piepoli
- Cardiac Department ‘Guglielmo da Saliceto’ Polichirurgico Hospital AUSL Piacenza Piacenza Italy
| | - Ovidiu Chioncel
- Emergency Institute for Cardiovascular Diseases ‘Prof. C.C. Iliescu’ Bucharest Romania
- University of Medicine Carol Davila Bucharest Romania
| | - Jereon Bax
- Department of Cardiology Leiden University Medical Centre Leiden The Netherlands
| | - Jean‐Sebastien Hulot
- Université de Paris CIC1418, Paris Cardiovascular Research Center, INSERM Paris France
| | - Hadi Skouri
- Cardiology Division, Internal Medicine Department at American University of Beirut Medical Center Beirut Lebanon
| | | | | | - Teresa Lopez Fernandez
- Cardiology Service Cardio‐Oncology Unit, La Paz University Hospital and IdiPAz Research Institute, Ciber CV Madrid Spain
| | - Rudolf A. Boer
- Department of Cardiology University of Groningen, University Medical Center Groningen Groningen The Netherlands
| | - Alexander R. Lyon
- Cardio‐Oncology Service Royal Brompton Hospital and Imperial College London London UK
| |
Collapse
|
50
|
Kriechbaum SD, Wiedenroth CB, Peters K, Barde MA, Ajnwojner R, Wolter JS, Haas M, Roller FC, Guth S, Rieth AJ, Rolf A, Hamm CW, Mayer E, Keller T, Liebetrau C. Galectin-3, GDF-15, and sST2 for the assessment of disease severity and therapy response in patients suffering from inoperable chronic thromboembolic pulmonary hypertension. Biomarkers 2020; 25:578-586. [PMID: 32901511 DOI: 10.1080/1354750x.2020.1821776] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PURPOSE This study examined sST2, GDF-15, and galectin-3 as indicators of disease severity and therapy response in chronic thromboembolic pulmonary hypertension (CTEPH). METHODS This study included 57 inoperable CTEPH patients who underwent balloon pulmonary angioplasty and 25 controls without cardiovascular disease. Biomarker levels were examined in relation to advanced hemodynamic impairment [tertile with worst right atrial pressure (RAP) and cardiac index], hemodynamic therapy response [normalized hemodynamics (meanPAP ≤25 mmHg, PVR ≤3 WU and RAP ≤6 mmHg) or a reduction of meanPAP ≥25%; PVR ≥ 35%, RAP ≥25%]. RESULTS GDF-15 [820 (556-1315) pg/ml vs. 370 (314-516) pg/ml; p < 0.001] and sST2 [53.7 (45.3-74.1) ng/ml vs. 48.7 (35.5-57.0) ng/ml; p = 0.02] were higher in CTEPH patients than in controls. At baseline, a GDF-15 level ≥1443 pg/ml (AUC 0.88; OR 31.4) and a sST2 level ≥65 ng/ml (AUC 0.80; OR 10.9) were associated with advanced hemodynamic impairment. At follow-up GDF-15 ≤ 958 pg/ml (AUC = 0.74, OR 18) identified patients with optimal hemodynamic therapy response and ≤760 pg/ml (AUC = 0.79, OR 14). CONCLUSION GDF-15 and sST2 levels are higher in CTEPH and identified patients with advanced hemodynamic impairment. Further, decreased GDF-15 levels at follow-up were associated with hemodynamic therapy response. The diagnostic strength was not superior to NT-proBNP.
Collapse
Affiliation(s)
- Steffen D Kriechbaum
- Department of Cardiology, University of Giessen, Heart and Thorax Center, Campus Kerckhoff, Bad Nauheim, Germany.,German Center for Cardiovascular Research (DZHK), Frankfurt am Main, Germany
| | - Christoph B Wiedenroth
- Department of Thoracic Surgery, University of Giessen, Heart and Thorax Center, Campus Kerckhoff, Bad Nauheim, Germany
| | - Karina Peters
- Department of Cardiology, University of Giessen, Heart and Thorax Center, Campus Kerckhoff, Bad Nauheim, Germany.,German Center for Cardiovascular Research (DZHK), Frankfurt am Main, Germany
| | - Marta A Barde
- Department of Cardiology, University of Giessen, Heart and Thorax Center, Campus Kerckhoff, Bad Nauheim, Germany.,German Center for Cardiovascular Research (DZHK), Frankfurt am Main, Germany
| | - Ruth Ajnwojner
- Department of Cardiology, University of Giessen, Heart and Thorax Center, Campus Kerckhoff, Bad Nauheim, Germany.,German Center for Cardiovascular Research (DZHK), Frankfurt am Main, Germany
| | - Jan-Sebastian Wolter
- Department of Cardiology, University of Giessen, Heart and Thorax Center, Campus Kerckhoff, Bad Nauheim, Germany.,German Center for Cardiovascular Research (DZHK), Frankfurt am Main, Germany
| | - Moritz Haas
- Department of Cardiology, University of Giessen, Heart and Thorax Center, Campus Kerckhoff, Bad Nauheim, Germany.,German Center for Cardiovascular Research (DZHK), Frankfurt am Main, Germany
| | - Fritz C Roller
- Department of Radiology, Justus Liebig University Giessen, Giessen, Germany
| | - Stefan Guth
- Department of Thoracic Surgery, University of Giessen, Heart and Thorax Center, Campus Kerckhoff, Bad Nauheim, Germany
| | - Andreas J Rieth
- Department of Cardiology, University of Giessen, Heart and Thorax Center, Campus Kerckhoff, Bad Nauheim, Germany.,German Center for Cardiovascular Research (DZHK), Frankfurt am Main, Germany.,Division of Cardiology, Justus Liebig University Giessen, Medical Clinic I, Giessen, Germany
| | - Andreas Rolf
- Department of Cardiology, University of Giessen, Heart and Thorax Center, Campus Kerckhoff, Bad Nauheim, Germany.,German Center for Cardiovascular Research (DZHK), Frankfurt am Main, Germany.,Division of Cardiology, Justus Liebig University Giessen, Medical Clinic I, Giessen, Germany
| | - Christian W Hamm
- Department of Cardiology, University of Giessen, Heart and Thorax Center, Campus Kerckhoff, Bad Nauheim, Germany.,German Center for Cardiovascular Research (DZHK), Frankfurt am Main, Germany.,Division of Cardiology, Justus Liebig University Giessen, Medical Clinic I, Giessen, Germany
| | - Eckhard Mayer
- Department of Thoracic Surgery, University of Giessen, Heart and Thorax Center, Campus Kerckhoff, Bad Nauheim, Germany
| | - Till Keller
- Department of Cardiology, University of Giessen, Heart and Thorax Center, Campus Kerckhoff, Bad Nauheim, Germany.,German Center for Cardiovascular Research (DZHK), Frankfurt am Main, Germany.,Division of Cardiology, Justus Liebig University Giessen, Medical Clinic I, Giessen, Germany
| | - Christoph Liebetrau
- Department of Cardiology, University of Giessen, Heart and Thorax Center, Campus Kerckhoff, Bad Nauheim, Germany.,German Center for Cardiovascular Research (DZHK), Frankfurt am Main, Germany.,Division of Cardiology, Justus Liebig University Giessen, Medical Clinic I, Giessen, Germany
| |
Collapse
|